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Abstract—Load imbalance cause significant performance
degradation in High Performance Computing applications.
In our previous work we showed that load imbalance can
be alleviated by modern MT processors that provide mech-
anisms for controlling the allocation of processors internal
resources. In that work, we applied static, hand-tuned
resource allocations to balance HPC applications, providing
improvements for benchmarks and real applications.

In this paper we propose a dynamic process scheduler
for the Linux kernel that automatically and transparently
balances HPC applications according to their behavior. We
tested our new scheduler on an IBM POWER5 machine,
which provides a software-controlled prioritization mech-
anism that allows us to bias the processor resource alloca-
tion. Our experiments show that the scheduler reduces the
imbalance of HPC applications, achieving results similar
to the ones obtained by hand-tuning the applications (up
to 16%). Moreover, our solution reduces the application’s
execution time combining effect of load balance and high
responsive scheduling.

I. INTRODUCTION

Modern Supercomputers are often designed with com-

modity hardware components (for example, Intel or IBM

POWER processors) and software. Generally, this kind

of Supercomputers are distributed memory machines

with a limited number of cores per-node (2-8 cores); the

Message Passing Interface (MPI) [2] standard is the most

common programming model used in those systems.

HPC applications are, in most of the cases, Single
Program Multiple data (SPMD), meaning that all pro-

cesses execute the same code on different data sets.

Theoretically, those applications are supposed to reach

their synchronization points (e.g. barriers or collective

operations) at the same time, exchange data and then

continue their tasks. However, several factors cause load
imbalance. Load imbalance happens, for example, when

the amount of input data to be processed by each task

in the parallel application is not the same and some

tasks take longer than other to reach their synchroniza-

tion points. In this case we say that the application is

intrinsically imbalanced. Other factors are external to

the application: for example, the Operating System (OS)

has also been identified as one of the most important

extrinsic source of imbalance [9], [22], [24], [28].

The load-imbalance problem is well known and in-

creases with the number of processors in Supercom-

puters, yet the problem remains open. Several solutions

have been proposed in the literature: some of them [1],

[25] first analyze the input data and then try to find the

best data distribution to reduce application’s imbalance.

Other solutions [7], [11], instead, balance applications by

assigning more computational resources (mainly number

of processors) to those processes computing longer.

The arrival of Multi-Threaded (MT) processors1 pro-

viding mechanisms that allow the software to control

the processor’s internal resource allocation offers new

fine-grain ways to solve the problem of HPC application

imbalance.

Until recently, software had no control over the re-

source allocation in MT processors. For example, Chip

Multi-Processor (CMP) architectures with a shared cache

level implement a cache replacement policy which is not

under control of the OS. In this case, the OS composes

the workload to run on the cores but cache replacement

policy determines which lines have to be evicted from

the cache, implicitly deciding how much cache memory

allocate to each task and, thus, the speed of the task.

This trend has changed with the arrival of the IBM

POWER5TM [14], [15], [16] and the CELL [12], [13]

processors, which allow the software to use, respectively,

8 and 3 levels of hardware priorities for each running

task. The basic idea is that the higher the hardware

priority assigned to a task (with respect to the other

task it is co-scheduled with), the higher the amount of

processor resources it receives and, hence, the higher

its speed. By controlling this hardware prioritization the

software can control the speed at which each task runs.

In [4] we performed a deep analysis of how the hardware

prioritization mechanism of POWER5 processors affects

the performance of applications. Two of the main con-

clusions, also used in this paper, are the following:

1) In general, improving the performance of one

task involves a higher performance loss on the task

running on the other context, sometimes by an order

1In this paper we use the term multi-threaded processor to refer
to all types of processors executing more than one task at a time:
Symmetric Multi-Thread, Chip Multi-Processor, Fine-Grain Multi-
threading, Coarse-Grain Multi-threading or any combination of them.
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of magnitude. In some cases, in order to reduce the

execution time of a task by X% (with respect to the case

when both tasks run with the same priority) by increasing

its priority, the execution time of the other task in the

same core may reduce by more 10X%.

