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This paper focuses on the parallel performance of two high-performance aerodynamic 
simulation packages on the newly installed NASA Columbia supercomputer. These pack- 
ages include both a high-fidelity, unstructured, Reynolds-averaged hTavier-Stokes solver, 
and a fully-automated inviscid flow package for cut-cell Cartesian grids. The complemen- 
tary combinat ion of these two simulation codes enables high-fidelity characterization of 
aerospace vehicle design performance over the entire flight envelope through extensive 
parametric analysis and detailed simulation of critical regions of the flight envelope. Both 
packages. are industrial-level codes design-ed for complex geom-etcy and incorpor.ats. CUS- 

tomized multigrid solution algorithms. The performance of these codes on Columbia is 
examined using both MPI and OpenMP and using both the NUMAlink and InfiniBand 
interconnect fabrics. Numerical results demonstrate good scalability on up to 2016 CPUS 

using the NUMAIink4 interconnect, with measured computational rates in the vicinity of 
3 TFLOP/s, while InfiniBand showed some performance degradation at high CPU counts, 
particularly with multigrid. Nonetheless, the results are encouraging enough to indicate 
that larger test cases using combined MPI/OpenMP communication should scale well on 
even more processors. 
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I. Introduction 

OMPUTATIONAL fluid dynamics (CFD) techniques have been developed and applied to aerospace analysis 
and design problems since the advent of the supercomputer. However, in spite of several decades of 

continuous improvements in algorithms and hardware, and despite the widespread acceptance and use of 
CFD as an indispensable tool in the aerospace vehicle design process, computational methods are still 
employed in a very limited fashion in the design process. The N1 potential of these methods in delivering 
more optimal desi,- and in accelerating the design cycle has yet to be approached. On the one hand, 
Computational methods for aerodynamic andysis are only reliable within a narrow range of fight conditions, 
where no sigmficant flow separation occurs. This is due in part to the extreme accuracy requirements of the . 

rodynamic design problem, where, for example, changes of less than 1% in the drag coefficient of a Right 
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vehicle can determine commercial success or failure. Additionally, the physics of flight aerodynamics is one 
which encompasses a wide range of scales, from thin boundary layers in the millimeter range, up to the fd 
aircraft length scales. As a result, computational analyses are generally used in conjunction with experimental 
methods and only over a restricted range of the flight envelope, where they have been essentially calibrated. 
A recent series of workshops sponsored by the American Institute of Aeronautics and Astronautics (AIAA) 
has determined that the accuracy achieved by CFD methods for aerodynamic applications is substantially 
inferior to that delivered by state-of-the-art wind-tunnel testing, and improvements in accuracy will require, 
among various items, substantially higher grid resolution than what is generally considered practical in the 
current environment 

While the analysis problem in itself is difficult, the computational design problem, in which one is 
interested in modifying the geometry in order to improve some design objective of the vehicle, is much 
more formidable. One the one hand, the number of design variables, which are the degrees of freedom 
used to modify and define the optimized geometry, can be extremely large in number (10,000 to 100,000) 
and the sensitivity of the numerical flow field to these design variables must be computed in order to drive 
the optimization problem. On the other hand, once a new “optimal” design has been constructed, it must 
be validated throughout the entire fiight envelope. This includes not only the full range of aerodynamic 
flight conditions, but also all possible control surface deflections and power settings. Generating this aero- 
performance database not only provides all details of vehicle performance, but also opens up new possibilities 
for the engineer. For example, when coupled with a six-degree-of-freedom (6-DOF) integrator, the vehicle can 
be uflown” through the database by guidance and control (G&C) system designers to explore issues of stability 
and control, or G&C system design.’ Alternatively, a complete unsteady simulation of a maneuvering vehicle 
may be undertaken. Ultimately, the vehicle’s suitability for various mission profles or other trajectories can 
also be evaluaied by full end-to-end mission ~imulations.~ 

Our approach to this seemingly intractable probIem relies on the use of a variable fidelity model, where a 
high fidelity model which solves the Reynolds-averaged Navier-Stokes equations (NSUSD) is used to perform 
the analysis at the most important flight conditions, as well as to  drive a high-fidelity design optimization 
procedure, and.alower fidelity- m d e l  based on inviscid flow-analysis on adapted Cartesian meshes (Cart3D) 
is used to validate the new design over a broad range of €light conditions, using an automated parameter 
sweep databzse generation approach. In addition to this variable fidelity approach, other enabling factors 
include the use of custom developed state-of-the-art optimal solution techniques and large scale parde l  
hardware. Both NSUSD and Cart3D employ multigrid methods, specially developed for each application, 
which deliver convergence rates which are insensitive to the number of degrees of freedom in the problem. 
Finally, the use of state-of-the-art large-scale parallel hardware enables improved accuracy in all phases of 
the process by relying on high resolution meshes, generally employing one or two orders of magnitude higher 
resolution than current-day standard practices. 

11. The NASA Columbia Supercomputer 

Figure 1 shows a snapshot of NASA’s Columbia 
supercomputer located at Ames Research Center in 
MoEea Field CA. This platiorm is a supercluster 
array of 20 SGI Altix 3700 nodes. Each node has 
512 Intel I t a n i d  processors clocked at either 1.5 
or 1.6Ghz) and each CPU has 2Gb of local mem- 
ory. Each’ processor supports up to four memory- 
load operations per clock-cycle from L2 cache to, the 
floz;ting-point registers, and are thus capable of de- 
livering up to  4 FLOPS per cycle to the user. 

Of the 20 nodes in the system, Columbia 1-12 
are Mtix 3700 systems, whils Colambia 13-20 are 
actually 3700BX2 architectures. Processor bricks 
in the 3700Bfi2’s are connected using SGI’s propri- 
etary NUIKMink4 interconnect with a peak band- 
width rated at 6.4Gblsec. The work described here 
was performed on four of these 3700BX2 nodes (c17- 
c20). These 2048 CPUs are all clocked at 1.6Ghz 

Figure 1. The 10,240 processor Columbia Supercom- 
puter located at NASA Ames Research Center, Moffett 
Field CA. 
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and each has 9Mb of L3 cache. While the 1Tb of local memory on each 512 CPU node of the Columbia 
system is cache-coherent and globally shared, cache-coherency is not maintained between nodes. As a result 
standard OpenMP codes are currently limited to 512 CPUs. 

The entire supercluster is connected using both InhiBand and 1OGigabit Ethernet networks. The Inh i -  
Band provides low-latency routing among the nodes for system-wide MPI communication, while the 10Gig-E 
provides user access and I/O. 

