
UCRL-CONF-211384

Tera-scalable Algorithms for
Variable-Density Elliptic Hydrodynamics
with Spectral Accuracy

A. W. Cook, W. H. Cabot, M. L. Welcome, P. L.
Williams, B. J. Miller, B. R. de Supinski, R. K.
Yates

April 14, 2005

Supercomputing
Seattle, WA, United States
November 12, 2005 through November 18, 2005



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



Tera-scalable Algorithms for Variable-Density Elliptic

Hydrodynamics with Spectral Accuracy

Andrew W. Cook, William H. Cabot, Michael L. Welcome,
Peter L. Williams, Brian J. Miller, Bronis R. de Supinski

and Robert K. Yates

Lawrence Livermore National Laboratory

April 13, 2005

Abstract

A hybrid spectral/compact solver for variable-density viscous incompressible flow is described. Par-
allelization strategies for the FFTs and band-diagonal matrices are discussed and compared. Transpose
methods are found to be highly competitive with direct block parallel methods when the problem is
scaled to tens of thousands of processors. Various mapping strategies for the IBM BlueGene/L torus
configuration of processors are explored. By optimizing the communication, we have achieved virtually
perfect scaling to 32768 nodes. Furthermore, communication rates come very close to the theoretical
peak speed of the BlueGene/L network with sustained computation in the TeraFLOPS range.

1 Introduction

It is well known that low-order accurate solutions to the compressible Euler equations on parallel computers
require only nearest neighbor communication and thus are easily parallelized (Cohen et al., 2002). Solutions
to the variable-density incompressible Navier-Stokes equations, however, are much more difficult to obtain
on parallel computers due to their elliptic nature. For incompressible flow, the inclusion of variable-density
and diffusion effects makes the equations much more complicated and difficult to solve on parallel computers,
compared to the single fluid case (Yokokawa et al., 2002). If the flow is turbulent, i.e., possesses a wide range of
length scales, then spectral and/or Padé (compact) methods are highly desirable, since they can accurately
represent a broad range of wavenumbers (Lele, 1992). Spectral and compact methods involve implicit
derivatives, thus further complicating the parallelization strategy. In this paper we demonstrate a scalable
and efficient method for achieving high-order accurate solutions for variable-density viscous incompressible
turbulence and compare our strategy with various alternatives. In particular, we consider incompressible
Rayleigh-Taylor instability, since it exhibits all of the above-mentioned difficulties.

Rayleigh-Taylor instability (RTI) is the baroclinic generation of vorticity at a perturbed interface subject
to acceleration in a direction opposite the mean density gradient (Rayleigh, 1883; Taylor, 1950). The resulting
interpenetration and mixing of materials has far-reaching consequences in many natural and man-made
flows, ranging from supernovae to Inertial Confinement Fusion (ICF). In supernovae, the rate of growth of
the mixing region is thought to be a controlling factor in the rate of formation of heavy elements. In ICF,
accurate prediction of the depth of interpenetration of the fluids is crucial in designing capsules to maintain
shell integrity.

We have investigated various parallelization strategies for computing RTI flows on the IBM BlueGene/L
(BGL) system. In particular, we have ported the Miranda code (Cook et al., 2004) to this machine and
have performed a series of scaling studies to determine the optimal approach to simulating RTI on tens of
thousands of processors. In Section 2, the governing equations and solution techniques employed by Miranda

1



are laid out and in Section 3 a few simulation results are presented. Section 4 contains a description of the
IBM BGL hardware and introduces key features that impact the scalability and performance of Miranda’s
algorithms. In Section 5, two parallelization strategies are compared, a direct block parallel matrix solution
method and a transpose method. In Section 6, we attempt to optimize the transpose method on the BGL
torus network. Section 7 contains scaling and performance data for Miranda using the transpose method.
Finally, conclusions are presented in Section 8.

