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Abstract 

Columbia is a 10,240-processor supercluster consist- 
ing of 20 Altix nodes with 512 processors each, and 
currently ranked as the secondfastest computer in the 
world. In this papel; we present the performance chur- 
acteristics of Columbia obtained on up to four comput- 
ing nodes interconnected via the InjiniBand .andor NU- 
MAlink4 communication fabrics. We evaluate jloating- 
point pelformance, memory bandwidth, message passs- 
ing communication speeds, and compilers using a subset 
of the HPC Challenge benchmarks, and some of the NAS 
Parallel Benchmarks including the multi-zone versions. 
We present detailed performance results for three scien- 
tific applications of interest to NASA, one from molecu- 
lar dynamics, and two from computational juid dynam- 
ics. Our results show that both the NUMAlink4 and 
the InJiniBand hold promise for application scaling to 
a large number of processors. 

Keywords: SGI Altix, multi-level parallelism, HPC 
Challenge benchmarks, NAS Parallel Benchmarks, 
molecular dynamics, multi-block overset grids, compu- 
tational fluid dynamics 

1 Introduction 

During the summer of 2004, NASA began the instal- 
lation of Columbia, a 10,240-processor SGI Altix su- 
percomputer at its Ames Research Center. Columbia 
is a supercluster comprised of 20 nodes, each contain- 
ing 5 i2 iniei iiaiiiiiiii2 processsois ~ i ; d  r x i n i ~ g  t,hx L~XUX 
operating system. In October of that year, the machine 
achieved 5 1.9 Tflop/s on the Linpack benchmark, plac- 
ing it second on the November 2004 Top500 list [ 181. In 
the ensuing time, we have run a variety of benchmarks 
and scientific applications on Columbia in an attempt to 
critically characterize its parallel performance. 

In this paper, we present the performance character- 
istics obtained on up to four computing nodes intercon- 
nected via the InfiniBand and/or NUMAlink4 commu- 
nication fabrics. We first evaluate floating-point per- 

formance, memory bandwidth, and message passsing 
communication speeds using a subset of the HPC Chal- 
lenge benchmarks [7]. Next, we analyze performance 
using some of the NAS Para!lel Benchmarks [14], par- 
ticularly the new multi-zone version [9]. Finally, we 
present detailed performance results for three scien- 
tific applications, one from molecular dynamics, and 
two from state-of-the-art computational fluid dynam- 
ics (CFD), both compressible and incompressible multi- 
block overset grid Navier-Stokes applications [3, 1 I]. 
One current problem of significant interest to NASA 
that involves these applications is the Crew Exploration 
Vehicle, which will require research and development 
in several disciplines such as propulsion, aerodynamics, 
and design of advanced materials. 

2 The Columbia Supercluster 

Introduced in early 2003, the SGI Altix 3000 systems 
are an adaptation of the Origin 3000, which use SGI’s 
NUMAflex global shared-memory architecture. Such 
systems allow access to all data directly and efficiently, 
without having to move them through UO or networking 
bottlenecks. The NUMAflex design enables the proces- 
sor, memory, UO, interconnect, graphics, and storage to 
be packaged into modular components, called “bricks.” 
The primary difference between the Altix and the Ori- 
gin systems is the C-Brick, used for the processor and 
memory. This computational building block for the Al- 
tix 3700 consists of four Intel Itanium2 processors (in 
two nodes), 8GB of local memory, and a two-controller 
ASIC m!!ed the Sca!!ab!c Huh (SHUB). Each C-Brick 
shares a peak bandwidth of 3.2 GB/s via the NUMAlink 
interconnection. Each SHUB interfaces to two CPUs in 
one node, along with memory, UO devices, and other 
SHUBs. The Altix cache-coherency protocol is imple- 
mented in the SHUB that integrates both the snoop- 
ing operations of the Itanium2 and the directory-based 
scheme used across the NUMAlink interconnection fab- 
ric. A loadstore cache miss causes the data to be com- 
municated via the SHUB at a cache-line granularity and 
automatically replicated in the local cache. 
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The predominant CPU on Columbia is an implemen- 
tation of the 64-bit Itanium2 architecture, operates at 
1.5 GHz, and is capable of issuing two multiply-adds per 
cycle for a peak performance of 6.0 Gffop/s. The mem- 
ory hierarchy consists of 128 floating-point registers and 
three on-chip data caches (32KB L1, 256KB L2, and 
6MB L3). Tine Itanium2 cannot store floating-point data 
in L1, making register loads and spills a potential source 
of bottlenecks; however, a relatively large register set 
helps mitigate this issue. The superscalar processor im- 
plements the Explicitly Parallel Instruction set Comput- 
ing (EPIC) technology where instructions are organized 
into 128-bit VLIW bundles. The Altix 3700 platform 
uses the NUMAlink3 interconnect, a high-performance 
custom network with a fat-tree topology that enables the 
bisection bandwidth to scale linearly with the number of 
processors. 

Columbia is configured as a cluster of 20 SGI Altix 
nodes (or boxes), each with 512 processors and approx- 
imately 1TB of global shared-access memory. Of these 
20 nodes, 12 are model 3700 and the remaining eight are 
model 3700BX2. The BX2 node is essentially a double- 
density version of the 3700. Each BX2 C-Brick thus 
contains eight processors, 16GB local memory, and four 
SHUBs, doubling the processor count in a rack from 32 
to 64 and thereby packing more computational power in 
the same space. The BX2 C-Bricks are interconnected 
via NUMAlink4, yielding a peak bandwidth of 6.4 GB/s 
that is twice the bandwidth between bricks on a 3700. 
In addition, five of the Columbia BX2’s use 1.6 GHz 
(rather than 1.5 GHz) parts and 9MB L3 caches. Ta- 
ble l summarizes the main characteristics of the 3700 
and BX2 nodes used in Columbia. 

