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Making Sequential Consistency Practical in Titanium

Amir Kamil Jimmy Su Katherine Yelick∗

Computer Science Division, University of California, Berkeley
{kamil,jimmysu,yelick}@cs.berkeley.edu

July 25, 2005

Abstract

The memory consistency model in shared memory parallel
programming controls the order in which memory operations
performed by one thread may be observed by another. The
most natural model for programmers is to have memory ac-
cesses appear to take effect in the order specified in the orig-
inal program. Language designers have been reluctant to use
this strong semantics, calledsequential consistency, due to
concerns over the performance of memory fence instructions
and related mechanisms that guarantee order. In this paper, we
provide evidence for the practicality of sequential consistency
by showing that advanced compiler analysis techniques are
sufficient to eliminate the need for most memory fences and
enable high-level optimizations. Our analyses eliminated over
97% of the memory fences that were needed by a naı̈ve imple-
mentation, accounting for 87 to 100% of the dynamically en-
countered fences in all but one benchmark. The impact of the
memory model and analysis on runtime performance depends
on the quality of the optimizations: more aggressive optimiza-
tions are likely to be invalidated by a strong memory con-
sistency semantics. We consider two specific optimizations–
pipelining of bulk memory copies and communication aggre-
gation and scheduling for irregular accesses–and show that
our most aggressive analysis is able to obtain the same perfor-
mance as the relaxed model when applied to two linear alge-
bra kernels. While additional work on parallel optimizations
and analyses is needed, we believe these results provide im-
portant evidence on the viability of using a simple memory
consistency model without sacrificing performance.
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1 Introduction

A key question in the design of shared memory parallel lan-
guages is the memory consistency model: In what order are
memory operations performed by one thread observed on an-
other? For simplicity, one would like the operations to appear
in the order specified in the original program, i.e., any re-
orderings performed by the compiler or hardware should not
be observable. In practice, parallel language designers have
been reluctant to use such a strongsequentially consistent
semantics because memory operations are often overlapped
and reordered for performance reasons, and requiring that all
threads see the same memory order requires the insertion of
expensive memory fence instructions. The problem is even
worse for global address space languages, which use a shared
memory abstraction on top of large-scale distributed memory
hardware. In this setting, a read or write to a shared variable
may require a network message, and a memory fence corre-
sponds to waiting for a full roundtrip latency across the net-
work. The memory model question is controversial across a
wide range of languages, from JavaTM threads and OpenMP
to UPC and Titanium [25, 6, 35]. The relaxed semantics used
in these languages are often ill-defined [17], and even when
they have been made precise [26, 34], they are not well under-
stood by application programmers. Programming techniques
such as spin-locks and presence bits rely on the details of
the memory consistency model, and while language designers
may want to discourage such programming practice, leaving
the behavior of these programs to a complicated or ill-defined
semantics is troubling.

In this paper, we consider the question of whether a relaxed
semantics is necessary, and whether a compiler can reason-
ably analyze parallel programs to ensure that no reorderings
are observable while still allowing the compiler to perform
important optimizations. Our study is done using the Tita-
nium language [35], a single program, multiple data global
address space variation of Java that runs on most parallel and
distributed memory machines. We show that concurrency in-
formation can be used to reduce the number of fences required
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to enforce sequential consistency and present a concurrency
analysis that takes advantage of the unique semantics of Ti-
tanium. We augment this analysis with other analyses such
as sharing inference [21], alias analysis, and cycle detection
[29] to further reduce the number of fences. We perform a
series of experiments with a Titanium compiler that produces
sequentially consistent code, starting with a naı̈ve implemen-
tation that places memory fences around all heap accesses and
then using successively stronger analyses to prove that some
of the fences are unnecessary and can be removed. As an
upper bound measure of performance, we also include a ver-
sion of the compiler that provides the relaxed memory seman-
tics. Our experiments look at both static and dynamic mem-
ory fence counts and cover a range of programs from small
benchmarks up to a full hyperbolic adaptive mesh refinement
solver for gas dynamics. In addition, we look at the runtime
performance impact on two linear algebra kernels, dense and
sparse matrix vector multiplication, and show that the most
aggressive analysis is needed to enable key optimizations, but
with that analysis, the performance is identical to the relaxed
model.

2 Background

2.1 Titanium

Titanium is a dialect of Java, but does not use the Java Virtual
Machine model. Instead, the end target is assembly code. For
portability, Titanium is first translated into C and then com-
piled into an executable. In addition to generating C code
to run on each processor, the compiler generates calls to a
runtime layer based on GASNet [5], a lightweight communi-
cation layer that exploits hardware support for direct remote
reads and writes when possible. Titanium runs on a wide
range of platforms including uniprocessors, shared memory
machines, distributed-memory clusters of uniprocessors or
SMPs (CLUMPS), and a number of specific supercomputer
architectures (Cray X1, Cray T3E, SGI Altix, IBM SP, Origin
2000, and NEC SX6).

Titanium is asingle program, multiple data(SPMD) lan-
guage, so all threads execute the same code image. In ad-
dition, Titanium has the following unique features that our
analysis relies on:

1. A call to abarrier in Titanium causes the calling thread
to wait until all other threads have executed the sametex-
tual instance of the barrier call. The code in the example
below is not allowed because not all the threads will hit
the same textual barrier. The Titanium compiler checks
statically that all the barriers are lined up correctly [10].

if (Ti.thisProc() % 2 == 0)

Ti.barrier(); // even ID threads
else

Ti.barrier(); // odd ID threads

2. A single-valuedexpression evaluates to the same value
for all threads. With programmer annotation and com-
piler inference, the Titanium compiler statically deter-
mines which expressions are single-valued. Single-
valued expressions are used to ensure that barriers line
up: a conditional may only contain a barrier if it is
guarded by a single-valued expression. The above code
is erroneous sinceTi.thisProc() % 2 == 0 is
not single-valued.