2 Miranda Code Description

Miranda solves the governing equations for flows comprised of two incompressible miscible fluids in an
accelerated Cartesian frame of reference, i.e.,

∂ρ

∂t
+ uj

∂ρ

∂xj
= ρ

∂

∂xj

(
D

ρ

∂ρ

∂xj

)
, (1)

∂ρui

∂t
+

∂ρuiuj

∂xj
= − ∂p

∂xi
+

∂τij

∂xj
+ ρgi , τij = µ

[
∂ui

∂xj
+

∂uj

∂xi
− 2

3
δij

∂uk

∂xk

]
; (2)

where ρ is density, ui = (u, v, w) is velocity, p is pressure, D is diffusivity, µ is viscosity and gi = (0, 0,−g)
is acceleration. Spatial derivatives are computed in the code with the following 10th-order compact scheme

βf ′j−2 + αf ′j−1 + f ′j + αf ′j+1 + βf ′j+2 = c
fj+3 − fj−3

6∆i
+ b

fj+2 − fj−2

4∆i
+ a

fj+1 − fj−1

2∆i
, (3)

α =
1
2

, β =
1
20

, a =
17
12

, b =
101
150

, c =
1

100
,

where j is a grid index along a line with N points in the i direction, and ∆i is the grid spacing in that
direction.

The solution is marched forward in time via the following 3rd-order, variable-timestep, predictor-corrector
method. For equations of the form φ̇ = F (φ), the predictor step is

φ∗ = φn + ∆tnew

[
(1 +R)F (φn)−RF (φn−1)

]
(4)

and the corrector step is

φn+1 = φ∗ + ∆tnew

[AF (φ∗) + (B −R− 1)F (φn) + (C +R)F (φn−1)
]

, (5)

where
R = ∆tnew/(2∆told) , A = (2∆tnew + 3∆told)/[6(∆tnew + ∆told)]

B = (∆tnew + 3∆told)/(6∆told) , C = −∆t2new/[6∆told(∆tnew + ∆told)] ,

with ∆told denoting the time increment between the n − 1 and n timesteps, and ∆tnew being the time
increment between the n and n + 1 times.

The density equation (1) is integrated by straightforward application of the predictor-corrector scheme.
However, it must be advanced in conjunction with the momentum equation, which follows a pressure-
projection algorithm. The pressure-projection scheme requires the solution of a Poisson equation. With
periodic boundary conditions in x and y, the Poisson equation can be Fourier transformed to obtain

Fxy

{
∂2p

∂x2
+

∂2p

∂y2
+

∂2p

∂z2
= Ω(x, y, z)

}
⇒ −k2

x
ˆ̂p− k2

y
ˆ̂p + ˆ̂p

′′
= ˆ̂Ω(kx, ky, z) ,

where ˆ̂p
′′

= ∂2ˆ̂p/∂z2 and Ω contains various space and time derivatives. Thus, with j being the z-index of

the grid, ˆ̂p
′′
j = ˆ̂Ωj + k2ˆ̂pj , with k2 = k2

x + k2
y. An 8th-order compact approximation for ˆ̂p

′′
j can be written as

(Lele, 1992)

βˆ̂p
′′
j−2 + αˆ̂p

′′
j−1 + ˆ̂p

′′
j + αˆ̂p

′′
j+1 + βˆ̂p

′′
j+2 = b

ˆ̂pj+2 − 2ˆ̂pj + ˆ̂pj−2

4∆z2
+ a

ˆ̂pj+1 − 2ˆ̂pj + ˆ̂pj−1

∆z2
, (6)

2



where α = 344/1179, β = 23/2358, a = 320/393 and b = 310/393. The linear system for ˆ̂pj thus becomes
[
βk2 − b

4∆z2

]
ˆ̂pj−2 +

[
αk2 − a

∆z2

]
ˆ̂pj−1 +

[
k2 +

b

2∆z2
+

2a

∆z2

]
ˆ̂pj

+
[
αk2 − a

∆z2

]
ˆ̂pj+1 +

[
βk2 − b

4∆z2

]
ˆ̂pj+2 = −

[
β

ˆ̂Ωj−2 + α
ˆ̂Ωj−1 + ˆ̂Ωj + α

ˆ̂Ωj+1 + β
ˆ̂Ωj+2

]
, (7)

which is combined with Neumann boundary conditions and solved during both the predictor and corrector
steps. Further details concerning the numerical scheme are described in Cook et al. (2004).

