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ABSTRACT 
As wide area high-speed networks rapidly increase, new 
applications emerge and require new control mechanisms in data 
transport services to support them. Network researchers have 
proposed numerous congestion control algorithms in the past few 
years. However, a difficult problem is how to evaluate, 
implement, and deploy these new algorithms in a practical way. 

In this paper, we present UDT/CCC (UDP-based Data Transport 
Library with Configurable Congestion Control), a data transport 
library that allows users to make use of a new control algorithm 
through simple configurations. We aim to provide a tool for fast 
implementation and deployment, as well as easy evaluation, of 
new congestion control algorithms. UDT/CCC uses an objected 
oriented design. It collects a set of congestion control event 
handlers and parameters in a base C++ class, so a new control 
mechanism can redefine or modify them through C++ class 
inheritance. We show that our UDT/CCC library can be used to 
implement a large variety of control algorithms and can easily 
simulate the behavior of their native implementations. The 
UDT/CCC library is at the application level and it does not need 
root privilege to get installed. Meanwhile, it was specially 
developed to require very few changes to the existing 
applications. This paper describes its design, implementation, and 
evaluation. 
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1. INTRODUCTION 
The rapid increase of network bandwidth has enabled numerous 
new distributed data intensive applications. These new 
applications vary from bulk data transfer (e.g., SDSS [34] and e-
VLBI [40]) to high throughput interactive systems (e.g., GeoWall 
[35]). Different applications have specific requirements for data 
transfer services. For example, a GeoWall application may prefer 
a smooth image/video data transfer rate, whereas it is desirable to 
move SDSS data at the highest possible speed in private 
networks. 
However, the current Internet is designed to provide general 
service to support as many different applications as possible. This 
design philosophy has a major impact on the transport protocols. 
The majority of traffic on the Internet is contributed by TCP 
flows; but there still are applications that TCP cannot support 
well. In the context of high performance computing, TCP is well 
known for its poor efficiency and fairness in high bandwidth 
delay product networks [1, 2]. 
In the past few years, network researchers have proposed 
numerous new congestion control algorithms for both general and 
specific data transfers. However, most of them only end with 
simulations and limited laboratory experiments; few get tested 
and deployed in real networks. On the one hand, modifications of 
the kernel network stack (e.g., new TCP variants) usually take 
years for standardization, implementation, and widespread 
deployment. On the other hand, although user space stacks are 
much easier to get deployed, it is often a painstaking and time-
consuming job to implement each of them from scratch. In fact, 
ever since the emergence of TCP about three decades ago, only 
four versions have been widely deployed, namely Tahoe, Reno, 
NewReno, and SACK. 
It is very desirable to create a configurable or reusable user space 
network stack on which a new congestion control algorithm can 
be easily implemented, deployed, and evaluated. First, a user 
space stack is much easier to get deployed, and so is the 
congestion control algorithms built in it. Second, this stack is 
useful to support application aware control approaches. An 
application may prefer to use different congestion control 
strategies in different situations. Third, this stack can save 
significant time for network researchers and developers because 
they can focus on the control algorithm itself rather than the 
whole protocol implementation. As a sequence, as there are more 
and more users, this stack can provide good software quality to 
support application development. 
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However, this stack is not a replacement for, but a complement to 
the kernel space network stacks. General protocols like UDP, 
TCP, DCCP [8], and SCTP [7] should still exist inside the kernel 
space of operating systems, but OS vendors may be reluctant to 
support too many protocols and algorithms, especially those 
application specific or network specific ones. 
To address the above requirement, we developed the UDT/CCC 
library, or UDP-base Data Transfer library with Configurable 
Congestion Control. This work is based on our UDT library [1], 
which is a user space data transport library developed for high 
performance data intensive applications. CCC is one of the 
features included in the current UDT release. 
UDT/CCC is written in C++ and it provides a set of control 
events handlers and parameters in a base C++ class. A new 
control algorithm inherits this base class, redefines the proper 
control event handlers, and modifies certain control parameters 
when necessary. 
UDT/CCC supports a wide variety of control algorithms, 
including but not limited to, TCP algorithms (e.g., NewReno, 
Vegas [25], FAST [26], Westwood [24], HighSpeed [27], BiC 
[29], and Scalable [28]), bulk data transfer algorithms (e.g., 
SABUL [30], RBUDP [31], LambdaStream [32], CHEETAH 
[33], and Hurricane [41]), and group transport control algorithms 
(e.g., CM [5] and GTP [36]). 
The UDT library provides a socket-like API so that applications 
can change their data transport service between TCP and 
UDT/CCC with ease. In certain situations, an existing TCP-based 
application can make use of UDT without any change to the 
source code. 
We envision the following use scenarios for UDT/CCC: 

• Implementation and deployment of new control algorithms. 
Certain control algorithms may not be appropriate to be 
deployed in kernel space, e.g., a bulk data transfer 
mechanism used only in private links. These algorithms can 
be implemented using UDT/CCC. 

• Application awareness support and dynamic configuration. 
An application may choose different congestion control 
strategies under different networks, different users, and even 
different time slots. UDT/CCC supports these application 
aware algorithms. 

• Evaluation of new control algorithms. Even if a control 
algorithm is to be deployed in kernel space, it needs to be 
tested thoroughly before OS vendors distribute the new 
version. It is much easier to test the new algorithms using 
UDT/CCC than modifying an OS kernel. 

In this paper, we present the design, implementation, and 
evaluation of the UDT/CCC library. The rest of the paper is 
organized as follows. We begin with the CCC design and 
architecture in Section 2, followed by the key implementation 
details in Section 3. We then evaluate the UDT/CCC library in the 
following two sections. In Section 4, we demonstrate the 
expressiveness and simplicity of using UDT/CCC to develop new 
control algorithms. In Section 5, we use experimental studies to 
examine the performance characteristics. Finally, we give a brief 
review of related work in Section 6 and conclude the paper in 
Section 7. 

