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Abstract

Large-scale earthquake simulation requires source datase
which describe the highly heterogeneous physical charac-
teristics of the earth in the region under simulation. Phys-
ical characteristic datasets are the first stage in a simula-
tion pipeline which includes mesh generation, partitignin
solving, and visualization. In practice, the data is pragtlic

in an ad-hoc fashion for each set of experiments, which
has several significant shortcomings including lower per-
formance, decreased repeatability and comparabilityaand
longertime to sciencgan increasingly important metric.

As a solution to these problems, we propose a new ap-
proach for providing scientific data to ground motion sim-
ulations, in which ground model datasets are fully materi-

alized into octress stored on disk. which can be more efﬁ_Figure 1: Avisualization of a materialized etree representing tha ate-
' rounding Los Angeles. It was generated using the high-u¢isol region

ciently queried (by up to two orders of magnitude) than theyt e Harvard CVM (CVM-H) sampled at 10 m spacing. The softiiss
underlying community velocity model programs. While at the top (shown in green) are quite heterogeneous and mippgreater
octrees have long been used to store spatial datasets, thesfail than the deeper, harder soils (shown in light blue.)

have not yet been used at the scale we propose. We further

propose that these datasets can be provided as a service, ei-

ther over the Internet or, more likely, in a datacenter or SU%rator programs (often callatbmmunity velocity models

percomputing center in which the simulations take place,
Since constructing these octrees is itself a challenge, wi fLTtEer:%OzlieliI; :nci:avlg/ljtﬁ:ﬁgkaeségafgr ?g\éeég))ig % the
present three data-parallel techniques for efficientlydbui 21] and Harvard Universityd, 28]. These programs take

ing them, which can significantly .decrease th? build tlmeas input latitude, longitude, depth tuples and output afset o
from days or weeks to hours using commodity clusters.

This approach typifies a broader shift towadience as ground characteristics at those locations. Specificdily, t

. . . . L ) key properties required are the density and the two veloc-
a servicetechniques in which scientific computation and . . . : . .
. ; : . ities at which elastic waves travel in each material. Other
storage services become more tightly intertwined.

properties, such as the attenuation characteristics ofithe
1 Introduction terial, are derived from the other three.

h L | | . i In addition to increasing the time to science, this ad-hoc
The main input to arge-scale grounc_i motion mod_e ing are'approach to dataset generation has several significartt shor
Iarge_ source datasets which describe the p_hyS|caI_ ChaE'omings which can limit performance, as well make sim-
aCte”.St'c.S of the garth. These dataset§ drive a__s'mUI"’}]Iations less repeatable, comparable, and verifiablet Firs
tion .p|peI|ne w.h|ch _mclydes mesh generation, partitignin 4 foremost, repeatedly sampling the CVM programs is
solving, and visualization31]. In practice, these datasets expensive, as we demonstrate in Sec@orWe show that
are not fully materialized until simulation time. Rathévet i ic much more efficient (by a factor of2 — 414x) to

data is produced in an ad-hoc fashion for each set of €xg a1y 4 prebuilt data structure such as an etree, an indexed
periments, a process that, in our experience, takes on t

' _, : - disk-resident octree2B]. Common operations on ground
°Ff‘?‘ef 0{ days or weeks using e_xmngg tec_thLIJes., and siGsparacteristic data such as model segmentation and mesh
nificantly increases thieme to sciencéor seismologists. generation are well-suited to etrees rather than the common

Ground characteristic data is generated by sampling ger€VM programs 17], as they traverse paths through the



(a) Harvard (CVM-H) (b) SCEC (CVM-S)

Figure 2: Each underlying CVM program we use covers a distinct regiosoothern California, but both cover metropolitan Los Argelnd San
Diego. These images superimpose the surface octants of &eecevering each model’s region onto a map using Google Easgtuer soils are shown
in red and softer soils are shown in green. CVM-S includesagfor water (shown in blue), while CVM-H does not.

space. Second, a scientist must choose among the availalfleir goal is to sample the ground model at much higher
velocity models (i.e., those from SCEC and Harvard). Eachresolution than has previously been attempted, which will
has different performance characteristics, input andwutp lead to very large output etrees. To get an idea of scale,
formats, and are not entirely consistent—while quite sim-the Harvard CVM covers a region of Southern California
ilar globally, the two models can produce different valuesthat is 600 kmx 400 km x 100 km, and we want to sam-

at a particular location. The ability to operate on precom-ple at under 10 m resolution. These parameters will lead
puted data offers scientists a significant ease-of-usenadvato 24 x 10'? raw samples, or on the order of petabytes of
tage over having to build each dataset themselves. In ouwtata. In reality, the majority of this raw sample data is ho-
past experience, generating the ground model data for semaogeneous and is coalesced into larger octants, leading to
eral large earthquake simulations took on the order of daysignificant compression.

or weeks. Lastly, experiments that use different groundyg anyision that these datasets can be provided as a ser-
model configurations are difficult to validate against eacr\/ice to scientists, with datasets parameterized at diftere
other. In the intere_st of verification and validat_ion, thisre _resolutions, spatial regions, and aggregation (commesi
good reason for scientists to be able to share input veloCity,, .2 meters to fit specific needs. If a materialized dataset
models that use a common query interface. already exists that matches a scientist's needs, or if ome ca
To address these problems, we propose a new technique @asily be derived from an existing file, then it can be used
which ground models are fully materialized (precomputed)directly. Otherwise, a new dataset can be generated on the
over their respective regions of interest, and the regyltin fly. Such a service would be most naturally provided within
data efficiently stored in etree29] which can be shared a datacenter or supercomputing center, co-located with or
among many scientists and used for many experiments. laven resident on the machines used for simulation, in order
order to fully materialize the data, the constituent CVM isto keep the data in place. The service can also be provided
sampled at high resolution, and then the resulting samplever the network.

