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Abstract

Large-scale earthquake simulation requires source datasets
which describe the highly heterogeneous physical charac-
teristics of the earth in the region under simulation. Phys-
ical characteristic datasets are the first stage in a simula-
tion pipeline which includes mesh generation, partitioning,
solving, and visualization. In practice, the data is produced
in an ad-hoc fashion for each set of experiments, which
has several significant shortcomings including lower per-
formance, decreased repeatability and comparability, anda
longertime to science, an increasingly important metric.

As a solution to these problems, we propose a new ap-
proach for providing scientific data to ground motion sim-
ulations, in which ground model datasets are fully materi-
alized into octress stored on disk, which can be more effi-
ciently queried (by up to two orders of magnitude) than the
underlying community velocity model programs. While
octrees have long been used to store spatial datasets, they
have not yet been used at the scale we propose. We further
propose that these datasets can be provided as a service, ei-
ther over the Internet or, more likely, in a datacenter or su-
percomputing center in which the simulations take place.
Since constructing these octrees is itself a challenge, we
present three data-parallel techniques for efficiently build-
ing them, which can significantly decrease the build time
from days or weeks to hours using commodity clusters.
This approach typifies a broader shift towardscience as
a servicetechniques in which scientific computation and
storage services become more tightly intertwined.

1 Introduction

The main input to large-scale ground motion modeling are
large source datasets which describe the physical char-
acteristics of the earth. These datasets drive a simula-
tion pipeline which includes mesh generation, partitioning,
solving, and visualization [31]. In practice, these datasets
are not fully materialized until simulation time. Rather, the
data is produced in an ad-hoc fashion for each set of ex-
periments, a process that, in our experience, takes on the
order of days or weeks using existing techniques, and sig-
nificantly increases thetime to sciencefor seismologists.

Ground characteristic data is generated by sampling gen-

Figure 1: A visualization of a materialized etree representing the area sur-
rounding Los Angeles. It was generated using the high-resolution region
of the Harvard CVM (CVM-H) sampled at 10 m spacing. The softer soils
at the top (shown in green) are quite heterogeneous and appear in greater
detail than the deeper, harder soils (shown in light blue.)

erator programs (often calledcommunity velocity models,
ground modelsor CVMs) such as those developed by the
Southern California Earthquake Center (SCEC) [8, 15, 20,
21] and Harvard University [9, 28]. These programs take
as input latitude, longitude, depth tuples and output a set of
ground characteristics at those locations. Specifically, the
key properties required are the density and the two veloc-
ities at which elastic waves travel in each material. Other
properties, such as the attenuation characteristics of thema-
terial, are derived from the other three.

In addition to increasing the time to science, this ad-hoc
approach to dataset generation has several significant short-
comings which can limit performance, as well make sim-
ulations less repeatable, comparable, and verifiable. First
and foremost, repeatedly sampling the CVM programs is
expensive, as we demonstrate in Section2. We show that
it is much more efficient (by a factor of12 − 414×) to
query a prebuilt data structure such as an etree, an indexed
disk-resident octree [29]. Common operations on ground
characteristic data such as model segmentation and mesh
generation are well-suited to etrees rather than the common
CVM programs [17], as they traverse paths through the



(a) Harvard (CVM-H) (b) SCEC (CVM-S)

Figure 2: Each underlying CVM program we use covers a distinct region of southern California, but both cover metropolitan Los Angeles and San
Diego. These images superimpose the surface octants of the etree covering each model’s region onto a map using Google Earth. Harder soils are shown
in red and softer soils are shown in green. CVM-S includes values for water (shown in blue), while CVM-H does not.

space. Second, a scientist must choose among the available
velocity models (i.e., those from SCEC and Harvard). Each
has different performance characteristics, input and output
formats, and are not entirely consistent—while quite sim-
ilar globally, the two models can produce different values
at a particular location. The ability to operate on precom-
puted data offers scientists a significant ease-of-use advan-
tage over having to build each dataset themselves. In our
past experience, generating the ground model data for sev-
eral large earthquake simulations took on the order of days
or weeks. Lastly, experiments that use different ground
model configurations are difficult to validate against each
other. In the interest of verification and validation, thereis
good reason for scientists to be able to share input velocity
models that use a common query interface.

To address these problems, we propose a new technique in
which ground models are fully materialized (precomputed)
over their respective regions of interest, and the resulting
data efficiently stored in etrees [29] which can be shared
among many scientists and used for many experiments. In
order to fully materialize the data, the constituent CVM is
sampled at high resolution, and then the resulting sample
data is reduced by coalescing neighboring samples with ho-
mogeneous characteristics into increasingly larger octants.
Coalescing is essential and results in significant data reduc-
tion, especially for deeper regions of the ground.

Figure1 shows a visualization of a fully-materialized etree
encompassing the region surrounding Los Angeles. It was
materialized from the CVM-H program, and was sampled
at a target resolution of under 10 m. By visual inspection,
it is clear that the high-resolution regions near the surface
maintain their detail, while the more homogeneous regions
deeper underground are coalesced into larger octants. Fig-
ure 2 superimposes images of the CVM-H and CVM-S
etrees onto a surface image using Google Earth.