2. ARCHITECTURE AND DESIGN 
The UDT/CCC library can be regarded as a middleware layer 
between applications and the network transport layer. The library 
is completely implemented at the application level above UDP. In 
this section, we focus on how the congestion control interface is 
provided by the library and how it is implemented inside the UDT 
layer. 

2.1 Overview 
The UDT framework has a layered architecture (Figure 1). UDT 
uses UDP through the socket interface provided by operating 
systems. Meanwhile, it provides a UDT socket interface to 
applications. 
Applications can call the UDT sockets API in the same way they 
call the system sockets API. They can provide a congestion 
control class instance (CC in Figure 1) for UDT to process the 
control events, or use the default congestion control algorithm [1] 
provided by UDT. The CC instance includes a set of necessary 
user-defined callback functions (control event handlers) to 
process certain control events. 
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Figure 1. UDT/CCC Architecture. In this layered architecture, 
the UDT layer is completely in user space above the network 
transport layer of UDP, whereas the UDT layer itself provides 
transport for applications. Meanwhile, applications provide 
optional control handlers to UDT as callbacks. 
 
2.2 The CCC Interface 
We identify four categories of configuration features to support 
configurable congestion control mechanisms. They are 1) control 
event handler callbacks, 2) protocol behavior configuration, 3) 
packet extension and 4) performance monitoring. 

2.2.1 Control Event Callbacks 
Seven basic callback functions are defined in the base CCC class. 
They are called by UDT when a control event is triggered. 

init and close: These two methods are called when a UDT 
connection is set up and when it is torn down. They can be used to 
initialize necessary data structures and release them later. 

onACK: This handler is called when an ACK (acknowledgment) 
is received at the sender side. The sequence number of the 
acknowledged packet can be learned from the parameters of this 
method. 



onLoss: This handler is called when the sender detects a packet 
loss event. The explicit loss information is given to users as the 
onLoss interface parameters. Note that this method may be 
redundant for most TCP algorithms that use only duplicate ACKs 
to detect packet loss. 

onTimeout: A timeout event can trigger the action defined by this 
handler. The timeout value can be assigned by users, otherwise it 
uses the default value according to the TCP RTO calculation 
described in RFC 2988 [11]. 

onPktSent: This is called right before a data packet is sent. The 
packet information (sequence number, timestamp, size, etc.) is 
available through the parameters of this method. 

onPktReceived: This is called right after a data packet is 
received. Similar to onPktSent, the entire packet information can 
be accessed by users through the function parameters. 

processCustomMsg: This method is used for UDT to process 
user-defined control messages. 

2.2.2 Protocol Configuration 
To accommodate certain control algorithms, some of the protocol 
behavior has to be customized. For example, a control algorithm 
may be sensitive to the way that data packets are acknowledged. 
UDT/CCC provides necessary protocol configuration APIs for 
these purposes. 
It allows users to define how to acknowledge received packets at 
the receiver side. The functions of setACKTimer and 
setACKInterval determine how often an acknowledgement is sent, 
in elapsed time and number of arrived packets, respectively. 
The method of sendCustomMsg sends out a user-defined control 
packet to the peer side of a UDT connection, where it is processed 
by callback functions processCustomMsg. 
Finally, UDT/CCC also allows users to modify the values of RTT 
and RTO. A new congestion control class can choose to use either 
the RTT value provided by UDT, or its own calculated value. 
Similarly, the RTO value can also be redefined. 
There are other features of the UDT protocol that are either not 
related to congestion control or are helpful to most control 
algorithms. These features, such as selective acknowledgement 
(SACK) [37] and robust reordering (RR) [38], cannot be 
configured by CCC users, although some of the features can be 
configured through UDT interfaces. 

2.2.3 Packet Extension 
It is necessary to allow user-defined control packets for a 
configurable protocol stack. 
Because our UDT/CCC library is mainly focused on congestion 
control algorithms, we only give limited customization ability to 
the control packets. Data packet processing contributes to a large 
portion of CPU utilization and customized data packets may hurt 
the performance. 
A UDT data packet contains a packet-based sequence number and 
a relative timestamp (it starts counting since the connection is set 
up) in the resolution of microseconds (Figure 2), in addition to the 
UDP header information. We believe that this information is 
sufficient for most control algorithms. 

Users can define their own control packets using the Type 2 
information in the UDT control packet header (Figure 2). The 
detailed control information carried by these packets varies 
depending on the packet types. At the receiver side, users need to 
override processCustomMsg to tell UDT/CCC how to process 
these new types of packets. 
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Figure 2. UDT Packet Header Structures. The first bit of the 
packet header is a flag to indicate if this is a data packet (0) or a 
control packet (1). Data packets contain a 31-bit sequence 
number and a 32-bit timestamp. In the control packet header, bit 
1- 4 is the packet type (type 1) information. Type 0 – 6 are used 
by UDT, whereas type 7 is used for user defined types, whose 
detail type information is put in bit 5 – 15 (type 2). The detailed 
control information depends on the packet type. 
 
Note that UDT’s packet-based sequencing with the packet size 
information provided by UDP is equivalent to TCP’s byte-based 
sequencing and can also support data streaming. 