The large MPI simulations presented here exercised both the NUMAlink and I n E d a n d  interconnects. 
While the NUMAJink can directly support M F I  on each of the 2048 processors in the “vortex” system (c17- 
c20), the same is not true of the InfiniBand connectionfabric, As discussed in [4], a limitation in the number 
of MPI connections available to  the InfiniBand cards installed on each 512 node restricts the maximum 
number of MPI processes to 

#MP-TIB 5 J--- x Nconnectzons 

n - 1  
where n (2 2) is the number of Altix nodes,  NIB^^^^^ = 8 per node and Nconnections = 64K per card. In 
practical terms, this constraint implies that a pure MPI code run on 4 nodes of Columbia can have no more 
than 1524 MPI processes. If more MPI connections are attempted, the system will give a warning message, 
and then drop dona to the 10Gig-E network for communication. Thus, when using the InfiniBand network, 
hybrid style applications are required (e.g. use 2 OpenMP threads for each MPI processes) when using large 
numbers of CPUs in several boxes. This is an important point when considering runs on greater than 2048 
CPUs. The NUMAlink spans at most 4 boxes, and IdniBand is the only high-speed interconnect spanning 
the entire machine. As a result, any plan to use more than 2048 CPUs requires the use of InfiniBand, and 
therefore will demand hybrid communication to scale to larger problem sizes. 

111. High-Fidelity Analysis Model - 

Our high-fidelity model (the NSU3D code) solves the Reynolds-averaged Navier Stokes ( M S )  equations 
on . _ _  - - -. - unstructured . - . . hybrid meshes. This code has been under development for over ten  year^,^-^ and is currently 
used in production mode in the aerodynamic design departments of several aircrak manufacturers. This 
solver has also been a participant in the two recent Drag Prediction Workshops (DPW-), sponsored by AIAA, 
where the predictive ability ;of various research, production, and commercial CFD codes were evaluated on 
standard aircraft configurations. By solving the Navier-Stokes equations, WSU3D enables the simulation of 
viscous flow effects, including b0undar.y layers and wakes, which are not included in the inviscid flow model 
used by Cart3D. The effeccs of turbulence for steady-state analyses are incorporated through the solution 
of a standard one-equation turbulence model,* which is solved in a coupled manner along with the flow 
equations. 

, The use of unstructured meshes provides the required flexibility for discretizing complex airframe ge- 
ometries, which may include deflected control surfaces, deployed flaps for landing and take-~ff,~ and engine 
nacelle integration prob1ems.l While the solver can handle a variety of element types, high-aspect-ratio pris- 
matic elements are generally used in regions close to the aircraft surfaces, where thin boundary layers and 
wakes prevail, and isotropic tetrahedral elements are used in outer regions, with pyramidal elements used 
in transition regions. Because of the high accuracy requirements of aircraft design {drag coeEcient values 
are usually required to 1 part in 10,000: i.e. 1 drag count), and because of the sensitivity of important flow 
physics such as flow separation to the behavior of the boundary layer, it is common practice in aerodynamic 
simulations to fully resolve the turbulent boundary layer right down to the very small scale of the laminar 
sub-layer. This is in contrast to  many other CFD applications, where a large part of the boundary layer is 
approxim&ted using ‘’wall function” boundary conditions. For typical aerodynamic Reynolds numbers (2 5 
milliog), fdl37 resolving the bouridary layer requires the use of grid cells with a normal height at the wall of 

wing chords, where a wing chord corresponds to the streamwise dimension of the wing. In order for the 
aerodynamic simulation problem to remain tractable, anisotropic resolution must be employed in boundary 
layer regions by using chordwise and spanwise grid spacings which are several orders of magnitude larger 
than the normal spacing, but nevertheless adequate for capturing the gradients in these respective directions 
(see detailed insert in Figure i 3  (a)). 

While the added cost of computing the physical viscous terms and solving the turbulence modeling 
equation is relatively modest (25 to 50%), RANS simulations are generally found to be 50 to 100 times more 
expensive for equivalent accuracy in terms of overall computational time compared to inviscid flow (Euler) 
simulations such as  CartSD, due mainly to the added resolution required to resolve the viscous regions, and 
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(4 (b) 
Figure 2. Illustration of agglomeration process €or coarse level construction in multigrid algorithm. Median 
dual control volumes are associated with grid points. Agglomeration proceeds by identifying a seed point and 
merging all neighboring control volume points with this seed point (a). Resuiting coarse level agglomerated 
control volumes are larger and more irregular in shape (b). 

the increased stif€ness associated with the highly anisotropic mesh resolution employed in these  region^.^ 
Tkis makes the use of RANS solvers dif3icult for rapidly populating lasge data bases within the context of a 
broad parameter study. However, due to the more complete modeling of the flow physics, W T S  solvers are 
best suited for use in highly accurate single point analyses, and in design optimization studies. 

The NSUSD code employs a second-order accurate discretization, where the unknowns are stored at 
the grid points. The six degrees of freedom at each grid point consist of the density, three-dimensional 
momentum vector, energy, and turbulence variable. For the convective terms, the discretization relies on 
a control volume formulation, achieving second order-accuracy through an extended neighbor-of-neighbors 
stencil, while the discrete viscous terms are obtained using a nearest neighbor finte-volume f~rmulation.~ 

Using the method of lines, these spatially discretized equations are advanced in time until the steady-state 
is-obtalged. Convergence is accelerated through the use of an implicit agglomeration multigrid a1go~ithm.~~ -_.- 

The idea of a multigrid method is to accelerate the solution of a fine grid problem by computing correc- 
tions using coarser grid levels, where computation costs are lower, and errors propagate more rapidy. For 
unstructured meshes, the construction of a complete sequence of coarser mesh levels, given an initial fine 
level, represents a non-trivial task. The agglomeration multigrid approach constructs coarse grid levels, by 
agglomerating or grouping together neighboring fine grid control volumes, each of which is associated with 
a grid point, as depicted in Figure 2(a). This is accomplished through the use of a graph algorithm, and 
the resulting merged control volumes on the coarse level form a smaller set of larger more complex-shaped 
control-volumes, as shown in Figure 2(b). This procedure is applied recursively, in order to generate a 
complete sequence of fine to coarse grid levels. Figure 3 illustrates the resulting coarse grid levels for a 
three-dimensional aircrak configuration. In the flow solution phase, each multigrid cycle begins with several 

- 

(4 @) 
Figure 3. First (a) and third (b) agglomerated multigrid levels for unstructured grid over aircraft configuration. 
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(4 (b) 
Figure 4. (a): Illustration of multigrid V-cycle. T denotes time step on a particular grid level, R denotes 
restriction (fine to coarse) transfer, and P denotes prolongation (coarse to fine) transfer. Grid 1 is the coarsest 
level and Grid 4 denotes the finest level in this depiction. (b): Illustration of the recursive nature of the 
multigrid W-cycle which performs additional visits to the coarser grid levels. Restriction and prolongation 
operation symbols have been omitted €or clarity. 

time steps on the finest level, after which the problem is transfered to the next coarser level, and the process 
is repeated recursively until the coarsest level of the sequence is reached, at which point the corrections are 
interpolated back to the finest level, and the process is repeated. The simplest strategy consists of performing 
one or more time steps on each grid level in the coarsening phase, and no time steps on the refinement phase. 
This is denoted as the multigrid V-cycle, and is depicted in Figure 4(a). An alternate cycle, denoted as the 
multigrid W-cycle, is a recursive procedure which performs additional visits to the coarser mesh levels, as 
shown irr Figure-rl(b-). The multigrid--W=cjde has- been found to produce superior convergence rates-and to 
be more robust, and is thus used exclusively in the NSU3D calculations. 