Our goal is to sample the ground model at much higher
resolution than has previously been attempted, which will
lead to very large output etrees. To get an idea of scale,
the Harvard CVM covers a region of Southern California
that is 600 km× 400 km× 100 km, and we want to sam-
ple at under 10 m resolution. These parameters will lead
to 24 × 1012 raw samples, or on the order of petabytes of
data. In reality, the majority of this raw sample data is ho-
mogeneous and is coalesced into larger octants, leading to
significant compression.

We envision that these datasets can be provided as a ser-
vice to scientists, with datasets parameterized at different
resolutions, spatial regions, and aggregation (compression)
parameters to fit specific needs. If a materialized dataset
already exists that matches a scientist’s needs, or if one can
easily be derived from an existing file, then it can be used
directly. Otherwise, a new dataset can be generated on the
fly. Such a service would be most naturally provided within
a datacenter or supercomputing center, co-located with or
even resident on the machines used for simulation, in order
to keep the data in place. The service can also be provided
over the network.

Building such large materialized datasets is itself a signifi-
cant computational challenge, so it is important to develop
techniques to do so efficiently. Fortunately, the sampling
process is data-parallel and if the samples are carefully par-
titioned, most of the coalescing phase can be locally car-
ried out within a partition. We present three implementa-
tions for building these models on general computer cluster
platforms: Map/Reduce, data-parallel with stack-based co-
alescing, and Map/Reduce with stack-based coalescing.

The Map/Reduce implementations use Hadoop [14], an
open-source implementation of the Map/Reduce parallel
programming model promoted by Google [10]. The first
implementation uses the Map function to generate sam-



ples, gathers neighboring octants together by manipulating
their locational codes, and then applies successive Reduce
functions to coalesce homogeneous sibling tuples. While
Map/Reduce is a useful and popular programming model,
we found that a simplified data-parallel implementation us-
ing a parallel job scheduler (Maui/Torque [22], in our case)
achieved much better performance as it avoids the shuffle
and sort steps inherent in Map/Reduce programs. As well,
using a stack-based coalescing strategy avoids the succes-
sive reduces. Lastly, in order to evaluate the overheads in-
herent in Hadoop, we built a Map/Reduce implementation
of the stack-based coalescer. We evaluate the performance
tradeoffs between the three implementations below.

The remainder of the paper is organized as follows. Sec-
tion 2 describes how materialized ground models can be
used to drive large-scale earthquake simulations. Sec-
tion 3 presents background on etrees, locational codes,
Map/Reduce, and community ground models. Section4
describes three parallel implementations of our ground
model builder, and Section5 presents an evaluation exam-
ining properties of our constructed etrees and comparing
the three construction techniques. Section6 concludes.

2 Using community ground models
in earthquake simulation

2.1 Earthquake simulation

Since the early 1970’s, seismologists and engineers have
understood the necessary methodology to represent the
physical phenomena involved during the occurrence of
earthquakes. Lysmer et al, introduced the use of the fi-
nite element method (FEM) in seismology [19]. Others
adopted similar methodologies including the boundary el-
ement method (BEM), finite differences (FD) and spectral
elements (SE). It was not, however, until the mid 1980’s,
with the rising aid of HPC, that numerical simulations took
off, especially with the appearance of publicly-accessible
supercomputing centers. The first fully three-dimensional
simulation of an earthquake using parallel computers was
performed in 1992 [11] using finite differences. It would
be followed by others, e.g., [4, 13, 24]. Many of these sim-
ulations applied FD due to its structured nature and ease
of implementation when used with a regular grid [5, 16].
Although FD is still the preferred method among some sci-
entists, it is harder to scale up the problem size, specially
when dealing with heterogeneous media. In particular, Tu
et al, [31] built on the work of [5] and createdHercules,
an octree-based parallel software system (developed by the
Quake Group at Carnegie Mellon University), that imple-
ments a highly efficient algorithm for solving the wave field
generated by a kinematic representation of the earthquake

rupture in highly heterogeneous media. One of the special
characteristics of Hercules is its fast generation of the mesh
which is due in part to the fact that Hercules uses a data
structure with high querying performance, anetree. This
previously constructed etree is a discrete representationof
any available community velocity model such as CVM-S
or CVM-H described below.

2.2 Community velocity models

As SCEC’s Community Modeling Environment group took
on the construction of a multi-user framework for earth-
quake simulations, it rapidly became clear that a com-
munity velocity model accessible to all simulation groups
was required. Therefore, SCEC adopted a seismic-velocity
model [21] that, when queried at a certain latitude, longi-
tude, and depth, returns values of S-wave (Vs) and P-wave
(Vp) velocity, and density (ρ). This model is called CVM,
and has since been released in four versions [15, 20], and
is available at the SCEC web site [8]. At the same time,
a group from Harvard University developed a similar ve-
locity model which has recently gained increasing interest
within the seismological community and is in the process
of being adopted by SCEC’s community as well. They are
now referred to as CVM-S, for the former, and CVM-H, the
latter. Although CVM-H has a much better querying per-
formance than CVM-S, it covers a smaller area of Southern
California than CVM-S does, and does not have enough in-
formation for low velocity soil profiles. Therefore, CVM-
S continues to be the preferred velocity model source for
large scale simulations such as ShakeOut—a magnitude 7.8
earthquake scenario that simulates a rupture in the south-
ern part of the San Andreas fault in Southern California,
affecting an area of 600 km× 300 km, that covers all of
the major cities from San Diego to Santa Barbara, includ-
ing the greater Los Angeles basin. This trend will very
likely change in the next couple of years and as it does we
are preparing to have an efficient interface between CVM-
H and parallel simulation codes like Hercules. The meth-
ods for the efficient construction of etree representationsof
both CVM’s is the objective of this paper.

