
An Application-Based Performance Characterization
of the Columbia Supercluster

Rupak Biswas, M. Jahed Djomehri, Robert Hood, Haoqiang Jin, Cetin Kiris, Subhash Saini
NASA Advanced Supercomputing (NAS) Division

NASA Ames Research Center, Moffett Field, CA 94035
{rbiswas,mdjomehri,rhood,hjin,ckiris,ssaini}~mail.arc.nasa.gov

Abstract

Columbia is a 10,240-processor supercluster consist-
ing of 20 Altix nodes with 512 processors each, and
currently ranked as the secondfastest computer in the
world. In this papel; we present the performance chur-
acteristics of Columbia obtained on up to four comput-
ing nodes interconnected via the InjiniBand .andor NU-
MAlink4 communication fabrics. We evaluate jloating-
point pelformance, memory bandwidth, message passs-
ing communication speeds, and compilers using a subset
of the HPC Challenge benchmarks, and some of the NAS
Parallel Benchmarks including the multi-zone versions.
We present detailed performance results for three scien-
tific applications of interest to NASA, one from molecu-
lar dynamics, and two from computational juid dynam-
ics. Our results show that both the NUMAlink4 and
the InJiniBand hold promise for application scaling to
a large number of processors.

Keywords: SGI Altix, multi-level parallelism, HPC
Challenge benchmarks, NAS Parallel Benchmarks,
molecular dynamics, multi-block overset grids, compu-
tational fluid dynamics

1 Introduction

During the summer of 2004, NASA began the instal-
lation of Columbia, a 10,240-processor SGI Altix su-
percomputer at its Ames Research Center. Columbia
is a supercluster comprised of 20 nodes, each contain-
ing 5 i2 iniei iiaiiiiiiii2 processsois ~ i ; d r x i n i ~ g t,hx L~XUX
operating system. In October of that year, the machine
achieved 5 1.9 Tflop/s on the Linpack benchmark, plac-
ing it second on the November 2004 Top500 list [181. In
the ensuing time, we have run a variety of benchmarks
and scientific applications on Columbia in an attempt to
critically characterize its parallel performance.

In this paper, we present the performance character-
istics obtained on up to four computing nodes intercon-
nected via the InfiniBand and/or NUMAlink4 commu-
nication fabrics. We first evaluate floating-point per-

formance, memory bandwidth, and message passsing
communication speeds using a subset of the HPC Chal-
lenge benchmarks [7]. Next, we analyze performance
using some of the NAS Para!lel Benchmarks [14], par-
ticularly the new multi-zone version [9]. Finally, we
present detailed performance results for three scien-
tific applications, one from molecular dynamics, and
two from state-of-the-art computational fluid dynam-
ics (CFD), both compressible and incompressible multi-
block overset grid Navier-Stokes applications [3, 1 I].
One current problem of significant interest to NASA
that involves these applications is the Crew Exploration
Vehicle, which will require research and development
in several disciplines such as propulsion, aerodynamics,
and design of advanced materials.

2 The Columbia Supercluster

Introduced in early 2003, the SGI Altix 3000 systems
are an adaptation of the Origin 3000, which use SGI’s
NUMAflex global shared-memory architecture. Such
systems allow access to all data directly and efficiently,
without having to move them through UO or networking
bottlenecks. The NUMAflex design enables the proces-
sor, memory, UO, interconnect, graphics, and storage to
be packaged into modular components, called “bricks.”
The primary difference between the Altix and the Ori-
gin systems is the C-Brick, used for the processor and
memory. This computational building block for the Al-
tix 3700 consists of four Intel Itanium2 processors (in
two nodes), 8GB of local memory, and a two-controller
ASIC m!!ed the Sca!!ab!c Huh (SHUB). Each C-Brick
shares a peak bandwidth of 3.2 GB/s via the NUMAlink
interconnection. Each SHUB interfaces to two CPUs in
one node, along with memory, UO devices, and other
SHUBs. The Altix cache-coherency protocol is imple-
mented in the SHUB that integrates both the snoop-
ing operations of the Itanium2 and the directory-based
scheme used across the NUMAlink interconnection fab-
ric. A loadstore cache miss causes the data to be com-
municated via the SHUB at a cache-line granularity and
automatically replicated in the local cache.

1

The predominant CPU on Columbia is an implemen-
tation of the 64-bit Itanium2 architecture, operates at
1.5 GHz, and is capable of issuing two multiply-adds per
cycle for a peak performance of 6.0 Gffop/s. The mem-
ory hierarchy consists of 128 floating-point registers and
three on-chip data caches (32KB L1, 256KB L2, and
6MB L3). Tine Itanium2 cannot store floating-point data
in L1, making register loads and spills a potential source
of bottlenecks; however, a relatively large register set
helps mitigate this issue. The superscalar processor im-
plements the Explicitly Parallel Instruction set Comput-
ing (EPIC) technology where instructions are organized
into 128-bit VLIW bundles. The Altix 3700 platform
uses the NUMAlink3 interconnect, a high-performance
custom network with a fat-tree topology that enables the
bisection bandwidth to scale linearly with the number of
processors.

Columbia is configured as a cluster of 20 SGI Altix
nodes (or boxes), each with 512 processors and approx-
imately 1TB of global shared-access memory. Of these
20 nodes, 12 are model 3700 and the remaining eight are
model 3700BX2. The BX2 node is essentially a double-
density version of the 3700. Each BX2 C-Brick thus
contains eight processors, 16GB local memory, and four
SHUBs, doubling the processor count in a rack from 32
to 64 and thereby packing more computational power in
the same space. The BX2 C-Bricks are interconnected
via NUMAlink4, yielding a peak bandwidth of 6.4 GB/s
that is twice the bandwidth between bricks on a 3700.
In addition, five of the Columbia BX2’s use 1.6 GHz
(rather than 1.5 GHz) parts and 9MB L3 caches. Ta-
ble l summarizes the main characteristics of the 3700
and BX2 nodes used in Columbia.