Titanium’s memory consistency model is defined in the lan-
guage specification [13]. Here are some informal properties
of the Titanium model.

1. Locally sequentially consistent: All reads and writes
issued by a given thread must appear to that thread to
occur in exactly the order specified. Thus, dependencies
within a thread must be observed.

2. Globally consistent at synchronization events:At a
global synchronization event such as a barrier, all threads
must agree on the values of all the variables. At a non-
global synchronization event, such as entry into a critical
section, the thread must see all previous updates made
using that synchronization event.

Henceforth, we will refer to the Titanium memory consis-
tency model as therelaxed model.

2.2 Sequential Consistency

For a sequential program, compiler and hardware transforma-
tions must not violate data dependencies: the order of all pairs
of conflicting accesses must be preserved. Two memory ac-
cessesconflict if they access the same memory location and at
least one of them is a write. The execution model for parallel
programs is more complicated, since each thread executes its
own portion of the program asynchronously and there is no
predetermined ordering among accesses issued by different
threads to shared memory locations. A memory consistency
model defines the memory semantics and restricts the possible
execution order of memory operations.

Among the various models,sequential consistencyis the
most intuitive for the programmer. The sequential consistency
model states that a parallel execution must behave as if it were
an interleaving of the serial executions by individual threads,
with each individual execution sequence preserving the pro-
gram order [18].
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An easy way to enforce sequential consistency is to insert
memory fences after each shared memory access. This for-
bids all reordering of shared memory operations, which pre-
vents optimizations such as prefetching and code motion, re-
sulting in an unacceptable performance penalty. Various tech-
niques have been proposed to minimize the number of fences,
or delay set, required to enforce sequential consistency.

Computing the minimal delay set for an arbitrary parallel
program is an intractable NP-hard problem [29, 16]. Krish-
namurthy and Yelick proposed a polynomial time algorithm
based oncycle detectionfor analyzing SPMD programs [16]
such as Titanium. The analysis uses a graph where the nodes
represent shared memory accesses. There are two types of
edges in the graph:program edgesandconflict edges. Pro-
gram edges reflect the program order: there is a directed pro-
gram edge fromu to v if u can execute beforev. Conflict
edges are undirected edges between accesses that conflict:
there is a conflict edge betweenu andv if u andv can ac-
cess the same memory location and at least one of them is a
write.

The goal of cycle detection is to check each program edge
to see if it needs a fence to enforce its order. Given the pro-
gram edge(u, v), if there is no local dependency betweenu
andv, v could execute beforeu. If this reordering is observ-
able by another thread, then sequential consistency is violated.
In that case, a fence must be inserted betweenu andv to en-
sure thatu always executes beforev. Figure1 gives one ex-
ample of this. There is no local dependency on T1, but if the
two writes on T1 were reordered, then the following execu-
tion order would be possible:x ⇒ y ⇒ b ⇒ a. This results
in (y, b) reading the values(1, 0), which means that the re-
ordering on T1 is observable on T2. A fence must be placed
betweena andx to prevent such reordering.

Kirshnamurthy and Yelick [16] show that given a program
edge(u, v), if there is a path fromv to u where the first and
last edge are conflict edges, and the intermediate edges are
program edges, then the program edge(u, v) belongs to the
minimal delay set and a fence must be placed betweenu and
v to prevent reordering. The path together with the program
edge(u, v) forms acritical cycle.

3 Concurrency Analysis

Concurrency information can be used to reduce the set of con-
flict edges for a program. We show that a conflict edge in
which the endpoints cannot run concurrently can be ignored,
and we present an algorithm for computing concurrent ac-
cesses in Titanium.

3.1 Conflicts and Concurrency

Suppose two memory accessesa andb conflict. We show that
if a andb can never run concurrently, it is possible to remove
the resulting conflict edge since it can never take part in a
cycle.

Theorem 1: Let a and b be two memory accesses in a
program, andC a cycle containing the conflict edge(a,b). If a
andb cannot run concurrently, then reorderingawith another
access1 does not violate sequential consistency with respect to
the accesses inC in any execution of the program.

Proof: We prove this for a cycle consisting of four accesses
in two threads wherea is the first access in thread 1 andb is
the second access in thread 2, as in figure1 (the proof can be
generalized to arbitrary cycles). Letx andy be the other two
conflicting accesses inC, in thread 1 and 2 respectively. Con-
sider an arbitrary execution in which the accesses inC occur.
Sincea andb cannot run concurrently, eithera must complete
beforeb or b must complete beforea.
Case 1:aoccurs beforeb. Sequential consistency can only be
violated if y sees the effect ofx, but b does not see the effect
of a. In all other cases, execution corresponds to a valid se-
quentially consistent ordering, as shown in the table in figure
1. But sincea occurs beforeb, b always sees the effect ofa,
so sequential consistency is preserved regardless of the order
of a andx.
Case 2:b occurs beforea. In order to enforce thatb occur be-
forea, there must be a synchronization point betweenb anda
in the execution stream of each thread. Since accesses aren’t
moved across such points,y must occur before it andx must
occur after it. This means thaty must complete beforex and
therefore does not see its effect. Sincey does not see the ef-
fect of x andb does not see the effect ofa, the execution is
sequentially consistent independent of the order ofa andx.