Raxher than performing simple explicit time steps on each grid level within the multigrid sequence, the 
use of local implicit solvers at each grid point provides a more eflicient solution mechanism. This mandates 
the inversion of dense 6x6 block matrices at each- grid point at each iteration. However, in regions of 
high mesh stretching such as in the boundary layer regions, solution efficiency degrades due to the stiffness 
induced by the extreme grid anisotropy. This can be overcome be resorting to an implicit line solver in such 
regions. Using a graph algorithm, the edges of the mesh which connect closely coupled grid points (usually 
in the normal direction) in boundary layer regions, are grouped together into a set of non-intersecting lines. 
Figure 5 illustrates the construction of the line set for a two-dimensional mesh with appreciable stretching 
in near-wall and wake regions. The discrete governing equations axe then solved implicitly along these lines, 
using a block tridiagonal LU-decomposition algorithm for ea& line. In isotropic regions of the mesh, the 
line structure reduces to a single point, and the point-implicit scheme described above is recovered. This 
line-implicit driven agglomeration multigrid algorithm has been shown to produce convergence rates which 
are both‘ insensitive to the degree of mesh resolution, and to the degree of mesh ~tretching.~ 

The NSU3D code achieves parallelism through domain decomposition. The adjacency graph of each 
fine and coarse agglomerated grid level of the multigrid sequence is fed to the METIS partitioner’’ which 
returns the partitioning information. Each grid level is partitioned independently, and coarse and 6ne grid 
partitions are then matched up together based on the degree of overlap between the respective partitions, 
using a non-optimal greedy-type algorithm. This approach may result in more inter-processor communication 
when transferring variables between coarse and fine multigrid levels than a fully nested approach - where 
the coarse level partitions are inferred from the fine level partitions. However, experiments indicate t h a t  
it is more hiportant t o  optimize the intra-level partitioning process versus inter-level partitioning, since the 
work required in transferring variables between levels is minimal compared to the work performed by the 
iaplicit solver each level. 

For each partitioned level, the edges of the mesh which straddle two adjacent processors are assigned to 
one of the processors, and a “ghost vertex” is constructed in this processor, which corresponds to the vertex 
originally accessed by the edge in the adjacent processor (c.f. Figure G(a)). During a residual evaluation, the 
fluxes are computed along edges and accumulated to the vertices. The flux contributions accumulated at the 
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Figure 5. 
regions and (b) resulting set of lines used for implicit Iine solver. 

ghost vertices must then be added to the flux contributions at their corresponding physical vertex locations 
in order to obtain the complete residual at these points. This phase incurs interprocessor commhication. 
In an explicit (or point implicit) scheme, the updates at all points can then be computed without any 
interprocessor communication once the residuals at all points have been calculated. The newly updated 
values are then communicated to the ghost points, and the process is repeated. 

The use of line solvers complicates r;he parallel implementation, since the block trihagonal line solver 
is an inherently sequential algorithm. The partitioning procedure is thus modified to avoid breaking the 
implicit lines across inter-partition boundaries. This is achieved by contracting the adjacency graph along 
the implicit lines, effectively collapsing each line to  a single point in the graph as shown in Figure E(b). 
Using the appropriate vertex and edge weights which result from the contraction process, this new weighted 
graph-kfed to  the METIS partitioner, resulting in a se t  of partitions -m.hich. never breaks an implicit line 
structure. 

The NSUSD solver employs a hybrid MPI/OpenMP approach for parallel execution. In general, each 
partition is associated with an individual processor, and inter-processor communication can be performed 
using MPI alone, using OpenMP alone, or using a hybrid approach where each MPI process is responsible €or 
several partitions/processors, which communicate among themselves using OpenMP. For MPI-alone cases, 
communication is executed by packing messages from all ghost points on a given processor that are to  be 
sent to another processor into a buffer that is then sent as a single message. This standard approach to 
inter-processor communication has the effect of reducing latency overheads by creating fewer larger messages. 

For shared memory architectures using OpenMP, the multiple partitions are run simultaneously using one 
thread per partition, and parallelization is achieved at the partition loop level. In such cases, a potentially 
more eEcient communication strategy is to simply copy (or copy-add) the values from the individual ghost 
points into the locations which correspond to their real images, since the memory on diflerent partitions is 

(a): Illustration of two-dimensional unstruc _red grid with high stretching in near body ani wake 

. ,  

(4 (b) 
Figure 6. (a): Illustration of creation of internal edges and ghost points at inter-processor boundaries; (b): 
Illustration of line edge con&action and creation of weighted graph for mesh partitioning. V and E values 
denote vertex and edge weights respectively. 

6 of 20 



Figure 7. (a): Illustration of thread to thread MPI communication for a two-level hybrid MPI-OpenMP 
implementation; (b): Illustration of Master-Thread controlled MPI communication for a two-IeveI hybrid MPI 
OpenMP implementation. 

addressable from any other partition. 
For hybrid MPI/OpenMP cases, each MPI process is responsible for various partitions, which are executed 

in parallel using one OpenMP thread per partition. Co&unication between partitions shared under a single 
MPI process proceeds as in the pure OpenMP case. In order to communicate between partitions owned by 
different MPI processes, two programming models have been considered. A communication strategy which 
can be executed entirely in parallel consists of having indvidual threads perform MF’I calls to send and 
receive messages to and from other threads living on other MPI processes, as illustrated in Figure ?(a). In 
this case, the MPI calls must specify the process identifier (id number) as well as the thread id to which the 
message is being sent (or received). While the specScation of a process id is a standard procedure within an 
MPI call, the specification of a thread id can be implemented using the MPI send-recv tag.” An alternate 
approach, illustrated in Figure i(b), consists of having all threads pack their messages destined for other 
threads of a particular remote MPI process into a single buffer, and then having the MPI process (Le., the 
master thread alone) send and receive the message using MPI . The received messages can then be unpacked 
or scattered to the appropriate local subdomains. This packing and unpacking of messages can be done in a 
thread-parallel fashion. However, the MF’I sends and receives are executed only by the master thread, and 
these operations may become sequential bottlenecks since all other threads remain idle during this phase. 
One w ~ y  to a t iga te  this eEect is t b  overlap 0FeliMP and MPT CommUniCatioE. UEn~nbX-b16c?iifi~ seiids 
and receives, the master thread h s t  issues all the MPI receive calls, followed by all the MPI send calls. After 
this, while the MPI messages are in transit, the OpenMP communication routines are executed by all threads, 
after which, the master thread waits until all MPi messages are received. Thread-parallel unpacking of the 
MPI messages then proceeds as usual. This approach also results in a smaller number of larger messages 
being issued by the MPI routines, which may be beneficial for reducing latency on the netpiork supporting 
the MPI calls. On the other hand, there is always a (thread-) sequential portion of communication in this 
approach, which may degrade performance depending on the degree of communication overlap achieved. 

Previous experience has shown that the thread parallel approach to communication scales  poorly due 
to the MPi calls ‘locking” and thus executing serially at the thread level.I2 Thus, the master thread 
communication strategy is used exclusively in this work. 