Characteristics
Architecture
Processors
Packaging
Processor
clock/L3 cache

Interconnect
Bandwidth

Th. peak perf.
Memory

3700 BX2
hWMAflex, SSI NUMAflex, SSI

512 512
32 CPUslrack 64 CPUs/rack

Itanium2 Itanium2
1.5 GHzl6 MB

NUMAlink3 NUMAlink4
3.2 GBIs 6.4 GB/s

1 TB 1TB
3.07 Tflop/s 3.07 Tflopls (a)

3.28 Tflo~s fi)

1

1.5 GHd6 MB (a)
1.6 GHz/9 MB (b)

Band is a revolutionary, state-of-the-art technology that
defines very high-speed networks for interconnecting
compute and I/O nodes [8]. It is an open industry
standard for designing high-performance compute clus-
ters of PCs and SMPs. Its high peak bandwidth and
comparable minimum latency distinguish it from other
competing network technologies such 2s Qnadrics 2nd
Myrinet [12]. Four of the 1.6 GHz BX2 nodes are
linked with NUMAlink4 technology to allow the global
shared-memory constructs to significantly reduce inter-
processor communication latency. This 2,048-processor
subsystem within Columbia provides a 13 Tflop/s peak
capability platform.

A number of programming paradigms are supported
on Columbia, including the standard OpenMP and MPI,
SGI SHMEM, and Multi-Level Parallelsim (MLP). MPI
and SHMEM are provided by SGI’s Message Pass-
ing Toolkit (MPT), while C/C++ and Fortran compilers
from Intel support OpenMP. The MLP library was devel-
oped by Taft at NASA Ames [171. Both OpenMP and
MLP can take advantage of the globally shared mem-
ory within an Altix node. Both MPI and SHMEM can
be used to communicate between Altix nodes connected
with the NUMAlink interconnect; however, communi-
cation over the InfiniBand switch requires the use of
MPI. Because of the limitation on the number of In-
finiBand connections through InfiniBand cards installed
on each node, the number of per-node MPI processes is
confined by

I /Ne,& X Nconnections

n - 1

where n (2 2) is the number of Altix nodes involved.
Currently on Columbia, Near& = 8 per node and

can only fully utilize up to three Altix nodes. A hybrid
(e.g. MPI+OpenMP) version of applications would be
required for runs using four or more nodes.

Nconnections = 64K per Card. Thus, a pure MPI code

3 Benchmarks and Applications

We utilize a spectrum of microbenchmarks, synthetic
benchmarks, and scientific applications in order to crit-
ically characterize Columbia performance. These are
briefly described in the following subsections.

Table 1. Characteristics of the two types of Altix
nodes used in Columbia.

3.1 HPC Challenge Microbenchmarks

We elected to test basic system performance char-
acteristics such as floating-point operations, memory
bandwidth, and message passing communication speeds
using a subset of the HPC Challenge (HPCC) bench-
mark suite [”]. In particular, we used the following com-

Two communication fabrics connect the 20 Altix sys-
tems: an InfiniBand switch [19] provides low-latency
MPI communication, and a 10-gigabit Ethernet switch
provides user access and I/O communications. Infini- ponents:

2

0 We tested optimum floating-point performance
with DGEMM, a double-precision matrix-matrix
multiplication routine that uses a level-3 BLAS
package on the Altix. The input arrays are sized
so as to use about 75% of the memory available on
the subset of the CPUs being tested.

0 The STREAM benchmark component tests mem-
ory bandwidth by doing simple operations on very
long vectors. There are four vector operations mea-
sured: copy, scale by multiplicative constant, add,
and triad (multiply by scalar and add). As with the
DGEMM benchmark, the vectors manipulated are
sized to use about 75% of the memory available.

0 We evaluated message passing performance in a
variety of communication patterns with the HPCC
version of b-eff [6]. The test measures latency
and bandwidth using ping-pong and two rings: one
using a “natural” ordering where communication
takes place between processes with adjacent ranks
in MPI-COMM-WORLD, and one using a random
ordering. For ping-pong, we use the “average” re-
sults reported by the benchmark; for the rings, the
benchmark reports a geometric mean of the results
from a number of trials.

’

While these benchmarks will likely not be completely
indicative of application performance, they can be used
to help explain application timing anomalies when they
occur.

3.2 NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) are well-
known problems for testing the capabilities of parallel
computers and parallelization tools. They were derived
from computational fluid dynamics (CFD) codes and
are widely recognized as a standard indicator of parallel
computer performance. The original NF’B suite consists
of five kernels and three simulated CFD applications,
given as a “pencil-and-paper’’ specifications in [11. The
five kernels mimic the computational core of five nu-
merical methods, while the three simulated qylications
reproduce much of the data movement and computation
found in full CFD codes. Reference implementations
were subsequently provided as NPB2 [2], using MPI as
the parallel programming paradigm, and later expanded
to other programming paradigms (such as OpenMP).

Recent effort in NPB development was focused on
new benchmarks, including the new multi-zone version,
called NPB-MZ [9]. While the original NPB exploits
fine-grain parallelism in a single zone, the multi-zone
benchmarks stress the need to exploit multiple levels of

parallelism for efficiency and to balance the computa-
tional load.