2) Instead of using the full spectrum of priorities (from

0 to 7), we only explore priority differences up to ±2.

Larger priority differences should be used only when

the performance of one of the two tasks is not important

(e.g., background task).

In [5] we showed, for the first time, how the hardware

prioritization mechanism of POWER5 processors can

be used to balance HPC applications. In that proof-of-

concept paper, we ran a 4-tasks MPI application on a

POWER5: in a first test, where we applied the same

priority to the two tasks running in a core (default case),

we detected which processes, on average, computed the

longer and which tasks spent most of their time waiting

for incoming messages or on a barrier. In the following

experiments we manually increased the priority of the

most computing intensive tasks, increasing their speed

and reducing the load imbalance. In that paper, the pri-

oritization is applied to processes manually and statically

at the beginning of the execution and each process runs

with the same priority throughout its execution. With

this solution we obtained an improvement of 8% on real

HPC applications like SIESTA [26].

In this paper, we propose a dynamic solution imple-

mented as a new task scheduler for Linux 2.6 kernels.

The advantages of this new proposal over the static

solution are obvious, the most important being that the

OS automatically establishes the hardware priority to

be assigned to each HPC process with no effort from

the user. The second advantage is that the solution is

transparent to the user: the only modification in the

application source code concerns the scheduling policy

(as shown in Section IV). The third advantage is that our

scheduler is able to detect the correct hardware priority

quickly (in one or two iterations) improving overall

performance. Finally, the scheduler is able to catch up

with the application in case the application’s behavior is

dynamic, i.e., not constant throughout the iterations. All

these advantages reduce the load imbalance of a HPC

application, directly increasing the overall performance.

In order to test our dynamic scheduler, we compared

the results we obtained running HPC benchmarks and

applications to the results we obtained in [5]. Most inter-

esting is the case of the real application (SIESTA): with

our previous static approach we were able to improve the

total execution time by 8%; with the solution proposed in

this paper, we are able to improve the execution time by

almost 6%, combining the effects of the load balancing

and the high-responsive task scheduler without any effort

from the programmer.

The capability of the IBM POWER5 to allow the

software to change processor’s internal resource allo-

cation is not something isolated in the design of pro-

cessors. Several factors support the idea that future

supercomputers will use this type of processors. First,

nowadays, Multi-Threaded processors are widely used

in HPC systems (in addition to many other computing

systems like desktops, real-time, etc.) for their good

performance/energy consumption and performance/cost

ratios. Second, other recent processors like the IBM

POWER6TM [21], provide a similar prioritization mech-

anism. Third, many computer-architecture researchers

advocate that allowing the software to control not only

the decode stage of the processor, as it is the case in

POWER5 and POWER6, but also other processor shared

resources in the chip, like the cache [10], [17], [23],

would increase the performance of HPC applications.

The rest of this paper is structured as follows: Sec-

tion II provides some background on the solutions

already proposed in the literature and the capability

of the IBM POWER5 to dynamically assign internal

resources to each contexts. Section III highlights some

of the features of the software designs of the new Linux

scheduler framework. Section IV proposes our dynamic

task scheduler for balancing HPC applications. Section V

shows our experiments on benchmarks and real applica-

tions. Finally Section VI provides our conclusions and

finalizes the paper.

II. BACKGROUND

A. Related Work

Different solutions have been proposed to solve the

load-imbalance problem. Historically, these solutions

have been divided into two groups: data distribution and

processing distribution.

The first group consists of static and dynamic solu-

tions. Static approaches distribute data using sophisti-

cated tools and achieve good performance results but

must be repeated for every application, input data set

and architecture. For example, METIS [1] analyzes the

application’s data set and tries to find the best distribu-

tion. Dynamic approaches have also been proposed in

the literature: in [25] and [30] the authors try to solve

the load-balancing problem of irregular applications by

using mesh repartitioning algorithms and evaluating the

convenience of repartitioning the mesh or adjust it.