2.3 The case for materialized community
ground models

We believe that the community will transition away from
building ad-hoc ground models based on CVM programs
toward sharing pre-built, fully-materialized ground models
stored in a standard data structure such as an etree. In fact,
this transition is already underway with SCEC’s adoption
of an etree version of its velocity model CVM-S as the ma-
terial model for the ShakeOut simulation.

Brocher et al. [6] constructed an etree velocity model of



1.26 15.52

521.98

0

100

200

300

400

500

600

etree CVM-H CVM-S

T
im

e
 p

e
r 

q
u

e
ry

 (
µ

s
) 

Figure 3: Average response times for queries by the path-based mi-
crobenchmark to the ground model programs and the pre-built etree. The
etree is optimized for path-based queries, and so gives the best query per-
formance.
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Figure 4: Average response times for queries by the random microbench-
mark to the ground model programs and the pre-built etree. Random ac-
cess to the etree performs well compared to sampling the CVM programs
directly, especially when portions of the tree are pre-cached.
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Figure 5: Distribution of query times during the path-based microbench-
mark.
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Figure 6: Distribution of query times during the random microbench-
mark.

Northern California based on geologic data and detailed
models of the San Francisco Bay Area. This model has
been recently validated for moderate earthquake simula-
tions [25] with very satisfactory results, and then used by
[1, 2] for the reproduction and simulations of the 1989,
Loma Prieta and 1906, San Francisco earthquakes.

We see three primary advantages to adopting materialized
community ground models.

Query cost. We have observed that the cost of query-
ing fully-materialized etrees is significantly lower than the
cost of querying the CVM programs directly. In order to
quantify this difference, we conducted the following exper-
iments comparing the query costs of the CVM-S and CVM-
H programs, as well as a pre-built etree. The etree cov-
ers a 75 km by 75 km by 75 km region around downtown
Los Angeles, and is described in more detail in Section5.1.
We constructed a microbenchmark which generates 18 ran-
dom coordinates from within the region, and samples 2 mil-
lion coordinates either at random or along a Z-order path.
(CVM-S is significantly slower than the etree or CVM-H,
so we only report results for a single path of 2 million rather
than the entire 18 paths.) The random mode exercises ran-
dom lookup performance, and the Z-order mode replicates
the query pattern of mesh generation.

Figure3shows the average time per query in the path-based
benchmark for the CVM-S and CVM-H programs, as well
as a pre-built etree. As expected, querying the CVM-S pro-
gram is the slowest of the three, with queries taking, on
average, 521.98µs. The CVM-H program is33× faster,
and the etree is another12× faster than CVM-H. As many
of the workloads used in ground motion modeling tend
to query ground models along paths (i.e., when generat-
ing meshes), the path-based microbenchmark does favor
the etree, which is optimized for path accesses while the
CVM programs are not. Figure4 shows the average time
per query for the random microbenchmark. In this case,



the etree performance is worse than with the path-based
benchmark. In particular, random queries can incur many
disk seeks when run with a cold disk cache. Warming up
the disk cache improves performance dramatically.

The distribution of query times varies for the two ground
model programs and for the etree, as shown in Fig-
ures5 and6. The CVM-H program has a startup cost of
around 3.73 seconds for the first query, but then exhibits a
nearly-constant query time. The etree library also exhibits
a startup cost, as index nodes are fetched from disk. The
performance of the CVM-S program is particularly low for
random queries, as it can only process queries in batches.
Therefore, each independent point query incurs the startup
cost and is very expensive.

Ease of use.There is a clear need for a simplified workflow
when using ground models, and using standardized, mate-
rialized models can address this. Research groups spend a
considerable amount of time (days or weeks) configuring
and building these datasets for their simulations in an ad-
hoc fashion, time which would be better spent on research.

In some scenarios, it is not possible to easily directly in-
tegrate user-level ground model code into a parallel su-
percomputer infrastructure, especially one that uses a re-
stricted operating system. In these cases, a scientist will
need to pre-build datasets anyway.

We can say from our own experience that each of the
ground model programs has its own quirks, which require
an inordinate amount of time to deal with. Input and output
formats differ, error conditions are reported differently, and
the source code is difficult to modify. On the other hand,
pre-built models using standard APIs and data formats are
more transparent and usable.

Standardization. Cross-validation, comparison, and re-
peatability of results is a critical aspect of any scientific
endeavor, and the use of shared, publicly-available model
properties can provide a consistent basis for this. Provid-
ing canonical, shared source data for earthquake simulation
fills a critical need in this regard.

3 Background

3.1 Octrees

Octreesare commonly-used data structures for represent-
ing spatial data in many domains [27]. Particularly in earth
sciences, octrees are used to represent ground-velocity
models, meshes and output wavefields [3, 30, 18]. Oc-
trees offer a compromise between the simplicity of reg-
ular grids and the modeling power of fully unstructured
meshes. They adapt to changes in the resolution of the un-
derlying data, making them a good choice for representing

data with drastic resolution variations across regions. Al-
though octrees result in blocky representations of the data,
in many cases these present no impediment for the simula-
tions. Such is the case when interface jump conditions can
be expressed in terms of equivalent loads.