data is reduced by coalescing neighboring samples with hGgjiing such large materialized datasets is itself a igni
mogeneous characteristics into increasingly larger ¢&tan .+ computational challenge, so it is important to develop
Coalescing is essential and results in significamtdatac|=edutechniques to do so efficiently. Fortunately, the sampling

tion, especially for deeper regions of the ground. process is data-parallel and if the samples are carefutty pa

Figurel shows a visualization of a fully-materialized etree titioned, most of the coalescing phase can be locally car-
encompassing the region surrounding Los Angeles. It wasied out within a partition. We present three implementa-

materialized from the CVM-H program, and was sampledtions for building these models on general computer cluster
at a target resolution of under 10 m. By visual inspection platforms: Map/Reduce, data-parallel with stack-based co

it is clear that the high-resolution regions near the sarfac alescing, and Map/Reduce with stack-based coalescing.

maintain their detail, while the more homogeneous regionsrhe Map/Reduce implementations use Hadobd,[an

deeper undc_erground are coalesced into larger octants. Fi%’pen—source implementation of the Map/Reduce parallel
ure 2 superimposes images of the CVM-H and CVM-S programming model promoted by Googld]. The first

etrees onto a surface image using Google Earth. implementation uses the Map function to generate sam-



ples, gathers neighboring octants together by manipglatinrupture in highly heterogeneous media. One of the special
their locational codes, and then applies successive Reduaharacteristics of Hercules is its fast generation of thetme
functions to coalesce homogeneous sibling tuples. Whilevhich is due in part to the fact that Hercules uses a data
Map/Reduce is a useful and popular programming modelstructure with high querying performance, eimree This

we found that a simplified data-parallel implementation us-previously constructed etree is a discrete representafion
ing a parallel job scheduler (Maui/Torqugd, in our case) any available community velocity model such as CVM-S
achieved much better performance as it avoids the shuffler CVM-H described below.

and sort steps inherent in Map/Reduce programs. As well,

using a stack-based coalescing strategy avoids the succes- . .

sive?educes. Lastly, in order tg evalua%)é the overheads inf-2 Community velocity models

herent in Hadoop, we built a Map/Reduce implementationAS SCEC’s Community Modeling Environment group took
of the stack-based coalescer. We evaluate the performan(&% the construction of a multi-user framework for earth-

tradeoffs between the three implementations below. quake simulations, it rapidly became clear that a com-

The remainder of the paper is organized as follows. Secmunity velocity model accessible to all simulation groups
tion 2 describes how materialized ground models can bavas required. Therefore, SCEC adopted a seismic-velocity
used to drive large-scale earthquake simulations. Seanodel R1] that, when queried at a certain latitude, longi-
tion 3 presents background on etrees, locational codesude, and depth, returns values of S-waVg) @nd P-wave
Map/Reduce, and community ground models. Sec#ion (V,,) velocity, and densityd). This model is called CVM,
describes three parallel implementations of our groundand has since been released in four versidis20], and
model builder, and Sectiohpresents an evaluation exam- is available at the SCEC web sit8][ At the same time,
ining properties of our constructed etrees and comparing group from Harvard University developed a similar ve-
the three construction techniques. Sectaoncludes. locity model which has recently gained increasing interest
within the seismological community and is in the process
of being adopted by SCEC’s community as well. They are
now referred to as CVM-S, for the former, and CVM-H, the

2 Usmg Commumty ground models latter. Although CVM-H has a much better querying per-

in earthquake simulation formance than CVM-S, it covers a smaller area of Southern
California than CVM-S does, and does not have enough in-
2.1 Earthquake simulation formation for low velocity soil profiles. Therefore, CVM-

S continues to be the preferred velocity model source for
Since the early 1970’s, seismologists and engineers havarge scale simulations such as ShakeOut—a magnitude 7.8
understood the necessary methodology to represent thearthquake scenario that simulates a rupture in the south-
physical phenomena involved during the occurrence okrn part of the San Andreas fault in Southern California,
earthquakes. Lysmer et al, introduced the use of the fiaffecting an area of 600 kna 300 km, that covers all of
nite element method (FEM) in seismology9. Others the major cities from San Diego to Santa Barbara, includ-
adopted similar methodologies including the boundary eling the greater Los Angeles basin. This trend will very
ement method (BEM), finite differences (FD) and spectrallikely change in the next couple of years and as it does we
elements (SE). It was not, however, until the mid 1980’s,are preparing to have an efficient interface between CVM-
with the rising aid of HPC, that numerical simulations took H and parallel simulation codes like Hercules. The meth-
off, especially with the appearance of publicly-accessibl ods for the efficient construction of etree representatifns
supercomputing centers. The first fully three-dimensionaboth CVM’s is the objective of this paper.
simulation of an earthquake using parallel computers was
performed in 199211] using finite differences. It would . .
be followed by others, e.g4{13, 24]. Many of these sim- 2.3 The case for materialized community
ulations applied FD due to its structured nature and ease  ground models
of implementation when used with a regular gr&] 16]. ) ) ) .
Although FD is still the preferred method among some sci-We believe that the community will transition away from

entists, it is harder to scale up the problem size, speciall uilding ad-hoc groun.d models ba“f'eq on CVM programs
when dealing with heterogeneous media. In particular, T oward sharing pre-built, fully-materialized ground mtsde
et al, B1] built on the work of E] and createcHercules stored in a standard data structure such as an etree. In fact,

an octree-based parallel software system (developed by tHiS transition is already underway with SCEC’s adoption
Quake Group at Carnegie Mellon University), that imple- of an etree version of its velocny modgl CVM-S as the ma-
ments a highly efficient algorithm for solving the wave field terial model for the ShakeOut simulation.