3 Simulation Results

Results of large-scale RTI simulations with Miranda on 1728 CPUs of an Intel Linux cluster are reported
in Cook et al. (2004). The evolution of the instability is such that, at early times, the perturbations grow in a
fairly independent fashion. Then the modes begin to couple to one another and secondary Kelvin-Helmholtz
instabilities appear. At this point, the range of scales in the mixing layer rapidly increases, generating more
mixed fluid within the layer. The large structures in the flow continue to increase until the mixing region
becomes fully turbulent. Figure 1 illustrates the flow once it has evolved to a fully turbulent state.

4 BlueGene/L Architecture

BlueGene/L was developed by IBM, in partnership with ASC, as a massively-parallel computing system
designed for research and development in computational sciences. Its goal is to deliver TeraFLOP-scale
computing on a routine basis to selected applications of interest to the Advanced Simulation and Computing
program (ASC) of the U.S. Department of Energy’s National Nuclear Security Agency. It’s extremely high
compute-density design results in a very high cost-performance system with comparatively modest power and
cooling requirements. At this writing, BGL is the fastest computer in the world, based on the 135 TFLOPS
achieved on the LINPACK benchmark. The 32,768-node BGL system installed at LLNL will double in size
to 65,536 nodes in late 2005. Here we provide only a high-level description of the system architecture, since
BGL has been extensively described elsewhere (Adiga, 2003; BGL, 2005).

A compute node of BGL is composed of 10 chips, a 700 MHz compute ASIC plus nine DRAM main mem-
ory chips. This highly integrated design drastically lowers power consumption and space requirements, while
favoring communication and memory performance. The BGL chip is comprised of two independent PowerPC
440 cores, each capable of two floating point operations (FLOPs) per cycle (including fused multiply-adds,
yielding a theoretical peak of 4 FLOPs per cycle), several independent network controllers, three levels of
cache (including a 4 MiB L3), and memory controllers. Though each floating point unit is capable of two
operations per cycle, they are not independent: the second floating point pipe is usable only by 2-way SIMD
instructions, or by 2-way ”SIMOMD” (i.e., “single instruction, multiple operation, multiple data”) instruc-
tions (Bachega et al., 2004). The theoretical peak of a single node is 2.8 GFLOPs, hence 184 TFLOPs for
the current 32,768-node system. The two processors on each chip are identical, with symmetric access to
resources (but L1 cache coherence is not provided by the 440 core).

The system software supports two modes for applications to use the cores. In communication coprocessor
mode, there is a single MPI task per node, with one processor running the application and offloading much of
the work of message passing to the second processor. In virtual node mode, two MPI tasks run on each node,
one on each processor. MPI communications are handled by three independent special-purpose networks in
BGL. Point-to-point and all-to-all communications are handled by a 16x32x64-node three-dimensional torus,
with each node connected to its nearest neighbors via six independent bidirectional links. In addition to the
torus, BGL also has two tree-topology networks to perform global operations like broadcasts, reductions,
and barriers, with very low latency and high bandwidth. For example, the current 32,768-node machine can
complete an MPI Barrier across the entire machine in under 2 microseconds. Miranda makes extensive use
of all-to-all communications on various collections of nodes, as discussed later. Thus, mapping the tasks onto

3



Figure 1: Turbulent state of Rayleigh-Taylor instability. Light fluid (density=1) is blue and heavy fluid
(density=3) is red. The flow was computed with Miranda using 11523 grid points on 1728 CPUs of an Intel
Linux cluster.

the torus to reduce the overall communication time is one of the major challenges in running Miranda well
on BGL.

5 Parallelization Strategies

5.1 Band-diagonal Matrices

A core task of the Miranda code is computing implicit derivatives, f ′, from functions, f , using the compact
scheme. Additionally, FFTs in the horizontal directions are required for the Poisson solve. The communica-
tions required for the matrix solvers and FFTs are very similar; hence, for brevity, the discussion will focus
mainly parallelization of the compact derivatives. Compact derivatives require solving the linear matrix
problem

Af ′ = Bf . (8)

For a 10th-order first-derivative, A is a pentadiagonal matrix and B is a heptadiagonal matrix (see Eq. 3).
If all data for f in the given direction is contained on a process, the solution for f ′ is determined directly by

4



a band-diagonal matrix solver based on LU decomposition. If f is distributed across some or all processors,
then some communication overhead must be paid.