Octrees have two equivalent representations:domainrep-
resentation andtree representation. To explain key prop-
erties of 3D octrees, we use 2Dquadtreesfor illustration
purposes. These structures are built by recursively decom-
posing the space, thus they are hierarchical in nature. An
octree divides a 3D region into 8 disjoint subregions, simi-
larly a quadtree divides a 2D region into 4 smaller regions
or quadrants, until it achieves a desired resolution. Fig-
ure7 (a) shows a sample4 × 4 rectangular domain (heavy
line), one of its quadrants is further divided into 4 smaller
non-divisible1 × 1 quadrants.

In the equivalent tree representation shown in Figure7 (b)
eachnodein the tree corresponds to a quadrant in the do-
main, and their child nodes correspond to their subdivi-
sions. For example, the root of the tree (node 0) represents
the whole domain, and nodes 1 and 2 correspond the2 × 2
quadrants shown in the domain representation. Nodes with
descendants, e.g., node 2, are known asinterior nodes. Leaf
nodeshave no descendants, e.g., nodes 3, 4, etc. Each node
in the tree has an associated levell. The level of theroot
node is 0, for a node with levell, its children have level
l + 1. The node level encodes the quadrant’s size (d × d),
whered = 2(max-level−l) andmax-levelis the maximum
level of any node in the tree, 2 in this example. The set of
ancestorsfor a noden is composed by its parent (immedi-
ate ancestor) and its parent’s ancestors. The path fromn to
the root is made up by all of the ancestors forn.

Notice that the leaf nodes do not need to be all at the same
level. In acompletetree all leaves have the same level and
is equivalent to a regularly-spaced grid of the same resolu-
tion. For datasets with large homogenous regions, siblings
with the same properties can beaggregatedinto a single
parent node. For example, Node 8 in Figure7 (b) is an
aggregation of its descendants (grayed out nodes).

3.2 Locational codes

The structure of a quadtree can be mapped to a linear ad-
dress space by usinglocational codes[12]. This strategy
consists of assigning addresses of the form(i, j, l) to quad-
rants, such that each address uniquely identifies and im-
plicitly encodes a quadrant’s location and size. Thei, j
components of the address are the grid domain coordinate
components of the quadrant’s lower-left corner, andl is the
quadrant’s level in the tree representation. A child node at
the lower-left quadrant of a larger enclosing quadrant has
the same grid coordinates as its ancestors. The level in the
quadrant address disambiguates this situation and also en-
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Figure 7: Sample Quadtree

codes the quadrant size. The domain in Figure7 (a) has a
4× 4 regular grid as a coordinate system. For example, the
locational code for quadrant 3 is(2, 0, 2), and its parent’s
(node 2) is(2, 0, 1). The quadrant locational code [12],
which is a variant of theMorton code[23], is obtained by
interleaving the bits of the quadrant address fields except
for the levell, and then appending the level to the inter-
leaved bits. For example, in a4 × 4 domain, two bits are
required to represent each component and 2 bits are re-
served for the level. Quadrant addresses are of the form
(x0x1, y0y1, l0l1), and the corresponding locational codes
are of the form(x0y0x1y1l0l1). The total ordering pro-
duced by the locational codes is known as Z-ordering or
Morton curve [26].

3.3 Etree library

Dealing directly with locational codes increases application
complexity. The etree library [29, 30] provides abstrac-
tions where applications operate on large persistent octrees
in terms of octree addresses. Internally, the library trans-
forms quadrant addresses to locational codes and stores oc-
tant data on disk. The etree API allows operations such
as searching, inserting, deleting, appending and updating
nodes in an octree.

To efficiently access octrees on disk, the library stores oc-
tants in Z-order and uses aB-tree [7] to index octants us-
ing locational codes as keys. Z-ordering has the interest-
ing property that it corresponds to the pre-order traversal
of the tree representation. Performing a pre-order traversal
of the tree is equivalent to a sequential scan over the loca-
tional code key space, thus allowing for efficient utilization
of storage streaming bandwidth [18]. Thus etrees are opti-
mized for Z-order access.

3.4 Map/Reduce

Map/Reduce has recently been promoted by Google as a
useful programming model and runtime system for data-
intensive applications [10], and has generated a great
deal of interest in the wider community. Google uses
Map/Reduce in various large-scale applications, including
building the reverse indices of the entire web. One goal of
this work is to use Map/Reduce in new ways, beyond its
roots in text processing toward scientific applications.

Basic Map/Reduce programs consist of two functions:
Map and Reduce. Input, output, and intermediate data
in Map/Reduce programs take the form of key value pairs.
The input to theMap function is a set of tuples of type
< k1, v1 >. Each invocation of theMap function pro-
cesses one of these tuples and produces zero or moreinter-
mediatetuples of type< k2, v2 >. Note that the types of
the keys and the values that are output can be different than
the types that were input.

The Map/Reduce runtime system will collect all of the tu-
ples with equal intermediate keys into lists for processing
by theReduce function. This is equivalent to the common
group-byoperation in databases.