3.2 Finding Concurrent Accesses

The goal of our concurrency analysis is to statically identify
the pairs of memory accesses that can run concurrently. We
rely on barriers and single-valued expressions in this analysis.
Our algorithm makes use of the following definitions.

Definition 1 (Global Context): An expression or state-
ment is in aglobal contextif all threads are guaranteed to
execute it at the same time, with respect to barriers.

Definition 2 (Single Conditional): A single conditional
is a conditional or loop guarded by a single-valued expression
and contained in a global context.

Since a single-valued expression evaluates to the same re-
sult on all threads, every thread is guaranteed to take the same
branch of a single conditional.

1We assume that accesses are never moved across synchronization points.
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a [set data = 1]

x [set flag = 1] b [read data]

y [read flag]
T1 T2

Initially, flag = data = 0

y sees effect ofx b sees effect ofa possible sequential order
yes yes a ⇒ x ⇒ y ⇒ b
yes no none
no yes a ⇒ y ⇒ b ⇒ x
no no y ⇒ b ⇒ a ⇒ x

Figure 1: A cycle consisting of four accesses in two threads. The solid edges correspond to order in the execution stream of
each thread, and the dashed edges are conflicts. Of the four possible results of thread 1 visible to thread 2, the second is illegal
since it does not correspond to an overall execution sequence in which operations are not reordered within a thread.

Definition 3 (Code Segment): Consider the set of bar-
riers, entries into a branch of a single conditional, and exits
from a branch of a single conditional. Acode segmentis a se-
quence of statements bounded by, and not containing, mem-
bers of this set2.

Since a barrier, single conditional entry, or single condi-
tional exit occurs before each code segment and every thread
executes the same sequence of barriers and branches of sin-
gle conditionals, every thread executes the same sequence of
code segments.

The set of code segments is easy to compute by perform-
ing a depth first search from each barrier, single conditional
entry, and single conditional exit. The size of the resulting set
is at most quadratic in the number of barriers and single con-
ditionals. Figure2 shows the code segments for an example
program.

Using the code segments of a program, we construct a
graphG in which there is a node per segment and the edges
represent the control flow between segments, as shown in fig-
ure 2. Since barriers, single conditional entries, and single
conditional exits separate code segments, each edge must cor-
respond to one such construct.

Theorem 2: Two code segmentsA and B can run con-
currently only if one is reachable from the other inG along a
path that does not include a barrier edge.

Proof: SupposeA andB can run concurrently but are not
reachable from one another inG. A andB cannot be the same
code segment, since a segment is always self-reachable. Since
each thread executes the same sequence of code segments,
in order for A and B to run concurrently, there must be a
program flow fromA to B or fromB to A that does not hit a
barrier. Such a flow must consist solely of single conditional
entries, single conditional exits, and other code segments. But
if such a flow exists, there is a path inG that passes through
only the edges corresponding to the entries and exits and the
nodes corresponding to the code segments. Thus,A andB

2A statement can be in multiple code segments, as is the case for a state-
ment in a method called from multiple segments.

are reachable from one another inG through this path, which
is a contradiction.

The set of concurrent code segments can easily be com-
puted by removing barrier edges fromG and performing a
depth first search on the resulting graphG′ from each seg-
ment. This takes time at most quadratic in the number of code
segment.

Using the set of concurrent code segments, it is trivial to de-
termine the set of concurrent memory accesses: two memory
accesses may run concurrently only if they are in concurrent
code segments.

3.3 Single-Threaded Code

Though all Titanium threads run the same program, it is
still possible to write code that only runs on a single thread.
A block of code guarded by a conditional of the form
Ti.thisProc() == expr, whereexpr is single-valued,
only runs on the thread whose ID isexpr. At first glance, it ap-
pears that accesses in such a block cannot occur concurrently.
However, consider the following example:

int single i;
for (i = 0; i < 10; i++) {

if (Ti.thisProc() == i) {
// (1) some accesses

}
}

The code is legal according to Titanium semantics, sincei
has the same value on each thread in each iteration of the loop.
However, the accesses in(1) can run concurrently, since dif-
ferent threads may be in different iterations of the loop.

In order to determine whether or not accesses in such
“single-threaded” code can run concurrently, we also split
code segments at the entry and exit points of such code so
that each piece of “single-threaded” code has its own code
segment. We then use the following to determine which code
segments it can run concurrently with:

4



L1: int i = 0;

L2: int j = 1;

L3: if (Ti.thisProc() < 5)

L4:   j += Ti.thisProc();

L5: if (Ti.numProcs() >= 1) {

L6:   i = Ti.numProcs();

Ti.barrier();

L7:   j += i;

L8: } else { j += 1; }

L9: i = broadcast j from 0;

Ti.barrier();

LA: j += i;

{L1,L2,L3,L4,L5}

{L6}

{L8}

{L9}

{LA}

{L7}

Figure 2: The graph of code segments for an example program. Each node in the graph corresponds to a segment, and the
dashed edges correspond to barriers.

Theorem 3: A “single-threaded” code segmentA can run
concurrently with a “single-threaded” segmentB only if there
is a non-trivial path (a path with at least one edge) fromA to
B or fromB to A that does not pass through a barrier.

