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Abstract 1 Introduction

The memory consistency modell n s.hared memory paral,&el(ey question in the design of shared memory parallel lan-
programming controls the order in which memory operatio ﬁages is the memory consistency model: In what order are

performed by one thread may be observed by another. mory operations performed by one thread observed on an-

most natural model for programmers 1s to ha\_/e_ memory dther? For simplicity, one would like the operations to appear
cesses appear to take effect in the order specified in the o

WJthe order specified in the original program, i.e., any re-
inal program. Language designers have been reluctant to P g prog i : any

this st i lleb tial ist ¢ rings performed by the compiler or hardware should not
'S strong semantics, calleaequential consis enpyiue © be observable. In practice, parallel language designers have
concerns over the performance of memory fence instructi

Y&%n reluctant to use such a straserjuentially consistent

and Te'ate‘?' mechanisms thatgua_r antee order. _Inthls PaPel Wfiantics because memory operations are often overlapped
provide e_wdence for the practlcamy of seque_nnal ConSISteNEY reordered for performance reasons, and requiring that all
by ;h_owmg th.at.advanced compiler analysis techniques fifeads see the same memory order requires the insertion of
sufficient to eliminate the need for most memory fences aj ensive memory fence instructions. The problem is even

enable high-level optimizations. Our analyses eliminated o€l rse for global address space languages, which use a shared

0 '\ 1 -
97 /otOI_the memory:_fen;:esg;l?t Vig:)eo /neiztsLe dé)yl‘aenmplﬁ memory abstraction on top of large-scale distributed memory
mentation, accounting for N o otthe dynamically Ha gware. In this setting, a read or write to a shared variable

countered fences in all but.one benc_hmark. The impact of m require a network message, and a memory fence corre-
memory mgdel and a“"’."y?'s on runtime performgnce dgpgg Bynds to waiting for a full roundtrip latency across the net-
on the quality of the optimizations: more aggressive optimi ork. The memory model question is controversial across a
tions are likely to be invalidated by a strong memory COWide range of languages, from J&%a threads and OpenMP
sistency semantics. We consider two specific optimization[%—upC and Titanium3s 6 35]. The relaxed semantics used
pipelining of bulk memory copies and communication aggre- . o languages are' o%ten ill-defindd][ and even when
gation and scheduling for irregular accesses—and show %E/ have been made precig€[34], they are not well under-
our most aggressive analysis is able to obtain the same per, 5 by application program,rner7s. Programming technigues

mance as the relaxed model when applied to two linear al fich as spin-locks and presence bits rely on the details of

bra kernels. While additional work on parallel optimizat_ionﬁ]e memory consistency model, and while language designers

rﬂgy want to discourage such programming practice, leaving
t¥e behavior of these programs to a complicated or ill-defined
semantics is troubling.

portant evidence on the viability of using a simple memo
consistency model without sacrificing performance.

In this paper, we consider the question of whether a relaxed
“Also at Lawrence Berkeley National Laboratory. semantics is necessary, and whether a compiler can reason-

- . . ably analyze parallel programs to ensure that no reorderings
© 2005 Association for Computing Machinery. ACM acknowledges that y yz€ p prog 9

this contribution was authored or co-authored by a contractor or aﬂili@ée Observab!e Wh'!e still allowing the compller_ to perfo_rm

of the U.S. Government. As such, the Government retains a nonexclusit@portant optimizations. Our study is done using the Tita-
royalty-free right to publish or reproduce this article, or to allow others to ¢fjum language 35|, a single program, multiple data global

so, for Government purposes only. address space variation of Java that runs on most parallel and
SCI05 November 12-18, 2005, Seattle, Washington, USA distributed memory machines. We show that concurrency in-
(© 2005 ACM 1-59593-061-2/05/0011. .. $5.00 formation can be used to reduce the number of fences required




to enforce sequential consistency and present a concurrency  Ti.barrier(); // even ID threads

analysis that takes advantage of the unique semantics of Ti- else

tanium. We augment this analysis with other analyses such  Ti.barrier(); // odd ID threads

as sharing inference2]], alias analysis, and cycle detection

[29] to further reduce the number of fences. We perform & A single-valuedexpression evaluates to the same value
series of eXpeI’ImentS with a Titanium Compller that produces for a” threads_ Wlth programmer annotation and com-
sequentially consistent code, starting with amamplemen- piler inference, the Titanium compiler statically deter-

tation that places memory fences around all heap accesses andmines which expressions are single-valued.  Single-

then using successively stronger analyses to prove that some yajued expressions are used to ensure that barriers line
of the fences are unnecessary and can be removed. As anyp: a conditional may only contain a barrier if it is

upper bound measure of performance, we also include a ver- gyarded by a single-valued expression. The above code
sion of the compiler that provides the relaxed memory seman- is erroneous sincdi.thisProc() % 2 == is

tics. Our experiments look at both static and dynamic mem- ot single-valued.

ory fence counts and cover a range of programs from small

benchmarks up to a full hyperbolic adaptive mesh refinementritanium’s memory consistency model is defined in the lan-

solver for gas dynamics. In addition, we look at the runtimg,age specificationl]. Here are some informal properties
performance impact on two linear algebra kernels, dense @f¢he Titanium model.

sparse matrix vector multiplication, and show that the most

aggressive analysis is needed to enable key optimizations, but Locally sequentially consistent: All reads and writes

with that analysis, the performance is identical to the relaxed issued by a given thread must appear to that thread to

model. occur in exactly the order specified. Thus, dependencies
within a thread must be observed.