generated by a kinematic representation of the earthquak@&rocher et al. §] constructed an etree velocity model of
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Figure 3: Average response times for queries by the path-based miFigure 6: Distribution of query times during the random microbench-

crobenchmark to the ground model programs and the pre-buett efihe ~ Mark.
etree is optimized for path-based queries, and so gives diejbery per-

formance.
Northern California based on geologic data and detailed
models of the San Francisco Bay Area. This model has
been recently validated for moderate earthquake simula-
700 tions [25] with very satisfactory results, and then used by
600 1 paill [1, 2] for the reproduction and simulations of the 1989,
2 500 Loma Prieta and 1906, San Francisco earthquakes.
g 400 A We see three primary advantages to adopting materialized
8 300 | community ground models.
E 200 1 Query cost. We have observed that the cost of query-
100 78.36 ing fully-materialized etrees is significantly lower thamet
023 15.43 cost of querying the CVM programs directly. In order to
etree (warm)  efree (cold)  GVM-H cUMS quantify this difference, we conducted the following exper

iments comparing the query costs of the CVM-S and CVM-
Figure 4: Average response times for queries by the random microbench!_| programs, as well as a pl’e-bUIlt gtree. The etree cov-
mark to the ground model programs and the pre-built etree. Rame €S @ 75 km by 75 km by 75 km region around downtown
cess to the etree performs well compared to sampling the CvMamig  Los Angeles, and is described in more detail in Seclidn
directly, especially when portions of the tree are pre-edch We constructed a microbenchmark which generates 18 ran-
dom coordinates from within the region, and samples 2 mil-
lion coordinates either at random or along a Z-order path.
(CVM-S is significantly slower than the etree or CVM-H,

100 ‘ ‘ ‘ ‘ "Eres L so we only report results for a single path of 2 million rather
9 | CVMH ~--i- ] than the entire 18 paths.) The random mode exercises ran-

80 | dom lookup performance, and the Z-order mode replicates

70 | the query pattern of mesh generation.

or Figure3 shows the average time per query in the path-based

benchmark for the CVM-S and CVM-H programs, as well
as a pre-built etree. As expected, querying the CVM-S pro-
gram is the slowest of the three, with queries taking, on
average, 521.98s. The CVM-H program i8$3x faster,
: and the etree is anoth&2 x faster than CVM-H. As many
0 : : ‘ ‘ _— of the workloads used in ground motion modeling tend
1le-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10 .
Seconds to query ground models along paths (i.e., when generat-
ing meshes), the path-based microbenchmark does favor
Figure 5: Distribution of query times during the path-based microbench the etree, which is optimized for path accesses while the
k. ’ . .
mar CVM programs are not. Figuré shows the average time
per query for the random microbenchmark. In this case,
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the etree performance is worse than with the path-basedata with drastic resolution variations across regions. Al

benchmark. In particular, random queries can incur manyhough octrees result in blocky representations of the, data
disk seeks when run with a cold disk cache. Warming upgn many cases these present no impediment for the simula-
the disk cache improves performance dramatically. tions. Such is the case when interface jump conditions can

The distribution of query times varies for the two ground P& €xPressed in terms of equivalent loads.

model programs and for the etree, as shown in Fig-Octrees have two equivalent representatia@mainrep-
ures5 and6. The CVM-H program has a startup cost of resentation andree representation. To explain key prop-
around 3.73 seconds for the first query, but then exhibits &rties of 3D octrees, we use 2Afuadtreedor illustration
nearly-constant query time. The etree library also ex&ibit purposes. These structures are built by recursively decom-
a startup cost, as index nodes are fetched from disk. Thposing the space, thus they are hierarchical in nature. An
performance of the CVM-S program is particularly low for octree divides a 3D region into 8 disjoint subregions, simi-
random queries, as it can only process queries in batchekrly a quadtree divides a 2D region into 4 smaller regions
Therefore, each independent point query incurs the startupr quadrants, until it achieves a desired resolution. Fig-
cost and is very expensive. ure7 (a) shows a samplé x 4 rectangular domain (heavy

Ease of useThere is a clear need for a simplified workflow 'IN€), Oneé of its quadrants is further divided into 4 smaller
when using ground models, and using standardized, maté‘-on'd“"s'blel x 1 quadrants.