Characteristics 
Architecture 
# Processors 
Packaging 
Processor 
clock/L3 cache 

Interconnect 
Bandwidth 

Th. peak perf. 
Memory 

3700 BX2 
hWMAflex, SSI NUMAflex, SSI 

512 512 
32 CPUslrack 64 CPUs/rack 

Itanium2 Itanium2 
1.5 GHzl6 MB 

NUMAlink3 NUMAlink4 
3.2 GBIs 6.4 GB/s 

1 TB 1TB 
3.07 Tflop/s 3.07 Tflopls (a) 

3.28 Tflo~s fi) 

1 

1.5 GHd6 MB (a) 
1.6 GHz/9 MB (b) 

Band is a revolutionary, state-of-the-art technology that 
defines very high-speed networks for interconnecting 
compute and I/O nodes [8]. It is an open industry 
standard for designing high-performance compute clus- 
ters of PCs and SMPs. Its high peak bandwidth and 
comparable minimum latency distinguish it from other 
competing network technologies such 2s Qnadrics 2nd 
Myrinet [12]. Four of the 1.6 GHz BX2 nodes are 
linked with NUMAlink4 technology to allow the global 
shared-memory constructs to significantly reduce inter- 
processor communication latency. This 2,048-processor 
subsystem within Columbia provides a 13 Tflop/s peak 
capability platform. 

A number of programming paradigms are supported 
on Columbia, including the standard OpenMP and MPI, 
SGI SHMEM, and Multi-Level Parallelsim (MLP). MPI 
and SHMEM are provided by SGI’s Message Pass- 
ing Toolkit (MPT), while C/C++ and Fortran compilers 
from Intel support OpenMP. The MLP library was devel- 
oped by Taft at NASA Ames [ 171. Both OpenMP and 
MLP can take advantage of the globally shared mem- 
ory within an Altix node. Both MPI and SHMEM can 
be used to communicate between Altix nodes connected 
with the NUMAlink interconnect; however, communi- 
cation over the InfiniBand switch requires the use of 
MPI. Because of the limitation on the number of In- 
finiBand connections through InfiniBand cards installed 
on each node, the number of per-node MPI processes is 
confined by 

I /Ne,& X Nconnections 

n - 1  

where n (2 2) is the number of Altix nodes involved. 
Currently on Columbia, Near& = 8 per node and 

can only fully utilize up to three Altix nodes. A hybrid 
(e.g. MPI+OpenMP) version of applications would be 
required for runs using four or more nodes. 

Nconnections = 64K per Card. Thus, a pure MPI code 

3 Benchmarks and Applications 

We utilize a spectrum of microbenchmarks, synthetic 
benchmarks, and scientific applications in order to crit- 
ically characterize Columbia performance. These are 
briefly described in the following subsections. 

Table 1. Characteristics of the two types of Altix 
nodes used in Columbia. 

3.1 HPC Challenge Microbenchmarks 

We elected to test basic system performance char- 
acteristics such as floating-point operations, memory 
bandwidth, and message passing communication speeds 
using a subset of the HPC Challenge (HPCC) bench- 
mark suite [”]. In particular, we used the following com- 

Two communication fabrics connect the 20 Altix sys- 
tems: an InfiniBand switch [19] provides low-latency 
MPI communication, and a 10-gigabit Ethernet switch 
provides user access and I/O communications. Infini- ponents: 
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0 We tested optimum floating-point performance 
with DGEMM, a double-precision matrix-matrix 
multiplication routine that uses a level-3 BLAS 
package on the Altix. The input arrays are sized 
so as to use about 75% of the memory available on 
the subset of the CPUs being tested. 

0 The STREAM benchmark component tests mem- 
ory bandwidth by doing simple operations on very 
long vectors. There are four vector operations mea- 
sured: copy, scale by multiplicative constant, add, 
and triad (multiply by scalar and add). As with the 
DGEMM benchmark, the vectors manipulated are 
sized to use about 75% of the memory available. 

0 We evaluated message passing performance in a 
variety of communication patterns with the HPCC 
version of b-eff [6]. The test measures latency 
and bandwidth using ping-pong and two rings: one 
using a “natural” ordering where communication 
takes place between processes with adjacent ranks 
in MPI-COMM-WORLD, and one using a random 
ordering. For ping-pong, we use the “average” re- 
sults reported by the benchmark; for the rings, the 
benchmark reports a geometric mean of the results 
from a number of trials. 

’ 

While these benchmarks will likely not be completely 
indicative of application performance, they can be used 
to help explain application timing anomalies when they 
occur. 

3.2 NAS Parallel Benchmarks 

The NAS Parallel Benchmarks (NPB) are well- 
known problems for testing the capabilities of parallel 
computers and parallelization tools. They were derived 
from computational fluid dynamics (CFD) codes and 
are widely recognized as a standard indicator of parallel 
computer performance. The original NF’B suite consists 
of five kernels and three simulated CFD applications, 
given as a “pencil-and-paper’’ specifications in [ 11. The 
five kernels mimic the computational core of five nu- 
merical methods, while the three simulated qylications 
reproduce much of the data movement and computation 
found in full CFD codes. Reference implementations 
were subsequently provided as NPB2 [2], using MPI as 
the parallel programming paradigm, and later expanded 
to other programming paradigms (such as OpenMP). 