Within each partition, single-processor performance is enhanced using local reordering techniques. For 
cache-based scalar processors, such as the Intel Itanium on the NASA Columbia machine, the grid data is 
reordered for cache locality using a reverse Cuthill MeKee type algorithm. For vector processors, coloring 
algorithms are used to enable vectorization of the basic loop over mesh edges, which accumulate computed 
values to the grid points. Because the line solver is inherently scalar, the lines are sorted based on their 
length, and grouped into sets of 64 lines of similar length, over which vectorization may then take place at 
each stage in the line solver algorithm. These techniques have been demonstrated on the CRAY SV-1 and 
NEC SX-6. 

IV. Optimization and Parametric Studies €or Performance Prediction 

The outcome of design optimization is a modified vehicle whose performance is known only at the design 
points. Even with data from several additional cases as provided by NSU3D, this only provides a small 
portal into understanding overall vehicle performance. Current research into automated parametric studies 
is aimed. at broadening this snapshot of vehicle performance by rapidly producing the entire performance 
database for a new design as delivered by the shape optimizer. These parametric studies consider not only 
a range of flight conditions, but also include all possible control surface deflections and power settings. 

Large numbers of aerodynamic and shape parameters can easily result i9 aero-performance databases 
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with 104-106 entries. Automa~ically computing this performance envelope is the goal of NASA’s CartSD 
analysis l 4  This package permits parametric sweeps of not only fight conditions (Mach number, 
angle-of-attack and sideslip), but also deployment of control surfaces. The geometry comes into the system 
as a set of watertight solids, either directly from the optimizer or &om a CAD system. These solids are 
automatically triangulated and positioned for the desired control surface deflections.13> With the new 
analysis model in-hand, the embedded-boundary Cartesian method automatically produces a computational 
mesh to support the CFD runs2Il3 

The parameter studies consider changes in both the geometry (control surface deflection) and “wind 
parameters” (Mach, angle-of-attack, sideslip). A typical analysis may consider three “Configuration-Space” 
parameters (e.g. aileron, elevator and rudder deflections) and examine three “‘Wind-Space” parameters 
(Mach number, angle-of-attack, and sideslip angle). In this six-dimensional parametric space, ten values of 
each parameter would require lo6  CFD simulations; 1000 wind-space cases for each of the 1000 instances 
of the configuration in the config-space. The job control scripts arrange the jobs hieraschically such that 
different instances of the geometry are at the top level with wind parameters below. For a particular instance 
of the geometry, the jobs exploring variation in the Wind-Space all run using the same mesh and geometry 
files. This approaches amortizes the cost of preparing the surface and meshing each instance of the geometry 
over the hundreds or thousands of runs done on that particular instance of the geometry. On Columbia’s 
Itanium2 CPUs the Cartesian mesh generator13 typically produces 3-5 million cells-per-minute, and mesh 
sizes for realistically complex vehicles generally contain 3-10 million cells. Moreover, when multiple instances 
of a configuration need to be produced (e.g. for each of several elevator settings) these mesh generation jobs 
are all executed in parallel.2i17 This architecture, combined with the underlying speed of the mesh generation 
and geometry manipulation processes implies that the speed of the flow solver is the primary driver in the 
total cost of producing the aerodynamic database. 

In typical database fills, hundreds or thousands of cases need to be run. Under these circumstances, 
computational e5ciency dictates running as many cases simultaneously as memory permits, and this strategy 
maps well t o  the, Columbia system. The 3-10 million cell cases typically fit in memory oh 32-128 CPUs, 
making it possible to run several cases simultaneously on each 512 CPU node of the system. Such cas, 5s can 
bKfuE <sing either OpenMP or MPI ccimmunication. 

V. Cart3D Flow Solver and Parallelization 

Despite zhe L‘embarrassingly parallel” nature of database fills, there is still a strong demand for the 
abZty t o  run extremely large cases, or individual cases extremely rapidly. Obviously when running lo5 or 
lo6 cases, there is little demand to thoroughly peruse the results of each simulation, and in general, the only 
data stored for these cases are surface pressures, convergenee histories and force and moment coefiicients. 
If, during resiew of the results, the database shows unexpected results in a particular region, those cases 
are typically re-run on-demand. The ability to  re-create the full solution extremely rapidly by spreading 

Figure 8. 
showing automatic mesh response to  capture deflection of the elevon controI surface. 

Embedded-boundary Cartesian mesh around two instances of space shuttle orbiter configuration 
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Figure 9. 
boosters, external tank, attach hardware and five engines with gimbaling nozzles. 1.7 million elements. 

Surface triangulation of SSLV geometry including detailed models of the orbiter, solid rocket 

the job to thousands of processors provides a “virtual database” of the full solution data. In many cases, 
it is actually faster t o  re-run a case than it would be to retrieve it &om mass storage. In addition to 
these on-demand detailed queries, there is often a need to compute a case on a much larger mesh than the 
relatively small meshes used in database fills. This need may be triggered by the desire to compare detailed 

the Naxier-Stokes design code, o r  in performmg mesh- refinement studies to establish 
meshing parameters or to veri& results. Thus there is great pressure for the same solver to  perform well on 
thousands of CPUs. 

CartSD is a simulation package targeted at conceptual and preliminary design of aerospace vehicles with 
complex geometry. It is in widespread use throughout NASA, the DoD, the US intelligence industry and 
within dozens of companies in the United States. The flow simulation module solves the Euler equations 
governing inviscid flow of a compressible fluid. Since these equations neglect the viscous terms present in 
the full Navier-Stokes equations, boundary-layers, wakes and other viscous phenomena are not present in 
the simulations. This simplification removes much of the demand for extremely line meshing in the wall 
normal direction that Navier-Stokes solvers must contend with. As a result, the meshes used in inviscid 
analysis are generally smaller and simpler to  generate than those required for viscous solvers like NSU3D. 
This simpEcation is largely responsible for both the degree of automation available within the CartSD 
package and the speed with which solutions can be obtained. Despite this simplification, inviscid solutions 
have a large area of applicability within aerospace vehicle design as there are large classes of problems for 
which they produce excellent results. Moreover, when significant viscous effects are present, large numbers 
of inviscid solutions can often be corrected using the results of a relatively few full Navier-Stokes simulations. 

Cart3D’s solver module uses a second-order cell-centered, finite-volume upwind spatial discretization 
combined with a multigrid accelerated Runge-Kutta scheme for advance to steady-~tate.’~ Figure 8 shows 
how the package automatically adapts the embedded-boundary Cartesian grid to capture control surface 
deflection of a particular geometry. This flexibility is a key ingredient in the automation of configuration- 
space parameters. 

Like NSU3D, Cart3D uses a variety of techniques to enhance its efficiency on distributed parallel machines. 
It uses multigrid for convergence acceleration Lqd employs a domain-decomposition strategy for subdividing 
the global solution of the governing equations up among the mmy processors of a parallel r n a ~ h i n e . ~ ~ ~ ’ ‘ ~ ~ ~  
The same multigrid cycling strategies as shown in Figure I? are used by Cart3D’s solver module, and as 
with NSU3D, Vir-cycles are preferred. Rather than relying upon agglomeration and METIS, both the mesh 
coarsener and mesh partitioner in Cart3D take advantage of the hierarchical nesting of adaptively refined 
Cartesian meshes. As detailed in reference [MI, the techniques are based upon a Space-Filling-Curve (SFC) 
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reordering of the adapted meshes. Figure LG illustrates this ordering using a 2D example mesh around a 
KACA 0012 airfoil. For illustration purposes this 2D example shows the cells ordered using the Morton SFC, 
however in 3D the Peano-Hilbert SFC is generally preferred.]* The construction rules for these SFCIS are 
such that a cell’s location on the curve can be computed by one-time inspection of the cell’s coordinates, 
and thus the reordering process is bound by the time required to quicksort the cells. 