2 Background 2. Globally consistent at synchronization events:At a
o global synchronization event such as a barrier, all threads
2.1 Titanium must agree on the values of all the variables. At a non-

global synchronization event, such as entry into a critical
section, the thread must see all previous updates made
using that synchronization event.

Titanium is a dialect of Java, but does not use the Java Virtual

Machine model. Instead, the end target is assembly code. For

portability, Titanium is first translated into C and then com-

piled into an executable. In additioq to generating C COdeHenceforth, we will refer to the Titanium memory consis-

to run on each processor, the compller g(_anerates call_s tfér?cy model as theelaxed model

runtime layer based on GASN@d]][ a lightweight communi-

cation layer that exploits hardware support for direct remote

reads and writes when possible. Titanium runs on a wige2 Sequential Consistency

range of platforms including uniprocessors, shared memory ) )

machines, distributed-memory clusters of uniprocessorsFéf @ sequential program, compiler and hardware transforma-

SMPs (CLUMPS), and a number of specific supercompufins must notviolate data dependencies: the order of all pairs

architectures (Cray X1, Cray T3E, SGI Altix, IBM SP, OrigirPf conflicting accesses must be preserved. Two memory ac-

2000, and NEC SX6). cessesonflictif they access the same memory location and at
Titanium is asingle program, multiple dat¢SPMD) lan- €ast one of them is a write. The execution model for parallel

guage, so all threads execute the same code image. InPiggrams is more complicated, since each thread executes its

dition, Titanium has the following unique features that o@~n portion of the program asynchronously and there is no
analysis relies on: predetermined ordering among accesses issued by different

threads to shared memory locations. A memory consistency
1. A call to abarrier in Titanium causes the calling threadnodel defines the memory semantics and restricts the possible

to wait until all other threads have executed the stere execution order of memory operations.
tual instance of the barrier call. The code in the exampleAmong the various modelsequential consistendg the
below is not allowed because not all the threads will hitost intuitive for the programmer. The sequential consistency
the same textual barrier. The Titanium compiler check®odel states that a parallel execution must behave as if it were
statically that all the barriers are lined up correcflf]] an interleaving of the serial executions by individual threads,

with each individual execution sequence preserving the pro-
if (Ti.thisProc() % 2 == 0) gram order18§].



An easy way to enforce sequential consistency is to ins8tfl  Conflicts and Concurrency

memory fences after each shared memory access. This for- )
bids all reordering of shared memory operations, which praUPPOSe two memory accessesndb conflict. We show that

vents optimizations such as prefetching and code motion, g @ndb can never run concurrently, it is possible to remove
sulting in an unacceptable performance penalty. Various telf}g resulting conflict edge since it can never take part in a
niques have been proposed to minimize the number of fen&§/e-

or delay setrequired to enforce sequential consistency. Theorem 1. Letaandb be two memory accesses in a
rogram, andC a cycle containing the conflict edge,b) If a

Computing the minimal delay set for an arbitrary parall lndbcannot run concurrently, then reorderirgvith another

program 1S an mtr_actable NP-hard probleﬂ_@,[l_G]. Kr'Sh'_ accessdoes not violate sequential consistency with respect to
namurthy and Yelick proposed a polynomial time algonthme accesses i6 in any execution of the program.

based orcycle detectioror analyzing SPMD programsif] Proof: We prove this for a cycle consisting of four accesses

such as Titanium. The analysis uses a graph where the nqgefs o threads where is the first access in thread 1 ahis

represgnt shared memory accesses. Thgre are two type’tﬁec\)lﬁecond access in thread 2, as in figudne proof can be
edges in the graphprogram edgesnd Fonfllct_edge_s Pro- eneralized to arbitrary cycles). Letandy be the other two
gram edges reflect the program order: there is a directed cc())ﬁflicting accesses i1, in thread 1 and 2 respectively. Con-

gram edge fromu to v if u can execute before. Conflict _. . L : .
. der an arbitrary execution in which the accessés orcur.
edges are undirected edges between accesses that condlict: .
: . . inCea andb cannot run concurrently, eithemust complete
there is a conflict edge betweenandv if © andv can ac-

cess the same memory location and at least one of them beg)reb or b must complete befor@. .
write Ease 1:a_occurs beford. Sequential consistency can only be
' violated if y sees the effect of, butb does not see the effect

The goal of cycle detection is to check each program edgfes. In all other cases, execution corresponds to a valid se-
to see if it needs a fence to enforce its order. Given the ptrentially consistent ordering, as shown in the table in figure
gram edg€gu, v), if there is no local dependency between 1. But sincea occurs beforé, b always sees the effect of
andwv, v could execute before. If this reordering is observ- so sequential consistency is preserved regardless of the order
able by another thread, then sequential consistency is violatsfd; andz.
In that case, a fence must be inserted betweandv to en- Case 2:b occurs before. In order to enforce thatoccur be-
sure that, always executes before Figurel gives one ex- fore q, there must be a synchronization point betwéenda
ample of this. There is no local dependency on T1, but if thi¢the execution stream of each thread. Since accesses aren't
two writes on T1 were reordered, then the following execkhoved across such pointgmust occur before it angd must
tion order would be possible: = y = b = a. This results occur after it. This means thatmust complete before and
in (y,b) reading the valuesl, 0), which means that the re-therefore does not see its effect. Sincdoes not see the ef-
ordering on T1 is observable on T2. A fence must be plack@t of z andb does not see the effect af the execution is
betweer: andx to prevent such reordering. sequentially consistent independent of the order afidz.