For evaluating the Columbia system, we selected a
subset of the benchmarks: three kernels (MG, CG, and
FT), one simulated application (BT), and two multi-zone
benchmarks (BT-MZ and SP-MZ) [2, 91. These cover
five types of mxerica! methods found in mzq scientific
applications. Briefly, MG (multi-grid) tests long- and
short- distance communication, CG (conjugate gradi-
ent) tests irregular memory access and communication,
FT (fast Fourier transform) tests all-to-all communica-
tion, BT (block-triadiagonal solver) tests nearest neigh-
bor communication, and BT-MZ (uneven sized zones)
and SP-MZ (even sized zones) test both coarse- and fine-
grain parallelism and load balance. For our experiments,
we use both MPI and OpenMP implementations of the
four original NPBs and the hybrid MPI+OpenMP imple-
mentation of the NPB-MZ from the latest NPB3.1 distri-
bution [14]. To stress the processors, memory, and net-
work of the Columbia system, we introduced two new
classes of problem sizes for the multi-zone benchmarks:
Class E (4096 zones, 4224 ~ 3 4 5 6 x 9 2 aggregated grid
size) and Class F (16384 zones, 1 2 0 3 2 ~ 8 9 6 0 ~ 2 5 0 ag-
gregated grid size).

3.3 Molecular Dynamics

Molecular dynamics [151 is a powerful technique for
studying the structure of solids, liquids and gases. It in-
volves calculating the forces acting on the atoms in a
molecular system using Newton’s equations of motion
and studying their trajectories as a function of time. Af-
ter integrating for some time when sufficient information
on the motion of the individual atoms has been collected,
one uses statistical methods to deduce the bulk proper-
ties of the material. These properties may include the
structure, thermodynamics, and transport properties. In
addition, molecular dynamics can be used to study the
detailed atomistic mechanisms underlying these proper-
ties and compare them with theory. It is a valuable com-
putational tool to bridge between experiment and theory.

In our Columbia performance study we use a generic
molecular dynamics code based on the Velocity Verlet

improve the velocity evaluations. However, it is com-
putationally more expensive than other integration algo-
rithms like Verlet or leap-frog schemes. The Velocity
Verlet algorithm provides both the atomic positions and
velocities at the same instant of time, and therefore is
regarded as the most complete form of the Verlet algo-
rithm.

To parallelize the algorithm, we use a spatial de-
composition method, in which the physical domain is
subdivided into small three-dimensional boxes, one for

r!gOT;.th-?I, 2 sO~hisfc2ted integr2tnr dP,sigI?ed to fmher

3

each processor. At each step, the processors compute
the forces and update the positions and velocities of all
the atoms within their respective boxes. In this method,
a processor needs to know the locations of atoms only
in nearby boxes; thus, communication is entirely local.
Each processor uses two data structures: one for the
atoms in its spatia! domain and the other for atoms in
neighboring boxes. The first data structure stores atomic
positions and velocities, and neighbor linked lists to per-
mit easy deletions and insertions as atoms move between
boxes. The second data structure stores only position co-
ordinates of atoms in neighboring boxes. The potential
energy between two atoms is modeled by the Lennard-
Jones potential. The simulation starts with atoms on a
force cubic center (fcc) lattice with randomized veloc-
ities at a given temperature. We used a cutoff radius
of 5.0 beyond which interactions between atoms are not
calculated.

3.4 INS3D: Turbopump Flow Simulations

Computations for unsteady flow through a full scale
low-pressure rocket pump are performed utilizing the
INS3D computer code [lo]. Liquid rocket turbopumps
operate under severe conditions and at very high rota-
tional speeds. The low-pressure-fuel turbopump creates
transient flow features such as reverse flows, tip clear-
ance effects, secondary flows, vortex shedding, junction
flows, and cavitation effects. Flow unsteadiness origi-
nated from the inducer is considered to be one of the ma-
jor contributors to the high frequency cyclic loading that
results in cycle fatigue. The reverse flow originated at
the tip of an inducer blade travels upstream and interacts
with the bellows cavity. To resolve the complex geom-
etry in relative motion, an overset grid approach is em-
ployed where the problem domain is decomposed into a
number of simple grid components [3]. Connectivity be-
tween neighboring grids is established by interpolation
at the grid outer boundaries. Addition of new compo-
nents to the system and simulation of arbitrary relative
motion between multiple bodies are achieved by estab-
lishing new connectivity without disturbing the existing
grids.

The computational grid used for the experiments re-
ported in this paper consisted of 66 million grid points
and 267 blocks (or zones). Details of the grid system are
shown in Fig. 1. Fig. 2 displays particle traces colored
by axial velocity entering the low-pressure fuel pump.
The blue particles represent regions of positive axial ve-
locity, while the red particles indicate four back flow re-
gions. The gray particles identify the stagnation regions
in the flow.

The INS3D code solves the incompressible Navier-
Stokes equations for both steady-state and unsteady

4

Figure 1. Surface grids for the low pressure fuel
pump inducer and the flowliner.

Figure 2. Instantaneous snapshot of particle traces
colored by axial velocity values.

flows. The numerical solution requires special atten-
tion in order to satisfy the divergence-free constraint on
the velocity field. The incompressible formulation does
not explicitly yield the pressure field from an equation
of state or the continuity equation. One way to avoid
the difficulty of the elliptic nature of the equations is to
use an artificial compressibiIity method that introduces
a time-derivative of the pressure term into the continuity
equation. This transforms the elliptic-parabolic partial
differential equations into the hyperbolic-parabolic type.
To obtain time-accurate solutions, the equations are it-
erated to convergence in pseudo-time for each physical
time step until the divergence of the velocity field has
been reduced below a specified tolerance value. The
total number of sub-iterations required varies depend-
ing on the problem, time step size, and the artificial
compressibility parameter. Typically, the number ranges

I ;- I

5

from 10 to 30 sub-iterations. The matrix equation is
solved iteratively by using a nonlfactored Gauss-Seidel
type line-relaxation scheme, which maintains stability
and allows a large pseudo-time step to be taken. More
detailed information about the application can be found
in [10, 111.