Recent effort in NPB development was focused on 
new benchmarks, including the new multi-zone version, 
called NPB-MZ [9]. While the original NPB exploits 
fine-grain parallelism in a single zone, the multi-zone 
benchmarks stress the need to exploit multiple levels of 

parallelism for efficiency and to balance the computa- 
tional load. 

For evaluating the Columbia system, we selected a 
subset of the benchmarks: three kernels (MG, CG, and 
FT), one simulated application (BT), and two multi-zone 
benchmarks (BT-MZ and SP-MZ) [2, 91. These cover 
five types of mxerica! methods found in mzq scientific 
applications. Briefly, MG (multi-grid) tests long- and 
short- distance communication, CG (conjugate gradi- 
ent) tests irregular memory access and communication, 
FT (fast Fourier transform) tests all-to-all communica- 
tion, BT (block-triadiagonal solver) tests nearest neigh- 
bor communication, and BT-MZ (uneven sized zones) 
and SP-MZ (even sized zones) test both coarse- and fine- 
grain parallelism and load balance. For our experiments, 
we use both MPI and OpenMP implementations of the 
four original NPBs and the hybrid MPI+OpenMP imple- 
mentation of the NPB-MZ from the latest NPB3.1 distri- 
bution [14]. To stress the processors, memory, and net- 
work of the Columbia system, we introduced two new 
classes of problem sizes for the multi-zone benchmarks: 
Class E (4096 zones, 4224 ~ 3 4 5 6 x 9 2  aggregated grid 
size) and Class F (16384 zones, 1 2 0 3 2 ~ 8 9 6 0 ~ 2 5 0  ag- 
gregated grid size). 

3.3 Molecular Dynamics 

Molecular dynamics [ 151 is a powerful technique for 
studying the structure of solids, liquids and gases. It in- 
volves calculating the forces acting on the atoms in a 
molecular system using Newton’s equations of motion 
and studying their trajectories as a function of time. Af- 
ter integrating for some time when sufficient information 
on the motion of the individual atoms has been collected, 
one uses statistical methods to deduce the bulk proper- 
ties of the material. These properties may include the 
structure, thermodynamics, and transport properties. In 
addition, molecular dynamics can be used to study the 
detailed atomistic mechanisms underlying these proper- 
ties and compare them with theory. It is a valuable com- 
putational tool to bridge between experiment and theory. 

In our Columbia performance study we use a generic 
molecular dynamics code based on the Velocity Verlet 

improve the velocity evaluations. However, it is com- 
putationally more expensive than other integration algo- 
rithms like Verlet or leap-frog schemes. The Velocity 
Verlet algorithm provides both the atomic positions and 
velocities at the same instant of time, and therefore is 
regarded as the most complete form of the Verlet algo- 
rithm. 

To parallelize the algorithm, we use a spatial de- 
composition method, in which the physical domain is 
subdivided into small three-dimensional boxes, one for 

r!gOT;.th-?I, 2 sO~hisfc2ted integr2tnr dP,sigI?ed to fmher  
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each processor. At each step, the processors compute 
the forces and update the positions and velocities of all 
the atoms within their respective boxes. In this method, 
a processor needs to know the locations of atoms only 
in nearby boxes; thus, communication is entirely local. 
Each processor uses two data structures: one for the 
atoms in its spatia! domain and the other for atoms in 
neighboring boxes. The first data structure stores atomic 
positions and velocities, and neighbor linked lists to per- 
mit easy deletions and insertions as atoms move between 
boxes. The second data structure stores only position co- 
ordinates of atoms in neighboring boxes. The potential 
energy between two atoms is modeled by the Lennard- 
Jones potential. The simulation starts with atoms on a 
force cubic center (fcc) lattice with randomized veloc- 
ities at a given temperature. We used a cutoff radius 
of 5.0 beyond which interactions between atoms are not 
calculated. 

3.4 INS3D: Turbopump Flow Simulations 

Computations for unsteady flow through a full scale 
low-pressure rocket pump are performed utilizing the 
INS3D computer code [lo]. Liquid rocket turbopumps 
operate under severe conditions and at very high rota- 
tional speeds. The low-pressure-fuel turbopump creates 
transient flow features such as reverse flows, tip clear- 
ance effects, secondary flows, vortex shedding, junction 
flows, and cavitation effects. Flow unsteadiness origi- 
nated from the inducer is considered to be one of the ma- 
jor contributors to the high frequency cyclic loading that 
results in cycle fatigue. The reverse flow originated at 
the tip of an inducer blade travels upstream and interacts 
with the bellows cavity. To resolve the complex geom- 
etry in relative motion, an overset grid approach is em- 
ployed where the problem domain is decomposed into a 
number of simple grid components [3]. Connectivity be- 
tween neighboring grids is established by interpolation 
at the grid outer boundaries. Addition of new compo- 
nents to the system and simulation of arbitrary relative 
motion between multiple bodies are achieved by estab- 
lishing new connectivity without disturbing the existing 
grids. 

The computational grid used for the experiments re- 
ported in this paper consisted of 66 million grid points 
and 267 blocks (or zones). Details of the grid system are 
shown in Fig. 1. Fig. 2 displays particle traces colored 
by axial velocity entering the low-pressure fuel pump. 
The blue particles represent regions of positive axial ve- 
locity, while the red particles indicate four back flow re- 
gions. The gray particles identify the stagnation regions 
in the flow. 