Kirshnamurthy and Yelick]6] show that given a program
edge(u, v), if there is a path fromv to « where the first and 3
last edge are conflict edges, and the intermediate edges™a

program edges, then the program edgev) belongs to the The goal of our concurrency analysis is to statically identify
minimal delay set and a fence must be placed betweand the pairs of memory accesses that can run concurrently. We
v to prevent reordering. The path together with the progragly on barriers and single-valued expressions in this analysis.
edge(u, v) forms acritical cycle. Our algorithm makes use of the following definitions.
Definition 1 (Global Context): An expression or state-
ment is in aglobal contextif all threads are guaranteed to
execute it at the same time, with respect to barriers.
3 Concurrency Analysis Definition 2 (Single Conditional): A single conditional
is a conditional or loop guarded by a single-valued expression
and contained in a global context.
Concurrency information can be used to reduce the set of Consince a single-valued expression evaluates to the same re-

flict edges for a program. We show that a conflict edge it on all threads, every thread is guaranteed to take the same
which the endpoints cannot run concurrently can be ignoreganch of a single conditional.

and we present an algorithm for computing concurrent ac-
cesses in Titanium, 1We assume that accesses are never moved across synchronization points.

A Finding Concurrent Accesses




Initially, fFlag = data = O

i T2 y sees effect of: | b sees effect ofi | possible sequential order
|alsetdata = 1] F ,’i@ yes yes asr=y=0
o yes no none
no yes a=>y=>b=>ux
‘ x [set Flag = 1] k ﬂ b [read data] no no y=>b=>a=x

Figure 1: A cycle consisting of four accesses in two threads. The solid edges correspond to order in the execution stream of
each thread, and the dashed edges are conflicts. Of the four possible results of thread 1 visible to thread 2, the second is illegal
since it does not correspond to an overall execution sequence in which operations are not reordered within a thread.

Definition 3 (Code Segment) Consider the set of bar-are reachable from one anotherGithrough this path, which
riers, entries into a branch of a single conditional, and exitsa contradiction.
from a branch of a single conditional. @ode segmens ase-  The set of concurrent code segments can easily be com-
guence of statements bounded by, and not containing, m@uted by removing barrier edges fro& and performing a
bers of this sét depth first search on the resulting gra@gh from each seg-

Since a barrier, single conditional entry, or single condinent. This takes time at most quadratic in the number of code
tional exit occurs before each code segment and every threegment.
executes the same sequence of barriers and branches of sidsing the set of concurrent code segments, it is trivial to de-
gle conditionals, every thread executes the same sequenderafine the set of concurrent memory accesses: two memory
code segments. accesses may run concurrently only if they are in concurrent

The set of code segments is easy to compute by perfognde segments.
ing a depth first search from each barrier, single conditional
_entry, and single c_on_ditional exit. The size_ of the res_ulting sgty Single-Threaded Code
is at most quadratic in the number of barriers and single con-
ditionals. Figure2 shows the code segments for an exampldiough all Titanium threads run the same program, it is
program. still possible to write code that only runs on a single thread.

Using the code segments of a program, we construcAablock of code guarded by a conditional of the form
graphG in which there is a node per segment and the edgeéghisProc() == expr, whereexpr is single-valued,
represent the control flow between segments, as shown in €igly runs on the thread whose IDggpr. At first glance, it ap-
ure 2. Since barriers, single conditional entries, and singbears that accesses in such a block cannot occur concurrently.
conditional exits separate code segments, each edge musttdowever, consider the following example:
respond to one such construct.

Theorem 2: Two code segmen®s and B can run con-
currently only if one is reachable from the other@along a
path that does not include a barrier edge.

Proof: Supposed and B can run concurrently but are not
reachable from one another@h A andB cannot be the same
code segment, since a segment is always self-reachable. S}mce

each thread executes the same sequence of code segmgRiScode is legal according to Titanium semantics, since
in order for A and B to run concurrently, there must be 35 the same value on each thread in each iteration of the loop.
program flow fromA to B or from B to A that does not hit a However, the accesses (ih) can run concurrently, since dif-
barrier. Such a flow must consist solely of single conditiongrent threads may be in different iterations of the loop.
entries, single conditional exits, and other code segments. But, order to determine whether or not accesses in such
if such a flow exists, there is a path A that passes throughsingle-threaded” code can run concurrently, we also split
only the edges corresponding to the entries and exits andthge segments at the entry and exit points of such code so
nodes corresponding to the code segments. TAWNd B that each piece of “single-threaded” code has its own code
2\ statement can be in multiple code segments, as is the case for a s&&@ment. We then use the following to determine which code
ment in a method called from multiple segments. segments it can run concurrently with:

int single i;

for (i = 0; i < 10; i++) {

if (Ti.thisProc() == i) {
/Il (1) some accesses




L1: int i = 0; [{L1,L2,13,L4,15}]

L2: int j = 1;

L3: if (Ti-thisProc() < 5)

L4: j += Ti.thisProc(Q);

L5: if (Ti.numProcs(Q) >= 1) {

L6: i = Ti.numProcs();
Ti.barrier();

L7: J = 1i;

L8: Yelse {j +=1; }

L9: i = broadcast j from O; I

Ti.barrier();
LA: j += i; {LA}

Figure 2: The graph of code segments for an example program. Each node in the graph corresponds to a segment, and the
dashed edges correspond to barriers.

