
Supporting Configurable Congestion Control in Data
Transport Services

Yunhong Gu1 and Robert L. Grossman1, 2

1. University of Illinois at Chicago
2. Open Data Partners

{ygu3, grossman}@uic.edu

ABSTRACT
As wide area high-speed networks rapidly increase, new
applications emerge and require new control mechanisms in data
transport services to support them. Network researchers have
proposed numerous congestion control algorithms in the past few
years. However, a difficult problem is how to evaluate,
implement, and deploy these new algorithms in a practical way.

In this paper, we present UDT/CCC (UDP-based Data Transport
Library with Configurable Congestion Control), a data transport
library that allows users to make use of a new control algorithm
through simple configurations. We aim to provide a tool for fast
implementation and deployment, as well as easy evaluation, of
new congestion control algorithms. UDT/CCC uses an objected
oriented design. It collects a set of congestion control event
handlers and parameters in a base C++ class, so a new control
mechanism can redefine or modify them through C++ class
inheritance. We show that our UDT/CCC library can be used to
implement a large variety of control algorithms and can easily
simulate the behavior of their native implementations. The
UDT/CCC library is at the application level and it does not need
root privilege to get installed. Meanwhile, it was specially
developed to require very few changes to the existing
applications. This paper describes its design, implementation, and
evaluation.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Protocol Architecture

General Terms
Management, Performance, Design, Experimentation

Keywords
Transport Protocols, Congestion Control, UDT, CCC

1. INTRODUCTION
The rapid increase of network bandwidth has enabled numerous
new distributed data intensive applications. These new
applications vary from bulk data transfer (e.g., SDSS [34] and e-
VLBI [40]) to high throughput interactive systems (e.g., GeoWall
[35]). Different applications have specific requirements for data
transfer services. For example, a GeoWall application may prefer
a smooth image/video data transfer rate, whereas it is desirable to
move SDSS data at the highest possible speed in private
networks.
However, the current Internet is designed to provide general
service to support as many different applications as possible. This
design philosophy has a major impact on the transport protocols.
The majority of traffic on the Internet is contributed by TCP
flows; but there still are applications that TCP cannot support
well. In the context of high performance computing, TCP is well
known for its poor efficiency and fairness in high bandwidth
delay product networks [1, 2].
In the past few years, network researchers have proposed
numerous new congestion control algorithms for both general and
specific data transfers. However, most of them only end with
simulations and limited laboratory experiments; few get tested
and deployed in real networks. On the one hand, modifications of
the kernel network stack (e.g., new TCP variants) usually take
years for standardization, implementation, and widespread
deployment. On the other hand, although user space stacks are
much easier to get deployed, it is often a painstaking and time-
consuming job to implement each of them from scratch. In fact,
ever since the emergence of TCP about three decades ago, only
four versions have been widely deployed, namely Tahoe, Reno,
NewReno, and SACK.
It is very desirable to create a configurable or reusable user space
network stack on which a new congestion control algorithm can
be easily implemented, deployed, and evaluated. First, a user
space stack is much easier to get deployed, and so is the
congestion control algorithms built in it. Second, this stack is
useful to support application aware control approaches. An
application may prefer to use different congestion control
strategies in different situations. Third, this stack can save
significant time for network researchers and developers because
they can focus on the control algorithm itself rather than the
whole protocol implementation. As a sequence, as there are more
and more users, this stack can provide good software quality to
support application development.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

However, this stack is not a replacement for, but a complement to
the kernel space network stacks. General protocols like UDP,
TCP, DCCP [8], and SCTP [7] should still exist inside the kernel
space of operating systems, but OS vendors may be reluctant to
support too many protocols and algorithms, especially those
application specific or network specific ones.
To address the above requirement, we developed the UDT/CCC
library, or UDP-base Data Transfer library with Configurable
Congestion Control. This work is based on our UDT library [1],
which is a user space data transport library developed for high
performance data intensive applications. CCC is one of the
features included in the current UDT release.
UDT/CCC is written in C++ and it provides a set of control
events handlers and parameters in a base C++ class. A new
control algorithm inherits this base class, redefines the proper
control event handlers, and modifies certain control parameters
when necessary.
UDT/CCC supports a wide variety of control algorithms,
including but not limited to, TCP algorithms (e.g., NewReno,
Vegas [25], FAST [26], Westwood [24], HighSpeed [27], BiC
[29], and Scalable [28]), bulk data transfer algorithms (e.g.,
SABUL [30], RBUDP [31], LambdaStream [32], CHEETAH
[33], and Hurricane [41]), and group transport control algorithms
(e.g., CM [5] and GTP [36]).
The UDT library provides a socket-like API so that applications
can change their data transport service between TCP and
UDT/CCC with ease. In certain situations, an existing TCP-based
application can make use of UDT without any change to the
source code.
We envision the following use scenarios for UDT/CCC:

• Implementation and deployment of new control algorithms.
Certain control algorithms may not be appropriate to be
deployed in kernel space, e.g., a bulk data transfer
mechanism used only in private links. These algorithms can
be implemented using UDT/CCC.

• Application awareness support and dynamic configuration.
An application may choose different congestion control
strategies under different networks, different users, and even
different time slots. UDT/CCC supports these application
aware algorithms.

• Evaluation of new control algorithms. Even if a control
algorithm is to be deployed in kernel space, it needs to be
tested thoroughly before OS vendors distribute the new
version. It is much easier to test the new algorithms using
UDT/CCC than modifying an OS kernel.

In this paper, we present the design, implementation, and
evaluation of the UDT/CCC library. The rest of the paper is
organized as follows. We begin with the CCC design and
architecture in Section 2, followed by the key implementation
details in Section 3. We then evaluate the UDT/CCC library in the
following two sections. In Section 4, we demonstrate the
expressiveness and simplicity of using UDT/CCC to develop new
control algorithms. In Section 5, we use experimental studies to
examine the performance characteristics. Finally, we give a brief
review of related work in Section 6 and conclude the paper in
Section 7.

2. ARCHITECTURE AND DESIGN
The UDT/CCC library can be regarded as a middleware layer
between applications and the network transport layer. The library
is completely implemented at the application level above UDP. In
this section, we focus on how the congestion control interface is
provided by the library and how it is implemented inside the UDT
layer.

2.1 Overview
The UDT framework has a layered architecture (Figure 1). UDT
uses UDP through the socket interface provided by operating
systems. Meanwhile, it provides a UDT socket interface to
applications.
Applications can call the UDT sockets API in the same way they
call the system sockets API. They can provide a congestion
control class instance (CC in Figure 1) for UDT to process the
control events, or use the default congestion control algorithm [1]
provided by UDT. The CC instance includes a set of necessary
user-defined callback functions (control event handlers) to
process certain control events.