The INS3D code solves the incompressible Navier- 
Stokes equations for both steady-state and unsteady 
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Figure 1. Surface grids for the low pressure fuel 
pump inducer and the flowliner. 

Figure 2. Instantaneous snapshot of particle traces 
colored by axial velocity values. 

flows. The numerical solution requires special atten- 
tion in order to satisfy the divergence-free constraint on 
the velocity field. The incompressible formulation does 
not explicitly yield the pressure field from an equation 
of state or the continuity equation. One way to avoid 
the difficulty of the elliptic nature of the equations is to 
use an artificial compressibiIity method that introduces 
a time-derivative of the pressure term into the continuity 
equation. This transforms the elliptic-parabolic partial 
differential equations into the hyperbolic-parabolic type. 
To obtain time-accurate solutions, the equations are it- 
erated to convergence in pseudo-time for each physical 
time step until the divergence of the velocity field has 
been reduced below a specified tolerance value. The 
total number of sub-iterations required varies depend- 
ing on the problem, time step size, and the artificial 
compressibility parameter. Typically, the number ranges 
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from 10 to 30 sub-iterations. The matrix equation is 
solved iteratively by using a nonlfactored Gauss-Seidel 
type line-relaxation scheme, which maintains stability 
and allows a large pseudo-time step to be taken. More 
detailed information about the application can be found 
in [ 10, 111. 

Performance results reported in this paper were ob- 
tained for computations carried out using the Multi- 
Level Parallelism (MLP) paradigm for shared-memory 
systems [17]. All data communications at the coarsest 
and finest levels are accomplished via direct memory 
referencing instructions. The coarsest level parallelism 
is supplied by spawning off independent processes via 
the standard UNIX fork. A library of routines is used to 
initiate forks, to establish shared memory arenas, and 
to provide synchronization primitives. The boundary 
data for the overset grid system is archived in the shared 
memory arena by each process. Fine grain parallelism is 
obtained by using OpenMP compiler directives. 

3.5 OVERFLOW-D: Rotor Vortex Simulations 

For solving the compressible Navier-Stokes equa- 
tions, we selected the NASA production code called 
OVERFLOW-D [13]. The code uses the same overset 
grid methodology [3] as INS3D to perform high-fidelity 
viscous simulations around realistic aerospace configu- 
rations. OVERFLOW-D is popular within the aerody- 
namics community due to its ability to handle complex 
designs with multiple geometric components. It is ex- 
plicitly designed to simplify the modeling of problems 
when components are in relative motion. The main com- 
putational logic at the top level of the sequential code 

grid-loop over the grids within each group. Since each 
MPI process is assigned to only one group, the group- 
loop is executed in parallel, with each group performing 
its own sequential grid-loop. The inter-grid boundary 
updates within each group are performed as in the serial 
case. Inter-group boundary exchanges are acheved via 
MPI asyncbzonous conmunicztio?l cz!!s. The Opedv!P 
parallelism is achieved by the explicit compiler direc- 
tives inserted at the loop level. The logic is the same as 
in the pure MPI case, only the computationally intensive 
portion of the code (Le. the grid-loop) is multi-threaded 
via OpenMP. 

OVERFLOW-D was originally designed to exploit 
vector machines. Because Columbia is a cache-based 
superscalar architecture, modifications were necessary 
to improve performance. The linear solver of the ap- 
plication, called LU-SGS, was reimplemented using a 
pipeline algorithm [4] to enhance efficiency which is 
dictated by the type of data dependencies inherent in the 
solution algorithm. 

Our experiments reported here involve a Navier- 
Stokes simulation of vortex dynamics in the complex 
wake flow region around hovering rotors. The grid sys- 
tem consisted of 1679 blocks of various sizes, and ap- 
proximately 75 million grid points. Fig. 3 shows a sec- 
tional view of the test application’s overset grid system 
(slice through the off-body wake grids surrounding the 
hub and rotors) while Fig. 4 shows a cut plane through 
the computed wake system including vortex sheets as 
well as a number of individual tip vortices. A complete 
description of the underlying physics and the numerical 
simulations pertinent to this test problem can be found 
in [16]. 

consists of a time-loop and a nested grid-loop. Within 
the grid-loop, solutions to the flow equations are ob- 
tained on the individual grids with imposed boundary 
conditions. Overlapping boundary points or inter-grid 
data are updated from the previous time step using a an 
overset grid interpolation procedure. Upon completion 
of the grid-loop, the solution is automatically advanced 
to the next time step by the time-loop. The code uses 
finite difference schemes in space, with a variety of im- 
plicitlexplicit time stepping. 

The hybrid MPI+OpenMP version of OVERFZOW- 
D takes advantage of the overset grid system, which 
offers a natural coarse-grain parallelism [4]. A bin- 
packing algorithm clusters individual grids into groups, 
each of which is then assigned to an MPI process. The 
grouping strategy uses a connectivity test that inspects 
for an overlap between a pair of grids before assigning 
them to the same group, regardless of the size of the 
boundary data or their connectivity to other grids. The 
grid-loop in the parallel implementation is subdivided 
into two procedures: a group-loop over groups, and a 

Figure 3. A sectional view of the overset grid sys- 
tem. 
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Figure 4. Computed vorticity magnitude contours 
on a cutting plane located 45’ behind the rotor 
blade. 

4 Performance Results 

We conducted several experiments using mi- 
crobenchmarks, synthetic benchmarks, and full-scale 
applications to obtain a detailed performance character- 
ization of Columbia. Results of these experiments are 
presented in the following subsections. 