Examining the ordering in Figure 10, the coarse 
mesh generation process becomes clear. Tracing 
along the SFC, cells that collapse into the same 
coarse cell (“siblings”) are collected whenever they 
are all the same size, and the corresponding coarse 
cell is inserted into a new mesh structure. This pro- 
cess builds the coarse mesh cell-by-cell. A n  addi- 
tional benefit of this single-pass construction algo- 
rithm is that the coarse mesh is automati 
erated with its cells already ordered along the SFC. 
Thus, this coarse mesh is immediately available for 
further coarsening by the same traversal algorithm. 
Numerical experiments with this coarsening proce- 
dure show that it achieves coarsening ratios in excess 
of 7 on typical examples.” Figure 11 shows a coars- 
ening sequence around a re-entry vehicle geometry. 
The fine grid is on the left, and the coarsest mesh 
is on the right. Each frame in this figure shows 
the mesh partitioned into 2 subdomains using the 
SFC as a partitioner. The m&h partitioner actually 
operates on-the-fly as the SFGordered mesh Be  is 
read. The. loca?ity properties of the SFC ordering 

-%re such that a good partitioning strategy is t o  sim- 
ply distribute different segments of the SFC amorrg 
the various processors. For example, if the mesh in figure 10 were to  be divided into 2 subdomains, dividing 
the SFC in half would result in two subdomains which split the mesh vertically down the center. Quartering 
the SFC would result in 4 square subdomains with the airfoil at the center. Results in reference [18] indicate 
that the surface-to-volume ratio of these SFC-derived partitions track that of an idealized cubic partitioner. 

Figure 11 shows each mesh in the multigrid hierarchy partitioned into two subdomains. All meshes in 

t 

i t ? - , ,  . I  

Figure 10. Space-Filling-Curve (Morton order) illus- 
trating reordering of adaptively-refined Cartesian mesh 
around a 2-D airfoil. In three dimensions, Cart3D uses 
either Peano-Hilbert or Morton SFC’s for both mesh 
co&senCng and domain-decomposition. 

Figure 11. Example multigrid mesh hierarchy for re-entry vehicle gecmetry, fine mesh on left, coarsest on 
right. The partitioning is shown for 2 subdomains and each mesh in the hierarchy is partitioned independently 
using the same SFC. 
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the hierarchy are partitioned independently using the same SFC. This implies that although there will be 
generally very good overlap between correspon&ng fine and coarse partitions, they are not perfectly nested. 
The slight changes in paztition boundaries in the figure make this clear. W e  most of the communication 
for multigrid restriction and prolongation in a particular subdomain will take place within the same local 
memory, these operators will indur some degree of off-processor communication as well. As with NSU3D, 
this approach favors load-balancing the work on each mesh in the hierarchy at the possible expense commu- 
nication. 

Figure 12 shows an example of an adapted 
Cartesian mesh around the full SSLV config- 
uration. This mesh contains approximatly 
4.7M cells with 14 levels of adaptive subdi- 
vision. The mesh is illustrated with a single 
cutting plane through the domain. The grid 
in in this figure is painted to indicate its par- 
titioning into 16 subdomains using the Peano- 
Hilbert SFC. Partition boundaries in this ex- 
ample were chosen for perfect load-balancing 
on homogeneous CPU sets and cut-cells were 
weighted 2.1 times more heavily than un-cut 
Cartesian hexahedra. The partitions in this 
example are all predominantly rectangular as 
is characteristic of subdomains generated with 
SFC-based partitioners. 

VI. Performance 
and Scalability of NSUSD 
for High-Fidelity Analysis 

Figure 13 illustrates a coarse unstructured 
mesh over two aircraft conggurations, simi- 
lar to the finer mesh used in the benchmark 
NSU3D simulations on the NASA Columbia 
supercomputer. While the displayed mesh in 
Figure 13 (a) contains a total of 1 million grid 
points, the h e  benchmark mesh contains a to- 
tal of 72 million points on the same config- 
uration. The displayed meshes and contigura- 
tions are taken from the AIAA drag prediction 
workshop study.’ Subsequent studies compar- 
ing various CFD codes on this configuracion 
have shown that this level of grid resolution, 
and even additional levels of refinement (lead- 

Figure 12. Cartesian mesh around f u U  SSLV configuration 
including orbiter, external tank, soIid rocket boosters, and 
fore and aft attach hardware. Mesh color indicates 16-way 
decomposition of 4.7M cell using the SFC partitioner in ref- 
erence.18 

ing to a total of 9 million grid points) are inadequate for the level of accuracy desired in the aircraft design 
process.20i21 Therefore, a h e r  grid of 72 &on points (315 million cells) was generated and used for the 
benchmarks. The accuracy of the results computed on this mesh is examined in detail in reference2’ by 
comparing these results with results obtained on the coarser grid levels, and with computations performed 
on an alternate mesh of 65 million points, using a dserent mesh topology in the wing trailing edge region. 
The results show substantial differences remain even at these high resolution levels, and make the case for 
the use of even finer grids, or at least for a better distribution and topology of mesh points in critical regions 
of the domain. 

Figure l i  (a) depicts the convergence to steady-state achieved on the 72 million point grid using four, 
five, . a d  six agglomerated mdtigrid levels, using a multigrid W-cycle in all cases. This problem contains a 
total of 433 million degrees of freedom, since each fine grid point contains 6 quantities. The flow conditions 
are determined by a fxeestream Mach number of 0.75, an incidence and sideslip angle of 0 degrees, and 
a Reynolds number of 3 million (based on the mean aerodpamic chord). For the five and six multigrid- 
level runs, the solution is adequately converged in approximately 800 multigrid cycles, while the four-level 
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(b) 
se mesh about aircraft without and with engine nacelle configuration showing 

detail of anisotropic prismatic grid layers near aircraft surface (a), and details near engine nacelle (b). Mesh 
(a) contains 1 million s. Mesh (b) contains 1.9 million grid points. Fine mesh test case (not shown) 
contains 72 million gr 

multigrid run s&rs from slower convergence. Note that the single grid case (i.e. fine grid only without 
multigrid) would be very slow to converge, requiring several hundred thousand iterations for a mesh of this 
size. Figure 14. (b) depicts the p speedup and total number of fioating point operations achieved for 
this case on the NASA Columbi rcomputer, using up to 2008 CPUs. The identical problem was run 
on 128, 256, 502, 1004, and 2008 CPUs. Assuming a perfect speedup on 128 CPUs, the four-level multigrid 
run achieves a superlinear speedup of 2250 on 2008 CPUs, while the sklevel multigrid run achieves 2044 
on 2008 CPUs. No d case (not shoxn) achieves even higher speedup (2395) than the 
four-level multigrid nstitute a practical solution strategy. 