There are basically three strategies for solving band-diagonal linear systems (or computing Fourier trans-
forms) in parallel: direct methods, whereby data are exchanged at processor boundaries then local solutions
are obtained and joined back together; transpose methods, whereby the data are rearranged to give each
processor all of the data it needs to compute a complete solution in serial; and iterative methods, whereby
boundary data are exchanged and an initial guess is then iterated to convergence. Since we are interested
in turbulent flows with significant high wavenumber content (for which iterative schemes are typically slow
to converge) our studies thus far have focused on direct and transpose methods. However, we are beginning
to investigate iterative schemes as well.

5.2 Domain Decomposition

For any of the above-mentioned strategies, a three dimensional computational domain can be broken up
in any or all directions; e.g., a 3D mesh of size (nx, ny, nz) can be distributed across a process grid of size
(px, py, pz), such that each MPI process contains a block of size (ax, ay, az) = (nx/px, ny/py, nz/pz). The
left-hand side of Figure 2 portrays a typical Miranda decomposition in which pz = 1 and the process grid
is decomposed into py X-communicator groups and px Y-communicator groups. These communicators are

Figure 2: Left side: A sample two dimensional domain decomposition in Miranda. Right side: Block transfer
in MPI Alltoall operation for data transposes in Miranda.

used to martial data across processors, primarily for the purpose of computing high-order spatial derivatives.
The highlighted regions in Figure 2 show portions of the computational domain existing on particular X and
Y communicators.

5.3 Direct Approach to Solution

The direct option for solving pentadiagonal matrices in a direction of distributed data is to perform a
block parallel pentadiagonal solve (see e.g., Ivanov & Walshaw (2004)). In this method, local (incomplete)
pentadiagonal solutions are performed on each process, boundary data is gathered across the communicator
to form a global overlap solution, and the overlap solution is used by each process to complete the global
solution. Computing the right-hand side of (8) requires sharing planes of boundary data with nearest
neighbors; e.g., if B is heptadiagonal, 3 planes of data must be exchanged at each boundary with paired
MPI Sendrecv calls. The pentadiagonal A on the left-hand side of (8) generates 4 planes of overlap data from
the local solution. The global solution requires all overlap data, so an MPI Allgather call is used to collect
all overlap data on all processes. Each process then computes the global overlap solution independently (for

5



load balancing) and complete the exact global solution. Note that the global overlap problem requires the
solution of a 4×4 block-tridiagonal linear matrix problem with a dimension equal to the number of processes
on the communicator (and hence is not strictly scalable). If the direction is globally periodic, the global
overlap solution involves a periodic block-tridiagonal matrix.

5.4 Transpose Approach to Solution

In the transpose method, all the data along a pencil of cells in the desired coordinate direction must
be collected onto a single process before the linear system is solved. For an X-Y domain decomposition,
Z-derivatives require no communication, since all the required data is local to each process. For the compu-
tation of X and Y derivatives, MPI Alltoall operations are used to reorganize the data, in a load-balanced
manner, across all the processes within a communicator group. Consider, for example, the computation of
an X-derivative. The data on each process can be logically decomposed into blocks of size axayaz/px. The
MPI Alltoall operation acting on this data over the X-communicator group behaves like a data transpose
operation. The jth data block from the ith process in the group is transported to the ith data block of the
jth process in the group; this is illustrated by the graphic on the right-hand side of Figure 2. Following
the MPI Alltoall, local data reorganization is performed to align the data pencils at constant stride. The
derivatives are computed in parallel, with each processor operating on its own block of data pencils. An-
other MPI Alltoall operation sends the computed derivatives back to their home processes. An incentive
for breaking up the data in X and Y , rather than Y and Z, is to minimimize the cost of the “descrambling”
operation required after the MPI Alltoall calls. With careful ordering of the data, the descrambling oper-
ations can performed as Fortran-intrinsic transpose and reshape calls on the first two (most contiguous)
dimensions of the 3D arrays.