UDP

OS Socket Interface

UDT

UDT Socket

Application CC

C
C C

allbacks

M
em

ory C
opy Bypass

Figure 1. UDT/CCC Architecture. In this layered architecture,
the UDT layer is completely in user space above the network
transport layer of UDP, whereas the UDT layer itself provides
transport for applications. Meanwhile, applications provide
optional control handlers to UDT as callbacks.

2.2 The CCC Interface
We identify four categories of configuration features to support
configurable congestion control mechanisms. They are 1) control
event handler callbacks, 2) protocol behavior configuration, 3)
packet extension and 4) performance monitoring.

2.2.1 Control Event Callbacks
Seven basic callback functions are defined in the base CCC class.
They are called by UDT when a control event is triggered.

init and close: These two methods are called when a UDT
connection is set up and when it is torn down. They can be used to
initialize necessary data structures and release them later.

onACK: This handler is called when an ACK (acknowledgment)
is received at the sender side. The sequence number of the
acknowledged packet can be learned from the parameters of this
method.

onLoss: This handler is called when the sender detects a packet
loss event. The explicit loss information is given to users as the
onLoss interface parameters. Note that this method may be
redundant for most TCP algorithms that use only duplicate ACKs
to detect packet loss.

onTimeout: A timeout event can trigger the action defined by this
handler. The timeout value can be assigned by users, otherwise it
uses the default value according to the TCP RTO calculation
described in RFC 2988 [11].

onPktSent: This is called right before a data packet is sent. The
packet information (sequence number, timestamp, size, etc.) is
available through the parameters of this method.

onPktReceived: This is called right after a data packet is
received. Similar to onPktSent, the entire packet information can
be accessed by users through the function parameters.

processCustomMsg: This method is used for UDT to process
user-defined control messages.

2.2.2 Protocol Configuration
To accommodate certain control algorithms, some of the protocol
behavior has to be customized. For example, a control algorithm
may be sensitive to the way that data packets are acknowledged.
UDT/CCC provides necessary protocol configuration APIs for
these purposes.
It allows users to define how to acknowledge received packets at
the receiver side. The functions of setACKTimer and
setACKInterval determine how often an acknowledgement is sent,
in elapsed time and number of arrived packets, respectively.
The method of sendCustomMsg sends out a user-defined control
packet to the peer side of a UDT connection, where it is processed
by callback functions processCustomMsg.
Finally, UDT/CCC also allows users to modify the values of RTT
and RTO. A new congestion control class can choose to use either
the RTT value provided by UDT, or its own calculated value.
Similarly, the RTO value can also be redefined.
There are other features of the UDT protocol that are either not
related to congestion control or are helpful to most control
algorithms. These features, such as selective acknowledgement
(SACK) [37] and robust reordering (RR) [38], cannot be
configured by CCC users, although some of the features can be
configured through UDT interfaces.

2.2.3 Packet Extension
It is necessary to allow user-defined control packets for a
configurable protocol stack.
Because our UDT/CCC library is mainly focused on congestion
control algorithms, we only give limited customization ability to
the control packets. Data packet processing contributes to a large
portion of CPU utilization and customized data packets may hurt
the performance.
A UDT data packet contains a packet-based sequence number and
a relative timestamp (it starts counting since the connection is set
up) in the resolution of microseconds (Figure 2), in addition to the
UDP header information. We believe that this information is
sufficient for most control algorithms.

Users can define their own control packets using the Type 2
information in the UDT control packet header (Figure 2). The
detailed control information carried by these packets varies
depending on the packet types. At the receiver side, users need to
override processCustomMsg to tell UDT/CCC how to process
these new types of packets.

Sequence Number

Timestamp

0

0 1 31

Control Information

1 ACK Sequence NumberType 1 Type 2

0 1 4 15 31

Data Packet

Control Packet

Figure 2. UDT Packet Header Structures. The first bit of the
packet header is a flag to indicate if this is a data packet (0) or a
control packet (1). Data packets contain a 31-bit sequence
number and a 32-bit timestamp. In the control packet header, bit
1- 4 is the packet type (type 1) information. Type 0 – 6 are used
by UDT, whereas type 7 is used for user defined types, whose
detail type information is put in bit 5 – 15 (type 2). The detailed
control information depends on the packet type.

Note that UDT’s packet-based sequencing with the packet size
information provided by UDP is equivalent to TCP’s byte-based
sequencing and can also support data streaming.

2.2.4 Performance Monitoring
Protocol performance information supports the decisions and
diagnosis of a control algorithm. For example, algorithms like
TFRC [9] need to learn the loss rate to tune the packet sending
rate. Meanwhile, when testing new algorithms, performance
statistics and internal protocol parameters are needed.
The performance monitor provides information including the
duration time since the connection was started, RTT, sending rate,
receiving rate, loss rate, packet sending period, congestion
window size, flow window size, number of ACKs, and number of
NAKs. UDT records these traces whenever the values are
changed.
These performance traces can be read in three categories (when
applicable): the aggregate values since the connection started, the
local values since the last time the trace is queried, and the instant
values when the query is made.

2.3 The UDT Protocol
UDT is a unicast, connection-oriented, duplex data stream
protocol.
Inside the UDT layer, there are two basic logical parts: the sender
and the receiver. The sender is responsible for sending data
packets according to congestion and flow control, whereas the
receiver is responsible for receiving and processing packets, as
well as sending control packets when necessary.

Figure 3 describes the relationship between the UDT sender and
receiver. In Figure 3, the UDT entity A sends application data to
the UDT entity B. The data is sent from A’s sender to B’s
receiver, whereas the control flow is exchanged between the
receivers.

Sender Sender

Receiver Receiver

UDT A UDT B

Data

Control

Figure 3. Relationship between UDT Sender and Receiver. All
UDT entities have the same architectures, each having both a
sender and receiver. This figure demonstrates the situation when
a UDT entity A sends data to another UDT entity B. Data is
transferred from A’s sender to B’s receiver, whereas control
information is exchanged between the receivers.

The detailed UDT protocol specification can be found in [42]. In
the rest of the section, we will introduce the abstract UDT sending
and receiving algorithms and how the control event handlers are
processed in these algorithms. The detailed implementation will
be introduced in next section.

2.3.1 The Sending Algorithm
Figure 4 describes the abstract sending algorithm. In this
algorithm, a sender’s loss list is a data structure that records the
lost data packets when informed of them by loss reports from the
receiver or by sender side timeouts. ACK and NAK are the
abbreviations of acknowledgment and loss report (negative
acknowledgment), respectively.