s is likely due to favorable cache effects for the decreased partition 
sizes on large CPUco ction in scalability with additional multigrid levels 
is due to the increased communication re coarsest levels, which contain minimal amounts of 
computational work, but span the same number of processors as the finest grid level. In fact, the coarsest 

_________ - _ _  __ - - - - _ _  -_ _ _  - . . 

The superlinear spee 
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Figure 14. (a): Multigrid Convergence Rate using 4, 5 ,  and 6 grid levels for NSUSD Solution of Viscous 
Turbulent Flow over Aircraft Configuration. (b): Scalability and Computational Rates Achieved on NASA 
Columbia Supercomputer for NSUSD Solution of Viscous Turbulent Flow over Aircraft Configuration. 
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(6th) level contains only 8188 vertices, and in the case of the 2008 CPU run, the average panition contains 
only 4 or 5 coarse grid points, with some of the coarsest level partitions being empty (Le. containing no grid 
vertices at all) due to  minor imbalances in the partitioning process. Note also that n5thin the context of a 
multigrid W-cycle (c.f. Figure &(b)), the coarsest level is visited 2n-1 = 32 times for a six-level multigrid 
cycle (which corresponds to a single fine grid visit). Nevertheless, all three multigrid cases achieve better 
than ideal speedup in going from 128 t o  2008 CPUs, due t o  the fact that the majority of the work and 
communication is performed on the finest grid levels. Considering that even on the finest grid, the average 
partition contains only approximately 36,000 grid points for 2008 CPUs, this level of scalability is rather 
impressive. 

The number of floating point operations (FLOPS) was measured using the Itanium hardware counters 
through the “pfmon” interface. The difference in the number of FLOPS recorded for a five multigrid-cycle 
run and a six multigrid-cycle run were recorded, in order to get a FLOP number for a single multigrid cycle. 
This number was then divided by the amount of wall-clock time required for a single multigrid cycle for 
the various runs on hfferent numbers of processors. In this approach, the FLOP count was determined 
by disabling the MADD feature on the compiler, while the timings were obtained with the MADD feature 
enabled, thus resulting in the counting of MADD operations (combined Multiply-Add) as 2 FLOPS. Using 
this approach, the single grid run achieved a computational rate of 3.4 Tflops on 2008 CPUs, while the four, 
five and s i x  level multigrid runs achieved 3.1 Tflops, 2.95 Tflops, and 2.8 Tflops, respectively. When taking 
into. account the speed of convergence of these merent  runs (c.f. Figure 14 (a)), the five level multigrid 
scheme represents the overall most efficient solution scheme. However, for robustness reasons, we prefer to 
use the six level multigrid scheme which delivers the most consistent convergence histories over a wide range 
of flow conditions. On 2008 CPUs, a six level multigrid cycle requires 1.95 seconds of wall clock time, and 
thus the flow solution can be obtained in under 30 minutes of wall clock time (including 1/0 time). The 
fact that the multigrid runs with fewer grid levels deliver better scalability but lower numerical convergence 
illustrates the importance of balancing floating point performance with numerical algorithmic efficiency in 
order to  obtain the most efficient overall solution strategy. 

Since the 72 million point grid case can run on a s  few as 128 CPUs (as determined by memory require- 
ments) and because-of the demonstrated speed of this same case on- 2008 CPUs;it should be feasible to run 
much larger grids on the four node (2048 CPU) sub-cluster of the NASA Columbia machine. For example, 
a case employing lo9 grid points can be expected to  require 4 to 5 hours to converge on 2008 CPUs. At 
present, the main issues holding back the demonstration of such large cases involve the grid generation and 
preprocessing operaLions, which are mostly sequential in nature, and the resulting file sizes. The grid input 
f3e for xhe flow solver in the 72 million point case measures 35 Gbytes, and increasing the grid size by 
another order of magnitude will certainly produce 1/0 bottlenecks particularly considering the transfer rates 
typically encountered between the compute servers and the mass storage system. 

On the other hand, there are compelling reasons to  seek further speedup of the existing 72 million grid 
point case, by going to even higher processor counts. For example, in the case of a design optimization 
problem, multiple analysis runs are required throughout the design process. Even for relatively efficient 
adjoint-based design-optimization appro ache^,^^-^^ as many as 20 to 50 analysis cycles may be required 
to reach a local optimum, which would require up to  24 hours on the 72 million point grid running on 
2008 CPUs. We are thus interested in examining the speedup achievable for the 72 million point case on 
even higher processor counts, using up to 4016 CPUs. However, in order to run a case on more than 2048 
CPUs, we are faced with certain hardware limitations of the NASA Columbia machine. Notably, the current 
NUMAlink interconnect only spans 2048 CPUs, and therefore the Infiniand interconnect must be used to  
access larger numbers of processors. Additionally, the limitation on the number of MPI processes under the 
InhiBand interconnect (c.f. eq. (I)), which corresponds to a total of 1524 MPI processes, results in the 
requirement of using a combined OpenMP/MPI approach for accessing the required number of processors. 

In order to study the effects of these limitations, we begin with a study of the performance of the 72 million 
point grid case on 128 CPUs, using the hybrid OpenMP/MPI communication strategy: and comparing the 
observed performmce for the same cases using the h4JMAlirk and In6niBand interconnects. The baseline 
case consists of the 6 level multigrid problem running on 128 CPUs, using MPI exclusively within one 
compute node (512 CPUs). This case was also run using 128 CPUs across two compute nodes (using 64 
CPUs in a node), and across four compute nodes (using 32 CPUs in a node), making use of the NUMAlink 
interconnect between the nodes. In all cases, the timings were essentially indistinguishable, and averaged 
31.3 seconds per multigrid cycle. Using this as the reference time, Figure 13 compares the relative efficiency 
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1 to 4 OpenMP threads per MPI process. 

----g_- NUMALINKtZ DMPThreads 

& Inf1niband~2 OMP Threads 
1 A infinibandt 1 OMP Thresd 

Ideal 

- 

- 
j /’ 

- 

- ..-, 
* . . ?  I t  4 , . l . , , , l > . , , I  

500 I CJ00 15.30 2.330 

using the InfiniBand interconnect for four compute nodes, and using 128 MPI processes with 1 thread per 
process, 64 MPI processes with 2 OpenMP threads per MPI process, and 32 MPI processes with 4 OpenMP 
&.reads each. In all cases, the degradations in performance from the baseline case itre relatively minor. Using 
2 and 4 OpenMP processes with the N U M A l i  interconnect the efficiency decreases to  98.4% and 87.2% 
respectively (i.e. time per cycle increases by the inverse of the efficiency). This penalty may be due to  the loss 
of local parallelism (at the OpenMP thread level) during the MPI t o  MPI communication, which is carried 
out by the master thread on each MPI process.12 The InfiniBand results show similar behavior, although 
the degradation in performance in going from NUMAlink to InfiniBand is minimal (95.7% efficiency for 
the pure MPI case, with InfiniBand, actually outperforming the NCJMAlink for the 4 thread OpenMP/MPI 
case). Only the-rexdl’cs usiEg-four-compute nodes axe- sh-own, smce the timings a i n g  twcr and-four rmdes are 
essentially identical. 