Proof: The proof is omitted for brevity.
In the example above, (1) is reachable from itself by a non-

trivial path through the multi-threaded incrementi++ and test
i < 10 .

3.4 Broadcasts

The expression

broadcast expr1 from expr2

results in a transmission of the value ofexpr1 from thread
expr2 to all other threads. The other threads must wait at the
broadcast until the source thread has computed the value
to be transmitted, so the expression acts as a sort of weak
barrier. It does not, however, prevent different threads from
simultaneously executing code preceding and following the
broadcast , so our analysis cannot treat it as a real bar-
rier. In the following code, however,(1) and(2) cannot occur
concurrently, since all other threads must wait for thread 0 to
reach thebroadcast before proceeding:

if (Ti.thisProc() == 0)
a.f = b; // (1)

c = broadcast a from 0;
d = c.f; // (2)

In order to handle this case, we split code segments at
broadcasts as well. We then use the following:

Theorem 4: A “single-threaded” code segmentA that ex-
ecutes only on threadt cannot run concurrently with a code
segmentB if A is not reachable fromB without hitting a bar-
rier, and B is only reachable fromA along paths that contain
a barrier or a broadcast fromt.

Proof: The proof is omitted for brevity.

4 Other Analyses

The concurrency analysis described in§3 only computes
the set of accesses that can occur concurrently, an over-
approximation of the set of actual conflicts. The analysis can
be augmented by other analyses in order to increase the pre-
cision of its results. In addition, only a subset of the actual
conflicts violate sequential consistency, which can be deter-
mined before generating fences.

4.1 Sharing Inference

In parallel programs, objects can be private to a thread or
shared among multiple threads. A private object can never
be involved in a conflict, since all operations on it must oc-
cur in the thread that owns it. Sequential consistency can be
enforced by surrounding all accesses on shared objects with
fences. In addition, our concurrency analysis can take advan-
tage of sharing information by removing all conflict pairs in
which at least one of the members is private, since they cannot
represent a real conflict.
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We use the approach (and implementation) of Liblit, Aiken,
and Yelick [21] to infer which pointers must reference private
data in a Titanium program. It introduces a type system over
the qualifiersprivate , shared , andmixed . Constraints
are generated for each variable from the expressions in a pro-
gram, and the maximally-private solution to this set of con-
straints is found.

4.2 Alias Analysis

Two memory accesses can only conflict if they reference the
same memory location. Aliasing information allows us to re-
move conflicts in which the accesses cannot actually alias the
same location. We implemented different levels of alias anal-
ysis to improve our results:

• Type-based alias analysis: The accesses in a conflict
pair must be on locations of comparable types.

• Sequential alias analysis: The accesses in a conflict
pair must be on locations that may be aliased, ignoring
threads.

• Thread-aware alias analysis: The accesses in a con-
flict pair must be on locations that may be aliased across
threads.

In all cases above, the accesses in a conflict pair must be on
the same field for non-array types.

4.2.1 Type-Based Alias Analysis

Our type-based alias analysis assumes that any two memory
locations of comparable types can be aliased. Two types are
comparableif one can be cast to the other. Thus any vari-
able of typeObject is assumed to alias any variable of type
Vector , but a variable of typeString cannot alias a vari-
able of typeVector .

4.2.2 Sequential Alias Analysis

Our sequential alias analysis is a Java version of Andersen’s
points-to analysis for C [1] and is thus both flow-insensitive
and context-insensitive3. Each allocation site in a program
corresponds to anabstract location, and each variable has
a points-to set, the abstract locations that it may reference.
In addition, abstract locations have points-to sets for each
of their fields. The points-to sets are computed by repeat-
edly updating the points-to set of the target of each explicit
and implicit assignment in a program until a fixed point is
reached. Two locations may be aliased if the intersection of
their points-to sets is non-empty.

3We experimented with a partially context-sensitive points-to analysis but
found that it did not increase the precision of our concurrency analysis.

The analysis issequentialin that it does not distinguish al-
locations on different threads. Inter-thread transmission of an
abstract location thus produces the original location.

We also use alias analysis to limit the potential targets of a
dynamic dispatch. Without alias analysis, all overriders of the
statically determined target must also be considered as possi-
ble targets. Using alias analysis, we can restrict the possible
targets of a dynamic dispatch to the methods that can actually
be called, according to the types of the abstract locations in
the points-to set of the target location.

4.2.3 Thread-Aware Alias Analysis

In addition to the sequential alias analysis, we implemented a
thread-awareversion of the analysis that takes advantage of
the SPMD nature of Titanium. An abstract location can belo-
cal or remoteand is local by default. Inter-thread transmission
of an abstract locationa produces the remote analogar of the
original location in addition to the original itself. The points-
to set of the remote location contains the remote version of
the original points-to set, as illustrated in figure3. Two loca-
tionsx andy may bealiased across threadsif there is a local
abstract location in one points-to set and the remote analog in
the other ((∃l ∈ pointsTo(x) . lr ∈ pointsTo(y)) ∨ (∃l ∈
pointsTo(y) . lr ∈ pointsTo(x))). In the left side of figure
3, b.y andc.y do not alias each other across threads sincedr

is in neitherpointsTo(b.y) nor inpointsTo(c.y), bute.z and
f.z do sinceg ∈ pointsTo(e.z) andgr ∈ pointsTo(f.z).

4.3 Cycle Detection

For a program edge between two memory accessesa andb,
wherea andb both have conflict edges, it is not always nec-
essary to insert a fence between them to enforce sequential
consistency. A fence is only needed if a critical cycle can be
formed. Cycle detection [29] determines whether or not this
is the case.