TheReduce function is invoked once for every intermedi-
ate key, and is given a list of all intermediate values hav-
ing that key. Therefore, its input type is< k2, list(v2) >.
Since the runtime system performs the group-by over all of
the tuples generated in theMap phase, theReduce func-
tion is guaranteed to see every intermediate value with that
key. An optionalCombinerfunction can apply reduction
immediately after theMap task, before the intermediate
tuples are written to disk or sent over the network to the
Reduce tasks.

We use an open-source implementation of a Map/Reduce
runtime called Hadoop [14]. Hadoop implements a dis-
tributed filesystem, HDFS, which spreads data blocks
across the cluster nodes, and exposes the locations of those



blocks via a centralized metadata server. The Hadoop
runtime implements much of the functionality described
in [10], and is built in Java.

4 Implementation

4.1 Oversampling

Our approach is to oversample the underlying model at the
finest resolution required, and then coalesce sibling octants
if they are homogeneous within some threshold. We choose
to oversample because the underlying CVM is a black box,
and we can make few or no assumptions about the structure
and the features of the ground that it models. As well, the
CVM programs themselves are combinations of many un-
derlying measurements, each of different accuracy and res-
olution. For example, the regions directly under the major
cities such as Los Angeles are, for good reason, character-
ized at the highest resolution, while outlying areas are char-
acterized much more coarsely. Areas around major faults
and other features are also well-characterized. Resolution
of the models also decreases deeper underground as soils
become harder and more homogeneous, as well as being
measured more coarsely.

Oversampling produces a large amount of data. Sampling
the 600 km by 300 km by 100 km region covered by the
SCEC model at 10 m resolution will produce18 × 1012

samples, leading to on the order of 1 PByte of raw data.
In reality, the majority of these samples are homogeneous
and will be coalesced together into larger octants over the
course of running the program.

We can and do relax oversampling somewhat in order to
reduce the raw data produced in the very hard, homoge-
neous soils found deep in the ground. For regions below
200 m we slowly begin to drop the sampling density based
on the depth in order to save time. However, this is not a
requirement of our system and we could very easily recon-
figure these parameters and sample at higher resolution as
necessary.

4.2 Thresholding

The CVM programs output three parameters of ground
characteristics at each point: the velocity at which it prop-
agates P-waves,Vp; the velocity at which it propagates S-
waves,Vs; and its density,ρ. We coalesce a set of 8 sibling
octants into a larger one subject to 3 different threshold val-
ues, one for each of the model characteristics (Vs, Vp, ρ).
The octants are coalesced ifall of the values for all the sib-
lings are within a specified percentage thresholds of their
mean values. Our baseline percentages are 2% forVs, 5%
for Vp, and 2% forρ. Our choice of thresholding func-
tion was dictated by the characteristics of the simulations

(x,y,z)
Map

(lat,lon,dep) (Vp, Vs, )

Reduce
(key, value)

CVM
examine
neighbors

(loc code,
Vp, Vs, )

Figure 8: A sketch of the Map/Reduce algorithm.

which will use the resulting octree. The threshold values
combined with the maximum simulated frequency can be
used to compute a target error in the resulting simulation.
In our case, we chose thresholds to meet a particular error.
We evaluate the effects of varying thresholds on compres-
sion in Section5.3.

4.3 Map/Reduce algorithm

The algorithm begins by partitioning the overall region into
equal-sized cubic subregions. These regions consist of
262,144 samples (64 in each dimension). This is necessary
in order to work with the existing CVM-S software. Each
subregion is independent, and its samples are generated by
a separateMap task.

Figure 8 shows a sketch of the Map/Reduce algorithm.
Samples are generated by theMap function, which queries
the underlying CVM program. The resulting tuples each
represent a leaf node in the octree, and are each assigned an
intermediate key based on the octant’s locational code. The
intermediate key is manipulated in order to gather together
sibling tuples for theReduce function. Finally, the values
of sibling tuples are examined by theReduce function for
homogeneity. If they are homogeneous to within the given
threshold, they are coalesced into a larger octant at the next
higher level in the octree. In order to fully coalesce the
data in the tree, theReduce function is applied again suc-
cessively to the resulting data, which is accomplished by
running the Map/Reduce program again with an identity
mapper. Since the results of each iteration is stored into the
distributed filesystem which spreads the data evenly across
the compute nodes, the load remains balanced.

The input ofMap is the coordinate of the upper left cor-
ner of the subregion. TheMap function proceeds to gen-
erate coordinates for each of the sample points within the
subregion, converting them to tuples of latitude, longitude,
and depth (in meters) for input to the CVM program. It
forks the chosen CVM program, pipes the latitude, longi-
tude, depth tuples to its standard in file descriptor and col-
lects the resulting ground characteristics. Coordinates to
be sampled are generated in Z-order by incrementing loca-
tional codes.

TheReduce phase examines sibling octants for homogene-



ity and coalesces them if their values are within the thresh-
old. The keys of the intermediate tuples are based on the
locational codes of the octants generated by theMap func-
tion. By manipulating the keys, we can cause neighboring
tuples to be processed by a single invocation ofReduce.
For a given octant, clear sets of three remaining low-order
bits based on the level. For octants at the lowest level, the
lowest three bits are cleared, for octants in the next level
up, six bits are cleared, and so on. We operate only on the
bits in the locational code corresponding to the coordinates.
Those bits that represent the level are not modified. In this
way, sets of eight sibling octants will have equal interme-
diate keys, and will be processed in a single invocation of
Reduce.