5.5 Comparisons

Various timings have been obtained on BlueGene/L for computing the gradient of a function,

∇f =
(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
, (9)

using the 10th-order compact scheme (3). This is a common operation in Miranda, performed many times
per cycle. Derivatives were computed with both the direct block parallel pentadiagonal (“BPP”) scheme
and with the serial pentadiagonal solves of globally transposed data (“XDP” scheme). The two methods
were compared for both 2D (pz = 1) and 3D domain decompositions. The runs were performed on the
32K-node BGLb hardware at LLNL (driver 100) in 512, 2K, 4K, 8K, 16K and 32K processor configurations
with a fixed problem size (16 × 16 × 2048 grid points) per process. All computations were performed in
double (8-byte) precision with -O3 optimization in communication coprocessor mode (one task per node).
A sample of the timing results are presented in Table 1. From Table 1, it is clear that the XDP scheme
performs best for two-dimensional processor arrangements. This is because no communication is required
for directions containing complete columns of data. The BPP method performs best when the data and
processor volumes are nearly cubic. A cubic data decomposition minimizes the surface-to-volume ratio of
the grid blocks and a cubic processor distribution reduces the cost of the global overlap solution by minimizing
the number of processes on each communicator. It is somewhat surprising that, despite the very different
communication patterns, the XDP and BPP times are comparable to one another and have similar weak
scaling properties. The anomalously high XDP value at 8096 CPUs is due to a suboptimal (machine default)
processor arrangement. This is discussed in detail in Section 6, where we explore the possibility of reducing
XDP times via custom torus mappings.

6 Communication Performance

For the transpose method, Miranda spends roughly half of its runtime in MPI Alltoall communication
operations. Consequently, we have investigated methods for reducing this time by employing special map-

6



2D processor layouts XDP times [s] BPP times [s]
processes data per process dx dy dz grad dx dy dz grad
16× 32× 1 16× 16× 2048 0.17 0.17 0.03 0.37 0.57 0.65 0.03 1.25
32× 32× 1 16× 16× 2048 0.23 0.17 0.03 0.43 1.05 0.65 0.03 1.73
32× 64× 1 16× 16× 2048 0.34 0.16 0.03 0.53 0.60 1.06 0.03 1.69
64× 64× 1 16× 16× 2048 0.33 0.22 0.03 0.58 3.21 1.26 0.03 4.50
128× 64× 1 16× 16× 2048 0.32 0.22 0.03 0.57 7.76 4.48 0.03 12.27
128× 128× 1 16× 16× 2048 0.32 0.22 0.03 0.57 7.72 5.69 0.03 13.44
256× 128× 1 16× 16× 2048 0.31 0.35 0.03 0.69 9.76 4.55 0.03 14.34
3D processor layouts XDP times [s] BPP times [s]
processes data per process dx dy dz grad dx dy dz grad
8× 4× 16 64× 64× 128 0.17 0.18 0.18 0.54 0.17 0.08 0.10 0.35
8× 8× 16 64× 64× 128 0.23 0.18 0.18 0.59 0.20 0.11 0.10 0.41
8× 8× 32 128× 64× 64 0.35 0.17 0.18 0.70 0.17 0.11 0.17 0.45
16× 8× 32 64× 128× 64 0.32 0.22 0.18 0.72 0.25 0.09 0.17 0.51
32× 8× 32 64× 128× 64 0.32 0.34 0.18 0.84 0.27 0.09 0.17 0.53
32× 16× 32 64× 128× 64 0.32 0.32 0.23 0.87 0.27 0.10 0.17 0.55
32× 32× 32 128× 64× 64 0.33 0.34 0.34 1.01 0.20 0.18 0.15 0.53

Table 1: Mean time per gradient operation using the transpose pentadiagonal (XDP) scheme and the direct
block parallel pentadiagonal (BPP) scheme on the BGLc hardware with driver 100 and -O3 optimization.

pings of the Miranda processes to the processors in the BGL Torus. We have also investigated the efficiency
of the current IBM MPI Alltoall implmenetation by comparing it to an estimate of the minimum time
required to complete such an operation.

6.1 The Mapping Problem

MPI Alltoall communication is performed over the BGL point-to-point or “torus” network. With this
network topology, communication performance is improved by packing the processes that communicate
most frequently onto neighboring processors so as to minimize hop distance and maximize the number of
torus links available for communication. Gven that MPI Alltoall operations perform an equal amount
of communication between every pair of processes in the communicator group it is desirable that these
processes map to nearby processors. For two-dimensional domain decompositions, finding a good mapping is
complicated by the fact that each process p belongs to two distinct communicator groups X(p) and Y (p) such
that X(p)∩Y (p) = {p}. It is difficult to construct a mapping that will closely pack the processes of X(p) and
Y (p) for every process p. We have experimented with various mapping that optimize the placement of the
processes in the X communicator group, leaving the processes of the Y communicator groups to fall where
they may. We are in the process of investigating other mapping techniques, including the use of space filling
curves and simulated anealing. One advantage to the maps we currently generate is that they are regular in
shape and tile the space of processors, resulting in uniform communication times across all communicator
groups, preventing communication load imbalance.