For the most part, we approximate cycle detection by plac-
ing fences around any memory access that has a conflict edge.
This guarantees that a fence occurs in any critical cycle con-
taining the access. We also implemented the full cycle detec-
tion algorithm proposed by Krishnamurthy and Yelick [16]
and only place fences around an access if it is an endpoint of
a detected cycle.

The full cycle detection algorithm we use is still not as pre-
cise as possible, since it individually places fences in each
critical cycle instead of minimizing the total number of fences
required for all cycles. Lee and Padua have shown that the
minimization problem isNP-complete in general [20]. How-
ever, we believe that automatic barrier placement algorithms
[7] can be adapted to place fences better than the naı̈ve method
we use.
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Figure 3: The points-to relations for the local and remote versions of abstract locationa. Nodes represent abstract locations,
and an edgea →x b denotes thatb ∈ pointsTo(a.x).

5 Implementation

Our actual implementation4 of concurrency analysis differs
somewhat from the algorithm presented in§3. Instead of di-
viding a program into code segments, we perform the anal-
ysis over the control flow graph of the program. Each state-
ment or expression in the program has a node, and edges be-
tween nodes represent control flow between the correspond-
ing program constructs. In the Titanium compiler, control
flow graphs are generated for each method in the input pro-
gram. We modify these graphs as follows:

• Method calls: Method calls are split into two nodes,
representing transfer of control from caller to callee and
from callee to caller, respectively. The former is linked
by an edge to the entry of the callee’s graph, and the lat-
ter by an edge from the callee’s exit. If multiple callees
exist, as for dynamic dispatch, the nodes are linked in
this manner to each callee.

• Cross edges: The branches of a non-single conditional
are not reachable from each other in a control flow graph.
They may run concurrently, however, so they require the
addition ofcross edgesto represent this fact. We add a
cross edge from the end of one branch to the beginning
of the other. Method calls to multiple potential targets
also require and are given cross edges.

On this resulting control flow graph, we perform a depth first
search from each heap access, stopping at barriers as in§3.
A conflict pair is generated when another access is reached in
which the target can alias the root access’s target, as described
in §4. When both accesses are reads, however, they don’t
conflict, so we don’t generate a conflict pair.

5.1 Feasible Paths

The search described above can result in paths being followed
that cannot actually occur in practice. For example, the path in
figure4 is impossible since control flow from a callee returns

4The algorithm used in our implementation will be described in detail in
a forthcoming paper [15].

to a different location than where the call occurred. In order to
prevent the search from following such paths, we label each
set of call and return edges with different matching parenthe-
ses5, as shown in figure4. We then perform context-free lan-
guage reachability on the resulting graph using a grammar of
balanced parentheses as described by Reps [27], though prop-
erly modified to account for the fact that the search can start
at an arbitrary program point.

5.2 Performance Improvements

We perform a few optimizations to decrease the running time
of our implementation.

• Private data: As discussed in§4, accesses on private
data cannot be in a conflict pair. Our implementation
ignores such accesses.

• Graph compaction: The control flow graph contains
many nodes that are irrelevant to our analysis. Since
many searches are conducted over the graph, it is ben-
eficial to remove these nodes before the analysis. Our
experiments show that on average, about 95% of nodes
can be removed.

5.3 Complexity

The complexity of our implementation is O(P+H2+αHM),
whereP is the size of the input program,H is the number of
(non-private) heap accesses,M is the number of method calls,
andα is the average number of targets, as determined by alias
analysis, for a dynamic method dispatch (α ≈ 1 in most Ti-
tanium programs). We are exploring an alternative algorithm
with sub-quadratic average case running time. Note that any
conflict detection algorithm must haveΩ(H2) running time
in the worst case, since every heap access can potentially con-
flict with every other access.

5Cross edges between method calls are also labeled as necessary.
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call foo()

foo() return

call foo()

foo() return

entry

exit

…

bar: foo: baz:

Figure 4: Inter-procedural control flow graph for two calls to the same function. The dashed path is infeasible, corresponding
to the unbalanced string “[}”.

6 Evaluation

As discussed previously, enforcing sequential consistency can
result in a large cost to performance. We evaluate the effec-
tiveness of our algorithm against existing analyses [21] and
relaxed consistency by measuring the number of fences gen-
erated and executed and the performance of parallel programs.

6.1 Benchmarks

We use the following benchmarks to evaluate our analysis:

• 3d-fft (614 lines): Fourier transform.

• gas [4] (8841 lines): Hyperbolic solver for a gas dynam-
ics problem in computational fluid dynamics. It uses a
hierarchical adaptive mesh refinement approach, which
results in a hierarchy of block structured meshes. The
adaptive mesh is distributed across threads with each
block residing on a single thread, and each thread must
find “neighboring” blocks within the hierarchy to per-
form finite difference operations. This code was written
by Peter McQuorquodale and Phillip Collela.

• gsrb (1090 lines): Nearest neighbor computation on
a regular mesh using red-black Gauss-Seidel operator.
This computational kernel is often used within multigrid
algorithms or other solvers.

• gsrb ∗ (1099 lines): A slightly modified version of
gsrb in which threads cache pointers to their local
pieces of the global mesh.

• lu-fact (420 lines): Dense linear algebra.

• pi (56 lines): Monte Carlo integration.

• pps [3] (3673 lines): Parallel Poisson equation solver
using the domain decomposition method in an un-
bounded domain.