4.1 3700 vs. BX2 

In comparing the performance of the 3700 with two 
types of BX2, we are assessing the impact of both im- 
proved processor speed (coupled with larger L3 cache) 
and processor interconnect. As a shorthand notation, we 
will call the BX2 with 1.5 GHz CPUs and 6MB caches 
a “BX2a”. The BX2 with faster clock and larger cache 
is denoted “BX2b”. 

4.1.1 HPC Challenge Microbenchmarks 

The performance of the DGEh4M benchmark showed a 
correlation with processor speed and cache size rather 
than processor interconnect. When run on a BX2b, per- 
formance (5.75 GFlop/s) improved by 6% versus runs 
on 3700 or BX2a, which were essentially identical. 

The STREAM Triad benchmark showed only 1% 
better performance on a 3700 versus either type of BX2. 
Nothing about published architecture differences indi- 
cates why this might be the case. For the final version of 
the paper we will r u n  additional experiments to try and 
pin down a reason. 

The MPI latency and bandwidth results are shown in 
Fig. 5 .  For Ping-Pong and Natural Ring, the latencies are 
remarkably consistent between 3700 and both models 
of BX2. The Random Ring latency test shows that as 
average communication distances become further apart 
(as processor counts increase), the interconnect network 
improvements in the BX2 take effect. 

6.0 

4.0 

2.0 

6.0 

0 

% 4.0 

2.0 

6.0 

4.0 

2.0 

Random Ring 

b 0 0  
4 8 16 32 64 128256512 4 8 16 32 64 128256512 

Number of CPUs Number of CPUs 

Figure 5. Bandwidth and latency tests on three 
types of the Columbia nodes. 

Bandwidth was correlated either to processor speed 
or interconnect, depending on the locality of the com- 
munication tested. On the Ping-Pong test, where there 
is some distance between communicating pairs of pro- 
cesses, the interconnect used plays a key role in the 
bandwidth. In the case of the Natural Ring, where lo- 
cal communication predominates, processor speed is the 
determining factor. In the Random Ring, where the com- 
munications are mostly remote, both processor speed 
and interconnect show effects for bandwidth. 

4.1.2 NAS Parallel Benchmarks 

Fig. 6 shows the per-processor Gflopls rates reported 
from runs of both MPI and OpenMP versions of CG, FT, 
MG, and BT benchmarks on three types of the Columbia 
nodes. As was seen from the HPCC microbenchmarks in 
the previous section, the double density packing for BX2 
produces shorter latency and higher bandwidth in NU- 
MAlink access. The effect of higher bandwidth of BX2 
on OpenMP performance is evident: the four OpenMP 
benchmarks scaled much better on both types of BX2 
than on 3700 when the number of threads is four or 
more. With 128 threads, the difference can be as large as 
2x for both FT and BT. The clock speed and cache size 
had less effect on the Openh4P codes. 

Bandwidth effect on MPI performance is less pro- 
found until a larger number of processes (232). Ob- 
serve that on 256 processors, FT runs about twice as 
fast on BX2 than on 3700, indicating the importance of 
bandwidth for the all-to-all communication used in the 
benchmark. At about 64 processors, both MG and BT 
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Figure 6. NPB performance comparison on three 
types of the Columbia nodes. 

exhibit a performance jump (-50%) on BX2b compar- 
ing to BX2a. We believe this is a result of a larger L3 
cache on the BX2b node. 

Overall, OpenMP versions of NF’B demonstrated bet- 
ter performance on a small number of CPUs, but MPI 
versions scaled much better. The OpenMP codes are less 
sensitive to cache size, but more to the communication 
bandwidth. The impact of processor speed on perfor- 
mance is generally small. 

4.1.3 INS3D 

Computations to test the scalability of the INS3D code 
on Columbia were performed using the 3700 and BX2b 
processors along with the 7.1 and 8.1 F90 compilers. 
Initial computations using one MLP group and one 
OpenMP thread with the various processor and compiler 
options were used to establish the baseline runtime for 
one physical time step of the solver, where 720 such 
time steps are required to complete one inducer rota- 
tion. Next, a fixed number of 36 MLP groups was cho- 
sen along with various numbers of OpenMP threads (1, 
2, 4, 8, 12, or 14). The average runtime per iteration 
is shown in Table 2. Observe that the BX2b demon- 
strates approximately 50% faster iteration time. Note the 
scalability for fixed MLP groups and varying OpenMP 
threads is good, but begins to decay as the number of 
threads increases beyond eight. Further scaling can be 
accomplished by fixing the number of threads and vary- 

Table 2. WS3D performance on 3700 and BX2b. 

ing the number of MLP groups until the load balanc- 
ing begins to fail. Unlike varying the OpenMP threads 
which does not affect the convergence rate of INS3D, 
varying the number of MLP groups may deteriorate con- 
vergence. This will lead to more iterations even though 
faster runtime per iteration is achieved. 

4.1.4 OVERFLOW-D 

The performance of OVERFLOW-D was also evaluated 
on Columbia using the 3700 and BX2b processors. Ta- 
ble 3 shows communication and total execution times of 
the application per time step when using the 8.1 Fortran 
compiler. Note that a typical production run requires on 
the order of 50,000 such time steps. For various number 
of processors we report the time from the best combina- 
tion of processes and threads. 

Observe from Table 3 that execution time on BX2b is 
significantly smaller compared to 3700 (e.g. more than a 
factor of 3x on 508 CPUs). On average, OVERFLOW-D 
runs almost 2x faster on the BX2b than the 3700. In ad- 
dition, the communication time is also reduced by more 
than 50%. 