By default, processes are mapped by MPI COMM WORLD rank order to processors in the torus network in
XYZ order. That is, if (qx, qy, qz) is the size of the BGL partition, then the first qx processes are mapped to
locations (0 : qx − 1, 0, 0), the second qx processes are mapped to (0 : qx − 1, 1, 0), etc. Alternatively, we can
specify a mapping file that explicitly states the torus location for each process. Miranda constructs an X-Y
process grid of size px × py via the MPI Cartesian communicator constructors. The result is that the first
px processes in MPI COMM WORLD constitute the first X-communicator group. The second px processes form
the second X-communicator group, and so on. By default then, each X-communicator group is mapped to
contiguous X-direction rows of the BGL torus network. Consider the example of the 16K BGL configuration
at LLNL which has shape (16, 32, 32). By default, Miranda will construct a (128, 128) process grid that maps
the first X-communicator group onto the first 8 X-direction rows of the torus at locations (0 : 16, 0 : 7, 0),

7



the second group to (0 : 15, 8 : 15, 0), etc. This results in the first Y-communicator group being mapped
to the locations {(0, α, 0 : 31), α = 0, 8, 16, 24} Consequently, the X-communicator groups are packed into
subregions of shape 16 × 8 × 1 whereas the Y-communicator groups are mapped to 4 Z-direction pencils
of processors, each of length 32, distributed a distance of 7 hops apart in the Y-direction. Alternatively,
we could produce a mapping that packs the X-communicator groups into a 16 × 4 × 2 block, or 8 × 4 × 4.
Tight packing the X-communicator groups can improve X-direction communication, but at the expense of
dispersing the processes in the Y-communicator groups.

6.2 Estimating Optimal MPI Alltoall Communication Performance

We can construct a lower bound on the time required to complete an MPI Alltoall operation on a mesh or
torus network provided we make the assumption that the communication time is network bandwidth limited.
The BGL torus network has six links on each node (±X,±Y,±Z), each operating at a peak bandwidth b of
175 MB/sec. If we can compute the number of messages m of size s that traverse the most heavily loaded
link in the torus, then the minimum time required to complete the communication operation is tmin = sm/b.
In general, it is difficult to determine the most heavily loaded link and the amount of data that it transports
because messages in the BGL torus are broken into 256 byte packets that are adaptively routed; however,
we can estimate this value.

Consider the two-dimensional mesh or torus as shown in Figure 3. The circles represent nodes and the
line represent communication links. The dashed lines represent links in a torus that are not present in mesh
(the Y-direction dashed links are not shown). Let λx = 1 if the network is a mesh in the X direction and

Figure 3: A two-dimensional processor mesh or torus network.

λx = 2 if it is a torus and similarly for λy. There are qx processors in the X direction and qy in the Y
direction. We consider a cut through the qyλx X-links as shown, dividing the processors into left and right
sets L and R. Let α be the number of nodes in L. The number of nodes in R is qxqy−α thus, the number of
messages sent from L to R is m(α) = α(qxqy − α). This function has a maximum when α = qxqy/2 stating
that the set of links that carry the maximal message traffic are those that, if cut, would divide the network
into two equal parts. The number of messages across this set of links is: mmax = q2

xq2
y/4. We estimate the

traffic across the maximally loaded link by taking the average of this message count across all cut links,
or mx,max = q2

xqy/(4λx). A similar argument for cuts in the X-direction yield an estimate of the maximal
message count for any Y-direction link as my,max = q2

yqx/(4λy). So, an approximation of the minimum time
required to complete an MPI Alltoall operation on this 2D torus would be determined by the larger of these

8



two values, or
tmin = Max

{ qx

λx
,
qy

λy

}sqxqy

4b
. (10)