Theorem 3: A “single-threaded” code segmeAtcan run In order to handle this case, we split code segments at
concurrently with a “single-threaded” segmeBtonly if there broadcasts as well. We then use the following:
is a non-trivial path (a path with at least one edge) frénto Theorem 4. A “single-threaded” code segment that ex-
B or from B to A that does not pass through a barrier. ecutes only on threaticannot run concurrently with a code
Proof: The proof is omitted for brevity. segmenB if A is not reachable fronB without hitting a bar-
In the example above, (1) is reachable from itself by a noiter, and B is only reachable fromh along paths that contain
trivial path through the multi-threaded increment and test @ barrier or a broadcast front.

i < 10 . Proof: The proof is omitted for brevity.
3.4 Broadcasts 4 Other Analyses
The expression The concurrency analysis described §B only computes
the set of accesses that can occur concurrently, an over-
broadcast expn from expr, approximation of the set of actual conflicts. The analysis can

be augmented by other analyses in order to increase the pre-
results in a transmission of the value @fpr; from thread cision of its results. In addition, only a subset of the actual
expr, to all other threads. The other threads must wait at tbenflicts violate sequential consistency, which can be deter-
broadcast until the source thread has computed the valugined before generating fences.
to be transmitted, so the expression acts as a sort of weak
bgrrier. It does not, hqwever, prevent cﬁfferent thread; fro&ql Sharing Inference
simultaneously executing code preceding and following the
broadcast , so our analysis cannot treat it as a real bdn parallel programs, objects can be private to a thread or
rier. In the following code, howevef]l) and(2) cannot occur shared among multiple threads. A private object can never

concurrently, since all other threads must wait for thread Olie involved in a conflict, since all operations on it must oc-

reach thébroadcast before proceeding: cur in the thread that owns it. Sequential consistency can be
enforced by surrounding all accesses on shared objects with
if (Ti.thisProc() == 0) fences. In addition, our concurrency analysis can take advan-
af =b; /I (1) tage of sharing information by removing all conflict pairs in
¢ = broadcast a from O; which at least one of the members is private, since they cannot
d =cf Il (2 represent a real conflict.



We use the approach (and implementation) of Liblit, Aiken, The analysis isequentiain that it does not distinguish al-
and Yelick R1] to infer which pointers must reference privatéocations on different threads. Inter-thread transmission of an
data in a Titanium program. It introduces a type system owastract location thus produces the original location.
the qualifiersprivate , shared , andmixed . Constraints  We also use alias analysis to limit the potential targets of a
are generated for each variable from the expressions in a plynamic dispatch. Without alias analysis, all overriders of the
gram, and the maximally-private solution to this set of costatically determined target must also be considered as possi-
straints is found. ble targets. Using alias analysis, we can restrict the possible
targets of a dynamic dispatch to the methods that can actually
be called, according to the types of the abstract locations in
the points-to set of the target location.

Two memory accesses can only conflict if they reference the

same memory .Iocatlion. Aliasing information allows us t_o r(?ﬁ-ﬁz_3 Thread-Aware Alias Analysis

move conflicts in which the accesses cannot actually alias the

same location. We implemented different levels of alias anai-addition to the sequential alias analysis, we implemented a
ysis to improve our results: thread-awareversion of the analysis that takes advantage of

e Type-based alias analysis The accesses in a Conflic,Eche SPMD naturg of Titanium. An abstract location camae_

pair must be on locations of comparable types calorremoteand is I_ocal by default. Inter-thread transmission
' of an abstract locatiom produces the remote analag of the

e Sequential alias analysis The accesses in a conflicoriginal location in addition to the original itself. The points-

pair must be on locations that may be aliased, ignorif set of the remote location contains the remote version of
threads. the original points-to set, as illustrated in figudeTwo loca-

tionsz andy may bealiased across thread$there is a local
e Thread-aware alias analysis The accesses in a congpstract location in one points-to set and the remote analog in
flict pair must be on locations that may be aliased acrapg other (31 € pointsTo(z) . I, € pointsTo(y)) vV (3l €
threads. pointsTo(y) . I, € pointsTo(x))). In the left side of figure
e’so{;[y andc.y do not alias each other across threads sifice
Is in neithermointsTo(b.y) nor inpointsTo(c.y), bute.z and
f.z do sincey € pointsTo(e.z) andg, € pointsTo(f.z).

4.2 Alias Analysis

In all cases above, the accesses in a conflict pair must b
the same field for non-array types.

4.2.1 Type-Based Alias Analysis

. . 4.3 Cycle Detection
Our type-based alias analysis assumes that any two memory

locations of comparable types can be aliased. Two types Bog a program edge between two memory accessasd b,
comparableif one can be cast to the other. Thus any vanvherea andb both have conflict edges, it is not always nec-
able of typeObject is assumed to alias any variable of typessary to insert a fence between them to enforce sequential
Vector , but a variable of typ&tring cannot alias a vari- consistency. A fence is only needed if a critical cycle can be

able of typeVector . formed. Cycle detectior2B] determines whether or not this
is the case.
4.2.2 Sequential Alias Analysis For the most part, we approximate cycle detection by plac-

_ ) o ) ing fences around any memory access that has a conflict edge.