The performance scalability on the 3700 is reason- 
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ably good up to 64 processors, but flattens beyond 256. 
This is due to the small ratio of grid blocks to the number 
of MPI tasks that makes balancing computational work- 
load extremely challenging. With 508 MPI processes 
and only 1679 blocks, it is difficult for any grouping 
strategy to achieve a proper load balance. Various load 
balancing strategies foi overset giidS are extensive!y dis- 
cussed in [51. 

Another reason for poor 3700 scalability on large 
processor counts is insufficient computational work per 
processor. This can be verified by examining the ratio of 
communication to execution time in Table 3. This ratio 
is about 0.3 for 256 processors, but inireases to more 
than 0.5 on 508 CPUs. For our test problem consist- 
ing of 75 million grid points, there are only about 150 
thousand grid points per MPI task, which is too little for 
Columbia’s fast processors compared to the communica- 
tion overhead. The test problem used here was initially 
built for production runs on platforms having fewer pro- 
cessors with smaller caches and slower clock rates. We 
plan to run a much larger grid system for the final paper. 

Scalability on the BX2b is significantly better. For 
example, OVERFLOW-D efficiency for 128, 256, and 
508 processors is 61%, 37%, and 27% (compared to 
26%, 19%, and 7% on the 3700). In spite of the same 
load imbalance problem, the enhanced bandwidth on the 
BX2b significantly reduces the communication times. 
The increased bandwidth is particularly important at the 
coarse-grain level of OVERFLOW-D, which has an all- 
to-all communication pattern every time step. This is 
consistent with our experiments conducted,on the NPBs 
and reported in Sec 4.1.2. The reduction in the BX2b 
computation time can be attributed to its larger L3 cache. 

4.2 CPU “Stride” 

When performing STREAM benchmarking on 15 of 
the 20 nodes of Columbia in October 2004, we observed, 
not unexpectedly, that the results scaled linearly from 2 
to 7500 CPUS-achieving -2 GB/s per CPU. However, 
when run on a single processor, the benchmark regis- 
tered -3.8 GB/s. We hypothesized that this is due to 
each memory bus being shared by two processors. To 
verify that and to understand what other behavior might 
be due to that (or other resource) sharing, we ran the 
HPCC benchmarks in a “spread out” or strided fashion, 
using every second or every fourth CPU. 

The DGEMM benchmark demonstrated differences 
of less than 0.5%-showing that this benchmark is not 
substantially affected by shzring the memory bus. As 
expected, at a CPU stride of either 2 or 4, the STREAM 
benchmark produced per-processor numbers equivalent 
to the 1-CPU case. In the case of Triad, the bandwidth is 
1 . 9 ~  higher than when processes are assigned to CPUs 

in a dense fashion. The latency-bandwidth results were 
less dramatic. The numbers for Ping-Pong and Random 
Ring were slightly worse for spread-out CPUs. The re- 
sults for Natural Ring were less conclusive. There was a 
small improvement in latency but none for bandwidth. 

4.3 ?inning 

Application performance on NUMA architectures 
like an Altix node depends on data and thread placement 
onto CPUs. Improper initial data placement or unwanted 
migration of threads between processors can increase 
memory access time, thus degrading performance. The 
performance impact of using thread-to-processor pin- 
ning on applications, in particular hybrid codes, can 
sometimes be substantial. This is illustrated by the re- 
sults shown in Fig. 7 for the hybrid MPI+OpenMP SP- 
MZ code running with and without pinning. Each curve 
is associated with runs for a given total number of CPUs, 
but varying the number of OpenMP threads per MPI 
process. Observe that pinning improves performance 
substantially in the hybrid mode when processes spawn 
multiple threads. The impact becomes even more pro- 
found as the number of CPUs increases. Pure process 
mode (e.g. 64x 1) is less influenced by pinning. 

256 I I I , I I I 

128 ‘\A SP-MZ Class C \ \  
64 

32 8 16 

5 8  
- 

4 

2 
LA 128 CPUs. no pinning 

I I I I I 

1 2  4 8 1 6 3 2 6 4  
Number of Threads/proc 

Figure 7. Pinning versus no pinning for SP-MZ 
Class C running on BX2b. 

A user has at least three different methods for pinning 
on the Altix: 

1. Set environment variables (MPI-DSM-DISTRI 
BUTE and MPI-DSM-CPULIST) for MPI codes, 

2. Use the data placement tool, dplace, for either 
MPI or OpenMP codes, andlor 

3. Insert system calls in the user’s code, in particular, 
for hybrid implementations. 

All other results reported in this paper have pinning ap- 
plied, either using method 2 or a combination of meth- 
ods 2 and 3. 

8 



r 4.4 Compiler Versions INS3D 

There are at least four different versions of the Intel 
compilers installed on the Columbia system: 7.1(.042), 
8.0(.070), 8.1(.026), and 9.0(.012)beta. Although 8.1 is 
the latest official release, the default compiler is still set 
to 7.1 for various reasons. A user can apply the module 
command to select a particular version of the compiler. 
For evaluation purposes, a beta version of the 9.0 com- 
piler is also included. 