2.2.4 Performance Monitoring 
Protocol performance information supports the decisions and 
diagnosis of a control algorithm. For example, algorithms like 
TFRC [9] need to learn the loss rate to tune the packet sending 
rate. Meanwhile, when testing new algorithms, performance 
statistics and internal protocol parameters are needed. 
The performance monitor provides information including the 
duration time since the connection was started, RTT, sending rate, 
receiving rate, loss rate, packet sending period, congestion 
window size, flow window size, number of ACKs, and number of 
NAKs. UDT records these traces whenever the values are 
changed. 
These performance traces can be read in three categories (when 
applicable): the aggregate values since the connection started, the 
local values since the last time the trace is queried, and the instant 
values when the query is made. 

2.3 The UDT Protocol 
UDT is a unicast, connection-oriented, duplex data stream 
protocol. 
Inside the UDT layer, there are two basic logical parts: the sender 
and the receiver. The sender is responsible for sending data 
packets according to congestion and flow control, whereas the 
receiver is responsible for receiving and processing packets, as 
well as sending control packets when necessary. 



Figure 3 describes the relationship between the UDT sender and 
receiver. In Figure 3, the UDT entity A sends application data to 
the UDT entity B. The data is sent from A’s sender to B’s 
receiver, whereas the control flow is exchanged between the 
receivers. 
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Figure 3. Relationship between UDT Sender and Receiver. All 
UDT entities have the same architectures, each having both a 
sender and receiver. This figure demonstrates the situation when 
a UDT entity A sends data to another UDT entity B. Data is 
transferred from A’s sender to B’s receiver, whereas control 
information is exchanged between the receivers. 
 
The detailed UDT protocol specification can be found in [42]. In 
the rest of the section, we will introduce the abstract UDT sending 
and receiving algorithms and how the control event handlers are 
processed in these algorithms. The detailed implementation will 
be introduced in next section. 

2.3.1 The Sending Algorithm 
Figure 4 describes the abstract sending algorithm. In this 
algorithm, a sender’s loss list is a data structure that records the 
lost data packets when informed of them by loss reports from the 
receiver or by sender side timeouts. ACK and NAK are the 
abbreviations of acknowledgment and loss report (negative 
acknowledgment), respectively. 
 

1) If there is no application data to send, sleep until it is activated 
by the application. 

2) Packet sending: 
a) If the sender’s loss list is not empty, remove the first lost 

sequence number from the list and pack the corresponding 
packet. 

b) Otherwise, if the number of unacknowledged packets does 
not exceed the congestion and flow window sizes, pack a 
new packet. 

c) Otherwise, wait here until an ACK or NAK is received, or 
timeout occurs. Go to Step 1. 

3) onPktSent(). 
4) Send the packed packet out. 
5) Wait until the next packet sending time. Go to Step 1. 
 

Figure 4. UDT Sending Algorithm. 

 
Step 2.b is the window/flow control, which limits the number of 
unacknowledged packets.  The limit is equal to either the 
congestion window size or the flow window size, whichever one 
is smallest. 
Step 2.c implements self-clocking. This step could be removed to 
realize a pure rate-based control. However, due to the lack of high 
precision timing in general operating systems, self-clocking is 
useful in reducing CPU overhead (by avoiding busy waiting). 
Note that the timeout in this step is used to break the deadlock 

when there is no feedback. It is different from the packet sending 
timeout in the onTimeout method. 
Step 4 is the rate control, which suspends the data sending until 
the next sending time. 

2.3.2 The Receiving Algorithm 
Figure 5 describes the receiving algorithm. In this algorithm, the 
receiver's loss list is a data structure to store the sequence 
numbers of the lost packets. EXP is the abbreviation for timeout 
(expiration). 

 
1) Query the timers 

a) If ACK timer is expired and there are new packets to 
acknowledge, send back an ACK report; otherwise, if the 
user-defined ACK interval is reached, send back a 
lightweight ACK report. 

b) If NAK timer is expired and the receiver’s loss list is not 
empty, send back a NAK report; 

c) If EXP timer is expired and there are sent but 
unacknowledged packets, execute onTimeOut(), and put 
the sequence numbers of these packets into the sender’s 
loss list; 

d) Reset the expired timers. 
2) Start time bounded UDP receiving. If nothing is received before 

the UDP timer expires, go to Step 1. 
3) If there is no unacknowledged packet, reset the EXP timer. 
4) If the received packet is a control packet, process it, and reset 

EXP timer if it is an ACK or NAK; According to the packet type, 
one of the following callback functions may be executed:  
onACK(); onLoss(); processCustomMsg(); 
Go to Step 1. 

5) Check packet loss. If there are packet losses, insert the sequence 
numbers of the lost packets into the receiver’s loss list and 
generate a loss report (NAK). 

6) onPktReceived(); Go to Step 1. 
 

Figure 5. UDT Receiving Algorithm. 
 
The receiver uses self-clocked timers to trigger acknowledgment, 
loss reports, and timeout events (step 1 and 2). This timing 
mechanism takes advantage of time-bounded UDP receiving 
using the SO_RCVTIMEO option. On systems where 
SO_RCVTIMEO is unavailable, select can be used. 
As soon as a packet is received, the receiver processes the new 
packet according to its type (step 4 and 5). 
If there is no unacknowledged packet, the receiver simply resets 
the EXP timer (step 3); otherwise, the EXP timer only resets 
when it is an ACK or NAK packet (step 4). 
Note that UDT has its own ACK and NAK processing mechanism 
in addition to the user-defined event handler for data reliability 
purposes. 
Step 5 is to check packet loss. Various loss detection techniques 
such as robust reordering [38] can be used here. UDT uses packet 
based sequencing and the packet size can be determined from the 
UDP interface. 

3. IMPLEMENTATION 
One particular motivation of UDT/CCC is to support high 
performance data transfer in high-speed networks. Efficiency was 
always a major guideline when we implemented the UDT library. 