1) If there is no application data to send, sleep until it is activated
by the application.

2) Packet sending:
a) If the sender’s loss list is not empty, remove the first lost

sequence number from the list and pack the corresponding
packet.

b) Otherwise, if the number of unacknowledged packets does
not exceed the congestion and flow window sizes, pack a
new packet.

c) Otherwise, wait here until an ACK or NAK is received, or
timeout occurs. Go to Step 1.

3) onPktSent().
4) Send the packed packet out.
5) Wait until the next packet sending time. Go to Step 1.

Figure 4. UDT Sending Algorithm.

Step 2.b is the window/flow control, which limits the number of
unacknowledged packets. The limit is equal to either the
congestion window size or the flow window size, whichever one
is smallest.
Step 2.c implements self-clocking. This step could be removed to
realize a pure rate-based control. However, due to the lack of high
precision timing in general operating systems, self-clocking is
useful in reducing CPU overhead (by avoiding busy waiting).
Note that the timeout in this step is used to break the deadlock

when there is no feedback. It is different from the packet sending
timeout in the onTimeout method.
Step 4 is the rate control, which suspends the data sending until
the next sending time.

2.3.2 The Receiving Algorithm
Figure 5 describes the receiving algorithm. In this algorithm, the
receiver's loss list is a data structure to store the sequence
numbers of the lost packets. EXP is the abbreviation for timeout
(expiration).

1) Query the timers

a) If ACK timer is expired and there are new packets to
acknowledge, send back an ACK report; otherwise, if the
user-defined ACK interval is reached, send back a
lightweight ACK report.

b) If NAK timer is expired and the receiver’s loss list is not
empty, send back a NAK report;

c) If EXP timer is expired and there are sent but
unacknowledged packets, execute onTimeOut(), and put
the sequence numbers of these packets into the sender’s
loss list;

d) Reset the expired timers.
2) Start time bounded UDP receiving. If nothing is received before

the UDP timer expires, go to Step 1.
3) If there is no unacknowledged packet, reset the EXP timer.
4) If the received packet is a control packet, process it, and reset

EXP timer if it is an ACK or NAK; According to the packet type,
one of the following callback functions may be executed:
onACK(); onLoss(); processCustomMsg();
Go to Step 1.

5) Check packet loss. If there are packet losses, insert the sequence
numbers of the lost packets into the receiver’s loss list and
generate a loss report (NAK).

6) onPktReceived(); Go to Step 1.

Figure 5. UDT Receiving Algorithm.

The receiver uses self-clocked timers to trigger acknowledgment,
loss reports, and timeout events (step 1 and 2). This timing
mechanism takes advantage of time-bounded UDP receiving
using the SO_RCVTIMEO option. On systems where
SO_RCVTIMEO is unavailable, select can be used.
As soon as a packet is received, the receiver processes the new
packet according to its type (step 4 and 5).
If there is no unacknowledged packet, the receiver simply resets
the EXP timer (step 3); otherwise, the EXP timer only resets
when it is an ACK or NAK packet (step 4).
Note that UDT has its own ACK and NAK processing mechanism
in addition to the user-defined event handler for data reliability
purposes.
Step 5 is to check packet loss. Various loss detection techniques
such as robust reordering [38] can be used here. UDT uses packet
based sequencing and the packet size can be determined from the
UDP interface.

3. IMPLEMENTATION
One particular motivation of UDT/CCC is to support high
performance data transfer in high-speed networks. Efficiency was
always a major guideline when we implemented the UDT library.

The efficiency of a protocol mainly depends on two factors: the
congestion/flow control algorithm and the protocol
design/implementation. UDT/CCC inherits much of its design and
implementation from the UDT transport protocol [1].
Another important implementation objective is to provide good
support for applications. User space libraries can be much easier
to get deployed, but it is difficult for them to be transparent to
applications. Therefore, existing applications may need to change
their source codes. Our implementation makes a great effort to
reduce the application developers’ work.

3.1 Software Architecture
Figure 7 depicts the UDT/CCC software architecture. The UDT
layer has five function components: the API module, the sender,
the receiver, the listener, and the UDP channel, as well as four
data components: sender’s protocol buffer, receiver’s protocol
buffer, sender’s loss list, and receiver’s loss list.
Because UDT is bi-directional, all UDT entities have the same
structure. The sender and receiver in Figure 6 have the same
relationship as that in Figure 2.

API

Sender’s
Buffer

Receiver’s
Buffer

Sender’s
Loss List

Receiver’s
Loss List

Sender

Receiver

U
D

P Channel

I/O

UDT Sock Control

CC

Data

Data

NAK

C
ongestion C

ontrol

Listener

CC Configuration

Figure 6. UDT/CCC Implementation. The solid line represents
the data flow, and the dashed line represents the control flow. The
shading blocks (buffers and loss lists) are the four data
components, whereas the blank blocks (API, UDP channel,
sender, receiver, and listener) are function components.

The API module is responsible for interacting with applications.
The data to be sent is passed to the sender's buffer and sent out by
the sender into the UDP channel. At the other side of the
connection (not shown in this figure but it has the same
architecture), the receiver reads data from the UDP channel into
the receiver's buffer, reorders the data, and checks packet losses.
Applications can read the received data from the receiver's buffer.
The receiver also processes received control information. It will
update the sender's loss list (when NAK is received) and the
receiver's loss list (when loss is detected). Certain control events
will trigger the receiver to update the congestion control module,
which is in charge of the sender’s packet sending.
The UDT socket options are passed to the sender/receiver
(synchronization mode), the buffer management modules (buffer
size), the UDP channel (UDP socket option), the listener

(backlog), and CC (the congestion control algorithm). Options can
also be read from these modules and provided to applications by
the API module.

3.2 Optimizations
Implementation efficiency is critical to UDT/CCC for two major
reasons: 1) the primary goal of the library is to support the
emerging high performance applications; 2) we do not want to
limit the performance of the control algorithm by a poor
implementation.
We have described the optimizations of the UDT library in
previous work [1]. In this section, we only give a very brief
summary of these optimizations, plus new problems arising from
the introduction of CCC.
The first optimization category is focused on the avoidance of
memory copy. Ideally, application data should be exchanged
directly with the UDP channel. This optimization needs support
from the API and protocol buffer management modules.
The second optimization category is designed to reduce the
frequency of control events and the overhead of event handling.
The majority of control events come from ACK/NAK triggering
and processing. Other events, such as API call and timeout, are
much less frequent. The UDT library has introduced an optimized
loss processing algorithm to handle NAK processing.
The UDT protocol uses timer-based acknowledgement so there
are only a small portion of ACKs. However, when introducing
CCC, a new algorithm may require much more frequent ACKs.
To handle this problem, UDT/CCC still only modify the protocol
buffers at certain time intervals; for all other ACKs (namely light
ACKs), only the necessary sequence number related data are
updated.
Finally, since high-end workstations usually have multiple
processors, UDT use a multi-threading implementation. The
sender, the receiver, and the listener are concurrent threads, but
they are only started when necessary (lazy start). It is also
necessary to provide fine granularity of the threading
implementation.