Our sequential alias analysis is a Java version of Andersefis guarantees that a fence occurs in any critical cycle con-
points-to analysis for C1 and is thus both flow-insensitivetajning the access. We also implemented the full cycle detec-
and context-insensitive Each allocation site in a programijon algorithm proposed by Krishnamurthy and Yelicke[
corresponds to ambstract location and each variable hasang only place fences around an access if it is an endpoint of
a points-to setthe abstract locations that it may referencg.getected cycle.
In addition, abstract locations have points-to sets for eachrne fyll cycle detection algorithm we use is still not as pre-
of their fields. The points-to sets are computed by repegise as possible, since it individually places fences in each
edly updating the points-to set of the target of each expligltical cycle instead of minimizing the total number of fences
and implicit assignment in a program until a fixed point igquired for all cycles. Lee and Padua have shown that the
reached. Two locations may be aliased if the intersectionfnimization problem is\P-complete in generalp]. How-
their points-to sets is non-empty. ever, we believe that automatic barrier placement algorithms

3\We experimented with a partially context-sensitive points-to analysis il ¢an be adapted to place fences better than theemaethod
found that it did not increase the precision of our concurrency analysis. W€ USe.
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Figure 3: The points-to relations for the local and remote versions of abstract logatiodes represent abstract locations,
and an edge —,, b denotes that € pointsTo(a.x).

5 Implementation to a different location than where the call occurred. In order to
prevent the search from following such paths, we label each
Our actual implementatidnof concurrency analysis differsset of call and return edges with different matching parenthe-
somewhat from the algorithm presentediB Instead of di- se$, as shown in figurd. We then perform context-free lan-
viding a program into code segments, we perform the anglrage reachability on the resulting graph using a grammar of
ysis over the control flow graph of the program. Each statgalanced parentheses as described by REfsthough prop-

ment or expression in the program has a node, and edgesepl§-modified to account for the fact that the search can start
tween nodes represent control flow between the corresposdan arbitrary program point.

ing program constructs. In the Titanium compiler, control
flow graphs are generated for each method in the input pro-

gram. We modify these graphs as follows: 5.2 Performance Improvements

* Method c_aIIs: Method calls are split into two nodeSWe perform a few optimizations to decrease the running time
representing transfer of control from caller to callee arbq our implementation

from callee to caller, respectively. The former is linked

by an edge to the entry of the c,;aIIeIeS graphz and the lat-, Private data: As discussed irg4, accesses on private
ter by an edge from the callee’s exit. If multiple callees

. o . . data cannot be in a conflict pair. Our implementation
ex_lst, as for dynamic dispatch, the nodes are linked in ignores such accesses.
this manner to each callee.

e Cross edges The branches of a non-single conditional e Graph compaction: The control flow graph contains
are not reachable from each other in a control flow graph. many nodes that are irrelevant to our analysis. Since
They may run concurrently, however, so they require the many searches are conducted over the graph, it is ben-
addition ofcross edgeso represent this fact. We add a  eficial to remove these nodes before the analysis. Our
cross edge from the end of one branch to the beginning experiments show that on average, about 95% of nodes
of the other. Method calls to multiple potential targets  can be removed.
also require and are given cross edges.

On this resulting control flow graph, we perform a depth firgt 3 Complexity
search from each heap access, stopping at barriers §& in
A conflict pair is generated when another access is reachegtifa complexity of our implementation is(®@+ H2+«H M),
which the target can alias the root access'’s target, as descripgére P is the size of the input progranif is the number of
in §4. When both accesses are reads, however, they d@Adn-private) heap accessas,is the number of method calls,

conflict, so we don’t generate a conflict pair. anda is the average number of targets, as determined by alias
analysis, for a dynamic method dispateh £ 1 in most Ti-
5.1 Feasible Paths tanium programs). We are exploring an alternative algorithm

) ) ) with sub-quadratic average case running time. Note that any
The search described above can result in paths being followgiict detection algorithm must had(H?) running time

that cannot actually occur in practice. For example, the pathiine worst case, since every heap access can potentially con-
figure4 is impossible since control flow from a callee returngct with every other access.

4The algorithm used in our implementation will be described in detail in
a forthcoming paperlf). 5Cross edges between method calls are also labeled as necessary.




bar: foo: baz:

[ _ -~ entry ‘[
call fooQ) F-~-~"~ e fo0()
! i

foo() return -\ T _--nfoo() return
] exit =77}

Figure 4: Inter-procedural control flow graph for two calls to the same function. The dashed path is infeasible, corresponding
to the unbalanced string}”.

6 Evaluation e demv (122 lines): Dense matrix-vector multiply. The
matrix is partitioned by rows. The source and destination

As discussed previously, enforcing sequential consistency can vectors are distributed arrays. Each thread has its own

result in a large cost to performance. We evaluate the effec- section of the source and destination array.

tiveness of our algorithm against existing analys&g and ] ) )

relaxed consistency by measuring the number of fences ger® SPMV (1493 lines): Sparse matrix-vector multiply. The

erated and executed and the performance of parallel programs. Matrix is partitioned by rows, with each thread getting
a contiguous block of complete rows. The source and

result vectors are dense. Each thread holds the corre-
6.1 Benchmarks sponding piece of the source and result vector.