The efficiency of a protocol mainly depends on two factors: the 
congestion/flow control algorithm and the protocol 
design/implementation. UDT/CCC inherits much of its design and 
implementation from the UDT transport protocol [1]. 
Another important implementation objective is to provide good 
support for applications. User space libraries can be much easier 
to get deployed, but it is difficult for them to be transparent to 
applications. Therefore, existing applications may need to change 
their source codes. Our implementation makes a great effort to 
reduce the application developers’ work. 

3.1 Software Architecture 
Figure 7 depicts the UDT/CCC software architecture. The UDT 
layer has five function components: the API module, the sender, 
the receiver, the listener, and the UDP channel, as well as four 
data components: sender’s protocol buffer, receiver’s protocol 
buffer, sender’s loss list, and receiver’s loss list. 
Because UDT is bi-directional, all UDT entities have the same 
structure. The sender and receiver in Figure 6 have the same 
relationship as that in Figure 2. 
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Figure 6. UDT/CCC Implementation. The solid line represents 
the data flow, and the dashed line represents the control flow. The 
shading blocks (buffers and loss lists) are the four data 
components, whereas the blank blocks (API, UDP channel, 
sender, receiver, and listener) are function components. 
 
The API module is responsible for interacting with applications. 
The data to be sent is passed to the sender's buffer and sent out by 
the sender into the UDP channel. At the other side of the 
connection (not shown in this figure but it has the same 
architecture), the receiver reads data from the UDP channel into 
the receiver's buffer, reorders the data, and checks packet losses. 
Applications can read the received data from the receiver's buffer. 
The receiver also processes received control information. It will 
update the sender's loss list (when NAK is received) and the 
receiver's loss list (when loss is detected). Certain control events 
will trigger the receiver to update the congestion control module, 
which is in charge of the sender’s packet sending. 
The UDT socket options are passed to the sender/receiver 
(synchronization mode), the buffer management modules (buffer 
size), the UDP channel (UDP socket option), the listener 

(backlog), and CC (the congestion control algorithm). Options can 
also be read from these modules and provided to applications by 
the API module. 

3.2 Optimizations 
Implementation efficiency is critical to UDT/CCC for two major 
reasons: 1) the primary goal of the library is to support the 
emerging high performance applications; 2) we do not want to 
limit the performance of the control algorithm by a poor 
implementation. 
We have described the optimizations of the UDT library in 
previous work [1]. In this section, we only give a very brief 
summary of these optimizations, plus new problems arising from 
the introduction of CCC. 
The first optimization category is focused on the avoidance of 
memory copy. Ideally, application data should be exchanged 
directly with the UDP channel. This optimization needs support 
from the API and protocol buffer management modules. 
The second optimization category is designed to reduce the 
frequency of control events and the overhead of event handling. 
The majority of control events come from ACK/NAK triggering 
and processing. Other events, such as API call and timeout, are 
much less frequent. The UDT library has introduced an optimized 
loss processing algorithm to handle NAK processing. 
The UDT protocol uses timer-based acknowledgement so there 
are only a small portion of ACKs. However, when introducing 
CCC, a new algorithm may require much more frequent ACKs. 
To handle this problem, UDT/CCC still only modify the protocol 
buffers at certain time intervals; for all other ACKs (namely light 
ACKs), only the necessary sequence number related data are 
updated. 
Finally, since high-end workstations usually have multiple 
processors, UDT use a multi-threading implementation. The 
sender, the receiver, and the listener are concurrent threads, but 
they are only started when necessary (lazy start). It is also 
necessary to provide fine granularity of the threading 
implementation. 

3.3 Application Interface 
An application can make use of the UDT/CCC library in four 
ways. The library provides a set of C++ API that is very similar to 
the system socket API. Network programmers can learn it easily 
and use it in a similar way as using TCP sockets. In particular, 
applications can use the setsockopt/getsockopt method to set and 
configure a specific congestion control algorithm at run time. 
When used in applications written by languages other than 
C/C++, an API wrapper can be used. So far, both Java and Python 
UDT API wrappers have been developed. 
Certain applications have a data transport middleware to make use 
of multiple transport protocols. In this situation, a new UDT 
driver can be added to this middleware, and then used by the 
applications transparently. For example, a UDT XIO driver has 
been developed so that the library can be used in Globus 
applications. 
Finally, our library also provides a set of C API that has exactly 
the same semantics as the system socket API. An existing 
application can be re-compiled and linked against the UDT/CCC 
C library. In this way, the applications use our library 



transparently without any changes to the source codes. There is 
one limitation, though. UDT does not support multi-process 
models (e.g., using fork system call) due to efficiency 
considerations, so this method does not work if the existing 
application uses the same sockets in multiple processes. 

4. EXPRESSIVENESS 
To evaluate the expressiveness of UDT/CCC, we implement a set 
of representative control algorithms using the library. Any 
algorithms belonging to a similar set can be implemented in a 
similar way. Meanwhile, we show that the implementation is 
simple and easy to learn. 
In this section, we describe in detail how to implement control 
algorithms of rate based UDP, TCP variants, including both loss-
based and delay-based algorithms, and group transport protocols 
as well. 
UDT/CCC uses an object-oriented design. It provides a base C++ 
class (CCC) that contains all the functions and event handlers 
described in Section 2.2. A new control algorithm can inherit 
from this class and redefine certain control event handlers. 
The implementation of any control algorithm is to update at least 
one of the two control parameters: the congestion window size 
(m_dCWndSize) and the inter-packet time (m_dPacketPeriod), 
both of which are CCC class member variables. 