3.3 Application Interface
An application can make use of the UDT/CCC library in four
ways. The library provides a set of C++ API that is very similar to
the system socket API. Network programmers can learn it easily
and use it in a similar way as using TCP sockets. In particular,
applications can use the setsockopt/getsockopt method to set and
configure a specific congestion control algorithm at run time.
When used in applications written by languages other than
C/C++, an API wrapper can be used. So far, both Java and Python
UDT API wrappers have been developed.
Certain applications have a data transport middleware to make use
of multiple transport protocols. In this situation, a new UDT
driver can be added to this middleware, and then used by the
applications transparently. For example, a UDT XIO driver has
been developed so that the library can be used in Globus
applications.
Finally, our library also provides a set of C API that has exactly
the same semantics as the system socket API. An existing
application can be re-compiled and linked against the UDT/CCC
C library. In this way, the applications use our library

transparently without any changes to the source codes. There is
one limitation, though. UDT does not support multi-process
models (e.g., using fork system call) due to efficiency
considerations, so this method does not work if the existing
application uses the same sockets in multiple processes.

4. EXPRESSIVENESS
To evaluate the expressiveness of UDT/CCC, we implement a set
of representative control algorithms using the library. Any
algorithms belonging to a similar set can be implemented in a
similar way. Meanwhile, we show that the implementation is
simple and easy to learn.
In this section, we describe in detail how to implement control
algorithms of rate based UDP, TCP variants, including both loss-
based and delay-based algorithms, and group transport protocols
as well.
UDT/CCC uses an object-oriented design. It provides a base C++
class (CCC) that contains all the functions and event handlers
described in Section 2.2. A new control algorithm can inherit
from this class and redefine certain control event handlers.
The implementation of any control algorithm is to update at least
one of the two control parameters: the congestion window size
(m_dCWndSize) and the inter-packet time (m_dPacketPeriod),
both of which are CCC class member variables.

4.1 Rate-based UDP
A rate-based reliable UDP library (CUDPBlast) is often used to
transfer bulk data over private links. To implement this control
mechanism, CUDPBlast initializes the congestion window with a
very large value so that the window size will not limit the packet
sending. The rest is to provide a method to assign a data transfer
rate to a specific CUDPBlast instance. A piece of pseudo code is
shown below:

class CUDPBlast: public CCC
{
public:
 CUDPBlast() {m_dCWndSize = 83333.0;}

 void setRate(int mbps)
 {
 m_dPktSndPeriod = (SMSS * 8.0) / mbps;
 }
}

By using setsockopt an application can assign CUDPBlast to a
UDT socket and by using getsockopt the application can obtain a
pointer to the instance of CUDPBlast being used by the UDT
socket. The application can then call the setRate method of this
instance to set or modify a fixed sending rate at any time.

4.2 Standard TCP (TCP NewReno)
As a more complex example, we further show how to use the
UDT/CCC library to implement the standard TCP congestion
control algorithm (CTCP). Because a large portion of new
proposed congestion control algorithms are TCP-based, this
CTCP class can be further inherited and redefined to implement
more TCP variants, which we will describe in the next two
subsections.

TCP is a pure window-based control protocol. Therefore, during
initialization, the inter-packet time is set to zero. In addition, TCP
need data packets to be acknowledged frequently, usually every
one or two packets1. This is also configured in the initialization.
TCP does not need explicit loss notification, but uses three
duplicate ACKs to indicate packet loss. Therefore, for congestion
control, CTCP only redefined two event handlers: onACK and
onTimeout. In onACK, CTCP detects duplicate ACKs and takes
proper actions. Here is the pseudo code of the fast retransmit and
fast recovery algorithm in RFC 2581:

virtual void onACK(const int& ack)
{
 if (three duplicate ACK detected)
 {
 // ssthresh = max{flight_size / 2, 3}
 // cwnd = ssthresh + 3 * SMSS
 }
 else if (further duplicate ACK detected)
 {
 // cwnd = cwnd + SMSS
 }
 else if (end fast recovery)
 {
 // cwnd = ssthresh
 }
 else
 {
 // cwnd = cwnd + 1/cwnd
 }
}

The CTCP implementation can provide more TCP event handlers
such as DupACKAction and ACKAction, which will further
reduce the work of implementing new TCP variants.
Note that here we are only implementing TCP’s congestion
control algorithm, but NOT the whole TCP protocol. The
UDT/CCC library does not implement exactly the same protocol
mechanisms as in the TCP specification but it does provide
similar functionality. For example, TCP uses byte-based
sequencing whereas UDT uses packet-based sequencing, but this
should not prevent CTCP from simulating TCP’s congestion
avoidance behavior. Certain TCP mechanisms that can affect
congestion control, such as SACK and RR, have their equivalents
implemented in the UDT library. We believe these mechanisms
will benefit most congestion control algorithms.

4.3 New TCP Algorithms (Loss-based)
New TCP variants that use loss-based approaches usually redefine
the increase and decrease formulas of the congestion window size.
Implementations of these protocols can simply inherit from CTCP
and redefine proper TCP event handlers.
For example, to implement Scalable TCP, we can simply derive a
new class from CTCP, and override the actions of increasing (by

1 Although TCP uses accumulative acknowledgements, a TCP

implementation usually acknowledges at the boundary of a data
segment. This is equivalent to acknowledging a UDT data
packet in CTCP.

0.1 instead of 1/cwnd) and decreasing (by 1/8 instead of 1/2) the
congestion window size.
Similarly, we have also implemented HighSpeed TCP (CHS), BiC
TCP (CBiC), and TCP Westwood (CWestwood).

4.4 New TCP Algorithms (Delay-based)
Delay-based algorithms usually need accurate timing information
for each packet. For efficiency, UDT does not calculate RTT for
each data packet because it is unnecessary for most control
algorithms. However, this can be done by overriding onPktSent
and onACK event handlers, where the time of packet sending and
the arrival of its acknowledgement can be recorded. For
algorithms preferring one-way delay (OWD) information, each
UDT packets contains the sending time in its packet header, and a
new algorithm can override onPktReceived to calculate OWD.
Using the strategy described above, we implement the TCP Vegas
(CVegas) control algorithm. CVegas uses its own data structure to
record packet departure timestamps and ACK arrival timestamps,
and then calculates accurate RTT values. With simple
modifications to the control formulas, we further implement
FAST TCP (CFAST).