rialized models can address this. Research groups spendrathe equivalent tree representation shown in Figu(e)
considerable amount of time (days or weeks) configuringeachnodein the tree corresponds to a quadrant in the do-
and building these datasets for their simulations in an admain, and their child nodes correspond to their subdivi-
hoc fashion, time which would be better spent on researctsions. For example, the root of the tree (node 0) represents
In some scenarios, it is not possible to easily directly in-tN€ Whole domain, and nodes 1 and 2 correspond the

tegrate user-level ground model code into a parallel suguadrants shown in the domain representation. Nodes with

percomputer infrastructure, especially one that uses a réj_ezc?dants, Z'g" no:ije 2,are knomdmmmr nodes Lea:] q
stricted operating system. In these cases, a scientist wiffodesnave no descen apts, €.g., nodes 3, 4, etc. Each node
need to pre-build datasets anyway. In the tree has an associated lekelThe level of theroot

nodeis 0, for a node with level, its children have level
We can say from our own experience that each of thg | 1 The node level encodes the quadrant’s size (),
ground model programs has its own quirks, which requiquhered _ gmax-level-)) zndmax-levelis the maximum
an inordinate amount of time to deal with. Input and output,g, o o any node in the tree, 2 in this example. The set of
formats differ, error conditions are reported differenégd ancestordor a noden is composed by its parent (immedi-

the source code is .dlfncult to modify. On the other hand,ate ancestor) and its parent's ancestors. The pathiréan
pre-built models using standard APIs and data formats a8 e root is made up by all of the ancestorsiior

more transparent and usable. )
Notice that the leaf nodes do not need to be all at the same

Standgrlfmza'?on. (Ilro_ss-valquatl(l)n, compafrlson, and r_?_- level. In acompletetree all leaves have the same level and
peatability of results Is a critical aspect of any scientl 'Cir equivalent to a regularly-spaced grid of the same resolu-

endeavor, and the use of shared, publicly-available modg|.,, "r o jatasets with large homogenous regions, siblings
properties can provide a consistent basis for this. Prov'd\'/vith the same properties can bggregatednto a single

:°r|l|g canc_Jr_uc:IﬂI, shgr_ed;}_ource dgtaforearthquake s;lmulatloparent node. For example, Node 8 in Figdréb) is an
llls a critical need in this regard. aggregation of its descendants (grayed out nodes).

3.2 Locational codes
3 Background

The structure of a quadtree can be mapped to a linear ad-
3.1 Octrees dress space by usirlgcational codeqd12]. This strategy

consists of assigning addresses of the feinj, /) to quad-
Octreesare commonly-used data structures for representrants, such that each address uniquely identifies and im-
ing spatial data in many domain®7. Particularly in earth  plicitly encodes a quadrant’s location and size. Thg
sciences, octrees are used to represent ground-velocippmponents of the address are the grid domain coordinate
models, meshes and output wavefiel8s 30, 18]. Oc-  components of the quadrant’s lower-left corner, arstthe
trees offer a compromise between the simplicity of reg-quadrant’s level in the tree representation. A child node at
ular grids and the modeling power of fully unstructured the lower-left quadrant of a larger enclosing quadrant has
meshes. They adapt to changes in the resolution of the urthe same grid coordinates as its ancestors. The level in the
derlying data, making them a good choice for representinguadrant address disambiguates this situation and also en-
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(a) Domain representation (b) Tree Representation

Figure 7: Sample Quadtree

codes the quadrant size. The domain in Figiife) hasa 3.4 Map/Reduce
4 x 4 regular grid as a coordinate system. For example, the

locational code for quadrant 3 {&,0,2), and its parent’s
(node 2) is(2,0,1). The quadrant locational codéZ],
which is a variant of théiorton code[23], is obtained by
interleaving the bits of the quadrant address fields exce
for the levell, and then appending the level to the inter
leaved bits. For example, indax 4 domain, two bits are

Map/Reduce has recently been promoted by Google as a
useful programming model and runtime system for data-
intensive applications10], and has generated a great
p(ﬁeal of interest in the wider community. Google uses
“Map/Reduce in various large-scale applications, inclgdin

building the reverse indices of the entire web. One goal of

required to represent each component and 2 bits are r€his work is to use Map/Reduce in new ways, beyond its

served for the level. Quadrant addrgsses are of the fo"ﬂ)ots in text processing toward scientific applications.
(zox1,yoy1,lol1), and the corresponding locational codes

are of the form(zoyox1y1lol1). The total ordering pro- Basic Map/Reduce programs consist of two functions:

duced by the locational codes is known as Z-ordering o/ ap and Reduce. Input, output, and intermediate data
Morton curve p6]. in Map/Reduce programs take the form of key value pairs.

The input to theM ap function is a set of tuples of type

< ki1,v1 >. Each invocation of the\/ap function pro-
cesses one of these tuples and produces zero orimntere
mediatetuples of type< k,, v >. Note that the types of
the keys and the values that are output can be different than

3.3 Etree library the types that were input.

The Map/Reduce runtime system will collect all of the tu-
ples with equal intermediate keys into lists for processing

Dealing directly with locational codes increases appiicat . o )
by the Reduce function. This is equivalent to the common

complexity. The etree library2p, 30] provides abstrac- S
tions where applications operate on large persistentestre group-byoperation in databases.

in terms of octree addresses. Internally, the library transThe Reduce function is invoked once for every intermedi-
forms quadrant addresses to locational codes and stores aate key, and is given a list of all intermediate values hav-
tant data on disk. The etree API allows operations sucling that key. Therefore, its input type is ko, list(vy) >.

as searching, inserting, deleting, appending and updating§ince the runtime system performs the group-by over all of
nodes in an octree. the tuples generated in the ap phase, theReduce func-