The extension to three dimensions is straightforward and yields the estimate

tmin = Max
{ qx

λx
,
qy

λy
,
qz

λz

}sqxqyqz

4b
. (11)

Furthermore, we can extend this argument to MPI Alltoall operations on subcommunicators within a
rectangular region of shape R = (rx, ry, rz) provided the processes of the subcommunicators are uniformly
distributed within this region. Furthermore, we require the region be minimal, in that it is the smallest
rectangle that contains all processs in the communicator groups and that if q ∈ R then all processes in the
communicator group containing q are also in R. Let κ be the number of communicator groups in R, then
we estimate the minimum communication time for AlltoAll operations that execute simultaneously on all
communicator groups within R to be

tmin = Max
{ rx

λx
,
ry

λy
,
rz

λz

}srxryrz

4bκ
(12)

λx = 1 if the BGL partition is a mesh in the X-direction or if λx ≤ qx/2. λx = 2 if the BGL partition is a
torus in the X-direction and rx = qx.

6.3 MPI Alltoall Communication Timings

In order to gain a complete picture of how torus mappings affect communication efficiency, a host of timing
data has been collected for Miranda runs on processor partitions up to 32K of BlueGene/L. For these runs,
we constructed a collection of process maps that pack the X-communicator groups into compact regions
and timed the X and Y direction MPI Alltoall operations. We then compared these timings with the
estimated minimum time as computed using (12); the results are shown in Figure 4. The bars in the figure
are organized into sets, with 512 node runs at the bottom and 32K node runs near the top. The bars in
each set show the timings for different mappings of the X-communicator groups. For example, the 4× 4× 4
bar of the 4K set says that the 64 processes of each X-communicator were mapped into a 4× 4× 4 block of
processors. Furthermore, the mapping that corresponds to the default process layout is always the bottom
bar in each set. Each bar has four segments which are (from left to right): the estimated minimum time
for an X-communictor MPI Alltoall (red), the measured X-communicator MPI Alltoall time minus the
minimum estimate (blue), the estimated minimum time for the Y communicator (yellow) and the measured
Y-communicator MPI Alltoall time minus the estimated minimum (green). That is, the actual measured
X communicator time is the sum of the red and blue bars and the actual Y communicator time is the sum
of the yellow and green bars. Note that the 64K node entries include only estimated times since the full
system is not yet available. Finally, when computing the estimated minimum MPI Alltoall time via 12, we
used a peak per link bandwidth of 170MB/sec rather than 175. This is to compensate for the overhead of
MPI message and packet headers that are sent in addition to the actual data payload.

The conclusions to be gathered from Figure 4 are that, for reasonable mappings, communication times
can vary by as much as a factor of 2 depending on how the MPI tasks are mapped to the BGL torus.
Also, once the maximum number of hops in Y is reached, communication times can be significantly reduced
by packing as tightly as possible in X (or vice versa). Finally, it is seen that a good mapping results in
communication times close to the theoretical peak speed of the network.

7 Overall Performance

7.1 Scaling

We now turn to the overall performance (communication plus computation) of Miranda using the XDP
scheme and simulating Rayleigh-Taylor instability, on up to 32768 nodes of the 700 MHz IBM BGL clus-
ter. For scaling studies, Miranda was compiled with IBM’s xlf90 Fortran compiler (version 9.1 for BGL), with

9



Figure 4: MPI Alltoall communication timings for Miranda using various torus mappings on BlueGene/L.

10



Figure 5: Left plot: Weak scaling for Miranda simulating Rayleigh-Taylor instability with 16 × 16 × 2048
grid points per node. Right plot: Strong scaling for Miranda simulating Rayleigh-Taylor instability on a
5123 grid. All simulations were performed on a 700 MHz BGL cluster in coprocessor mode.

optimization flags -O3 -qalias=noaryovrlp -qmaxmem=-1 -qalign=4k -qhot=novector -qarch=440
-qtune=440 -qessl, and executed with system software driver DRV100 2004, using communication co-
processor mode. Weak scaling results (fixed workload per node) are shown on the left in Figure 5 and
strong scaling results (fixed problem size) on the right. For the weak scaling runs, each node contained a
16 × 16 × 2048 point grid. For the strong scaling runs, 5123 total grid points were used. From Figure 5, it
can be seen that the transpose approach to computing implicit derivatives yields near perfect scaling on the
BGL architecture. Furthermore, Figure 5 shows linear speedup for a fixed problem size as more processors
are added.