Performance results reported in this paper were ob-
tained for computations carried out using the Multi-
Level Parallelism (MLP) paradigm for shared-memory
systems [17]. All data communications at the coarsest
and finest levels are accomplished via direct memory
referencing instructions. The coarsest level parallelism
is supplied by spawning off independent processes via
the standard UNIX fork. A library of routines is used to
initiate forks, to establish shared memory arenas, and
to provide synchronization primitives. The boundary
data for the overset grid system is archived in the shared
memory arena by each process. Fine grain parallelism is
obtained by using OpenMP compiler directives.

3.5 OVERFLOW-D: Rotor Vortex Simulations

For solving the compressible Navier-Stokes equa-
tions, we selected the NASA production code called
OVERFLOW-D [13]. The code uses the same overset
grid methodology [3] as INS3D to perform high-fidelity
viscous simulations around realistic aerospace configu-
rations. OVERFLOW-D is popular within the aerody-
namics community due to its ability to handle complex
designs with multiple geometric components. It is ex-
plicitly designed to simplify the modeling of problems
when components are in relative motion. The main com-
putational logic at the top level of the sequential code

grid-loop over the grids within each group. Since each
MPI process is assigned to only one group, the group-
loop is executed in parallel, with each group performing
its own sequential grid-loop. The inter-grid boundary
updates within each group are performed as in the serial
case. Inter-group boundary exchanges are acheved via
MPI asyncbzonous conmunicztio?l cz!!s. The Opedv!P
parallelism is achieved by the explicit compiler direc-
tives inserted at the loop level. The logic is the same as
in the pure MPI case, only the computationally intensive
portion of the code (Le. the grid-loop) is multi-threaded
via OpenMP.

OVERFLOW-D was originally designed to exploit
vector machines. Because Columbia is a cache-based
superscalar architecture, modifications were necessary
to improve performance. The linear solver of the ap-
plication, called LU-SGS, was reimplemented using a
pipeline algorithm [4] to enhance efficiency which is
dictated by the type of data dependencies inherent in the
solution algorithm.

Our experiments reported here involve a Navier-
Stokes simulation of vortex dynamics in the complex
wake flow region around hovering rotors. The grid sys-
tem consisted of 1679 blocks of various sizes, and ap-
proximately 75 million grid points. Fig. 3 shows a sec-
tional view of the test application’s overset grid system
(slice through the off-body wake grids surrounding the
hub and rotors) while Fig. 4 shows a cut plane through
the computed wake system including vortex sheets as
well as a number of individual tip vortices. A complete
description of the underlying physics and the numerical
simulations pertinent to this test problem can be found
in [16].

consists of a time-loop and a nested grid-loop. Within
the grid-loop, solutions to the flow equations are ob-
tained on the individual grids with imposed boundary
conditions. Overlapping boundary points or inter-grid
data are updated from the previous time step using a an
overset grid interpolation procedure. Upon completion
of the grid-loop, the solution is automatically advanced
to the next time step by the time-loop. The code uses
finite difference schemes in space, with a variety of im-
plicitlexplicit time stepping.

The hybrid MPI+OpenMP version of OVERFZOW-
D takes advantage of the overset grid system, which
offers a natural coarse-grain parallelism [4]. A bin-
packing algorithm clusters individual grids into groups,
each of which is then assigned to an MPI process. The
grouping strategy uses a connectivity test that inspects
for an overlap between a pair of grids before assigning
them to the same group, regardless of the size of the
boundary data or their connectivity to other grids. The
grid-loop in the parallel implementation is subdivided
into two procedures: a group-loop over groups, and a

Figure 3. A sectional view of the overset grid sys-
tem.

,
i

Figure 4. Computed vorticity magnitude contours
on a cutting plane located 45’ behind the rotor
blade.

4 Performance Results

We conducted several experiments using mi-
crobenchmarks, synthetic benchmarks, and full-scale
applications to obtain a detailed performance character-
ization of Columbia. Results of these experiments are
presented in the following subsections.

4.1 3700 vs. BX2

In comparing the performance of the 3700 with two
types of BX2, we are assessing the impact of both im-
proved processor speed (coupled with larger L3 cache)
and processor interconnect. As a shorthand notation, we
will call the BX2 with 1.5 GHz CPUs and 6MB caches
a “BX2a”. The BX2 with faster clock and larger cache
is denoted “BX2b”.

4.1.1 HPC Challenge Microbenchmarks

The performance of the DGEh4M benchmark showed a
correlation with processor speed and cache size rather
than processor interconnect. When run on a BX2b, per-
formance (5.75 GFlop/s) improved by 6% versus runs
on 3700 or BX2a, which were essentially identical.

The STREAM Triad benchmark showed only 1%
better performance on a 3700 versus either type of BX2.
Nothing about published architecture differences indi-
cates why this might be the case. For the final version of
the paper we will r u n additional experiments to try and
pin down a reason.

The MPI latency and bandwidth results are shown in
Fig. 5 . For Ping-Pong and Natural Ring, the latencies are
remarkably consistent between 3700 and both models
of BX2. The Random Ring latency test shows that as
average communication distances become further apart
(as processor counts increase), the interconnect network
improvements in the BX2 take effect.

6.0

4.0

2.0

6.0

0

% 4.0

2.0

6.0

4.0

2.0

Random Ring

b 0 0
4 8 16 32 64 128256512 4 8 16 32 64 128256512

Number of CPUs Number of CPUs

Figure 5. Bandwidth and latency tests on three
types of the Columbia nodes.

Bandwidth was correlated either to processor speed
or interconnect, depending on the locality of the com-
munication tested. On the Ping-Pong test, where there
is some distance between communicating pairs of pro-
cesses, the interconnect used plays a key role in the
bandwidth. In the case of the Natural Ring, where lo-
cal communication predominates, processor speed is the
determining factor. In the Random Ring, where the com-
munications are mostly remote, both processor speed
and interconnect show effects for bandwidth.