To efficiently access octrees on disk, the library stores octionis guarapteed to see every iptermediate value WiFh ke
tants in Z-order and usesBatree[7] to index octants us- key. An optionalCombinerfunction can apply reduction

ing locational codes as keys. Z-ordering has the interestmmediately after theMap task, before the intermediate

ing property that it corresponds to the pre-order traversaiuples are written to disk or sent over the network to the

of the tree representation. Performing a pre-order travers Zeduce tasks.

of the tree is equivalent to a sequential scan over the locaAe use an open-source implementation of a Map/Reduce
tional code key space, thus allowing for efficient utilipati  runtime called HadooplH]. Hadoop implements a dis-

of storage streaming bandwidthd. Thus etrees are opti- tributed filesystem, HDFS, which spreads data blocks
mized for Z-order access. across the cluster nodes, and exposes the locations of those



blocks via a centralized metadata server. The Hadoop (xy.2) (key, value) $°°\°/‘;de')
runtime implements much of the functionality described = ’ PP

in [10], and is built in Java.
I (Vp, Vs, p) '

examine

4 Implementation CVM neighbors

(lat,lon,dep)

4.1 Oversamp“ng Figure 8: A sketch of the Map/Reduce algorithm.

Our approach is to oversample the underlying model at the
finest resolution required, and then coalesce sibling ¢&tan
if they are homogeneous within some threshold. We choos
to oversample because the underlying CVM is a black box

which will use the resulting octree. The threshold values
Eombined with the maximum simulated frequency can be

d ke f i bout the Struct used to compute a target error in the resulting simulation.
andwe can maxe few or no assumptions about the STUCIULE - case we chose thresholds to meet a particular error.

and the features of the ground that it 'Y“OCE'e'S- As well, they e oy auate the effects of varying thresholds on compres-
CVM programs themselves are combinations of many un-

. . sion in Sectiorb.3,

derlying measurements, each of different accuracy and res-

olution. For example, the regions directly under the major

cities such as Los Angeles are, for good reason, characte4.3 Map/Reduce algorithm

ized at the highest resolution, while outlying areas are-cha ) ) o o
acterized much more coarsely. Areas around major faultd "€ @lgorithm begins by partitioning the overall regioroint
and other features are also well-characterized. Resolutic®dual-sized cubic subregions. These regions consist of
of the models also decreases deeper underground as sofie2:144 samples (64 in each dimension). This is necessary

become harder and more homogeneous, as well as beiffy order to work with the existing CVM-S software. Each
measured more coarsely. subregion is independent, and its samples are generated by

, _ aseparatd/ap task.
Oversampling produces a large amount of data. Samplin

the 600 km by 300 km by 100 km region covered by thegigure 8 shows a sketch of the Map/Reduge algorithm.
SCEC model at 10 m resolution will produaé x 102 Samples are generated by thi:p function, which queries

samples, leading to on the order of 1 PByte of raw datatn® underlying CVM program. The resulting tuples each

In reality, the majority of these samples are homogeneou?presem aleaf node in the octree, and are each assigned an

and will be coalesced together into larger octants over thiltermediate key based on the octant's locational code. The
course of running the program. intermediate key is manipulated in order to gather together

) ) sibling tuples for theReduce function. Finally, the values
We can and do relax oversampling somewhat in order tQy sibling tuples are examined by theeduce function for

reduce the raw data produced in the very hard, homogeyomogeneity. If they are homogeneous to within the given
neous soils found deep in the ground. For regions belowh eshold, they are coalesced into a larger octant at the nex
200 m we slowly begin to drop the sampling density basedhigher level in the octree. In order to fully coalesce the
on the depth in order to save time. However, this is not &t in the tree, th&educe function is applied again suc-
requirement of our system and we could very easily recongessively to the resulting data, which is accomplished by

figure these parameters and sample at higher resolution #&nning the Map/Reduce program again with an identity

necessary. mapper. Since the results of each iteration is stored irto th
distributed filesystem which spreads the data evenly across
4.2 Thresholding the compute nodes, the load remains balanced.

The CVM programs output three parameters of groundThe input ofMap_is the coordinate_of the upper left cor-
characteristics at each point: the velocity at which it prop €' Of the subregion. Th#&/ap function proceeds to gen-
agates P-waved/,; the velocity at which it propagates S- erate coordinates for each of the sample points within the
waves,V,; and its densityp. We coalesce a set of 8 sibling SUPregion, converting them to tuples of latitude, longétud
octants into a larger one subject to 3 different threshold va and depth (in meters) for input to.the CVM program. lF
ues, one for each of the model characteristics (), p). forks the chosen CVM program, pIpes the Iaytude, longi-
The octants are coalescedlf of the values for all the sib- Ude, depth tuples to its standard in file descriptor and col-
lings are within a specified percentage thresholds of theil®CtS the resulting ground characteristics. Coordinates t
mean values. Our baseline percentages are 2%.{d5% pe sampled are generated in Z-order by incrementing loca-
for V,, and 2% forp. Our choice of thresholding func- tional codes.

tion was dictated by the characteristics of the simulationsThe Reduce phase examines sibling octants for homogene-



ity and coalesces them if their values are within the thresh- (loc code,
old. The keys of the intermediate tuples are based on the (xy,z) Vp, Vs, p)
locational codes of the octants generated bylthep func-
tion. By manipulating the keys, we can cause neighboring
tuples to be processed by a single invocatiomRetluce. (lat,lon,dep)
For a given octant, clear sets of three remaining low-order
bits based on the level. For octants at the lowest level, the
lowest three bits are cleared, for octants in the next level CVM
up, six bits are cleared, and so on. We operate only on the
bits in the locational code corresponding to the coordmate Figure 9: A sketch of the data-parallel stack-based implementatioe. Th
Those bits that represent the level are not modified. In thigore is a simple C program which forks the external CVM.