4.1 Rate-based UDP 
A rate-based reliable UDP library (CUDPBlast) is often used to 
transfer bulk data over private links. To implement this control 
mechanism, CUDPBlast initializes the congestion window with a 
very large value so that the window size will not limit the packet 
sending. The rest is to provide a method to assign a data transfer 
rate to a specific CUDPBlast instance. A piece of pseudo code is 
shown below: 

 
class CUDPBlast: public CCC 
{ 
public: 
   CUDPBlast() {m_dCWndSize = 83333.0;} 
 
   void setRate(int mbps) 
   { 
      m_dPktSndPeriod = (SMSS * 8.0) / mbps; 
   } 
} 

 
By using setsockopt an application can assign CUDPBlast to a 
UDT socket and by using getsockopt the application can obtain a 
pointer to the instance of CUDPBlast being used by the UDT 
socket. The application can then call the setRate method of this 
instance to set or modify a fixed sending rate at any time. 

4.2 Standard TCP (TCP NewReno) 
As a more complex example, we further show how to use the 
UDT/CCC library to implement the standard TCP congestion 
control algorithm (CTCP). Because a large portion of new 
proposed congestion control algorithms are TCP-based, this 
CTCP class can be further inherited and redefined to implement 
more TCP variants, which we will describe in the next two 
subsections. 

TCP is a pure window-based control protocol. Therefore, during 
initialization, the inter-packet time is set to zero. In addition, TCP 
need data packets to be acknowledged frequently, usually every 
one or two packets1. This is also configured in the initialization.  
TCP does not need explicit loss notification, but uses three 
duplicate ACKs to indicate packet loss. Therefore, for congestion 
control, CTCP only redefined two event handlers: onACK and 
onTimeout. In onACK, CTCP detects duplicate ACKs and takes 
proper actions. Here is the pseudo code of the fast retransmit and 
fast recovery algorithm in RFC 2581: 

 
virtual void onACK(const int& ack) 
{ 
   if (three duplicate ACK detected) 
   { 
      // ssthresh = max{flight_size / 2, 3} 
      // cwnd = ssthresh + 3 * SMSS 
   } 
   else if (further duplicate ACK detected) 
   { 
      // cwnd = cwnd + SMSS 
   } 
   else if (end fast recovery) 
   { 
      // cwnd = ssthresh 
   } 
   else 
   { 
      // cwnd = cwnd + 1/cwnd 
   } 
} 

 
The CTCP implementation can provide more TCP event handlers 
such as DupACKAction and ACKAction, which will further 
reduce the work of implementing new TCP variants. 
Note that here we are only implementing TCP’s congestion 
control algorithm, but NOT the whole TCP protocol. The 
UDT/CCC library does not implement exactly the same protocol 
mechanisms as in the TCP specification but it does provide 
similar functionality. For example, TCP uses byte-based 
sequencing whereas UDT uses packet-based sequencing, but this 
should not prevent CTCP from simulating TCP’s congestion 
avoidance behavior. Certain TCP mechanisms that can affect 
congestion control, such as SACK and RR, have their equivalents 
implemented in the UDT library. We believe these mechanisms 
will benefit most congestion control algorithms. 

4.3 New TCP Algorithms (Loss-based) 
New TCP variants that use loss-based approaches usually redefine 
the increase and decrease formulas of the congestion window size. 
Implementations of these protocols can simply inherit from CTCP 
and redefine proper TCP event handlers.  
For example, to implement Scalable TCP, we can simply derive a 
new class from CTCP, and override the actions of increasing (by 

                                                                 
1 Although TCP uses accumulative acknowledgements, a TCP 

implementation usually acknowledges at the boundary of a data 
segment. This is equivalent to acknowledging a UDT data 
packet in CTCP. 



0.1 instead of 1/cwnd) and decreasing (by 1/8 instead of 1/2) the 
congestion window size. 
Similarly, we have also implemented HighSpeed TCP (CHS), BiC 
TCP (CBiC), and TCP Westwood (CWestwood). 

4.4 New TCP Algorithms (Delay-based) 
Delay-based algorithms usually need accurate timing information 
for each packet. For efficiency, UDT does not calculate RTT for 
each data packet because it is unnecessary for most control 
algorithms. However, this can be done by overriding onPktSent 
and onACK event handlers, where the time of packet sending and 
the arrival of its acknowledgement can be recorded. For 
algorithms preferring one-way delay (OWD) information, each 
UDT packets contains the sending time in its packet header, and a 
new algorithm can override onPktReceived to calculate OWD. 
Using the strategy described above, we implement the TCP Vegas 
(CVegas) control algorithm. CVegas uses its own data structure to 
record packet departure timestamps and ACK arrival timestamps, 
and then calculates accurate RTT values. With simple 
modifications to the control formulas, we further implement 
FAST TCP (CFAST). 

4.5 Group Transport Control 
While we have demonstrated that UDT/CCC can be used to 
implement end-to-end unicast congestion control algorithms, we 
now show that it can also be used to implement group-based 
control mechanisms, such as CM and GTP. 
To support this feature, the new algorithm class simply needs to 
implement a central manager to control a group of connections. 
The control parameters are calculated by the central manager and 
then fed back to the control class instance of each individual 
connection. 
We implemented GTP (CGTP) as an example of group-based 
control mechanisms. The GTP protocol controls a group of flows 
with the same destination. CGTP tunes the packet sending rate at 
the receiver side periodically and feeds back the parameters using 
UDT/CCC’s sendCustomMsg method. 