4.5 Group Transport Control
While we have demonstrated that UDT/CCC can be used to
implement end-to-end unicast congestion control algorithms, we
now show that it can also be used to implement group-based
control mechanisms, such as CM and GTP.
To support this feature, the new algorithm class simply needs to
implement a central manager to control a group of connections.
The control parameters are calculated by the central manager and
then fed back to the control class instance of each individual
connection.
We implemented GTP (CGTP) as an example of group-based
control mechanisms. The GTP protocol controls a group of flows
with the same destination. CGTP tunes the packet sending rate at
the receiver side periodically and feeds back the parameters using
UDT/CCC’s sendCustomMsg method.

4.6 Summary
We have implemented nine example algorithms using UDT/CCC,
including rate-based reliable UDP, TCP and its variants, and
group-based protocols. We demonstrated that our UDT/CCC
library can support a large variety of congestion control
algorithms, which are supported by only 8 event handlers, 4
protocol control functions, and 1 performance monitoring
function.
The concise UDT/CCC API is easy to learn. In fact, it takes a
small piece of code to implement most the algorithms described
above. Table 1 lists the lines of code (LOC) of implementations
of TCP algorithms using UDT/CCC, as well as the LOC of those
native implementations (Linux kernel patches). The LOC value is
estimated by the number of semicolons in the corresponding
C/C++ code segment.
As a reference point, the UDT library has 3134 lines of effective
code (i.e., excluding comments, blank lines, etc.), SABUL has
2670 lines of code, and the RBUDP library has approximately
2330 lines of code. While these numbers are not enough to reflect
the complexity of implementing a transport protocol, the much

smaller number of LOC values of UDT/CCC based
implementation can indicate the simplicity of using UDT/CCC.

Table 1. Lines of Code (LOC) of implementations of TCP
algorithms. This table lists LOC of different TCP algorithms
implemented using UDT/CCC and their respective Linux kernel
patches (native implementations). The LOC of Linux patches
include both added lines and removed lines.

Protocol UDT/CCC Native
TCP 28 -
Scalable TCP 11 370
HighSpeed TCP 8 40
BiC TCP 38 430
TCP Westwood 27 182
TCP Vegas 37 247
FAST TCP 31 481

The class inheritance relationship of these UDT/CCC
implemented algorithms can be found in Figure 7. Code reuse by
class inheritance also contributes to the small LOC values of
those TCP-based algorithms.

CCC

CTCP CGTP CUDPBlast

CScalable CBiC CHS CWestwoodCVegas

CFAST

Figure 7. UDT/CCC based protocols. This figure shows the
class inheritance relationship among the control algorithms we
implemented. Note that this is only for the purpose of code reuse,
and it does NOT imply any other relationship among these
algorithms.

5. PERFORMANCE
In this section, we examine the performance characteristics of
UDT/CCC. We focus on two important evaluations: 1) can
UDT/CCC based implementations simulate the behaviors of their
native implementation counterparts and 2) what is the additional
CPU overhead introduced by this application implementation?

5.1 Similarity
It is a fundamental goal for UDT/CCC to simulate the
performance of a control algorithm’s native implementation or
realize the algorithm’s theoretical performance.
In most cases, congestion/flow control algorithms are the most
significant factor that determines a protocol’s performance-related
behavior (throughput, fairness, and stability). Less significant
factors include other protocol control mechanisms, such as RTT
calculation, timeout calculation, acknowledgment interval, etc.
We have made most of these control mechanisms configurable
through the CCC interface and the UDT protocol control
interface. In this subsection we will show that a UDT/CCC based

implementation demonstrates similar performance to a native
implementation.
Since TCP is probably the most representative control protocol,
we compared an application level TCP implementation using our
UDT/CCC library (CTCP) against the standard TCP
implementation provided by Linux kernel 2.4.18.
The experiment was performed between two Linux boxes
between Chicago and Amsterdam. The link is 1 Gb/s with 110ms
RTT and was reserved for our experiment only in order to
eliminate cross traffic noises. Each Linux box has dual Xeon
2.4GHz processors and was installed with Linux kernel 2.4.18.
We started multiple TCP and CTCP flows in separate runs, each
of which was kept running for at least 60 minutes. The total TCP
buffer size was set to at least the size of BDP (bandwidth delay
product). Both TCP and CTCP experiments used the same testing
program (except the connections were TCP and CTCP,
respectively) with same configuration (buffer size, etc.).
We recorded the aggregate throughput (value between 0 and 1000
Mbps), fairness index (value between 0 and 1), and stability index
(equal to or greater than 0) in Table 2. The definitions of the
fairness index and stability index can be found in [1, 26]. The
fairness index represents how fairly the bandwidth is shared by
concurrent flows and larger values are better. The stability index
describes the oscillations of the flows and smaller values mean
less oscillation. These three measurements summarize most of the
performance characteristics of a congestion control algorithm.

Table 2. Performance characteristics of TCP and CTCP with
various parallel flows. The table lists the aggregate throughput
(in Mb/s), fairness index, and stability index of concurrent TCP
and CTCP flows. Each row records an independent run with a
different number of parallel flows.

Throughput Fairness Stability Flow
TCP CTCP TCP CTCP TCP CTCP

1 112 122 1 1 0.517 0.415
2 191 208 0.997 0.999 0.476 0.426
4 322 323 0.949 0.999 0.484 0.492
8 378 422 0.971 0.999 0.633 0.550
16 672 642 0.958 0.985 0.502 0.482
32 877 799 0.988 0.997 0.491 0.470
64 921 716 0.994 0.996 0.569 0.529

From Table 2, we find that TCP and CTCP have pretty similar
throughput for small numbers of parallel flows. However, as the
number of parallelism increases, CTCP stops increasing its
throughput first and thus has a significantly smaller throughput
than TCP when there are 64 parallel flows2. Further analysis
indicates that the reason for this is that CTCP costs more CPU
than kernel implemented TCP and with 64 flows the CPU time
has been used up. To verify this assertion, we started another
experiment using machines with dual AMD 64-bit Opteron
processors and this time CTCP reaches more than 900Mbps at 64
parallel flows. The CPU usage problem will be further analyzed
in Section 5.2.

2 TCP throughput will also start to decrease as the number of

parallel flows increases [12].