way, sets of eight sibling octants will have equal interme-

diate keys, and will be processed in a single invocation of

local data

reduction
(Vp, Vs, p)

Reduce.
=0
The Map/Reduce model also allows the programmer to op- mne samples available from CVido
tionally specify aCombiner function, which is a reduction push(sample from CVM)
that is applied to the intermediate tuples immediatelyrafte fi”j;f
the Map, before data is ertten tq disk. In our case, we use while (sn mod 8¢ = 0) and fast 8 samples are within
our Reduce as theCombiner, which has the effect of ap- thresholg do
plying one round of coalescing right after théap. Since < samples >= pop(8)
many octants are homogeneous at the highest resolution zufhfoa'escq samples >))
this saves a great deal of data transfer, leading to inadease end while
performance. end while

Figure 10: Pseudocode of the stack-based coalescing algorithm.

4.4 Data-parallel stack algorithm

By carefully choosing the partitions, it is possible to lihza

decide whether to coalesce a given set of octants within & contrast to the Map/Reduce algorithm used above, in this
partition. This approach does not require the complete dateersion we use a stack-based coalescing algorithm, shown
shuffle used in the Map/Reduce case. In fact, we found thah Figure 10. Each group of eight sibling tuples may be
the shuffle and data copies incurred by the Map/Reduceonsidered independently immediately after it is created.
model were quite expensive, as we will see in Seclon By exploiting the fact that the CVM program returns co-
Thus, we were motivated to build a second version of theordinates in the same order they are given, it is possible to
system which, while still running in parallel on our clus- produce sample values that are already in Z-order. This al-
ter, performs all of the data generation and reduction for dows us to process the output of the CVM using a stack and
single subregion in one process. avoid having to store the raw output of the program at any

As with the Map/Reduce implementation described abovet,'me'

we start by partitioning the overall space to be sampled int&Consider pushing each new sample value on the stack. For
fixed-sized subregions. We use an octree to determine theach group of eight samples, a reduction may be attempted
size and location of the subregions. Thus, each subregioon them. If this succeeds, replace the last eight samples on
is aligned with an octree partition at a given level and con-the stack with one sample that is representative of them all,
tains only octants in the branch of the tree corresponding tae., by using their mean values. With this simple proce-
that partition. This allows us to treat each subregion indedure, it is possible to perform the same computation done
pendently as all the coalescing in the corresponding octreby one round of Map and Reduce in the previous descrip-
branch can be performed locally. tion, saving a great deal of time spent dealing with inter-

All of the samples for a single subregion are generated b)r/nedlate data.

a single invocation of a simple C program which forks theEven more effective is the ability to apply successive coa-
chosen CVM program, feeds it with the appropriate lati-lescing steps on the data in place, which eliminates the need
tude, longitude, depth tuples corresponding to the subrefor successive reduce phases required in the Map/Reduce
gion, and collects the output values for reduction. Thisalgorithm. As octants are coalesced at one level, the result
program is run on the cluster using a simple open-sourcéng larger octant is pushed back onto the stack for compar-
job scheduling system, Maui/Torqu2?]. ison in the next round.



4.5 Stack-based Map/Reduce algorithm here, but the most relevant for the purposes of this evalua-
tion is the number of concurredt/ap and Reduce tasks
The data-parallel stack-based algorithm described in thg ot are allowed to run on each node. We configured
previous section handily outperforms the Map/Reduce imgyr cluster to run eight concurrent tasks per server. Each
plementation by operating on the sample data entirely "Map/Reduce program that is run is partitioned infomap
place, thus avoiding intermediate data movement and akysks andr reduce tasks. Input and output data for the
lowing successive rounds of coalescing. We found that thWap/Reduce programs is stored in HDFS, while input and

stack-based algorithm was nearly an order of magnitudgytput data for the data-parallel stack-based implementa-
faster than the Map/Reduce version described above, astjbn is stored directly on the local disks.

avoids the costs of the distributed group-by. .
While we are able to use both CVM programs supported

As another point of comparison, we also implemented theby SCEC, CVM-S and CVM-H, we found that CVM-S is
stack-based algorithm as a Map-only Map/Reduce progt |east an order of magnitude slower than CVM-H. There-

gram. In this version, thé/ap function is a simple port  fore, for the purposes of this evaluation, we only report per
of the C-based program described above into Java. Thgmance results using CVM-H.