4.6 Summary 
We have implemented nine example algorithms using UDT/CCC, 
including rate-based reliable UDP, TCP and its variants, and 
group-based protocols. We demonstrated that our UDT/CCC 
library can support a large variety of congestion control 
algorithms, which are supported by only 8 event handlers, 4 
protocol control functions, and 1 performance monitoring 
function. 
The concise UDT/CCC API is easy to learn. In fact, it takes a 
small piece of code to implement most the algorithms described 
above. Table 1 lists the lines of code (LOC) of implementations 
of TCP algorithms using UDT/CCC, as well as the LOC of those 
native implementations (Linux kernel patches). The LOC value is 
estimated by the number of semicolons in the corresponding 
C/C++ code segment. 
As a reference point, the UDT library has 3134 lines of effective 
code (i.e., excluding comments, blank lines, etc.), SABUL has 
2670 lines of code, and the RBUDP library has approximately 
2330 lines of code. While these numbers are not enough to reflect 
the complexity of implementing a transport protocol, the much 

smaller number of LOC values of UDT/CCC based 
implementation can indicate the simplicity of using UDT/CCC. 
 
Table 1. Lines of Code (LOC) of implementations of TCP 
algorithms. This table lists LOC of different TCP algorithms 
implemented using UDT/CCC and their respective Linux kernel 
patches (native implementations). The LOC of Linux patches 
include both added lines and removed lines. 

Protocol UDT/CCC Native 
TCP 28 - 
Scalable TCP 11 370 
HighSpeed TCP 8 40 
BiC TCP 38 430 
TCP Westwood 27 182 
TCP Vegas 37 247 
FAST TCP 31 481 

 
The class inheritance relationship of these UDT/CCC 
implemented algorithms can be found in Figure 7. Code reuse by 
class inheritance also contributes to the small LOC values of 
those TCP-based algorithms. 
 

CCC

CTCP CGTP CUDPBlast

CScalable CBiC CHS CWestwoodCVegas

CFAST
 

Figure 7. UDT/CCC based protocols. This figure shows the 
class inheritance relationship among the control algorithms we 
implemented. Note that this is only for the purpose of code reuse, 
and it does NOT imply any other relationship among these 
algorithms. 

5. PERFORMANCE 
In this section, we examine the performance characteristics of 
UDT/CCC. We focus on two important evaluations: 1) can 
UDT/CCC based implementations simulate the behaviors of their 
native implementation counterparts and 2) what is the additional 
CPU overhead introduced by this application implementation? 

5.1 Similarity 
It is a fundamental goal for UDT/CCC to simulate the 
performance of a control algorithm’s native implementation or 
realize the algorithm’s theoretical performance. 
In most cases, congestion/flow control algorithms are the most 
significant factor that determines a protocol’s performance-related 
behavior (throughput, fairness, and stability). Less significant 
factors include other protocol control mechanisms, such as RTT 
calculation, timeout calculation, acknowledgment interval, etc. 
We have made most of these control mechanisms configurable 
through the CCC interface and the UDT protocol control 
interface. In this subsection we will show that a UDT/CCC based 



implementation demonstrates similar performance to a native 
implementation. 
Since TCP is probably the most representative control protocol, 
we compared an application level TCP implementation using our 
UDT/CCC library (CTCP) against the standard TCP 
implementation provided by Linux kernel 2.4.18. 
The experiment was performed between two Linux boxes 
between Chicago and Amsterdam. The link is 1 Gb/s with 110ms 
RTT and was reserved for our experiment only in order to 
eliminate cross traffic noises. Each Linux box has dual Xeon 
2.4GHz processors and was installed with Linux kernel 2.4.18. 
We started multiple TCP and CTCP flows in separate runs, each 
of which was kept running for at least 60 minutes. The total TCP 
buffer size was set to at least the size of BDP (bandwidth delay 
product). Both TCP and CTCP experiments used the same testing 
program (except the connections were TCP and CTCP, 
respectively) with same configuration (buffer size, etc.). 
We recorded the aggregate throughput (value between 0 and 1000 
Mbps), fairness index (value between 0 and 1), and stability index 
(equal to or greater than 0) in Table 2. The definitions of the 
fairness index and stability index can be found in [1, 26]. The 
fairness index represents how fairly the bandwidth is shared by 
concurrent flows and larger values are better. The stability index 
describes the oscillations of the flows and smaller values mean 
less oscillation. These three measurements summarize most of the 
performance characteristics of a congestion control algorithm. 
 
Table 2. Performance characteristics of TCP and CTCP with 
various parallel flows. The table lists the aggregate throughput 
(in Mb/s), fairness index, and stability index of concurrent TCP 
and CTCP flows. Each row records an independent run with a 
different number of parallel flows. 

Throughput Fairness Stability Flow 
# TCP CTCP TCP CTCP TCP CTCP 

1 112 122 1 1 0.517 0.415 
2 191 208 0.997 0.999 0.476 0.426 
4 322 323 0.949 0.999 0.484 0.492 
8 378 422 0.971 0.999 0.633 0.550 
16 672 642 0.958 0.985 0.502 0.482 
32 877 799 0.988 0.997 0.491 0.470 
64 921 716 0.994 0.996 0.569 0.529 

 
From Table 2, we find that TCP and CTCP have pretty similar 
throughput for small numbers of parallel flows. However, as the 
number of parallelism increases, CTCP stops increasing its 
throughput first and thus has a significantly smaller throughput 
than TCP when there are 64 parallel flows2. Further analysis 
indicates that the reason for this is that CTCP costs more CPU 
than kernel implemented TCP and with 64 flows the CPU time 
has been used up. To verify this assertion, we started another 
experiment using machines with dual AMD 64-bit Opteron 
processors and this time CTCP reaches more than 900Mbps at 64 
parallel flows. The CPU usage problem will be further analyzed 
in Section 5.2. 