We use the following benchmarks to evaluate our analysis:The line counts for the above benchmarks underestimate the
amount of code actually analyzed, since all reachable code in
the 37,000 line Titanium and Java 1.0 libraries is also pro-

e gas [4] (8841 lines): Hyperbolic solver for a gas dynam<essed.
ics problem in computational fluid dynamics. It uses a
hierarchical adaptive mesh refinement approach, whigt  Fence Counts

results in a hierarchy of block structured meshes. The ) ) )
adaptive mesh is distributed across threads with ea{erprder to enforce sequential consistency, we insert memory

block residing on a single thread, and each thread miffices where required in an input program. These fences can

find “neighboring” blocks within the hierarchy to per_be expensive to execute at runtime, potentially costing an en-

form finite difference operations. This code was writte#{€ roundtrip latency for aremote access. The fences also pre-
by Peter McQuorquodale and Phillip Collela. v_ent code mgtlon, so they directly preglude many optimiza-
tions from being performedp)]. The static number of fences
e gsrb (1090 lines): Nearest neighbor computation cgenerated provides a rough estimate for the amount of opti-
a regular mesh using red-black Gauss-Seidel operamization prevented, but the affected code may actually be un-
This computational kernel is often used within multigrieachable at runtime or may not be significant to the running
algorithms or other solvers. time of a program. We therefore additionally measure the dy-
namic number of fences hit at runtime, which more closely
e gsrb * (1099 lines): A slightly modified version ofestimates the performance impact of the inserted fences.
gsrb in which threads cache pointers to their local Figures5 and7 show the number of fences generated for

e 3d-fft (614 lines): Fourier transform.

pieces of the global mesh. each program using different levels of analysis:
e |lu-fact (420 lines): Dense linear algebra. e naive: fences are inserted around every heap access
e pi (56 lines): Monte Carlo integration. e sharing: fences are inserted around every access on

shared data, as computed by sharing inferefde)
e pps [3] (3673 lines): Parallel Poisson equation solver .
using the domain decomposition method in an un-® concur. fences are inserted around every shared ac-

bounded domain. cess that is a member of a conflict pair, as computed by
concurrency analysig8) and type-based alias analysis
e sample-sort (321 lines): Parallel sorting. (84.2.9
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Figure 5: Number of fences statically generated for each level of analysis.
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Figure 6: Number of fences hit at runtime for each level of analysis.




Number of Fences fanaive 6.3 Optimizations
Benchmark Static | Dynamic ) _ )
34t 7750 29K In measuring the effects of sequential consistency on the per-
formance of parallel programs, we focus on optimizations
gas 11938 26M T oL ;
gsIb 8124 199K for communication between threads. In a distributed envi-
- ronment, the communication time is a major component of
gsrb 8174 199K o S
the running time of a parallel program, so such optimizations
lu-fact 7734 819M ; . . :

. 7064 136M potentially provide much larger payoffs than sequential opti-
P! 10615 245M mizations. We evaluate our analysis using two optimizations:
PpS converting blocking array copies to non-blocking copies, and
sample-sort 7378 | 10.5M the inspector executor transformation on irregular array ac-
demv 7212 10B cesses.
spmv 8226 168M

Table 1: Number of fences statically generated and hit at réh3-1  Non-Blocking Array Copies

time using thenaive level of analysis. An array copy is a bulk communication operation in Tita-
nium between two arrays. The contents of the source array
are copied to the destination array where the domains of the
e concur/saa fences are inserted around every confliglo arrays intersect. This operatiorigcking which means
pair, using concurrency analysis augmented by sequetit the thread executing the array copy waits until the oper-
tial alias analysis§4.2.2 ation completes before moving on to the next instruction. If
either the source array or the destination array is remote, then

mmunication over the network is required.

e concur/taa: fences are inserted around every confliéP . SRV :
A compiler optimization that automatically converts block-

air, using concurrency analysis augmented by thread- S . :
Zware aligs analysi§4 2)/3 y g y ing array copies into non-blocking operations has been devel-

oped in the Titanium compiler. The goal of this optimization
is to push the synchronization that ensures the completion of
e concur/taa/cycle full cycle detection is used to furtherthe array copy as far down the instruction stream as possible.
reduce the number of fences on top of the previous levEhe time between the issue of the non-blocking operation and
Fences are only inserted around memory accesses thatsynchronization for that operation can be used for other
can be part of a critical cyclé4.3). communication and computation.
The use of sequential consistency as a memory model can
Figures6 and 8 show the resulting dynamic counts at rur{_educe the effectiveness of this optimization. An array copy

time. For reference, the static and dynamic counts for lwgludes multiple reads and writes, so it can appear in critical
naive level of analysis are shown in takle cycles. When fences are needed around an array copy, the

The results show that our analysis, at its highest precisig
is very effective in reducing the numbers of both static and dy-
namic fences. In most of the benchmarks, our analysis eliffiis-2  Inspector Executor
nates at least 97% of the static and 87% of the dynamic fen¢@s Titanium compiler has support for tiespector executor
compared to theaive version. The only benchmark that th¢ramework B0] to optimize irregular remote accesses of the
analysis has trouble with igsrb . The code for this pro- form a[bJi]] that appear in a loop. The array access pat-
gram stores both local and global pointers in the same ark@yn is computed in an initiahspectorloop. All the required
and our analysis currently cannot distinguish between ar@¥ments are prefetched into a local buffer. Executoroop
indices ¢7.1). With very little effort, we were able to mod-then uses the prefetched elements for the actual computation.
ify gsrb to keep a separate store of local pointgsrb *),  The inspector executor transformation must respect local
resulting in the removal of most of the remaining fences. gependencies. Using a sequentially consistent memory model

It is interesting to note the effects of the auxiliary analysesaces further constraints on this optimization: the compiler
in §4. As shown in figure® and®6, alias analysis is a crucialcannot apply it if their is another memory access in the orig-
component of our concurrency analysis, reducing the numb@l loop requiring a fence between it and the indirect array
of fences by a large margin. On the other hand, cycle detaceess. The prefetching performed by the optimization ag-
tion has almost no effect, reducing the number of fences oghggates the indirect array reads for all iterations of the loop,
by a marginal amount. changing the order of memory accesses in this case.

r[?timization cannot be performed.