• sample-sort (321 lines): Parallel sorting.

• demv (122 lines): Dense matrix-vector multiply. The
matrix is partitioned by rows. The source and destination
vectors are distributed arrays. Each thread has its own
section of the source and destination array.

• spmv (1493 lines): Sparse matrix-vector multiply. The
matrix is partitioned by rows, with each thread getting
a contiguous block of complete rows. The source and
result vectors are dense. Each thread holds the corre-
sponding piece of the source and result vector.

The line counts for the above benchmarks underestimate the
amount of code actually analyzed, since all reachable code in
the 37,000 line Titanium and Java 1.0 libraries is also pro-
cessed.

6.2 Fence Counts

In order to enforce sequential consistency, we insert memory
fences where required in an input program. These fences can
be expensive to execute at runtime, potentially costing an en-
tire roundtrip latency for a remote access. The fences also pre-
vent code motion, so they directly preclude many optimiza-
tions from being performed [20]. The static number of fences
generated provides a rough estimate for the amount of opti-
mization prevented, but the affected code may actually be un-
reachable at runtime or may not be significant to the running
time of a program. We therefore additionally measure the dy-
namic number of fences hit at runtime, which more closely
estimates the performance impact of the inserted fences.

Figures5 and7 show the number of fences generated for
each program using different levels of analysis:

• näıve: fences are inserted around every heap access

• sharing: fences are inserted around every access on
shared data, as computed by sharing inference (§4.1)

• concur: fences are inserted around every shared ac-
cess that is a member of a conflict pair, as computed by
concurrency analysis (§3) and type-based alias analysis
(§4.2.1)

8
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Figure 5: Number of fences statically generated for each level of analysis.
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Figure 6: Number of fences hit at runtime for each level of analysis.
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Number of Fences fornäıve
Benchmark Static Dynamic
3d-fft 7750 49K
gas 11938 26M
gsrb 8124 199K
gsrb ∗ 8174 199K
lu-fact 7734 819M
pi 7064 136M
pps 10612 245M
sample-sort 7378 10.5M
demv 7212 10B
spmv 8226 168M

Table 1: Number of fences statically generated and hit at run-
time using thenäıve level of analysis.

• concur/saa: fences are inserted around every conflict
pair, using concurrency analysis augmented by sequen-
tial alias analysis (§4.2.2)

• concur/taa: fences are inserted around every conflict
pair, using concurrency analysis augmented by thread-
aware alias analysis (§4.2.3)

• concur/taa/cycle: full cycle detection is used to further
reduce the number of fences on top of the previous level.
Fences are only inserted around memory accesses that
can be part of a critical cycle (§4.3).

Figures6 and 8 show the resulting dynamic counts at run-
time. For reference, the static and dynamic counts for the
näıve level of analysis are shown in table1.

The results show that our analysis, at its highest precision,
is very effective in reducing the numbers of both static and dy-
namic fences. In most of the benchmarks, our analysis elimi-
nates at least 97% of the static and 87% of the dynamic fences
compared to thenäıve version. The only benchmark that the
analysis has trouble with isgsrb . The code for this pro-
gram stores both local and global pointers in the same array,
and our analysis currently cannot distinguish between array
indices (§7.1). With very little effort, we were able to mod-
ify gsrb to keep a separate store of local pointers (gsrb ∗),
resulting in the removal of most of the remaining fences.

It is interesting to note the effects of the auxiliary analyses
in §4. As shown in figures5 and6, alias analysis is a crucial
component of our concurrency analysis, reducing the number
of fences by a large margin. On the other hand, cycle detec-
tion has almost no effect, reducing the number of fences only
by a marginal amount.

6.3 Optimizations

In measuring the effects of sequential consistency on the per-
formance of parallel programs, we focus on optimizations
for communication between threads. In a distributed envi-
ronment, the communication time is a major component of
the running time of a parallel program, so such optimizations
potentially provide much larger payoffs than sequential opti-
mizations. We evaluate our analysis using two optimizations:
converting blocking array copies to non-blocking copies, and
the inspector executor transformation on irregular array ac-
cesses.

6.3.1 Non-Blocking Array Copies

An array copy is a bulk communication operation in Tita-
nium between two arrays. The contents of the source array
are copied to the destination array where the domains of the
two arrays intersect. This operation isblocking, which means
that the thread executing the array copy waits until the oper-
ation completes before moving on to the next instruction. If
either the source array or the destination array is remote, then
communication over the network is required.

A compiler optimization that automatically converts block-
ing array copies into non-blocking operations has been devel-
oped in the Titanium compiler. The goal of this optimization
is to push the synchronization that ensures the completion of
the array copy as far down the instruction stream as possible.
The time between the issue of the non-blocking operation and
the synchronization for that operation can be used for other
communication and computation.

The use of sequential consistency as a memory model can
reduce the effectiveness of this optimization. An array copy
includes multiple reads and writes, so it can appear in critical
cycles. When fences are needed around an array copy, the
optimization cannot be performed.

6.3.2 Inspector Executor

The Titanium compiler has support for theinspector executor
framework [30] to optimize irregular remote accesses of the
form a[b[i]] that appear in a loop. The array access pat-
tern is computed in an initialinspectorloop. All the required
elements are prefetched into a local buffer. Theexecutorloop
then uses the prefetched elements for the actual computation.