The performance impact of different compiler ver- 
sions was examined with the four OpenMP NPB bench- 
marks and the results are shown in Fig. 8. All tests were 
conducted on a BX2b node with the -03 -openmp 
compilation flag. We noted that the compiler perfor- 
mance seems to be application dependent, although the 
8.0 version produced the worst results in most cases. All 
the compilers gave similar results on the CG benchmark. 
The beta version of 9.0 performed very well on FT. For 
MG, between 32 and 128 threads (or CPUs) the 8.1 and 
9.0b compilers outperformed the 7.1 and 8.0; however, 
below 32 threads, the 7.1 and 8.0 compilers performed 
20-30% better than the other two. The scaling also turns 
around above 128 threads. 

Overall, the 7.1 compiler produced consistently bet- 
ter performance for most the benchmarks, in particular 
for a small number of threads. As a result, 7.1 was used 
for the remaining NPB tests in this report. 

Using the BX2b processor, the INS3D flow solver 
was compiled and run using both the 7.1 and 8.1 ver- 

OVERFLOW-D 

CG Class B 
16 - 

32 - 

4 8 16 32 64 128256 4 8 16 32 64 128256 
Number of CPUs 

Figure 8. Performance comparison of four com- 
piler versions. 

Table 4. INS3D and OVERFLOW-D performance 
using Intel Fortran compilers 7.1 and 8.1 

sions of the Fortran compiler with negligible differ- 
ence in runtime per iteration (see Table 4). Evaluations 
for OVERFLOW-D where only performed on the 3700 
node. Timing results with 7.1 are superior to those with 
8.1 by 2040% when running on less than 64 processors, 
but almost identical on larger counts. 

4.5 Processes and Threads 

We examined the performance of hybrid codes un- 
der various MPI process and OpenMP thread combina- 
tions within one Altix node. The results for the BT-MZ 
benchmark are shown in Fig. 9. For a given number of 
OpenMP threads (left panel in Fig. 9), MPI scales very 
well, almost linearly up to the point where load imbal- 
ancing becomes a problem. On the other hand, for a 
given number of MPI processes (right panel of Fig. 9), 
OpenMP scaling is very limited: except for two threads, 
OpenMP performance drops quickly as the number of 
threads increases. 

512 

256 

128 

0 64 
2 a? 

16 

8 

4 

2 

1 

10 "- 
Q 

@-e 256 mpi 

1 4 16 64 256 1 4 16 64 256 
Number of CPUs 

Figure 9. Effects of varying processes and threads 
on the BT-MZ benchmark. 
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4.6 Multinode Execution 

1 2  

We next reran a subset of our experiments on up to 
four BX2b Altix nodes. These results are presented in 
the following subsections. 

A-A 2 omp. NLK4 - 

4.6.1 HPC Challenge Microbenchmarks 

The internode communication network played a very 
minor role (less than 0.5%) in the performance of 

. DGEMM, and none at all in STREAM. The latter result 
is not surprising since the benchmark does not measure 
communication time. 

In the tests of MPI latency and bandwidth (see 
Fig. 10) it is clear that NUMAlink4 performs much bet- 
ter than InfiniBand between nodes. The latency results 
show a substantial penalty for InfiniBand across two 
nodes and even worse performance across four nodcs. 
In the case of Ping-Pong, this can probably be explained 
by the increase in the number of “off-node’’ pairs that 
get tested when four nodes are used. The Natural Ring 
latency results show a smaller penalty for the increase 
from two to four nodes. This decreased penalty is under- 
standable because the benchmark reports the worst-case 
process-to-process latency for the entire ring communi- 
cation, while we use an average point-to-point latency 
in Ping-Pong. 

The bandwidth results for Ping-Pong and Natural 
Ring show a similar correlation to out-of-node commu- 
nications. In the case of Ping-Pong, since we are report- 
ing the average of a series of point-to-point bandwidth 
experiments, there is a falloff in InfiniBand performance 

Latency Bandwidth 
1.5 

150 Average Ping-Pong Average Ping-Pong 

’1;;;:; --+-+ # # # i O . 5  

1.5 
Natural Ring 150 Natural Ring 

: 100 
v) a 

50 

Random Ring 

100 

64 128 256 512 1024 2048 64 128 256 512 1024 2048 
Number of CPUs Number of CPUs 

Figure 10. Bandwidth and latency tests on three 
types of the Columbia nodes. 
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from two to four because the likelihood of a non-local 
pairing increases. For Natural Ring, the two- and four- 
node tests yielded similar results. 

The latency and bandwidth results from the Random 
Ring tests show severe problems with scalability of In- 
finiBand. It is possible that our results were affected by a 
configuration problem, so we will rcpeat them (and vary 
several configuration parameters) for the final version of 
the paper. 

4.6.2 NAS Parallel Benchmarks 

The hybrid MPI+OpenMP codes of BT-MZ and SP- 
MZ were also tested across four Columbia nodes con- 
nected with both the NUMAlink4 network and the In- 
finiBand switch. We used the Class E problem (4096 
zones, 1.3 billion aggregated grid points) for these tests. 
The top row of Fig. 11 compares the per-CPU Gflop/s 
rates obtained from runs using NUMAlink4 with those 
from within a single Altix BX2b node. The two sets of 
data represent runs with one and two OpenMP threads 
per MPI process, respectively. For 512 CPUs or less, 
the NUMAlink4 results are comparable to or even bet- 
ter than the in-node results. In particular, the perfor- 
mance of 512-processor runs in a single node dropped 
by 10-15%, primarily because these runs also used the 
CPUs that were allocated for systems software (called 
boot cpuset), which interfered with our tests. Reducing 
the number of CPUs to 508 improves the BT-MZ perfor- 
mance. 