4.1.2 NAS Parallel Benchmarks

Fig. 6 shows the per-processor Gflopls rates reported
from runs of both MPI and OpenMP versions of CG, FT,
MG, and BT benchmarks on three types of the Columbia
nodes. As was seen from the HPCC microbenchmarks in
the previous section, the double density packing for BX2
produces shorter latency and higher bandwidth in NU-
MAlink access. The effect of higher bandwidth of BX2
on OpenMP performance is evident: the four OpenMP
benchmarks scaled much better on both types of BX2
than on 3700 when the number of threads is four or
more. With 128 threads, the difference can be as large as
2x for both FT and BT. The clock speed and cache size
had less effect on the Openh4P codes.

Bandwidth effect on MPI performance is less pro-
found until a larger number of processes (232). Ob-
serve that on 256 processors, FT runs about twice as
fast on BX2 than on 3700, indicating the importance of
bandwidth for the all-to-all communication used in the
benchmark. At about 64 processors, both MG and BT

6

1 .o

0.8

0.6

0.4

1
36 (36x 1)
72 (36x2)
144 (36x4)
288 (36x8)

504 (36x 14)
432 (36x 12)

2 0.2

8
% 0.0 $

1.5

39230.0 26430.0
1223.0 825.2
796.0 508.4
554.2 331.8
454.7 287.7
409.1 -
- 247.6

1 .o

0.5

0.0

P

Number of CPUs

3700 BX2b
Comm Exec Comm Exec
(sec) (sec) (sec) (sec)

Figure 6. NPB performance comparison on three
types of the Columbia nodes.

exhibit a performance jump (-50%) on BX2b compar-
ing to BX2a. We believe this is a result of a larger L3
cache on the BX2b node.

Overall, OpenMP versions of NF’B demonstrated bet-
ter performance on a small number of CPUs, but MPI
versions scaled much better. The OpenMP codes are less
sensitive to cache size, but more to the communication
bandwidth. The impact of processor speed on perfor-
mance is generally small.

4.1.3 INS3D

Computations to test the scalability of the INS3D code
on Columbia were performed using the 3700 and BX2b
processors along with the 7.1 and 8.1 F90 compilers.
Initial computations using one MLP group and one
OpenMP thread with the various processor and compiler
options were used to establish the baseline runtime for
one physical time step of the solver, where 720 such
time steps are required to complete one inducer rota-
tion. Next, a fixed number of 36 MLP groups was cho-
sen along with various numbers of OpenMP threads (1,
2, 4, 8, 12, or 14). The average runtime per iteration
is shown in Table 2. Observe that the BX2b demon-
strates approximately 50% faster iteration time. Note the
scalability for fixed MLP groups and varying OpenMP
threads is good, but begins to decay as the number of
threads increases beyond eight. Further scaling can be
accomplished by fixing the number of threads and vary-

Table 2. WS3D performance on 3700 and BX2b.

ing the number of MLP groups until the load balanc-
ing begins to fail. Unlike varying the OpenMP threads
which does not affect the convergence rate of INS3D,
varying the number of MLP groups may deteriorate con-
vergence. This will lead to more iterations even though
faster runtime per iteration is achieved.

4.1.4 OVERFLOW-D

The performance of OVERFLOW-D was also evaluated
on Columbia using the 3700 and BX2b processors. Ta-
ble 3 shows communication and total execution times of
the application per time step when using the 8.1 Fortran
compiler. Note that a typical production run requires on
the order of 50,000 such time steps. For various number
of processors we report the time from the best combina-
tion of processes and threads.

Observe from Table 3 that execution time on BX2b is
significantly smaller compared to 3700 (e.g. more than a
factor of 3x on 508 CPUs). On average, OVERFLOW-D
runs almost 2x faster on the BX2b than the 3700. In ad-
dition, the communication time is also reduced by more
than 50%.

The performance scalability on the 3700 is reason-

7

ably good up to 64 processors, but flattens beyond 256.
This is due to the small ratio of grid blocks to the number
of MPI tasks that makes balancing computational work-
load extremely challenging. With 508 MPI processes
and only 1679 blocks, it is difficult for any grouping
strategy to achieve a proper load balance. Various load
balancing strategies foi overset giidS are extensive!y dis-
cussed in [51.

Another reason for poor 3700 scalability on large
processor counts is insufficient computational work per
processor. This can be verified by examining the ratio of
communication to execution time in Table 3. This ratio
is about 0.3 for 256 processors, but inireases to more
than 0.5 on 508 CPUs. For our test problem consist-
ing of 75 million grid points, there are only about 150
thousand grid points per MPI task, which is too little for
Columbia’s fast processors compared to the communica-
tion overhead. The test problem used here was initially
built for production runs on platforms having fewer pro-
cessors with smaller caches and slower clock rates. We
plan to run a much larger grid system for the final paper.

Scalability on the BX2b is significantly better. For
example, OVERFLOW-D efficiency for 128, 256, and
508 processors is 61%, 37%, and 27% (compared to
26%, 19%, and 7% on the 3700). In spite of the same
load imbalance problem, the enhanced bandwidth on the
BX2b significantly reduces the communication times.
The increased bandwidth is particularly important at the
coarse-grain level of OVERFLOW-D, which has an all-
to-all communication pattern every time step. This is
consistent with our experiments conducted,on the NPBs
and reported in Sec 4.1.2. The reduction in the BX2b
computation time can be attributed to its larger L3 cache.

4.2 CPU “Stride”

When performing STREAM benchmarking on 15 of
the 20 nodes of Columbia in October 2004, we observed,
not unexpectedly, that the results scaled linearly from 2
to 7500 CPUS-achieving -2 GB/s per CPU. However,
when run on a single processor, the benchmark regis-
tered -3.8 GB/s. We hypothesized that this is due to
each memory bus being shared by two processors. To
verify that and to understand what other behavior might
be due to that (or other resource) sharing, we ran the
HPCC benchmarks in a “spread out” or strided fashion,
using every second or every fourth CPU.