                                                                 
2 TCP throughput will also start to decrease as the number of 

parallel flows increases [12]. 

In spite of the CPU utilization limitation, both of the 
implementations have similar performance on fairness and 
stability. They both realize good fairness with near-one fairness 
indexes, as the AIMD algorithm indicates. The stability indexes 
are around 0.5 for all runs. 
In addition to the experiments above, we have also tested several 
reliable UDP-based protocols such as UDP Blast (CUDPBlast) to 
examine if the UDT/CCC based implementation conforms to the 
protocol’s theoretical performance. We also examined the 
performance of UDT/CCC in a real streaming merge application, 
in which the receiver (where data is merged) requests an explicit 
sending rate to the data sources. This service is provided by a 
specific control mechanism implemented using UDT/CCC. The 
results of these experiments were positive and expected 
performance was reached. 

5.2 CPU Usage Overhead 
While we have addressed the expressiveness and similarity issues, 
there is one last major concern in using the UDT/CCC library: 
how much is the overhead brought in by UDT/CCC? 
Before we go into the details, we show the CPU usages 
(percentage of CPU time used by TCP and CTCP) of the 
experiments in Table 2, Section 5.1. The result is listed in Table 
3. Because there are two processors in each of our testing 
machine, the percentage varies between 0% and 200%. 
 
Table 3. CPU usage of TCP and CTCP with various parallel 
flows. The table lists the CPU usage percentage of both the 
sender and receiver sides. Each row records the data for the two 
runs of TCP and CTCP, respectively. The maximum CPU usage 
percentage is 200%. 

Sender Receiver Flow
# TCP CTCP TCP CTCP 

1 9.5 16.7 10.1 13.0 
2 18.6 33.9 19.8 24.4 
4 31.2 58.2 20.9 26.5 
8 35.0 71.3 38.6 44.0 
16 62.5 122.8 69.6 73.1 
32 88.1 198.0 90.5 105.7 
64 93.2 198.0 91.9 94.2 

 
Table 3 shows that at the receiver side, CTCP has very good CPU 
usage compared to the Linux TCP implementation. However, at 
the sender side CTCP has a much higher CPU usage; this is why 
CTCP stops increasing its throughput after 32 parallel flows in 
Table 2. 
The major performance overhead added by an application level 
implementation comes from additional memory copy between 
application buffer and protocol buffer and additional context 
switches by packet processing and threading. 
UDT has a best-effort method to reduce the additional memory 
copy and in the best case, additional memory copy will be 
completely eliminated. 
However, UDT can do little for context switches caused by packet 
processing. The number of packets (for both data and control 
information) is decided by how much data applications need to 
transfer, whereas the number of control packets also depends on 



the specific protocol. For example, most reliable UDP protocols 
(SABUL, RBUDP, etc) only feed back an acknowledgement at 
the end of a large data block, whereas TCP needs to acknowledge 
arrived packets more frequently, at about every 1 or 2 packets. 
Our more detailed experiments discovered two major overheads 
added by CTCP compared to TCP. One is from acknowledging, 
including the subsequent overheads of context switches, buffer 
and sequence number updating, and thread synchronizations. The 
other is from application level threading. 
In the following experiments, we increased the acknowledgement 
interval of our CTCP implementation, and, accordingly, the 
increases per ACK at the sender side. We run the experiments 
with the same setup as Table 2 in Section 5.1. The CPU usages 
are recorded in Table 4. 
In Table 4 we use MHz/Mbps to describe CPU utilization. 
Because we cannot force TCP or CTCP to output a predictable 
throughput, we need to consider the data throughput when 
comparing CPU utilizations. The measurement of MHz/Mbps 
equals CPU percentage * CPU frequency (MHz) / throughput 
(Mbps). Note that both CPU percentage and MHz/Mbps are NOT 
generic measurements. That is, these values are only comparable 
against those values obtained on the same system, or at least 
systems with the same configuration. 

 
Table 4. CPU utilization of CTCP against number of parallel 
flows and ACK intervals. This table lists the CPU utilization 
(MHz/Mbps) of CTCP with different numbers of parallel flows 
and different numbers of ACK intervals. Note that the first column 
(ACK interval = 2) is the result from Table 3 and it is listed here 
for comparison 

ACK Intervals Flow
# 2 4 8 16 32 64 128 

1 3.28 3.15 3.20 3.43 2.57 2.59 2.07 
2 3.91 3.77 3.95 3.59 3.52 3.35 3.51 
4 4.32 4.36 1.45 3.08 3.54 3.44 3.27 
8 4.05 4.87 4.32 3.84 3.91 3.63 3.63 
16 4.59 5.07 5.60 4.41 4.41 4.17 3.12 
32 5.41 5.31 5.27 4.99 5.15 4.53 4.01 
64 6.63 6.58 6.15 5.89 5.35 5.08 4.51 