Hadoop Map/Reduce runtime is implemented in Java, sQ

we expect to see some performance overhead compared {&" the evaluation, we chose a 75 km by 75 km by 75 km
the C version. As well, the resulting data tuples are outpuf:'eglon of Southern California that is covered by both the

using the standard Map/Redunalectmethod, rather than CVM-5 gnd CVM-H models. The region covers most of
by writing directly to an output file, which causes tuples to MetroPolitan Los Angeles, and encompasses the highest-
be initially gathered in memory buffers and then eventually"©S0lution and most-heterogeneous portions of both mod-

written out to files in the Hadoop distributed filesystem. €S- We use an octree with thirteen levels to sample the
region, leading to a best possible resolution of 9.15 meters

As with the C-based stack implementation, samples arez5n00/(213)). The upper-left corner of the region is at
generated in Z-order using the external CVM program andygityde and longitude N34.190280 W-118.550948, and the

are pushed onto a stack. The algorithm examines each Byer-right corner is at N33.516643 W-117.739757.
neighboring octants on the stack and coalesces them if they

are within the threshold. If the siblings are coalesced, the . .
resulting larger octants are pushed back onto the stack 8-2 Sampling and compression

be examined at the next higher level. Tablel summarizes the results of building octrees for both

Comparing the performance of the data-parallel stackthe CVM-S and CVM-H models, for the two regions of
based system (built in C) to the Map/Reduce stack-basenhterest that we studied. The first region is the 75 km by
system provides a more apples-to-apples evaluation of the5 km by 75 km region described above that we used for
costs of using Hadoop. performance benchmarking. The second is the entire re-
gion supported by each model. When building the etrees,
we set the depth of the tree such that the best possible res-
5 Evaluation olution was under 10 meters.

For the first region, we generate sample dat& ot x 10°

5.1 Experimental setup octants. The data from the two underlying models coalesce

) to different degreesl( — 15x) because the measurements
All of our experiments are run on a cluster of Dell Pow- gnq interpolation functions that they use are differente Th
erEdge 1955 blade servers. Each server contains two quagrees built from the entire regions are interesting as, well
core Intel Xeon E5345 CPUs, clocked at 2.33 GHz, 8 GBjp, that they coalesce by almost an extra order of magnitude
of memory and two 146 GB Seagate Savvio 10K.2 diskscompared to the etrees generated from the smaller regions.
While the entire cluster consists of 50 servers, it is sharedpis is pecause the majority of the uncoalesced samples are

among many users running various applications. Therefom the high-resolution center of the region around Los
fore, we isolated ten servers to use for our testbed, meanngeles, which is included in both cases.

ing that nearly all of our performance measurements were

gathered using 80 cores.
. _ . 5.3 Errorrates
Each server runs 64 bit Ubuntu Linux server edition ver-

sion 7.04. We use Hadoop version 0.151d]] running in  Using a threshold to compress the sampled data into an oc-
Sun Java Runtime 1.6.0. Each node in the cluster servesee introduces errors that are dependent on the underlying
both as a Hadoop task tracker (i.e., compute node), and &VM program used and the thresholding parameters. We
a data node for the Hadoop distributed filesystem, HDFScharacterize the error by measuring the signal-to-noise ra
Hadoop has too many configuration parameters to describi@ (SNR) and peak signal-to-noise ratio (PSNR) between



Model Region Octree depth Sampled octants Coalesced octants Compression
CVM-S 75 X 75 X 75 13 5.74 x 109 5.26 x 108 11x
CVM-H 75 X 75 x 75 13 5.74 x 107 3.79 x 103 15%
CVM-S | 600 x 300 x 100 16 1.84 x 10! 2.57 x 10° 72x
CVM-H | 600 x 400 x 100 16 2.45 x 1011 3.54 x 10° 69x

Table 1: Comparison of the two CVM models and their results as etreesbiMematerialized etrees of each model over two regions &frést: the

75 km by 75 km by 75 km region we used for generating resultsofileed in Sectiorb.1), and the entire region that each model covers. In order to
reach a target resolution of under 10 m, the octrees were 18levéls deep, depending on the side of the region. We repetbtal number of sampled
octants for each case, the final number of octants in the tajesced etree, and the compression factor.

the uncompressed data and the coalesced samples storec

2500M
in the resulting octree. For this, we use the uncompressed 2000M BCVM-S
model as the reference signd & {s[0], s[1],--- ,s[n — 1500M OCVM-H
1]}) and compute the error for each octant as the difference ag 1000M
between the value for the octant in the uncompressed and 8 o h
compressed modelg[¢] — s[¢]). Then, we compute SNR 8 oM : : l_| il =
as the ratio of the mean square signal values to the mean 1/4 12 1 2 4

square error (MSE). Similarly, PSNR is computed as the
square of the maximum signal value over the MSE.

Threshold factor

Threshold SNR(dB) PSNR(dB) Figure 11: As th_e coalescing threshold becomes I_ess stringent (ie., th
threshold factor increases), the number of octants in the cesapd etree
factor || Vp | Vs | Rho || Vp | Vs | Rho decreases. There were 5,737,807,872 octants in the uncssepiretree.

/41 70| 75 76 || 87| 85 86

172 62| 71 74 || 78 | 81 84
1] 55| 65| 69| 72| 76| 80 the data values in the modéfy, V,,, o) are contained in
21 49| 60 64 || 65| 70 74 columns 2-4. The last 3 columns show the corresponding
4 || 44 | 55 59 || 61| 66 69 PSNR.