Figure 16 (a) depicts the scalability using hrCMAlink and InfiniBand for the combined OpenMP/MPI 
code using 1 or 2 OpenMF’ threads, for the single grid (no multigrid) case from 128 up to 2008 CPUs. Note 
that on 2008 CPUs, the InfiniBand case can only be run using 2 OpenMP threads per MPI process, due 
to the limitation on the number of MPI processes (i.e. 1524) under InfiniBand. These results mirror those 
observed on 128 CPUs, showing only slight degradation in overall performance between the AWMAlink and 
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Figure 16. ParaIIel speedup observed for 72 million point grid comparing TuiUMAlink versus InfiniBand inter- 
connect, and using 1 or 2 OpenMP threads per MPI process for single grid case (a), and for six-level multigrid 
case (b). 
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Figure 17. (a): ParaIIel speedup observed for 72 million point grid comparing NUMAlink versus InfinBand 
interconnect, and using 1 or 2 OpenMP threads per MPI process for two-level multigrid case (a), and for 
three-level multigrid case (b). 

the IrihnBand interconnects, and an additional slight degradation in going from 1 to 2 OpenMP treads per 
MF'I process. Note that in all cases, superlinear speedup is still achieved at 2008 CPUs. 

Figure 16 (b) depicts the same scalability results for the six-level multigrid solver, which is the preferred 
solution algorithm for the 72 million point case. The performance degradation due to the use of 2 O p e d P  
threads is somewhat larger than in the single grid case, although it is stiU modest. (Note that the scalability 
of the baseline case, NUMAlink with 1 OpenMP thread for six-level multigrid, is slightly lower than that 
observed in Figure 14 (b). This may be due to different compiler options used to  invoke OpenMP, and/or 
to EEatiEG in- f Le state- of t h e - h ~ ~ w a r e ; - ~ n ~ e - ~ ; e s e  CeXweG p%SorXed-seG&d- we& ap&$r However, 
the degradation in performance due to  the use of IdniBand over NUMAlink is dramatic, partkularly at the 
higher processor counts. This may be attributable to the lower bandwidth of the IntiniBand for the increased 
communication required by the coarser levels of the multigrid sequence. In order to further investigate this 
behavior, scalability studies have been run for the two-level, three-level, four-level, and five-level multigrid 
solvers, as shown in Figures 17 and 18. As expected, a gradual degradation of performance is observed as 
the number of multigrid levels is increased. However, even the two level multigrid case shows substantial 
degradation between the NuMMink and InfiniBand results. In Figure I9 (a) the second grid in the multigrid 
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sequence, which contains approximately 9 million points, is run by itself, without the finer grid, or any coarser 
multigrid levels, to examine the scalability on this grid alone.As expected, this coarser grid level does not 
scale as well as the finer 72 million point grid. However, both the NUMAlink and IGniBand results degrade 
at similar rates, and deliver similar performanee even on 2008 CPUs. Analogous results are found for the 
next coarser multigrid level (which contains approximately 1 million points) in Figure 19 (b). These findings 
suggest that the increased communication generated by the coarser multigrid levels is not responsible for the 
aiffeEiiEF &sTFif%3- fSEfi2en t?G T-iWXLm-and EdEiiETaiiT EGE5iliTiE of-& f7iU 5dLZ@Td. algoEEliE. 

The other main source of communication in the multigrid algorithm occurs in the inter-grid. transfer 
phase, when transferring solution quantities from fine to coarse (restriction operation) and from coarse to 
fine (prolongation operation) grids. Although the volume of communication data in these operations is 
estimated to be lower than in the intra-grid communication routines, because the coarse and fine levels are 
non-nested, these communication operations may be less local than those performed on each level, although 
the number of neighbors in the communication graph is approximately the same in both cases (i.e. the 
maximum degree of the fine grid communication graph is 18, while the maximum degree of the inter-grid 
communication graph is 19). In referen~e,~ severe degradation of the InhiBand latency and bandwidth 
was observed for a ’Random Ring communication benchmark, and we speculate that the performance of the 
inter-grid multigrid communication operations may be related to  this effect. 

Given the results of Figure 16 (a), we may expect the single grid case for 72 million points to scale 
relatively well on 4016 CPUs, using the InfiniBand interconnect, and 4 OpenMP processes per MPI process 
(as dictated by the available number of MPI processes under InhiBand). However, the multigrid algorithm 
using any number of grid levels will most likely perform no better on 4016 CPUs, than on 2008 CPUs 
using the NUMAlink. However, the results obtained on 128 CPUs (c.f. Figure 15) suggest that a larger 
multigrid case (of the order of lo9 grid points with 7 multigrid levels) would perform adequately on 4016 
CPUs, delivering of the order of 5 to 6 Tflops. In order to obtain good performance with the 72 million 
point multigrid case, the exact cause of the InfiniBand performance degradation must be determined and 
resolved if possible. 

VII. Performance and Scalability of Cart3D on Large Problems 

To assess performance of Cart3D’s solver module on realistically complex problems, several performance 
experiments were devised examining scalability for a typical large grid case. The case considered is based on 
the Mi Space Shuttle Launch Vehicle (SSLV) example shown earlier (Fig. E). For scalability testing the 
mesh density was increased to 25M cells, which is about twice as fine as that shown in Figure 12. Cart3D’s 
solver module solves five equations for each cell in the domain giving this example approximately 125M 
degrees-of-freedom. The geometry includes detailed models of the orbiter, solid rocket boosters, external 
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Figure 20. (a) :Pressure contours around full SSLV configuration including orbiter, excernal tank, solid rocket 
boosters, and fore and aft attach hardware for benchmarking case described in text. (b): Parallel scalability 
of Cart3D solver module on Columbia using SSLV exampIe on 25M cell mesh. Runs conducted on single 512 
CPU node of Columbia system. 

tank, five engines, and all attach hardware. The geometry in this example also includes the modifications 
to the external tank geometry as part of NASA’s Return-to-Flight effort. Figure %(a) shows pressure 
contours of-the discrete solution at Mach = 2.6, angle-of-atta&-=- 2.09 deg. and- 0.8 degrees-sideslip. T-he 
surface triangulation contains about 1 . m  elements. An aerodynamic performance database and virtual-flight 
trajectories using this coniiguration with power on was presented in 2004.2 

This example was used for, several performance experiments on the Columbia system. These experiments 
included comparisons of Open&” and mi, the effects of multigrid on scalability, and comparisons of the 
NUMAlink and InfhiBand communication fabrics. The baseline solution algorithm used 4 levels of multigrid, 
and unless otherwise stated, all results are with this scheme. 

As discussed earlier, Cart3D’s solver module can be built against either OpenMP or MPI communication 
libraries. On r;he Columbia system, the 1Tb of each 512 CPU node is globally sharable to any process within 
the node, but cache-coherent shared memory is not maintained between nodes. Thus, pure OpenMP codes are 
restricted to, at most, the 512 CPUS within a single box. Figure 20(b) shows scalability for the same problem 
using both OpenMP and MPI. These cases were run on CPU sets with 32 to 504 processors on Columbia 
node cl8. in computing paraIIeI speedup, perfect scalability was assumed on 32 CPUs. Performance with 
both programming Libraries is very nearly ideal, however while the MPI shows no appreciable degradation 
over the full processor range, the OpenMP results display a slight break in the slope of the scalability curve 
near 128 CPUs. Beyond this point the curve is again linear, but with a slightly reduced slope. This slight 
degradation is most probably attributable to  the routing scheme used within the Altix nodes. The 512 CPU 
nodes are built of four 128 CPU double cabinets, within any one of these, addresses are dereferenced using 
the complete pointer. More distant addresses are dereferenced using “coarse mode” which drops the last 
few bits of the address. On average, this translates into slightly slower communication when addressing less 
local memory. Since only the OpenMP uses this global address space, the MPI results is not impacted by 
this pointer swizzling. 