Since MPI is used for coarse-grain parallelism among 
zones for the hybrid implementations, load balancing for 
SP-MZ is trivial as long as the number of zones is divis- 
ible by the number of MPI processes. The uneven-size 

Figure 11. Comparison of NPB-MZ performance 
under three different networks. 



f zones in BT-MZ allows more flexible choice of the num- 
ber of MPI processes; however, as the number of CPUs 
increases, OpenMP threads may be required to get better 
load balance (and therefore better performance). This 
is evident from the BT-MZ results in Fig. 11. There 
is about 11 % performance improvement from runs us- 
ing two OperMP threx!s versus oce (e.g. 250x2 vs. 
512x 1) for the SP-MZ benchmark. This effect could be 
attributed to less MPI communication when two threads 
are used. The performance drop for SP-MZ at 768 and 
1536 processors can be explained by load imbalance for 
these CPU counts. 

The bottom row of Fig. 11 compares the total Gflop/s 
rates from runs using NLTMAlink4 with those from using 
the InfiniBand, taking the best process-thread combina- 
tions. Observe a close-to-linear speedup for BT-MZ. 
The InfiniBand results are only about 7% worse. On 
the other hand, we noticed anomaly in InfiniBand per- 
formance for SP-MZ when a released SGI MPT runtime 
library (mptl.llr) was used. In fact, on 256 processors, 
the InfiniBand result is 40% slower than NUMAlink4, 
but the InfiniBand performance improves as the number 
of CPUs increases. We used a beta version of the MPT 
library (mptl.llb) and reran some of the data points. 
These results are also included in Fig. 11 for SP-MZ. As 
we can see, the beta version of the library produced In- 
finiBand results that are very close in performance to the 
NUMAlink4 results. We are actively working with SGI 
engineers to find the true cause of the anomaly. 

P 

4.6.3 Molecular Dynamics 

Table 5 shows the wall clock time as a function of the 
number of processors for the molecular dynamics code. 
This is a weak scaling exercise: we assign 64,000 atoms 
to each processor, and thus scale the problem size with 
the processor count. For 2040 processors, we simulated 
130.56 million atoms. The entire simulation was run for 
100 steps. Results show almost perfect scalability all the 
way up to 2040 processors. The communication costs 

#of c o r n  exec comm exec 
Nodes (sec) (sec) (sec) (sec) 

Wall clock time per step (sec) 
P 1 #particles I time 

Table 5. Performance of molecular dynamics code 
using NumaLink4 interconnection. 

are insignificant for this test case; however, they could 
increase if the simulation were run for long durations 
and workloads became unbalanced. 

4.6.4 OVERFLOW-D 

Table 6 presents performawe experiments conducted OI? 
multiple BX2b nodes. The column denoted as "# of 
Nodes" refers to thee number of BX2b nodes used. The 
communication and execution times are reported for the 
same runs via both NUMAlink4 and InfiniBand inter- 
connects, using the Intel Fortran compiler 8.1. 

Cross nodes; BX2b 
NUh4Alink4 I InfiniBand 

Table 6. Performance of OVERFLOW-D across 
multiple BX2b nodes via NumaLink and Infini- 
Band interconnection. 

The total execution times obtained via NLJh4Alink4 
are generally about 10% better; however, the reverse ap- 
pears to be true for the communication times. We did 
not find any pronounced increase in the execution and 
communication timing for the same total number of pro- 
cessors when distributed across multiple nodes. This 
suggests that performance scalability over many nodes 
is not affected by the type of the interconnect for this 
application. 

OVERFLOW-D has significant VO requirements at 
runtime. Due to the lack of a shared file system among 
the Columbia nodes at this time, a less efficient file sys- 
tem was used. Some of the performance results may 
therefore have been affected to some extent by VO ac- 
tivities. We expect to have iiiis probierii iesolved iii die. 
final paper. Also, an overset grid system suitable in size 
and the number of blocks to fully exploit the computa- 
tional capability of Columbia is under construction. We 
will use this much larger system for the final paper. 

5 Summary and Conclusions 

Our benchmarking on the Columbia supercluster 
demonstrated several features about single-box SGI Al- 
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tix performance. First, the presence of NUMAlink4 on 
the BX2 nodes provides a large performance boost for 
MPI and OpenMP applications. Furthermore, when the 
processor speed and cache size are enhanced (as is the 
case on those nodes we call BX2b’s), there is another 
significant improvement in performance. As was the 
case on the SGI Origins, process and thread piiining con- 
tinues to be critical to performance. Among the four 
versions of the Intel compiler that we tested, there is no 
clear winner-performance seems to vary with applica- 
tion. 

When multiple Altix nodes are combined into a capa- 
bility cluster, both NUMALink4 and InfiniBand are ca- 
pable of very good performance. While the HPC Chal- 
lenge benchmarks showed some potential performance 
problems with InfiniBand, those results were not seen 
with either the NPBs or the applications we tested. Fur- 
thermore, we note that because of the limitations of the 
InfiniBand hardware, fully employing more than three 
Altix nodes in a computation requires that a multilevel 
parallel programming paradigm be used. It is particular 
encouraging that application performance using Infini- 
Band on our maximum configuration was not trailing 
Off.  

For the final version of this paper, we will perform 
more experiments to compare the relative performance 
of NUMAlink4 versus InfiniBand; for example, we want 
to complete the multinode version of INS3D to use it for 
testing. In addition, we would like to try and pin down 
the causes of some of the anomalies we have seen with 
InfiniBand performance. 

In future work, we will explore the causes of scaling 
problems that we observed with OpenMP. We will also 
experiment with the SI-IMEM library, including porting 
INS3D to use it. 
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