In spite of the CPU utilization limitation, both of the
implementations have similar performance on fairness and
stability. They both realize good fairness with near-one fairness
indexes, as the AIMD algorithm indicates. The stability indexes
are around 0.5 for all runs.
In addition to the experiments above, we have also tested several
reliable UDP-based protocols such as UDP Blast (CUDPBlast) to
examine if the UDT/CCC based implementation conforms to the
protocol’s theoretical performance. We also examined the
performance of UDT/CCC in a real streaming merge application,
in which the receiver (where data is merged) requests an explicit
sending rate to the data sources. This service is provided by a
specific control mechanism implemented using UDT/CCC. The
results of these experiments were positive and expected
performance was reached.

5.2 CPU Usage Overhead
While we have addressed the expressiveness and similarity issues,
there is one last major concern in using the UDT/CCC library:
how much is the overhead brought in by UDT/CCC?
Before we go into the details, we show the CPU usages
(percentage of CPU time used by TCP and CTCP) of the
experiments in Table 2, Section 5.1. The result is listed in Table
3. Because there are two processors in each of our testing
machine, the percentage varies between 0% and 200%.

Table 3. CPU usage of TCP and CTCP with various parallel
flows. The table lists the CPU usage percentage of both the
sender and receiver sides. Each row records the data for the two
runs of TCP and CTCP, respectively. The maximum CPU usage
percentage is 200%.

Sender Receiver Flow
TCP CTCP TCP CTCP

1 9.5 16.7 10.1 13.0
2 18.6 33.9 19.8 24.4
4 31.2 58.2 20.9 26.5
8 35.0 71.3 38.6 44.0
16 62.5 122.8 69.6 73.1
32 88.1 198.0 90.5 105.7
64 93.2 198.0 91.9 94.2

Table 3 shows that at the receiver side, CTCP has very good CPU
usage compared to the Linux TCP implementation. However, at
the sender side CTCP has a much higher CPU usage; this is why
CTCP stops increasing its throughput after 32 parallel flows in
Table 2.
The major performance overhead added by an application level
implementation comes from additional memory copy between
application buffer and protocol buffer and additional context
switches by packet processing and threading.
UDT has a best-effort method to reduce the additional memory
copy and in the best case, additional memory copy will be
completely eliminated.
However, UDT can do little for context switches caused by packet
processing. The number of packets (for both data and control
information) is decided by how much data applications need to
transfer, whereas the number of control packets also depends on

the specific protocol. For example, most reliable UDP protocols
(SABUL, RBUDP, etc) only feed back an acknowledgement at
the end of a large data block, whereas TCP needs to acknowledge
arrived packets more frequently, at about every 1 or 2 packets.
Our more detailed experiments discovered two major overheads
added by CTCP compared to TCP. One is from acknowledging,
including the subsequent overheads of context switches, buffer
and sequence number updating, and thread synchronizations. The
other is from application level threading.
In the following experiments, we increased the acknowledgement
interval of our CTCP implementation, and, accordingly, the
increases per ACK at the sender side. We run the experiments
with the same setup as Table 2 in Section 5.1. The CPU usages
are recorded in Table 4.
In Table 4 we use MHz/Mbps to describe CPU utilization.
Because we cannot force TCP or CTCP to output a predictable
throughput, we need to consider the data throughput when
comparing CPU utilizations. The measurement of MHz/Mbps
equals CPU percentage * CPU frequency (MHz) / throughput
(Mbps). Note that both CPU percentage and MHz/Mbps are NOT
generic measurements. That is, these values are only comparable
against those values obtained on the same system, or at least
systems with the same configuration.

Table 4. CPU utilization of CTCP against number of parallel
flows and ACK intervals. This table lists the CPU utilization
(MHz/Mbps) of CTCP with different numbers of parallel flows
and different numbers of ACK intervals. Note that the first column
(ACK interval = 2) is the result from Table 3 and it is listed here
for comparison

ACK Intervals Flow
2 4 8 16 32 64 128

1 3.28 3.15 3.20 3.43 2.57 2.59 2.07
2 3.91 3.77 3.95 3.59 3.52 3.35 3.51
4 4.32 4.36 1.45 3.08 3.54 3.44 3.27
8 4.05 4.87 4.32 3.84 3.91 3.63 3.63
16 4.59 5.07 5.60 4.41 4.41 4.17 3.12
32 5.41 5.31 5.27 4.99 5.15 4.53 4.01
64 6.63 6.58 6.15 5.89 5.35 5.08 4.51

Table 4 shows that as the number acknowledgments decreases,
the CPU usage drops sharply. For the same reason, less frequent
acknowledging is recommended when designing an application
level protocol for purpose of efficiency.
Meanwhile, the MHz/Mbps measurement increases as the number
of flows increases, but this is insignificant for TCP experiments.
The situation, however, is caused by the user level threads used
by CTCP. CTCP needs to start at least one thread for each
connection, whereas TCP realizes the multiplexing in the kernel
and does not have this overhead. This situation is worse for the
sender side because each CTCP sender has to start two threads
(UDT sender and receiver, see Section 2.3 and 3.1) and to deal
with the thread synchronization caused by packet acknowledging.
In fact, through profiling analysis we found that UDP IO,
threading synchronization, and control event handling contributes
more than 90% of CPU utilization of CTCP. The fourth most
significant CPU consumer is timing, which takes about 5% of

overall CPU utilization on stamping each packet and triggering
timer related events.
Although the CPU overhead of UDT/CCC may limit its usage in
certain scenarios, we argue that the library is still useful in many
other situations. First, in high performance computing, there are
usually only a small number of flows sharing the high bandwidth.
In this case, the threading overhead is low. Second, the overhead
can be overcome by more powerful processors and more
machines. Third, the overhead of UDT/CCC only exists when
compared to kernel space implementations; it is insignificant
when compared to other user space implementations. Finally, as
we have shown in this section, control mechanisms with less
frequent acknowledging would result in much less overhead.
We are, however, quite aware of the importance of CPU
efficiency. Our current work is focused on code optimization.
We have also performed the same experiments on similarity and
performance on other systems with different operating systems
(Linux, BSD, OS X, Windows XP), hardware (Intel, AMD, and
PowerPC processors), and networks. Although specific systems
have more or less impact on the results, all the experiments
conform to the similarity and performance trends we obtained
from the experiments described in this section.