The Map/Reduce model also allows the programmer to op-
tionally specify aCombiner function, which is a reduction
that is applied to the intermediate tuples immediately after
theMap, before data is written to disk. In our case, we use
our Reduce as theCombiner, which has the effect of ap-
plying one round of coalescing right after theMap. Since
many octants are homogeneous at the highest resolution,
this saves a great deal of data transfer, leading to increased
performance.

4.4 Data-parallel stack algorithm

By carefully choosing the partitions, it is possible to locally
decide whether to coalesce a given set of octants within a
partition. This approach does not require the complete data
shuffle used in the Map/Reduce case. In fact, we found that
the shuffle and data copies incurred by the Map/Reduce
model were quite expensive, as we will see in Section5.
Thus, we were motivated to build a second version of the
system which, while still running in parallel on our clus-
ter, performs all of the data generation and reduction for a
single subregion in one process.

As with the Map/Reduce implementation described above,
we start by partitioning the overall space to be sampled into
fixed-sized subregions. We use an octree to determine the
size and location of the subregions. Thus, each subregion
is aligned with an octree partition at a given level and con-
tains only octants in the branch of the tree corresponding to
that partition. This allows us to treat each subregion inde-
pendently as all the coalescing in the corresponding octree
branch can be performed locally.

All of the samples for a single subregion are generated by
a single invocation of a simple C program which forks the
chosen CVM program, feeds it with the appropriate lati-
tude, longitude, depth tuples corresponding to the subre-
gion, and collects the output values for reduction. This
program is run on the cluster using a simple open-source
job scheduling system, Maui/Torque [22].

(x,y,z)
C

(lat,lon,dep)
(Vp, Vs, )

(loc code,
Vp, Vs, )

CVM

local data
reduction

Figure 9: A sketch of the data-parallel stack-based implementation. The
core is a simple C program which forks the external CVM.

sn = 0
while samples available from CVMdo

push(sample from CVM)
sn + +
d = 1
while (sn mod 8d ≡ 0) and (last 8 samples are within
threshold) do

< samples >= pop(8)
push(coalesce(< samples >))
d + +

end while
end while

Figure 10: Pseudocode of the stack-based coalescing algorithm.

In contrast to the Map/Reduce algorithm used above, in this
version we use a stack-based coalescing algorithm, shown
in Figure 10. Each group of eight sibling tuples may be
considered independently immediately after it is created.
By exploiting the fact that the CVM program returns co-
ordinates in the same order they are given, it is possible to
produce sample values that are already in Z-order. This al-
lows us to process the output of the CVM using a stack and
avoid having to store the raw output of the program at any
time.

Consider pushing each new sample value on the stack. For
each group of eight samples, a reduction may be attempted
on them. If this succeeds, replace the last eight samples on
the stack with one sample that is representative of them all,
i.e., by using their mean values. With this simple proce-
dure, it is possible to perform the same computation done
by one round of Map and Reduce in the previous descrip-
tion, saving a great deal of time spent dealing with inter-
mediate data.

Even more effective is the ability to apply successive coa-
lescing steps on the data in place, which eliminates the need
for successive reduce phases required in the Map/Reduce
algorithm. As octants are coalesced at one level, the result-
ing larger octant is pushed back onto the stack for compar-
ison in the next round.



4.5 Stack-based Map/Reduce algorithm

The data-parallel stack-based algorithm described in the
previous section handily outperforms the Map/Reduce im-
plementation by operating on the sample data entirely in
place, thus avoiding intermediate data movement and al-
lowing successive rounds of coalescing. We found that the
stack-based algorithm was nearly an order of magnitude
faster than the Map/Reduce version described above, as it
avoids the costs of the distributed group-by.

As another point of comparison, we also implemented the
stack-based algorithm as a Map-only Map/Reduce pro-
gram. In this version, theMap function is a simple port
of the C-based program described above into Java. The
Hadoop Map/Reduce runtime is implemented in Java, so
we expect to see some performance overhead compared to
the C version. As well, the resulting data tuples are output
using the standard Map/Reducecollectmethod, rather than
by writing directly to an output file, which causes tuples to
be initially gathered in memory buffers and then eventually
written out to files in the Hadoop distributed filesystem.

As with the C-based stack implementation, samples are
generated in Z-order using the external CVM program and
are pushed onto a stack. The algorithm examines each 8
neighboring octants on the stack and coalesces them if they
are within the threshold. If the siblings are coalesced, the
resulting larger octants are pushed back onto the stack to
be examined at the next higher level.

Comparing the performance of the data-parallel stack-
based system (built in C) to the Map/Reduce stack-based
system provides a more apples-to-apples evaluation of the
costs of using Hadoop.

5 Evaluation

5.1 Experimental setup

All of our experiments are run on a cluster of Dell Pow-
erEdge 1955 blade servers. Each server contains two quad-
core Intel Xeon E5345 CPUs, clocked at 2.33 GHz, 8 GB
of memory and two 146 GB Seagate Savvio 10K.2 disks.
While the entire cluster consists of 50 servers, it is shared
among many users running various applications. There-
fore, we isolated ten servers to use for our testbed, mean-
ing that nearly all of our performance measurements were
gathered using 80 cores.