The DGEMM benchmark demonstrated differences
of less than 0.5%-showing that this benchmark is not
substantially affected by shzring the memory bus. As
expected, at a CPU stride of either 2 or 4, the STREAM
benchmark produced per-processor numbers equivalent
to the 1-CPU case. In the case of Triad, the bandwidth is
1 . 9 ~ higher than when processes are assigned to CPUs

in a dense fashion. The latency-bandwidth results were
less dramatic. The numbers for Ping-Pong and Random
Ring were slightly worse for spread-out CPUs. The re-
sults for Natural Ring were less conclusive. There was a
small improvement in latency but none for bandwidth.

4.3 ?inning

Application performance on NUMA architectures
like an Altix node depends on data and thread placement
onto CPUs. Improper initial data placement or unwanted
migration of threads between processors can increase
memory access time, thus degrading performance. The
performance impact of using thread-to-processor pin-
ning on applications, in particular hybrid codes, can
sometimes be substantial. This is illustrated by the re-
sults shown in Fig. 7 for the hybrid MPI+OpenMP SP-
MZ code running with and without pinning. Each curve
is associated with runs for a given total number of CPUs,
but varying the number of OpenMP threads per MPI
process. Observe that pinning improves performance
substantially in the hybrid mode when processes spawn
multiple threads. The impact becomes even more pro-
found as the number of CPUs increases. Pure process
mode (e.g. 64x 1) is less influenced by pinning.

256 I I I , I I I

128 ‘\A SP-MZ Class C \ \
64

32 8 16

5 8
-

4

2
LA 128 CPUs. no pinning

I I I I I

1 2 4 8 1 6 3 2 6 4
Number of Threads/proc

Figure 7. Pinning versus no pinning for SP-MZ
Class C running on BX2b.

A user has at least three different methods for pinning
on the Altix:

1. Set environment variables (MPI-DSM-DISTRI
BUTE and MPI-DSM-CPULIST) for MPI codes,

2. Use the data placement tool, dplace, for either
MPI or OpenMP codes, andlor

3. Insert system calls in the user’s code, in particular,
for hybrid implementations.

All other results reported in this paper have pinning ap-
plied, either using method 2 or a combination of meth-
ods 2 and 3.

8

r 4.4 Compiler Versions INS3D

There are at least four different versions of the Intel
compilers installed on the Columbia system: 7.1(.042),
8.0(.070), 8.1(.026), and 9.0(.012)beta. Although 8.1 is
the latest official release, the default compiler is still set
to 7.1 for various reasons. A user can apply the module
command to select a particular version of the compiler.
For evaluation purposes, a beta version of the 9.0 com-
piler is also included.

The performance impact of different compiler ver-
sions was examined with the four OpenMP NPB bench-
marks and the results are shown in Fig. 8. All tests were
conducted on a BX2b node with the -03 -openmp
compilation flag. We noted that the compiler perfor-
mance seems to be application dependent, although the
8.0 version produced the worst results in most cases. All
the compilers gave similar results on the CG benchmark.
The beta version of 9.0 performed very well on FT. For
MG, between 32 and 128 threads (or CPUs) the 8.1 and
9.0b compilers outperformed the 7.1 and 8.0; however,
below 32 threads, the 7.1 and 8.0 compilers performed
20-30% better than the other two. The scaling also turns
around above 128 threads.

Overall, the 7.1 compiler produced consistently bet-
ter performance for most the benchmarks, in particular
for a small number of threads. As a result, 7.1 was used
for the remaining NPB tests in this report.

Using the BX2b processor, the INS3D flow solver
was compiled and run using both the 7.1 and 8.1 ver-

OVERFLOW-D

CG Class B
16 -

32 -

4 8 16 32 64 128256 4 8 16 32 64 128256
Number of CPUs

Figure 8. Performance comparison of four com-
piler versions.

Table 4. INS3D and OVERFLOW-D performance
using Intel Fortran compilers 7.1 and 8.1

sions of the Fortran compiler with negligible differ-
ence in runtime per iteration (see Table 4). Evaluations
for OVERFLOW-D where only performed on the 3700
node. Timing results with 7.1 are superior to those with
8.1 by 2040% when running on less than 64 processors,
but almost identical on larger counts.

4.5 Processes and Threads

We examined the performance of hybrid codes un-
der various MPI process and OpenMP thread combina-
tions within one Altix node. The results for the BT-MZ
benchmark are shown in Fig. 9. For a given number of
OpenMP threads (left panel in Fig. 9), MPI scales very
well, almost linearly up to the point where load imbal-
ancing becomes a problem. On the other hand, for a
given number of MPI processes (right panel of Fig. 9),
OpenMP scaling is very limited: except for two threads,
OpenMP performance drops quickly as the number of
threads increases.

512

256

128

0 64
2 a?

16

8

4

2

1

10 "-
Q

@-e 256 mpi

1 4 16 64 256 1 4 16 64 256
Number of CPUs

Figure 9. Effects of varying processes and threads
on the BT-MZ benchmark.

9

4.6 Multinode Execution

1 2

We next reran a subset of our experiments on up to
four BX2b Altix nodes. These results are presented in
the following subsections.

A-A 2 omp. NLK4 -

4.6.1 HPC Challenge Microbenchmarks

The internode communication network played a very
minor role (less than 0.5%) in the performance of

. DGEMM, and none at all in STREAM. The latter result
is not surprising since the benchmark does not measure
communication time.