6. RELATED WORK
There are few user level protocol stacks that provide a
programming interface for user-defined congestion control
algorithms as UDT/CCC does.
The Globus XIO [39] library has somewhat similar objectives, but
the approach is quite different. XIO implements a set of primitive
protocol components and APIs for fast creation or prototyping
new protocols. XIO can support more protocols than UDT/ CCC,
however, UDT/CCC is much simpler to learn and use.
Less similar user level libraries include several user level TCP
implementations [15, 16, 17, 18, 19]. One particular
implementation is the Alpine [15] library. Alpine is an attempt to
move the entire kernel protocol stack into the user space, and
provides (almost) transparent application interfaces at the same
time. None of these libraries provide programmable interfaces.
In kernel space, the most similar work to UDT/CCC is probably
the icTCP [4] library. It exposes key TCP parameters and
provides controls to these parameters to allow new TCP
algorithms deployed in user space. Despite the different nature of
kernel and user space implementations, icTCP limits the update
on TCP controls only, whereas UDT/CCC supports a broader set
of protocols. Similar work as icTCP also includes
Web100/Net100 [6] and CM.
Another work, STP [3], has more radical changes but also has
more powerful expression ability. The STP’s approach is to
provide a set of protocol implementation APIs in a sandbox.
Meanwhile, STP itself is a protocol that supports run time code
upgrading; thus, new protocols or algorithms can be deployed
implicitly. To address the security problem arising from untrusted
code, STP involves a complex security mechanism.
Yet another more complex library is the x-kernel [13]. x-kernel is
an OS kernel designed to support data transport protocol
implementations. The support mechanism of x-kernel is a modular
based system and it is more decomposed than STP. Besides the

support of protocol implementation, x-kernel has many
optimizations inside the OS kernel for data communications.
Other modularized approaches include Horus [14], CTP [22] and
its high performance successor [23].
While some of these in-kernel libraries may have performance
and transparency advantages, their goals of fast deployment of
new protocols/algorithms are compromised by the difficulty of
getting themselves deployed. For example, x-kernel has been
proposed for more than a decade and it still remains a research
tool. In contrast, UDT/CCC library provides a very practical
solution for the time being.
In addition, kernel space approaches need to protect their host
systems and the network from security problems and they have to
limit users’ privileges to control the protocol behavior. For
example, both STP and icTCP prevent new algorithms from
utilizing more bandwidth than standard TCP. Such limitations are
improper to the new control algorithms for high-speed networks
such as Scalable, HighSpeed, BiC, and FAST. The security
problem is much less serious for UDT/CCC because it is at user
space and it is only installed as needed (in contrast, those libraries
such as icTCP and STP will be accessible to every user if they are
accepted by OS vendors).
Finally, there is another category of related work that attempts to
provide a protocol language for easier, faster, or more readable
protocol implementation. Such work includes Prolac [20] and
FoxNet [21].

7. CONCLUSION
The maturity of high-speed wide area networks encouraged the
emergence of numerous new applications, and new control
mechanisms supporting these applications as well. It has often
been the case that implementing these new control algorithms in
the kernel is not practical or proper. On the one hand, the wide
deployment of new protocols or algorithms usually suffers long
time lag. On the other hand, OS vendors may only choose a very
small number of protocols to implement in kernel.
We have presented a user level transport protocol stack named
UDT/CCC, which allows user defined congestion control
algorithms to be easily implemented. Our UDT/CCC library
enables easy implementations of a large variety of control
algorithms while these implementations can still match the
performance characteristics of those native implementations.

However, UDT/CCC is not meant to replace kernel protocol
stacks or proposed as a mean to implement any new protocols.
Instead, it provides a practical alternative when a kernel space
approach is difficult to implement, evaluate, and deploy. These
use scenarios include the implementation of a new application or
network specific congestion mechanism and the evaluation of new
congestion control algorithms.

Finally, we are aware of the CPU utilization limitations of the
current UDT/CCC implementation. On the one hand, there are
unavoidable efficiency side effects for application level protocol
implementations because of the additional memory copy and
context switches. On the other hand, we will continue to optimize
the implementation to minimize these negative impacts.

The UDT project, including the feature described in this paper, is
meant for productivity use, rather than just for research or

prototyping. The UDT library is open source software and can be
obtained from http://udt.sf.net.

8. ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation under grant ANI 9977868 and the Department of
Energy under grant DE-FG02-04ER25639.

9. REFERENCES
[1] Yunhong Gu, Xinwei Hong, and Robert Grossman:

Experiences in Design and Implementation of a High
Performance Transport Protocol, SC 2004, Nov 6 - 12,
Pittsburgh, PA, USA.

[2] W. Feng and P. Tinnakornsrisuphap: The Failure of TCP in
High-Performance Computational Grids, SC 2000, Dallas,
TX, Nov. 00.

[3] Parveen Patel, Andrew Whitaker, David Wetherall, Jay
Lepreau, and Tim Stack: Upgrading Transport Protocols
using Untrusted Mobile Code, in Proceedings of the 19th
ACM Symposium on Operating System Principles, October
19-22, 2003.

[4] Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau: Deploying Safe User-Level Network
Services with icTCP, OSDI 2004.

[5] David G. Andersen, Deepak Bansal, Dorothy Curtis,
Srinivasan Seshan, and Hari Balakrishnan: System Support
for Bandwidth Management and Content Adaptation in
Internet Applications, Proc. 4th USENIX Conference on
Operating Systems Design and Implementation (OSDI
2000), San Diego, CA, October 2000.

[6] M. Mathis, J. Heffner, and R. Reddy: Web100: Extended
TCP Instrumentation for Research, Education and
Diagnosis, ACM Computer Communications Review, Vol
33, Num 3, July 2003.

[7] R. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. J.
Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, and
V. Paxson: Stream control transmission protocol. RFC 2960,
Oct. 2000.

[8] Eddie Kohler, Mark Handley, Sally Floyd, Jitendra Padhye:
Datagram Congestion Control Protocol (DCCP),
http://www.icir.org/kohler/dcp/. Jan. 2005.

[9] Sally Floyd, Mark Handley, Jitendra Padhye, and Joerg
Widmer: Equation-Based Congestion Control for Unicast
Applications, ACM SIGCOMM 2000, Stockholm, Aug.
2000.

[10] M. Allman, V. Paxson, W. Stevens, TCP Congestion
Control, IETF, RFC 2581, April 1999.

[11] V. Paxson and M. Allman: Computing TCP's Retransmission
Timer, RFC 2988, IETF, Nov. 2000.

[12] Harimath Sivakumar, Stuart Bailey, Robert L. Grossman.
PSockets: The Case for Application-level Network Striping
for Data Intensive Applications using High Speed Wide Area
Networks, SC 2000, Dallas, TX, Nov. 2000.

[13] N. C. Hutchinson and L. L. Peterson: The x-Kernel: An
architecture for implementing network protocols, IEEE

Transactions on Software Engineering, 17(1): 64-76, Jan.
1991.