10



Fences

100
90
80
70
60
50
40
30
20

10

Percentage of Static Fences Eliminated over naive

3d-fft gas gsrb gsrb*  lu-fact pi pps sample- demv  spmv
Benchmark sort

\Dsharing B concur Oconcur/saa Oconcur/taa Iconcur/taa/cycle\

Figure 7: Reduction in statically generated fences relative todihe level of analysis.
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Figure 8: Reduction in fences hit at runtime relative torthérse level of analysis.
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6.4 Performance the code under the relaxed model and using our analysis is it-
f an average of 21% faster than the same operation written

. sel
We measured the performance of two benchmarks in Whlﬁ%ng Aztec, a popular sparse solver library written in C and

communication optimizations prove effectiyecomparing P
; : . [30].
our analysis against both the relaxed model and prior wol\(L
to enforce sequential consistency. We performed our experi-
ments on the Itanium/Myrinet cluster at Rice University, using  Djscussion
one processor on each node.
In this section, we discuss some of the limitations of and ex-
6.4.1 Dense Matrix Vector Multiply tensions to our analysis, its relation to race detection, and

~ some future work.
In the demv benchmark, each thread uses array copies in

order to obtain the contents of the entire distributed source | ..
vector. While retrieving each section of the source vector, al False Positives

thread can do local computation with parts of the source VeChandful of program constructs cannot currently be handled

tor that it has already retrieved. Figlseompares the perfor-precisely by our analyses and therefore may result in false
mance ofdemv using four versions of the compiler. The- gnflicts:

laxed version uses the Titanium memory consistency model,

which is weaker than sequential consistency. The other three Array indices: Our alias analysis does not maintain
versions provide sequential consistency and differ only in the Separate points-to sets for array indices and cannot dis-
analysis we use for enforcing it, as described®2 The tinguish accesses to different indices, so concurrent ac-
naive version puts fences around the array copies, which pre- cessesto different indices can result in false conflicts.
vents it from being transformed into a non-blocking opera-
tion. The sharing version infers that the source vector is
shared, so it also places fences around the array copies. Our
analysis, on the other hand, infers that the array copy desti-
nations are thread-local and thus do not require fences. The
compiler can therefore convert the copies into non-blocking
operations, resulting in a speedup of 1.45 over tiagve
andsharing versions. Since our analysis determines that no
fences at all are required, it performs just as well as under the a = broadcast b from O

relaxed model. if (Ti.thisProc() 1= 0)
bf = af;

e Granularity of thread-aware alias analysis Our
thread-aware alias analysis only distinguishes between
local and remote abstract locations: it does take into ac-
count actual thread ownership of locations. In the code
below, the locations referenced hyare actually those
referenced by on thread 0, so the writes toon other
threads do not conflict with the reads an

6.4.2 Sparse Matrix Vector Multiply

Our analysis can only determine theatcan refer to the
locations referenced bly on any thread, so it assumes
that the writes td and reads oa conflict.

In spmv, each thread uses indirect array accesses to read from
the distributed source vector. The inspector executor transfor-
mation can combine these individual reads into a bulk fetch.
Figure9 illustrates the performance spmv using four ver- With some difficulty, our analyses can be extended to handle
sions of the compiler. In theaive version, the compiler putsthe cases above.
fences around the reads on the source vector, preventing the
Lr;spector executor opt!mlzatlon. Thn@anng version infers 7'% Race Detection

at the source vector is shared, so it also puts fences aroun
the reads. Our analysis, on the other hand, finds that the rgadss.1, we showed that in order to provide sequential consis-
have no conflict edges, since there is a barrier between téaecy, it is sufficient to only consider conflicting accesses that
code that updates the source vector and the read-only ngal run concurrently, which is the definition ofrace con-
tiply phase in which the accesses occur. Since our analydiifon [23]. Sequential consistency and race conditions are
determines that no fences are required, it generates code ifietimately related: under a relaxed memory model such as re-
tical to that of the relaxed model, resulting in a speedup lelse consistencyt I, a program with no races cannot violate
more than 80 over theaive andsharing versions. Note that sequential consistency since the synchronization mechanisms

6The rest of the benchmarks do not benefit from communication optimizear—“corce order, and in a program with races, Sequentlal con-

tions, and prior work has shown that their performance is similar under SiSt€ncy can only be \_/i0|ated with rgspect to .th_OSG memory
relaxed and sequential consistency models even without our analji$es [ accesses that can be in a race condition. Providing sequential
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Figure 9: Performance comparisons for the dense and sparse matrix vector multiply benchmarks. Speedups are computed
against thenaive version.