 
Table 4 shows that as the number acknowledgments decreases, 
the CPU usage drops sharply. For the same reason, less frequent 
acknowledging is recommended when designing an application 
level protocol for purpose of efficiency. 
Meanwhile, the MHz/Mbps measurement increases as the number 
of flows increases, but this is insignificant for TCP experiments. 
The situation, however, is caused by the user level threads used 
by CTCP. CTCP needs to start at least one thread for each 
connection, whereas TCP realizes the multiplexing in the kernel 
and does not have this overhead. This situation is worse for the 
sender side because each CTCP sender has to start two threads 
(UDT sender and receiver, see Section 2.3 and 3.1) and to deal 
with the thread synchronization caused by packet acknowledging. 
In fact, through profiling analysis we found that UDP IO, 
threading synchronization, and control event handling contributes 
more than 90% of CPU utilization of CTCP. The fourth most 
significant CPU consumer is timing, which takes about 5% of 

overall CPU utilization on stamping each packet and triggering 
timer related events. 
Although the CPU overhead of UDT/CCC may limit its usage in 
certain scenarios, we argue that the library is still useful in many 
other situations. First, in high performance computing, there are 
usually only a small number of flows sharing the high bandwidth. 
In this case, the threading overhead is low. Second, the overhead 
can be overcome by more powerful processors and more 
machines. Third, the overhead of UDT/CCC only exists when 
compared to kernel space implementations; it is insignificant 
when compared to other user space implementations. Finally, as 
we have shown in this section, control mechanisms with less 
frequent acknowledging would result in much less overhead. 
We are, however, quite aware of the importance of CPU 
efficiency. Our current work is focused on code optimization. 
We have also performed the same experiments on similarity and 
performance on other systems with different operating systems 
(Linux, BSD, OS X, Windows XP), hardware (Intel, AMD, and 
PowerPC processors), and networks. Although specific systems 
have more or less impact on the results, all the experiments 
conform to the similarity and performance trends we obtained 
from the experiments described in this section. 

6. RELATED WORK 
There are few user level protocol stacks that provide a 
programming interface for user-defined congestion control 
algorithms as UDT/CCC does. 
The Globus XIO [39] library has somewhat similar objectives, but 
the approach is quite different. XIO implements a set of primitive 
protocol components and APIs for fast creation or prototyping 
new protocols. XIO can support more protocols than UDT/ CCC, 
however, UDT/CCC is much simpler to learn and use. 
Less similar user level libraries include several user level TCP 
implementations [15, 16, 17, 18, 19]. One particular 
implementation is the Alpine [15] library. Alpine is an attempt to 
move the entire kernel protocol stack into the user space, and 
provides (almost) transparent application interfaces at the same 
time. None of these libraries provide programmable interfaces. 
In kernel space, the most similar work to UDT/CCC is probably 
the icTCP [4] library. It exposes key TCP parameters and 
provides controls to these parameters to allow new TCP 
algorithms deployed in user space. Despite the different nature of 
kernel and user space implementations, icTCP limits the update 
on TCP controls only, whereas UDT/CCC supports a broader set 
of protocols. Similar work as icTCP also includes 
Web100/Net100 [6] and CM. 
Another work, STP [3], has more radical changes but also has 
more powerful expression ability. The STP’s approach is to 
provide a set of protocol implementation APIs in a sandbox. 
Meanwhile, STP itself is a protocol that supports run time code 
upgrading; thus, new protocols or algorithms can be deployed 
implicitly. To address the security problem arising from untrusted 
code, STP involves a complex security mechanism. 
Yet another more complex library is the x-kernel [13]. x-kernel is 
an OS kernel designed to support data transport protocol 
implementations. The support mechanism of x-kernel is a modular 
based system and it is more decomposed than STP. Besides the 



support of protocol implementation, x-kernel has many 
optimizations inside the OS kernel for data communications.  
Other modularized approaches include Horus [14], CTP [22] and 
its high performance successor [23]. 
While some of these in-kernel libraries may have performance 
and transparency advantages, their goals of fast deployment of 
new protocols/algorithms are compromised by the difficulty of 
getting themselves deployed. For example, x-kernel has been 
proposed for more than a decade and it still remains a research 
tool. In contrast, UDT/CCC library provides a very practical 
solution for the time being. 
In addition, kernel space approaches need to protect their host 
systems and the network from security problems and they have to 
limit users’ privileges to control the protocol behavior. For 
example, both STP and icTCP prevent new algorithms from 
utilizing more bandwidth than standard TCP. Such limitations are 
improper to the new control algorithms for high-speed networks 
such as Scalable, HighSpeed, BiC, and FAST. The security 
problem is much less serious for UDT/CCC because it is at user 
space and it is only installed as needed (in contrast, those libraries 
such as icTCP and STP will be accessible to every user if they are 
accepted by OS vendors). 
Finally, there is another category of related work that attempts to 
provide a protocol language for easier, faster, or more readable 
protocol implementation. Such work includes Prolac [20] and 
FoxNet [21]. 

7. CONCLUSION 
The maturity of high-speed wide area networks encouraged the 
emergence of numerous new applications, and new control 
mechanisms supporting these applications as well. It has often 
been the case that implementing these new control algorithms in 
the kernel is not practical or proper. On the one hand, the wide 
deployment of new protocols or algorithms usually suffers long 
time lag. On the other hand, OS vendors may only choose a very 
small number of protocols to implement in kernel. 
We have presented a user level transport protocol stack named 
UDT/CCC, which allows user defined congestion control 
algorithms to be easily implemented. Our UDT/CCC library 
enables easy implementations of a large variety of control 
algorithms while these implementations can still match the 
performance characteristics of those native implementations. 

However, UDT/CCC is not meant to replace kernel protocol 
stacks or proposed as a mean to implement any new protocols. 
Instead, it provides a practical alternative when a kernel space 
approach is difficult to implement, evaluate, and deploy. These 
use scenarios include the implementation of a new application or 
network specific congestion mechanism and the evaluation of new 
congestion control algorithms. 

Finally, we are aware of the CPU utilization limitations of the 
current UDT/CCC implementation. On the one hand, there are 
unavoidable efficiency side effects for application level protocol 
implementations because of the additional memory copy and 
context switches. On the other hand, we will continue to optimize 
the implementation to minimize these negative impacts. 

The UDT project, including the feature described in this paper, is 
meant for productivity use, rather than just for research or 

prototyping. The UDT library is open source software and can be 
obtained from http://udt.sf.net. 
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