7.2 Tuning and FLOPS

For Raleigh-Taylor instability simulations using compact derivatives, Miranda spends a significant amount
of time in the backsubstitution portion of the pentadiagonal matrix solver. We’ve therefore focused our
optimization efforts on this portion of the algorithm in an attempt to improve its floating point performance.
We have implemented loop unrolling, hardware prefetch controls, and cache blocking, with empirical testing
to determine the optimal blocking parameters for these functions. Manual tuning in this fashion has generated
a 33% speedup of this portion of the algorithm. Using performance utilities provided by IBM, we have
measured the sustained computing rate of Miranda on 32768 BGL nodes to be 1.8 TFLOPS, with the core
of the matrix solver being just over 6 TFLOPS.

8 Conclusions

The combined effects of variable density and diffusion on incompressible turbulent flows, coupled with
the need for high fidelity numerical methods, presents a challenging problem for parallel computing on tens
of thousands of processors. We have demonstrated that, contrary to popular opinion, transpose techniques
for implicit derivatives can provide excellent scaling to such large numbers of processors and are highly
competitive with direct block parallel matrix decomposition schemes, provided an optimal torus mapping
is employed. After porting the Miranda code to the BGL architecture and removing various memory and
CPU bottlenecks, we have obtained near perfect weak scaling and linear speedup of the code to 32768
processors. By packing the data tightly in one direction, we have reduced the computational overhead by
roughly 12% over the default mapping and have achieve data transfer rates exceeding 80% of the theoretical
peak of the network. In addition to optimizing the torus mapping for MPI Alltoall communications,

11



efforts are currently underway to tune the packet injection rate of the messages. Despite the substantial
communication and data rearrangement requirements of the implicit 10th-order compact scheme, we have
achieved a sustained computational rate of 1.8 TFLOPS for Miranda, simulating Rayleigh-Taylor instability
on 32768 nodes of the IBM BGL machine.

Acknowledgments

We are grateful to Jim Sexton and Bob Walkup of IBM for their assistance in running the Miranda code
on the BGL hardware and gathering timing information. This work was performed under the auspices of the
U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under
contract No. W-7405-Eng-48.

References

2005 Bluegene/l. http://www.llnl.gov/asci/platforms/bluegenel/.

Adiga, N. R. e. a. 2003 An overview of the bluegene/l supercomputer. SC2003: Supercomputing Confer-
ence.

Bachega, L., Chatterjee, S., Dockser, K., Gunnels, J., Gupta, M., Gustavson, F., Lapkowski,
C., Liu, G., Mendell, M., Wait, C. & Ward, T. J. C. 2004 A high-performance simd floating point
unit design for bluegene/l: Architecture, compilation, and algorithm design. Parallel Architecture and
Compilation Techniques Conference (PACT 2004).

Cohen, R. H., Dannevik, W. P., M., D. A., Eliason, D. E., Mirin, A. A., Zhou, Y., Porter,
D. H. & Woodward, P. R. 2002 Three-dimensional simulation of a Richtmyer-Meshkov instability with
a two-scale initial perturbation. Phys. Fluids 14, 3692–3709.

Cook, A. W., Cabot, W. & Miller, P. L. 2004 The mixing transition in Rayleigh-Taylor instability. J.
Fluid Mech. 511, 333–362.

Ivanov, I. G. & Walshaw, C. 2004 A parallel method for solving pen-
tadiagonal systems of linear equations. University of Greenwich Report,
http://staffweb.cms.gre.ac.uk/∼c.walshaw/papers/fulltext/IvanovTR3698.ps.

Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103,
16–42.

Rayleigh, L. 1883 Investigation of the character of the equilibrium of an incompressible heavy fluid of
variable density. Proc. Roy. Math. Soc. 14, 170–177.

Taylor, G. I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their
plane. Proc. Roy. Soc. London, Ser. A 201, 192–196.

Yokokawa, M., Itakura, K., Uno, A., Ishihara, T. & Yukio, K. 2002 16.4-Tflops direct numerical
simulation of turbulence by a fourier spectral method on the earth simulator. SC2002: Supercomputing
Conference.

12