consistency thus reduces to static race detection. However, @dhasha and Snir provided some of the foundational work in
imprecise analysis can only affect performance in the formenforcing sequential consistency from a compiler level when
while in the latter, it can render the detection useless. they introduced the idea of/cle detectiofi29]. However, that
Our analysis can be directly used to statically discover pwyork was designed for general MIMD parallelism, limited to
tential races. Irsample-sort , for example, it finds three straight-line code, and was not designed as a practical static
concurrent conflicts, one of which corresponds to a real raagalysis. Midkiff and Padua outlined some of the implemen-
condition. In order to be useful as a race detector, howevatjon technigues that could violate sequential consistency and
our concurrency analysis needs to be modified to producdexeloped some static analysis ideas, including a concurrent
possible execution path on which each race can occur. C3iatic single assignment form in a paper by Lee etl&l]. [As
rently, it can produce the partial path between the first apart of the Pensieve project, Lee and Padua exploited prop-
second access in a conflict but does not find the path fresties of fences and synchronization to reduce the number of
program entry to the first access. delays in cycle detectior2]. The project also includes a Java
compiler that takes a memory model as inf@4][ More re-
cently, Sura et al. have shown that cooperating escape, thread
7.3 Future Work structure, and delay set analyses can be used to provide se-
i guential consistency cheaply in Ja&d]l Our work differs
In the future, we plan to explqre the cpst _of sequential CONSiRs5m theirs in two primary ways: 1) we take advantage of
tency on larger and more varied applications such as adapliye of the synchronization paradigms, such as barriers, that
mesh refinemenB{3] and an implementation of the NAS pargyist in SPMD programs, and 2) our machine targets include
allel benchmarks7] in Titanium [8]. We suspect that in or- gisribyted memory architectures where the cost of a memory

der to achieve comparable performance to a relaxed modgiice is essentially that of a round-trip communication across
these applications, a precise array index analysis is requiree network

The earliest implementation work on cycle detection was
8 Related Work by Krishnamurthy and Yelick for the restricted case of SPMD
programs 16]. That was done in a simplified subset of the
There is an extensive literature on compiler and runtime ogiplit-C language and introduced a polynomial time algorithm
mizations for parallel machines, including automatically paer cycle detection in SPMD programs. They also used syn-
allelized programs and optimization of data parallel prograntfironization analysis to reduce the number of fences, but their
which in their pure form have a sequential semantics. Theurce language did not have the restriction that barriers must
memory consistency issue arises in a language with an expiiatch textually and they did not take advantage of single con-
itly parallel semantics and some type of shared address spdit@mnals. At compile time, they generated two versions of the
The class of such languages includes Java, UPC, Titaniwagle, one assuming the barriers line up and the other one not.
and Co-Array Fortran, some of the languages proposed in &teuntime, they switched between the two versions depend-
recent HPCS effort, as well as shared memory language iexr on how the barriers were executed. Our approach does
tensions such as POSIX Threads and Open6iBY, 24, 25]. not suffer the same runtime overhead and code bloat that ex-
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ists in theirs. In addition, their compiler used only a simplaust always reach the same textual instance of a barrier and
type-based alias analysis. that control expressions guarded by single-valued expressions
There has also been work done in the area of reducing #i#t execute identically on all threads. We presented an ex-
number of fences required to enforce sequential consistem®rimental evaluation of several different levels of compiler
Liblit, Aiken, and Yelick developed a type system to identifgnalyses, all of which ensure sequential consistency but with
shared data accesses in Titanium progra®i fand for se- increasing accuracy. The accuracy allows memory fences to
guential consistency, they only insert a fence at each shapeceliminated and other optimizations to be applicable. We
data access identified. Based on our experimental resultexperimented with several benchmark programs and showed
§6, our technique is a significant improvement over theirs that our most aggressive analysis was able to eliminate over
terms of static fence count, dynamic fence count, and runn®igfb of the static memory fence instances that were needed
time of the generated programs. by a ndve implementation. At runtime, these accesses ac-
Several other parallel analyses have been developed thatel¢nted for 87 to 100% of the dynamically encountered mem-
not directly address memory consistency issues. Jeremiasggnfences in all but one benchmark, which required only
and Eggers developed a static analysis for barrier synchstight modification to eliminate most of the remaining fences.
nization [L4] for non-textual barriers. With textual barriers\e then combined the analysis with two communication opti-
our analysis is more precise in finding memory accesses thégations, overlapping remote array copy operations with lo-
cannot run concurrently. Duesterwald and Soffa used deg computation and optimizing irregular accesses on remote
flow analysis to compute the happened-before and happer&tays, and applied them to two linear algebra kernels. Our
after relation for program statements. The information is usegsults show that even when combined with these high level
in detecting data race$]] Masticola and Ryder developedcommunication optimizations designed for distributed mem-
non-concurrency analysis to identify pairs of statements i®g environments, our most aggressive analysis for sequential
parallel program that cannot run concurrently. The resufi@nsistency was able to obtain the same performance as a re-
are used for debugging and optimizatid??] Rugina and laxed model. While additional work on parallel optimizations
Rinard developed a thread-aware alias analysis for the Gilkd analyses is needed, we believe these results provide im-
multithreaded programming languagg] that is both flow- portant evidence on the viability of using a simple memory
sensitive and context-sensitive. Others such as Zhu and Hgmnsistency model for global address space languages with-
dren B6] and Hicks [L2] have developed flow-insensitive verout sacrificing performance.
sions for multithreaded languages.
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