In the tests of MPI latency and bandwidth (see
Fig. 10) it is clear that NUMAlink4 performs much bet-
ter than InfiniBand between nodes. The latency results
show a substantial penalty for InfiniBand across two
nodes and even worse performance across four nodcs.
In the case of Ping-Pong, this can probably be explained
by the increase in the number of “off-node’’ pairs that
get tested when four nodes are used. The Natural Ring
latency results show a smaller penalty for the increase
from two to four nodes. This decreased penalty is under-
standable because the benchmark reports the worst-case
process-to-process latency for the entire ring communi-
cation, while we use an average point-to-point latency
in Ping-Pong.

The bandwidth results for Ping-Pong and Natural
Ring show a similar correlation to out-of-node commu-
nications. In the case of Ping-Pong, since we are report-
ing the average of a series of point-to-point bandwidth
experiments, there is a falloff in InfiniBand performance

Latency Bandwidth
1.5

150 Average Ping-Pong Average Ping-Pong

’1;;;:; --+-+ # # # i O . 5

1.5
Natural Ring 150 Natural Ring

: 100
v) a

50

Random Ring

100

64 128 256 512 1024 2048 64 128 256 512 1024 2048
Number of CPUs Number of CPUs

Figure 10. Bandwidth and latency tests on three
types of the Columbia nodes.

10

k

from two to four because the likelihood of a non-local
pairing increases. For Natural Ring, the two- and four-
node tests yielded similar results.

The latency and bandwidth results from the Random
Ring tests show severe problems with scalability of In-
finiBand. It is possible that our results were affected by a
configuration problem, so we will rcpeat them (and vary
several configuration parameters) for the final version of
the paper.

4.6.2 NAS Parallel Benchmarks

The hybrid MPI+OpenMP codes of BT-MZ and SP-
MZ were also tested across four Columbia nodes con-
nected with both the NUMAlink4 network and the In-
finiBand switch. We used the Class E problem (4096
zones, 1.3 billion aggregated grid points) for these tests.
The top row of Fig. 11 compares the per-CPU Gflop/s
rates obtained from runs using NUMAlink4 with those
from within a single Altix BX2b node. The two sets of
data represent runs with one and two OpenMP threads
per MPI process, respectively. For 512 CPUs or less,
the NUMAlink4 results are comparable to or even bet-
ter than the in-node results. In particular, the perfor-
mance of 512-processor runs in a single node dropped
by 10-15%, primarily because these runs also used the
CPUs that were allocated for systems software (called
boot cpuset), which interfered with our tests. Reducing
the number of CPUs to 508 improves the BT-MZ perfor-
mance.

Since MPI is used for coarse-grain parallelism among
zones for the hybrid implementations, load balancing for
SP-MZ is trivial as long as the number of zones is divis-
ible by the number of MPI processes. The uneven-size

Figure 11. Comparison of NPB-MZ performance
under three different networks.

f zones in BT-MZ allows more flexible choice of the num-
ber of MPI processes; however, as the number of CPUs
increases, OpenMP threads may be required to get better
load balance (and therefore better performance). This
is evident from the BT-MZ results in Fig. 11. There
is about 11 % performance improvement from runs us-
ing two OperMP threx!s versus oce (e.g. 250x2 vs.
512x 1) for the SP-MZ benchmark. This effect could be
attributed to less MPI communication when two threads
are used. The performance drop for SP-MZ at 768 and
1536 processors can be explained by load imbalance for
these CPU counts.

The bottom row of Fig. 11 compares the total Gflop/s
rates from runs using NLTMAlink4 with those from using
the InfiniBand, taking the best process-thread combina-
tions. Observe a close-to-linear speedup for BT-MZ.
The InfiniBand results are only about 7% worse. On
the other hand, we noticed anomaly in InfiniBand per-
formance for SP-MZ when a released SGI MPT runtime
library (mptl.llr) was used. In fact, on 256 processors,
the InfiniBand result is 40% slower than NUMAlink4,
but the InfiniBand performance improves as the number
of CPUs increases. We used a beta version of the MPT
library (mptl.llb) and reran some of the data points.
These results are also included in Fig. 11 for SP-MZ. As
we can see, the beta version of the library produced In-
finiBand results that are very close in performance to the
NUMAlink4 results. We are actively working with SGI
engineers to find the true cause of the anomaly.

P

4.6.3 Molecular Dynamics

Table 5 shows the wall clock time as a function of the
number of processors for the molecular dynamics code.
This is a weak scaling exercise: we assign 64,000 atoms
to each processor, and thus scale the problem size with
the processor count. For 2040 processors, we simulated
130.56 million atoms. The entire simulation was run for
100 steps. Results show almost perfect scalability all the
way up to 2040 processors. The communication costs

#of c o r n exec comm exec
Nodes (sec) (sec) (sec) (sec)

Wall clock time per step (sec)
P 1 #particles I time

Table 5. Performance of molecular dynamics code
using NumaLink4 interconnection.

are insignificant for this test case; however, they could
increase if the simulation were run for long durations
and workloads became unbalanced.

4.6.4 OVERFLOW-D

Table 6 presents performawe experiments conducted OI?
multiple BX2b nodes. The column denoted as "# of
Nodes" refers to thee number of BX2b nodes used. The
communication and execution times are reported for the
same runs via both NUMAlink4 and InfiniBand inter-
connects, using the Intel Fortran compiler 8.1.

Cross nodes; BX2b
NUh4Alink4 I InfiniBand

Table 6. Performance of OVERFLOW-D across
multiple BX2b nodes via NumaLink and Infini-
Band interconnection.

The total execution times obtained via NLJh4Alink4
are generally about 10% better; however, the reverse ap-
pears to be true for the communication times. We did
not find any pronounced increase in the execution and
communication timing for the same total number of pro-
cessors when distributed across multiple nodes. This
suggests that performance scalability over many nodes
is not affected by the type of the interconnect for this
application.