Figure 11 shows the effect of changing thresholds on the

number of octants in the compressed etree. CVM-H etrees
compress more readily than CVM-S etrees because CVM-
S includes more detail in the central Los Angeles basin than

Table 2: SNR and PSNR for compressed ground models (CVM-H)

Threshold SNR(dB) PSNR(dB)
factor || Vp [ Vs | Rho || Vp | Vs [ Rho does CVM-H.
1/4 1 55| 53 671 621 60 70 As expected, the lower threshold values produce higher fi-
121 49| 47| 611 56| 54| 63 delity models (higher SNR and PSNR values). The results
11| 43| 41| 551 50| 49| 58 indicate that the generated models have good overall qual-
21 371 36 49 || 44 | 43 52 ity. As a point of reference, lossy compressed images with
41 321 30 44 || 39| 38 46 SNR values of 25 dB are considered to be of good qual-

ity. The model compressed with the original thresholding
parameters has SNR values of (55, 65, 69) dB, indicating
that they have more than sufficient quality for simulation

_ ) _ purposes.
Tables2 and3 contain the SNR and PSNR values in deci-

bels (dB) for compressed models generated from the cvmModels of this quality had not been built before as fine spa-

H and CVM-S programs respectively. We built datasets,tial sampling was not performed. Including the error rates

with different thresholding parameters, which were gener-In the metadata of materialized modgls enables S_Ciem’iStSt
ated by applying a scaling factor to the thresholds oridynal determine the quality of the model with respect to its source
specified by our local ground modeling experts. The firstT0del program.

table column shows the scaling factor for these parameters.

For example, the_rqw with a scali_ng factor of 1x shows theg 4 End-to-end measurements

results for the original thresholding parameters (2%, 5%,

2%). A scaling factor ol /2 results in thresholding param- Figure 12 compares the runtime of the two stack-based
eters of (1%, 2.5%, 1%), and so on. The SNRs for each oimplementations. Each result is the average of three

Table 3: SNR and PSNR for compressed ground models (CVM-S)
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Figure 13: Parallel speedup of the Map/Reduce-based and data-paralle
stack implementations on 80 CPUs.

Figure 12: Runtime comparison of the Map/Reduce, data-parallel, and

Map/Reduce-based stack implementations.

5.5 Parallel efficiency

In order to calculate the parallel speedup achieved by each
runs. The Map/Reduce implementation, both with andimplementation, we examined the ratio of the total time
without the optional Combiner function, is by far the Spent executing the external CVM program to the wall-
slowest version, with the overall runtime being 412 andclock time of the overall program. By doing so, we com-
364 minutes, respectively. The poor performance of thd?are the time that it would have taken to generate all of
Map/Reduce implementation was surprising to us, espethe samples serially to the time that it took to generate and
cially compared to the much better performance of the datacoalesce them in parallel.

parallel stack implementation, which completes in 64 min-Figure 13 shows the results. Generating all of the sam-
utes. The overheads of the distributed group-by and soriples using the data-parallel stack implementation (Ckjtac
ing are significant and, in our view, rule out the use of atook, on average, 277,667 seconds of CPU time, which
pure Map/Reduce algorithm for this application. The per-was accomplished in 3817 seconds of wall-clock time us-
formance of Map/Reduce-stack is closer to that of dataing 80 cores, achieving a parallel speedufyaf7x. The
parallel stack, completing in 109 minutes. Map/Reduce implementations do not scale nearly as well

Both stack-based implementations avoid three aspects &fue to the extra data shuffling overheads, achieving a par-
the Map/Reduce implementation, all of which prove to beallel speedup 0f3.8x-15.6x. The Map/Reduce-stack im-
very expensive. First, all of the sample data is processeflementation fared better, achievingga.3x speedup on
and coalesced in p|ace rather than shuffled bet\/\Me’p 80 CPUs. The difference between the Map/REdUCE'StaCk
and Reduce tasks_ Operating on data in p|ace avoids ex_and the data-parallel stack implementations stem from the
tra writes to disk of intermediate tuples, as well as theoverhead of gathering output tuples in Hadoop and writ-
time to transfer data across the network. Second, théd to HDFS. The data-parallel stack implementation need
Reduce phase of the Map/Reduce implementation operate§nly write its output to a local file.

on eight octants at a time, resulting in several hundred mil-

lion calls to Reduce. Lastly, the stack-based implemen-

tations are able to entirely coalesce the samples that theg Conclusion

generate at all levels of the octree in a single invocation.

The Map/Reduce implementation requires multiple passeBlaterialized ground models have the potential to improve
of the Reduce function in order to fully coalesce the octree. the science of earthquake simulation by providing better

Comparing the runtime of the data-parallel stack and th&U€"y performance, ease-of-use, and standardization. In

Map/Reduce-stack implementations is interesting, sinc&NiS Paper we have made the case for their use by demon-

they present a more apples-to-apples evaluation of the OVeftratmg superior query performance and presenting three

heads of Hadoop. Given that they vary by roughly 50%, Wémplementations that make materializing them efficient us-
conclude that the overheads imposed by Java and the use'0f parallel compute clusters.

HDFS are insignificant next to the overheads of intermediExamining the three implementations of the ground model
ate data storage, sorting, and shuffling, which are requiredenerator was, in and of itself, an interesting exercise. Ou
by the pure Map/Reduce implementation. This result surapproach of using Map/Reduce was initially promising,
prised us, and suggest that a Map/Reduce application builis the problem had many of the characteristics for which
using Hadoop must make significant use of the shufflingMap/Reduce is suited. Samples are generated in the first
and sorting functionality in order to justify their overliea phase and then are reduced, octants need to be grouped to-



gether in order to be coalesced, and repeated reduce pas$es M. D. Kohler, H. Magistrale, and R. W. Clayton. Mantletéeo-

can coalesce successive levels in the octree. Howevar, afte
having built the implementation, it became clear that much
of the machinery of Map/Reduce is simply unnecessary in,
this case. Tuples are naturally grouped using increasing lo
cational codes, and reduction is entirely local to each sub-
task, which both obviate the need for a global group-by.
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