[14] R. van Renesse, K. P. Birman, R. Friedman, M. Hayden, and
D. A. Karr: A framework for protocol composition in Horus,
in Proceedings of the Fourteenth Annual ACM Symposium
on Principles of Distributed Computing, pages 80-89,
Ottawa, Ontario, Canada, 2-23 Aug. 1995.

[15] David Ely, Stefan Savage, and David Wetherall: Alpine: A
user-level infrastructure for network protocol development,
in Proc. 3rd USENIX Symposium on Internet Technologies
and Systems (USITS 2001), pages 171-183, March 2001.

[16] Thekkath, C. A., Nguyen, T. D., Moy, E., and Lazowska, E.
D: Implementing network protocols at user level, IEEE/ACM
Transactions on Networking, 1(5): 554--565, October 1993.

[17] A. Edwards and S. Muir: Experiences Implementing A High-
Performance TCP In User-Space, in Proc. ACM SIGCOMM
1995, Cambridge, MA, pages 196 - 205.

[18] Prashant Pradhan, Srikanth Kandula, Wen Xu, Anees
Shaikh, Erich Nahum: Daytona: A User-Level TCP Stack,
http://nms.lcs.mit.edu/~kandula/data/daytona.pdf.

[19] Kieran Mansley: Engineering a user-level TCP for the CLAN
network, in SIGCOMM 2003 workshop on Network-I/O
convergence: experience, lessons, implications.

[20] E. Kohler, M. F. Kaashoek, and D. R. Montgomery: A
Readable TCP in the Prolac Protocol Language, in
Proceedings of SIGCOMM ’99, pages 3–13, Cambridge,
Massachusetts, Aug. 1999.

[21] Edoardo Biagioni: A structured TCP in Standard ML, in
Proceedings of the ACM SIGCOMM Conference on
Communications Architectures, Protocols and Applications,
pages 36-45, London, England, 1994.

[22] Gary T. Wong, Matti A. Hiltunen, and Richard D.
Schlichting: A configurable and extensible transport
protocol, IEEE Infocom 2001, April 22-26, 2001.
Anchorage, Alaska, April 2001.

[23] Xinran Wu, Andrew A. Chien, Matti A. Hiltunen, Richard
D. Schlichting and Subhabrata Sen, High Performance
Configurable Transport Protocol for Grid Computing, in
Proceedings of the 5th IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGrid 2005).

[24] M. Gerla, M. Y. Sanadidi, R. Wang, A. Zanella, C. Casetti,
and S. Mascolo. TCP Westwood: Congestion Window
Control Using Bandwidth Estimation. IEEE Globecom 2001,
Volume: 3, pp 1698-1702.

[25] L. Brakmo and L. Peterson. TCP Vegas: End-to-End
Congestion Avoidance on a Global Internet. IEEE Journal on
Selected Areas in Communication, Vol 13, No. 8 (October
1995) pages 1465-1480.

[26] C. Jin, D. X. Wei, and S. H. Low. FAST TCP: motivation,
architecture, algorithms, performance. IEEE Infocom '04,
Hongkong, China, Mar. 2004.

[27] S. Floyd. HighSpeed TCP for Large Congestion Windows.
RFC 3649, Experimental Standard, Dec. 2003.

[28] T. Kelly. Scalable TCP: Improving Performance in
Highspeed Wide Area Networks. ACM Computer
Communication Review, Apr. 2003.

[29] L. Xu, K. Harfoush, and I. Rhee. Binary Increase Congestion
Control for Fast Long-Distance Networks. IEEE Infocom
'04, Hongkong, China, Mar. 2004.

[30] Y. Gu and R. L. Grossman: SABUL: A Transport Protocol
for Grid Computing. Journal of Grid Computing. 2003,
Volume 1, Issue 4, pp. 377-386.

[31] E. He, J. Leigh, O. Yu, T. A. DeFanti: Reliable Blast UDP:
Predictable High Performance Bulk Data Transfer, IEEE
Cluster Computing 2002, Chicago, IL 09/01/2002.

[32] C. Xiong, Leigh, J., He, E., Vishwanath, V., Murata, T.,
Renambot, L., DeFanti, T.: LambdaStream - a Data
Transport Protocol for Streaming Network-intensive
Applications over Photonic Networks, Third International
Workshop on Protocols for Long-Distance Networks
(PFLDnet 2005), Lyon, France, Feb. 2005.

[33] M. Veeraraghavan, X. Zheng, H. Lee, M. Gardner, W. Feng,
CHEETAH: Circuit-switched High-speed End-to-End
Transport ArcHitecture, Proc. of Opticomm 2003, Oct. 13-
17, 2003. Dallas, TX.

[34] A. Szalay, J. Gray, A. Thakar, P. Kuntz, T. Malik, J.
Raddick, C. Stoughton. J. Vandenberg: The SDSS SkyServer
- Public Access to the Sloan Digital Sky Server Data, ACM
SIGMOD 2002.

[35] Naveen Krishnaprasad, Venkatram Vishwanath, Shalini
Venkataraman, Arun G.Rao, Luc Renambot, Jason Leigh,
Andrew E.Johnson: JuxtaView - A Tool for Interactive
Visualization of Large Imagery on Scalable Tiled Displays,
in the proceedings of IEEE Cluster 2004, San Diego, CA,
September 20-23, 2004.

[36] Ryan Wu and Andrew Chien: GTP: Group Transport
Protocol for Lambda-Grids, in Proceedings of the 4th
IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGrid2004), Chicago, Illinois, April 2004.

[37] Mathis, M., Mahdavi, J., Floyd, S., and Romanow, A., TCP
Selective Acknowledgement Options. RFC 2018, April 1996.

[38] Zhang, M., Karp, B., Floyd, S., and Peterson, L., RR-TCP: A
Reordering-Robust TCP with DSACK, in Proceedings of the
Eleventh IEEE International Conference on Networking
Protocols (ICNP 2003), Atlanta, GA, November, 2003.

[39] Globus XIO: http://www-
unix.globus.org/toolkit/docs/3.2/xio/index.html. Retrieved on
Apr. 3, 2005.

[40] E-VLBI, http://web.haystack.edu/e-vlbi/evlbi.html.
Retrieved on Apr. 6, 2005.

[41] Qishi Wu, Nageswara S. V. Rao, Protocol for High-Speed
Data Transport Over Dedicated Channels, Third
International Workshop on Protocols for Long-Distance
Networks (PFLDnet 2005), Lyon, France, Feb. 2005.

[42] Yunhong Gu and Robert L. Grossman, UDT: A Transport
Protocol for Data Intensive Applications. Internet Draft.
Work in progress.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