Each server runs 64 bit Ubuntu Linux server edition ver-
sion 7.04. We use Hadoop version 0.15.0 [14], running in
Sun Java Runtime 1.6.0. Each node in the cluster serves
both as a Hadoop task tracker (i.e., compute node), and as
a data node for the Hadoop distributed filesystem, HDFS.
Hadoop has too many configuration parameters to describe

here, but the most relevant for the purposes of this evalua-
tion is the number of concurrentMap andReduce tasks
that are allowed to run on each node. We configured
our cluster to run eight concurrent tasks per server. Each
Map/Reduce program that is run is partitioned intoM map
tasks andR reduce tasks. Input and output data for the
Map/Reduce programs is stored in HDFS, while input and
output data for the data-parallel stack-based implementa-
tion is stored directly on the local disks.

While we are able to use both CVM programs supported
by SCEC, CVM-S and CVM-H, we found that CVM-S is
at least an order of magnitude slower than CVM-H. There-
fore, for the purposes of this evaluation, we only report per-
formance results using CVM-H.

For the evaluation, we chose a 75 km by 75 km by 75 km
region of Southern California that is covered by both the
CVM-S and CVM-H models. The region covers most of
metropolitan Los Angeles, and encompasses the highest-
resolution and most-heterogeneous portions of both mod-
els. We use an octree with thirteen levels to sample the
region, leading to a best possible resolution of 9.15 meters
(75000/(213)). The upper-left corner of the region is at
latitude and longitude N34.190280 W-118.550948, and the
lower-right corner is at N33.516643 W-117.739757.

5.2 Sampling and compression

Table1 summarizes the results of building octrees for both
the CVM-S and CVM-H models, for the two regions of
interest that we studied. The first region is the 75 km by
75 km by 75 km region described above that we used for
performance benchmarking. The second is the entire re-
gion supported by each model. When building the etrees,
we set the depth of the tree such that the best possible res-
olution was under 10 meters.

For the first region, we generate sample data for5.74×109

octants. The data from the two underlying models coalesce
to different degrees (11 − 15×) because the measurements
and interpolation functions that they use are different. The
etrees built from the entire regions are interesting as well,
in that they coalesce by almost an extra order of magnitude
compared to the etrees generated from the smaller regions.
This is because the majority of the uncoalesced samples are
from the high-resolution center of the region around Los
Angeles, which is included in both cases.

5.3 Error rates

Using a threshold to compress the sampled data into an oc-
tree introduces errors that are dependent on the underlying
CVM program used and the thresholding parameters. We
characterize the error by measuring the signal-to-noise ra-
tio (SNR) and peak signal-to-noise ratio (PSNR) between



Model Region Octree depth Sampled octants Coalesced octants Compression
CVM-S 75 × 75 × 75 13 5.74 × 109 5.26 × 108 11×
CVM-H 75 × 75 × 75 13 5.74 × 109 3.79 × 108 15×
CVM-S 600 × 300 × 100 16 1.84 × 1011 2.57 × 109 72×
CVM-H 600 × 400 × 100 16 2.45 × 1011 3.54 × 109 69×

Table 1: Comparison of the two CVM models and their results as etrees. Webuilt materialized etrees of each model over two regions of interest: the
75 km by 75 km by 75 km region we used for generating results (described in Section5.1), and the entire region that each model covers. In order to
reach a target resolution of under 10 m, the octrees were 13 or 16 levels deep, depending on the side of the region. We report the total number of sampled
octants for each case, the final number of octants in the fully-coalesced etree, and the compression factor.

the uncompressed data and the coalesced samples stored
in the resulting octree. For this, we use the uncompressed
model as the reference signal (S = {s[0], s[1], · · · , s[n −
1]}) and compute the error for each octant as the difference
between the value for the octant in the uncompressed and
compressed models (x[i] − s[i]). Then, we compute SNR
as the ratio of the mean square signal values to the mean
square error (MSE). Similarly, PSNR is computed as the
square of the maximum signal value over the MSE.

Threshold SNR(dB) PSNR(dB)
factor Vp Vs Rho Vp Vs Rho

1/4 70 75 76 87 85 86
1/2 62 71 74 78 81 84

1 55 65 69 72 76 80
2 49 60 64 65 70 74
4 44 55 59 61 66 69

Table 2: SNR and PSNR for compressed ground models (CVM-H)

Threshold SNR(dB) PSNR(dB)
factor Vp Vs Rho Vp Vs Rho

1/4 55 53 67 62 60 70
1/2 49 47 61 56 54 63

1 43 41 55 50 49 58
2 37 36 49 44 43 52
4 32 30 44 39 38 46

Table 3: SNR and PSNR for compressed ground models (CVM-S)

Tables2 and3 contain the SNR and PSNR values in deci-
bels (dB) for compressed models generated from the CVM-
H and CVM-S programs respectively. We built datasets
with different thresholding parameters, which were gener-
ated by applying a scaling factor to the thresholds originally
specified by our local ground modeling experts. The first
table column shows the scaling factor for these parameters.
For example, the row with a scaling factor of 1x shows the
results for the original thresholding parameters (2%, 5%,
2%). A scaling factor of1/2 results in thresholding param-
eters of (1%, 2.5%, 1%), and so on. The SNRs for each of
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Figure 11: As the coalescing threshold becomes less stringent (i.e., the
threshold factor increases), the number of octants in the compressed etree
decreases. There were 5,737,807,872 octants in the uncompressed etree.

the data values in the model (Vs, Vp, rho) are contained in
columns 2-4. The last 3 columns show the corresponding
PSNR.