OVERFLOW-D has significant VO requirements at
runtime. Due to the lack of a shared file system among
the Columbia nodes at this time, a less efficient file sys-
tem was used. Some of the performance results may
therefore have been affected to some extent by VO ac-
tivities. We expect to have iiiis probierii iesolved iii die.
final paper. Also, an overset grid system suitable in size
and the number of blocks to fully exploit the computa-
tional capability of Columbia is under construction. We
will use this much larger system for the final paper.

5 Summary and Conclusions

Our benchmarking on the Columbia supercluster
demonstrated several features about single-box SGI Al-

11

tix performance. First, the presence of NUMAlink4 on
the BX2 nodes provides a large performance boost for
MPI and OpenMP applications. Furthermore, when the
processor speed and cache size are enhanced (as is the
case on those nodes we call BX2b’s), there is another
significant improvement in performance. As was the
case on the SGI Origins, process and thread piiining con-
tinues to be critical to performance. Among the four
versions of the Intel compiler that we tested, there is no
clear winner-performance seems to vary with applica-
tion.

When multiple Altix nodes are combined into a capa-
bility cluster, both NUMALink4 and InfiniBand are ca-
pable of very good performance. While the HPC Chal-
lenge benchmarks showed some potential performance
problems with InfiniBand, those results were not seen
with either the NPBs or the applications we tested. Fur-
thermore, we note that because of the limitations of the
InfiniBand hardware, fully employing more than three
Altix nodes in a computation requires that a multilevel
parallel programming paradigm be used. It is particular
encouraging that application performance using Infini-
Band on our maximum configuration was not trailing
Off.

For the final version of this paper, we will perform
more experiments to compare the relative performance
of NUMAlink4 versus InfiniBand; for example, we want
to complete the multinode version of INS3D to use it for
testing. In addition, we would like to try and pin down
the causes of some of the anomalies we have seen with
InfiniBand performance.

In future work, we will explore the causes of scaling
problems that we observed with OpenMP. We will also
experiment with the SI-IMEM library, including porting
INS3D to use it.

Acknowledgements

We would like to thank Bron Nelson, Davin Chan,
Bob Ciotti, and Bill Thigpen for their assistance in using
Columbia. Rob Van der Wijngaart played a critical role
in developing the multi-zone NPBs.

References

[l] D. Bailey, J. Barton, T. Lasinski, and H. S. (Eds.). The
NAS Parallel Benchmarks. Technical Report NAS-91-
002, NASA Ames Research Center, Moffett Field, CA,
1991.

[2] D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart,
A. Woo, and M. Yarrow. The NAS Parallel Benchmarks
2.0. Technical Report NAS-95-020, NASA Ames Re-
search Center, Moffett Field, CA, 1995.

[3] P. G. Buning, D. C. Jespersen, T. H. Pulliam, W. M.
Chan, J. P. S. amd S. E. Krist, and K. J. Renze. Overflow
user’s manual, version 1.8g. Technical report, NASA
Langley Research Center, Hampton, VA, 1999.

[4] M. J. Djomehri and R. Biswas. Performance anaIysis
of a hybrid overset multi-block application on multiple
architectures. In Proc. High Performance Computing -
HiPC 2003, 10th International Conference, Hyderabad,
India, December 2003.

[5] M. J. Djomehri, R. Biswas, and N. Lopez-Benitez. Load
balancing strategies for multi-block overset grid applica-
tions. In Proc. 18th International Conference on Com-
puters and Their Applications, pages 373-378, Hon-
olulu, HI, March 2003.

http://www.hlrs.de/organization/par/services/modelsl
mpilb-effl.

[7] HPC Challenge Benchmarks. http://icl.cs.utk.edu/hpcc/.
[8] InfiniBand Specifications.

http://www.infini bandta.org/specs.
[9] H. Jin and R. Van der Wijngaart. Performance char-

acteristics of the multi-zone NAS Parallel Benchmarks.
In Proceedings of the International Parallel and Dis-
tributed Processing Symposium (IPDPS 2004), Santa Fe,
NM, April 2004.

[lo] C. Kiris, D. Kwak, and W. Chan. Parallel unsteady tur-
bopump simulations for liquid rocket engines. In Super-
computing 2000, November 2000.

[l l] C. Kiris, D. Kwak, and S. Rogers. Incompressible
Navier-Stokes solvers in primitive variables and their ap-
plications to steady and unsteady flow simulations. In
M. Hafez, editor, Numerical Simulations of Incompress-
ible Flows. World Scientific, 2003.

[12] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. a n i ,
W. Yu, D. Buntinas, P. Wyckoff, and D. Panda. Perfor-
mance comparison of MPI implcrnentations over Inifin-
Band, Myrinet, and Quadrics. In Proceedings of SC’03,
Phoenix, AZ, November 2003.

131 R. Meakin and A. M. Wissink. Unsteady aerodynamic
simulation of static and moving bodies using scalable
computers. In Pmc. 14th AIM Computational Fluid
Dynamics Conference, Paper number 99-3302, Norfolk,
VA, 1999.

http://www.nas.nasa.gov/Software/B.
[I51 D. C. Rapport. The Art of Molecular Dynamics Simula-

tion. Cambridge University Press, 1995.
[16] R. Strawn and M. Djomehri. Computational modeling

of hovering rotor and wake aerodynamics. Journal of
Aircraft, 39(5):786-793,2002.

[17] J. R. Taft. Achieving 60 gflopls on the production cfd
code overflow-mlp. Parallel Computing, 27(4):521-536,
200 1.

[181 Top500 Supercomputer Sites. http://www.top500.org.
[19] Voltaire ISR 9288 InfiniBand switch router.

http://www.voltaire.com/documents/9288dsweb.pdf.

[6] Effective Bandwidth Benchmark.

141 NAS Parallel Benchmarks.

12