The inspector executor transformation must respect local
dependencies. Using a sequentially consistent memory model
places further constraints on this optimization: the compiler
cannot apply it if their is another memory access in the orig-
inal loop requiring a fence between it and the indirect array
access. The prefetching performed by the optimization ag-
gregates the indirect array reads for all iterations of the loop,
changing the order of memory accesses in this case.
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Figure 7: Reduction in statically generated fences relative to thenäıve level of analysis.
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Figure 8: Reduction in fences hit at runtime relative to thenäıve level of analysis.
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6.4 Performance

We measured the performance of two benchmarks in which
communication optimizations prove effective6, comparing
our analysis against both the relaxed model and prior work
to enforce sequential consistency. We performed our experi-
ments on the Itanium/Myrinet cluster at Rice University, using
one processor on each node.

6.4.1 Dense Matrix Vector Multiply

In the demv benchmark, each thread uses array copies in
order to obtain the contents of the entire distributed source
vector. While retrieving each section of the source vector, a
thread can do local computation with parts of the source vec-
tor that it has already retrieved. Figure9 compares the perfor-
mance ofdemv using four versions of the compiler. There-
laxed version uses the Titanium memory consistency model,
which is weaker than sequential consistency. The other three
versions provide sequential consistency and differ only in the
analysis we use for enforcing it, as described in§6.2. The
näıveversion puts fences around the array copies, which pre-
vents it from being transformed into a non-blocking opera-
tion. The sharing version infers that the source vector is
shared, so it also places fences around the array copies. Our
analysis, on the other hand, infers that the array copy desti-
nations are thread-local and thus do not require fences. The
compiler can therefore convert the copies into non-blocking
operations, resulting in a speedup of 1.45 over thenäıve
andsharing versions. Since our analysis determines that no
fences at all are required, it performs just as well as under the
relaxed model.

6.4.2 Sparse Matrix Vector Multiply

In spmv, each thread uses indirect array accesses to read from
the distributed source vector. The inspector executor transfor-
mation can combine these individual reads into a bulk fetch.
Figure9 illustrates the performance ofspmv using four ver-
sions of the compiler. In thenäıve version, the compiler puts
fences around the reads on the source vector, preventing the
inspector executor optimization. Thesharing version infers
that the source vector is shared, so it also puts fences around
the reads. Our analysis, on the other hand, finds that the reads
have no conflict edges, since there is a barrier between the
code that updates the source vector and the read-only mul-
tiply phase in which the accesses occur. Since our analysis
determines that no fences are required, it generates code iden-
tical to that of the relaxed model, resulting in a speedup of
more than 80 over thenäıve andsharing versions. Note that

6The rest of the benchmarks do not benefit from communication optimiza-
tions, and prior work has shown that their performance is similar under the
relaxed and sequential consistency models even without our analyses [21].

the code under the relaxed model and using our analysis is it-
self an average of 21% faster than the same operation written
using Aztec, a popular sparse solver library written in C and
MPI [30].

7 Discussion

In this section, we discuss some of the limitations of and ex-
tensions to our analysis, its relation to race detection, and
some future work.

7.1 False Positives

A handful of program constructs cannot currently be handled
precisely by our analyses and therefore may result in false
conflicts:

• Array indices: Our alias analysis does not maintain
separate points-to sets for array indices and cannot dis-
tinguish accesses to different indices, so concurrent ac-
cesses to different indices can result in false conflicts.

• Granularity of thread-aware alias analysis: Our
thread-aware alias analysis only distinguishes between
local and remote abstract locations: it does take into ac-
count actual thread ownership of locations. In the code
below, the locations referenced bya are actually those
referenced byb on thread 0, so the writes tob on other
threads do not conflict with the reads ona.

a = broadcast b from 0;
if (Ti.thisProc() != 0)

b.f = a.f;

Our analysis can only determine thata can refer to the
locations referenced byb on any thread, so it assumes
that the writes tob and reads ona conflict.

With some difficulty, our analyses can be extended to handle
the cases above.

7.2 Race Detection

In §3.1, we showed that in order to provide sequential consis-
tency, it is sufficient to only consider conflicting accesses that
can run concurrently, which is the definition of arace con-
dition [23]. Sequential consistency and race conditions are
intimately related: under a relaxed memory model such as re-
lease consistency [11], a program with no races cannot violate
sequential consistency since the synchronization mechanisms
enforce order, and in a program with races, sequential con-
sistency can only be violated with respect to those memory
accesses that can be in a race condition. Providing sequential
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Figure 9: Performance comparisons for the dense and sparse matrix vector multiply benchmarks. Speedups are computed
against thenäıveversion.

consistency thus reduces to static race detection. However, an
imprecise analysis can only affect performance in the former,
while in the latter, it can render the detection useless.

Our analysis can be directly used to statically discover po-
tential races. Insample-sort , for example, it finds three
concurrent conflicts, one of which corresponds to a real race
condition. In order to be useful as a race detector, however,
our concurrency analysis needs to be modified to produce a
possible execution path on which each race can occur. Cur-
rently, it can produce the partial path between the first and
second access in a conflict but does not find the path from
program entry to the first access.

7.3 Future Work

In the future, we plan to explore the cost of sequential consis-
tency on larger and more varied applications such as adaptive
mesh refinement [33] and an implementation of the NAS par-
allel benchmarks [2] in Titanium [8]. We suspect that in or-
der to achieve comparable performance to a relaxed model in
these applications, a precise array index analysis is required.