The right axis of the speedup plot in Figure 20 is scaled in TFLOP/s for the baseline solution algorithm. 
As with NSU3D, FLOP/s were counted by interrogating the itaniurn2’s hardware counters using ’Intel’s 
“pfmon” interface. Operations were counted for a single multigrid cycle and then divided by the time per 
iteration on various numbers of processors to provide this scale. In establishing this scale, MADD operations 
were counted as two operations. Substantial work on optimizing single CPU performance with this code has 
resulted in somewhat better than 1.5 GFLOP/s on each CPU. Maen combined with linear parallel speedup, 
this produces around 0.75 TFLOP/s for the code on 496 processors of a single Columbia node. 
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2000 With single node performance solidly in the same 
range as that of NSUSD, our investigations now fo- 
cus on performance across multiple nodes of the 
Columbia system. These experiments were carried 1500 
out on nodes c17-c20, all of which axe part of the 
Columbia's "Vortex 3700' subsystem. They use the 
BX2 routers, have double density processor bricks, 
and are connected using NUMAlink, IdniBand, 
and 10Gig-E. Since the system is not cache-coherent 
across all 4 of these nodes and the solver module 
does not have a hybrid OpenMP+MPI build mode, 
performance was evaluated usiag MF'I only. 

Figure 21 examines parallel speedup for the sys- 
tem comparing the baseline four level multigrid so- 
lution algorithm with single grid. This experiment 

link interconnect, and spanned from 32-2016 CPUs. Figure 21. amparkon of parallel speedup h in of the Cart3D multi- 
As with the study in Figures 14 - 16 for NSU3D, re- ~ ' ~ ~ ~ ~ ~ , u $ ~ A ~ ~ ~ i  
ducing the number of multigrid levels de-emphasizes 
communication (relative t o  floating-point performance) in the solution algorithm. Scalability for the the sin- 
gle grid scheme is very nearly ideal, achieving pardel speedups of about 1900 on 2016 CPUs. Its clear 
that even on the NUMAlink, communication is beginning to effect scalability of the multigrid. This is not 
surprising, with only 25M cells in the fine mesh ( 12000 cells/partition on 2016 CPUs), the coarsest mesh in 
the multigrid sequence has only 32000 cells giving only about 16 cells per partition on 2016 CPUs. Roll-off 
in the multigrid results does not become apparent until around 688 CPUSs, and does really not start to  
degrade until above 1024 CPUs. Given this relatively modest decrease in performance it seems clear that 
the bandwidth demands of the solver are not greatly in excess of that delivered by the NUMAlink. With 
2016 CPVs and 4- leveis of-m-ultigrid the hWMV/rwink sti-ll-postspa;rd-lel speedup-s of aroun-d 1585. 

The work in Reference 4 includes a study of de- 
livered bandwidth and latency for both the hWMA- 
link and InfiniBand for a variety of different com- 
munication patterns. To understand the implica- 
tions of this for Cart3D's solver module the baseline 
four-level multigrid scheme was re-run using the In- 
finiBand interconnect on the same nodes as the pre- 
ceding experiment. Figure 22 displays thkse results 
plotted against those of the hWMAlink interconnect. 

As before, the identical problem was run on from 
32 to 2016 CPUs using MPI. Note that results with 
the InfiniBand, however, do not extend beyond 1524 
CPUs due to the limitation expressed in equation 
1. Tracing the results, from 32-496 CPUs the cases 
were run on a single node and thus there is no dif- 
ference between the two curves (no box-to-box com- 

Cases with 508-1000 CPUs were run 
spanning two nodes of Columbia and some inter- 
esting differences begin to appear. mxle  the In- 
finiBand consistently lags the hTJMAlink, the most 
striking example is the case at 508 CPUs which actually underperforms the single-box case with 496 CPUs. 
This is coiisistent with the observations in reference 4 which quantify the decrease in delivered bandwidth 
for InfiniBand across two nodes. This work also predicts an increasing penalty when spanning 4 nodes. 
As expected, cases with 1024-2016 CPUs (run on 4 nodes) show a further decrease with respect to those 
posted by the hiMAlink. These results are also consistent with the investigations performed with NSU3D, 
however, the smaller problem size used here emphasizes the communication even more heavily. Performance 
of the WMAlink case with 2016 CPUs is slightly over 2.4 TFLOP/s. 

- 4 Level MuIbgrid. c17, c18, c19, c20 - Single Mesh c17, c18, c19, e20 

4 
3 
CI, 

..-, a 
2 
~ 1 0 0 0  

500 

NuMAlink Interconnect 

0 

was carried out exclusively using the the ISUMA- # of CPUs 

2ooo 

1500 
2 

500 

munication). # of CPUs 
Figure 22. Comparison of parallel speedup of CartSD 
solver module with 4 levels of mukigrid using the NU- 
MAlink and infiniBand interconnect. 
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VIII. Conclusions and Future Work 

This paper examined the parallel performance of two widely used high-performance aerodynamic sim- 
ulation packages on the newly installed NASA Columbia supercomputer. These packages include both a 
high-fidelity, unstructured, Reynolds-averaged Flaxier-Stokes solver (NSU3D), and a fully-automated invis- 
cid flow package for cut-cell Cartesian grids (Cart3D). The combination of these two simulation codes enables 
high-fidelity characterization of aerospace vehicle design performance over the entire fbght envelope. They 
permit both extensive parametric analysis as well as detailed simulation of critical cases. Both packages are 
industrial-level codes designed for complex geometry and incorporate customized multigrid solution algo- 
rithms. Numerical performance on Columbia was examined using MPI, OpenMP and hybrid (OpenMP & 
MPI) communication architectures. Experiments focused on scalability to large numbers of CPUs on the 
Columbia system. In particulm, they contrasted the performance of the NCTMAlink and InliniBand intercon- 
nect fabrics, and examined the incremental performance degradation incurred by additional communication 
when including very coarse grids in the multigrid scheme. Numerical results demonstrate good scalability 
on up to 2016 cpus using the ND-MAlink4 interconnect. These examples showed linear parallel speedups 
and posted meastired computational rates in the vicinity of 3 TFLOP/s. Both codes showed modest per- 
formance degradation at large CPU counts on the InfiniBand interconnect particularly as ever coarser grids 
were included in the multigrid hierarchy. These results are important since the NUMAlink spans at most four 
Columbia nodes and runs using more than 2048 CPUs must rely on the InfiniBand for at least a fraction of 
their communication. The numerical results in this study are encouraging enough to indicate that larger test 
cases using combined MPI/OpenMP communication should continue to get good performance improvements 
well beyond the four Columbia nodes used in this study. 
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