Figure11 shows the effect of changing thresholds on the
number of octants in the compressed etree. CVM-H etrees
compress more readily than CVM-S etrees because CVM-
S includes more detail in the central Los Angeles basin than
does CVM-H.

As expected, the lower threshold values produce higher fi-
delity models (higher SNR and PSNR values). The results
indicate that the generated models have good overall qual-
ity. As a point of reference, lossy compressed images with
SNR values of 25 dB are considered to be of good qual-
ity. The model compressed with the original thresholding
parameters has SNR values of (55, 65, 69) dB, indicating
that they have more than sufficient quality for simulation
purposes.

Models of this quality had not been built before as fine spa-
tial sampling was not performed. Including the error rates
in the metadata of materialized models enables scientists to
determine the quality of the model with respect to its source
model program.

5.4 End-to-end measurements

Figure 12 compares the runtime of the two stack-based
implementations. Each result is the average of three
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Figure 12: Runtime comparison of the Map/Reduce, data-parallel, and
Map/Reduce-based stack implementations.

runs. The Map/Reduce implementation, both with and
without the optional Combiner function, is by far the
slowest version, with the overall runtime being 412 and
364 minutes, respectively. The poor performance of the
Map/Reduce implementation was surprising to us, espe-
cially compared to the much better performance of the data-
parallel stack implementation, which completes in 64 min-
utes. The overheads of the distributed group-by and sort-
ing are significant and, in our view, rule out the use of a
pure Map/Reduce algorithm for this application. The per-
formance of Map/Reduce-stack is closer to that of data-
parallel stack, completing in 109 minutes.

Both stack-based implementations avoid three aspects of
the Map/Reduce implementation, all of which prove to be
very expensive. First, all of the sample data is processed
and coalesced in place rather than shuffled betweenMap
andReduce tasks. Operating on data in place avoids ex-
tra writes to disk of intermediate tuples, as well as the
time to transfer data across the network. Second, the
Reduce phase of the Map/Reduce implementation operates
on eight octants at a time, resulting in several hundred mil-
lion calls toReduce. Lastly, the stack-based implemen-
tations are able to entirely coalesce the samples that they
generate at all levels of the octree in a single invocation.
The Map/Reduce implementation requires multiple passes
of theReduce function in order to fully coalesce the octree.

Comparing the runtime of the data-parallel stack and the
Map/Reduce-stack implementations is interesting, since
they present a more apples-to-apples evaluation of the over-
heads of Hadoop. Given that they vary by roughly 50%, we
conclude that the overheads imposed by Java and the use of
HDFS are insignificant next to the overheads of intermedi-
ate data storage, sorting, and shuffling, which are required
by the pure Map/Reduce implementation. This result sur-
prised us, and suggest that a Map/Reduce application built
using Hadoop must make significant use of the shuffling
and sorting functionality in order to justify their overhead.
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Figure 13: Parallel speedup of the Map/Reduce-based and data-parallel
stack implementations on 80 CPUs.

5.5 Parallel efficiency

In order to calculate the parallel speedup achieved by each
implementation, we examined the ratio of the total time
spent executing the external CVM program to the wall-
clock time of the overall program. By doing so, we com-
pare the time that it would have taken to generate all of
the samples serially to the time that it took to generate and
coalesce them in parallel.

Figure 13 shows the results. Generating all of the sam-
ples using the data-parallel stack implementation (C-stack)
took, on average, 277,667 seconds of CPU time, which
was accomplished in 3817 seconds of wall-clock time us-
ing 80 cores, achieving a parallel speedup of72.7×. The
Map/Reduce implementations do not scale nearly as well
due to the extra data shuffling overheads, achieving a par-
allel speedup of13.8×-15.6×. The Map/Reduce-stack im-
plementation fared better, achieving a53.3× speedup on
80 CPUs. The difference between the Map/Reduce-stack
and the data-parallel stack implementations stem from the
overhead of gathering output tuples in Hadoop and writ-
ing to HDFS. The data-parallel stack implementation need
only write its output to a local file.

6 Conclusion

Materialized ground models have the potential to improve
the science of earthquake simulation by providing better
query performance, ease-of-use, and standardization. In
this paper we have made the case for their use by demon-
strating superior query performance and presenting three
implementations that make materializing them efficient us-
ing parallel compute clusters.

Examining the three implementations of the ground model
generator was, in and of itself, an interesting exercise. Our
approach of using Map/Reduce was initially promising,
as the problem had many of the characteristics for which
Map/Reduce is suited. Samples are generated in the first
phase and then are reduced, octants need to be grouped to-



gether in order to be coalesced, and repeated reduce passes
can coalesce successive levels in the octree. However, after
having built the implementation, it became clear that much
of the machinery of Map/Reduce is simply unnecessary in
this case. Tuples are naturally grouped using increasing lo-
cational codes, and reduction is entirely local to each sub-
task, which both obviate the need for a global group-by.
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