8 Related Work

There is an extensive literature on compiler and runtime opti-
mizations for parallel machines, including automatically par-
allelized programs and optimization of data parallel programs,
which in their pure form have a sequential semantics. The
memory consistency issue arises in a language with an explic-
itly parallel semantics and some type of shared address space.
The class of such languages includes Java, UPC, Titanium,
and Co-Array Fortran, some of the languages proposed in the
recent HPCS effort, as well as shared memory language ex-
tensions such as POSIX Threads and OpenMP [6, 35, 24, 25].

Shasha and Snir provided some of the foundational work in
enforcing sequential consistency from a compiler level when
they introduced the idea ofcycle detection[29]. However, that
work was designed for general MIMD parallelism, limited to
straight-line code, and was not designed as a practical static
analysis. Midkiff and Padua outlined some of the implemen-
tation techniques that could violate sequential consistency and
developed some static analysis ideas, including a concurrent
static single assignment form in a paper by Lee et al. [19]. As
part of the Pensieve project, Lee and Padua exploited prop-
erties of fences and synchronization to reduce the number of
delays in cycle detection [20]. The project also includes a Java
compiler that takes a memory model as input [32]. More re-
cently, Sura et al. have shown that cooperating escape, thread
structure, and delay set analyses can be used to provide se-
quential consistency cheaply in Java [31]. Our work differs
from theirs in two primary ways: 1) we take advantage of
some of the synchronization paradigms, such as barriers, that
exist in SPMD programs, and 2) our machine targets include
distributed memory architectures where the cost of a memory
fence is essentially that of a round-trip communication across
the network.

The earliest implementation work on cycle detection was
by Krishnamurthy and Yelick for the restricted case of SPMD
programs [16]. That was done in a simplified subset of the
Split-C language and introduced a polynomial time algorithm
for cycle detection in SPMD programs. They also used syn-
chronization analysis to reduce the number of fences, but their
source language did not have the restriction that barriers must
match textually and they did not take advantage of single con-
ditionals. At compile time, they generated two versions of the
code, one assuming the barriers line up and the other one not.
At runtime, they switched between the two versions depend-
ing on how the barriers were executed. Our approach does
not suffer the same runtime overhead and code bloat that ex-
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ists in theirs. In addition, their compiler used only a simple
type-based alias analysis.

There has also been work done in the area of reducing the
number of fences required to enforce sequential consistency.
Liblit, Aiken, and Yelick developed a type system to identify
shared data accesses in Titanium programs [21], and for se-
quential consistency, they only insert a fence at each shared
data access identified. Based on our experimental results in
§6, our technique is a significant improvement over theirs in
terms of static fence count, dynamic fence count, and running
time of the generated programs.

Several other parallel analyses have been developed that do
not directly address memory consistency issues. Jeremiassen
and Eggers developed a static analysis for barrier synchro-
nization [14] for non-textual barriers. With textual barriers,
our analysis is more precise in finding memory accesses that
cannot run concurrently. Duesterwald and Soffa used data
flow analysis to compute the happened-before and happened-
after relation for program statements. The information is used
in detecting data races [9]. Masticola and Ryder developed
non-concurrency analysis to identify pairs of statements in a
parallel program that cannot run concurrently. The results
are used for debugging and optimization [22]. Rugina and
Rinard developed a thread-aware alias analysis for the Cilk
multithreaded programming language [28] that is both flow-
sensitive and context-sensitive. Others such as Zhu and Hen-
dren [36] and Hicks [12] have developed flow-insensitive ver-
sions for multithreaded languages.

9 Conclusion

Memory consistency models have been a controversial issue
in the design of shared memory hardware and languages for
roughly two decades. While most experts agree that sequen-
tial consistency is the most natural semantics, few agree on
what memory model can be used to obtain reasonable per-
formance. This is true for languages designed to run on
cache-coherent shared memory architectures as well as on dis-
tributed memory multiprocessors and clusters. The question
is difficult to answer in the abstract because the penalty for
sequential consistency depends on the quality of the optimiza-
tions that might be usable in a more relaxed semantics but not
under sequential consistency. This paper provides evidence
that, even for partitioned global address space languages like
Titanium that run on a cluster network, sequential consistency
may be a practical model.

The contributions of this paper include a set of compiler
analyses that minimize the cost of guaranteeing sequential
consistency. Some of the analyses take advantage of the
unique synchronization and parallel control constructs in the
Titanium language. In particular, they use the fact that threads

must always reach the same textual instance of a barrier and
that control expressions guarded by single-valued expressions
will execute identically on all threads. We presented an ex-
perimental evaluation of several different levels of compiler
analyses, all of which ensure sequential consistency but with
increasing accuracy. The accuracy allows memory fences to
be eliminated and other optimizations to be applicable. We
experimented with several benchmark programs and showed
that our most aggressive analysis was able to eliminate over
97% of the static memory fence instances that were needed
by a näıve implementation. At runtime, these accesses ac-
counted for 87 to 100% of the dynamically encountered mem-
ory fences in all but one benchmark, which required only
slight modification to eliminate most of the remaining fences.
We then combined the analysis with two communication opti-
mizations, overlapping remote array copy operations with lo-
cal computation and optimizing irregular accesses on remote
arrays, and applied them to two linear algebra kernels. Our
results show that even when combined with these high level
communication optimizations designed for distributed mem-
ory environments, our most aggressive analysis for sequential
consistency was able to obtain the same performance as a re-
laxed model. While additional work on parallel optimizations
and analyses is needed, we believe these results provide im-
portant evidence on the viability of using a simple memory
consistency model for global address space languages with-
out sacrificing performance.
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