Solutions in the second group, processing re-

distribution, assign more CPUs to those processes that

compute for longer time. Load balancing for openMP

applications can be performed using some of the exist-

ing loop scheduling algorithms that assign iterations to

threads dynamically [3]. When using nested parallelism

in openMP, it is possible to assign more threads to those
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groups with high loads [7]. In the case of MPI applica-

tions, solution for load balancing are more complex, for

the number of processes is statically determined when

starting the job (in case of malleable jobs), or when

compiling the application (in case of rigid jobs) [29].

This problem has also been approached through hybrid

programming models, for example combining MPI and

openMP. In [11] the authors balance irregular applica-

tions by modifying the computational power rather than

by using the typical mesh redistribution. In their work

the application detects the overloading of some of its

processes and creates new threads at run time to alleviate

the overloaded CPUs. They observe that one of the

problems of their method is that they do not control the

operating system decisions, which could reverse theirs.

In this paper we propose a new group of solu-

tions called processor resource distribution group where

we assign more hardware processor resources to those

threads computing the longer. One of the advantages

of the proposals in this group is that the granularity is

smaller than in the other groups, which allows us to be

more efficient when reducing the load imbalance. For

example, we do not add or remove processors, like in

the processing re-distribution group, but assign more or

less processor internal resources to the most computing

intensive tasks. With respect to data distribution group,

our solution is transparent to the user and dynamic,

which means that the programmer does not have to

put any effort for balancing the application and that

the solution does not have to be repeated for each

application, data input set or architecture.

B. The IBM POWER5 Processor

The IBM POWER5 [14], [15], [16] processor is a

dual-core chip where each core is 2-way SMT [19]. Each

core has the capability to vary the hardware resources

assigned to each thread (or context) at run time by means

of a hardware context priority (or hardware thread
priority). The hardware thread priority is an integer value

in the range of 0 (the context is off) to 7 (the other

context is off and the core is running in Single Thread

(ST) mode). The amount of hardware resources assigned

to a context increases with the hardware priority value

(keeping the other constant).

Each core in the processor prioritizes a task by chang-

ing the instruction decode rate, i.e., the number of decode

cycles assigned to each context depends on its hardware

priority. In general, the higher the priority, the higher

the number of decode cycles assigned to the thread and,

therefore, the higher the number of shared resources held

by the thread.

Let us assume that two tasks (TaskA and TaskB) are

running on a POWER5 core with priorities PrioA and

PrioB, respectively. Every time slice of R cycles the task

TABLE I
DECODE CYCLES ASSIGNED TO TASKS BASED ON THEIR PRIORITIES

Priority R Decode Decode
difference cycles (A) cycles (B)

0 2 1 1
1 4 3 1
2 8 7 1
3 16 15 1
4 32 31 1
5 64 63 1

TABLE II
PRIVILEGE LEVEL AND OPERATION TO SET EACH PRIORITY LEVEL

Priority Priority Privilege or-nop
level level instruction

0 Thread off Hypervisor -
1 Very low Supervisor or 31,31,31
2 Low User or 1,1,1
3 Medium-Low User or 6,6,6
4 Medium User or 2,2,2
5 Medium-high Supervisor or 5,5,5
6 High Supervisor or 3,3,3
7 Very high Hypervisor or 7,7,7

with the lower priority receives 1 decode cycle while the

task with the higher priority receives (R − 1) cycles. R

is computed as:

R = 2|PrioA−PrioB|+1

Table I shows how R is computed according to the

priority difference between TaskA and TaskB (PrioA-

PrioB) and how many decode cycles are assigned to each

task. For instance, assuming that the hardware priority of

TaskA is 6 and the hardware priority of TaskB is 2 (the

difference is 4), the core fetches 31 times from TaskA

and once from TaskB (more details on the hardware

implementation are provided in [8]). It is clear that the

performance of TaskA should increase to the detriment

of TaskB.

If the hardware thread priority of a context is 0, 1 or

7, the behavior of the hardware prioritization mechanism

does not follow Table I [14], [15], [16]. Priority 0 means

that the thread is switched off; priority 7 means the

thread is running in ST mode (i.e., the other thread is

off) and priority 1 means that the context is running

a “background” thread assigning it all the hardware

resources left over by the “foreground” thread running

on the other context.

Hardware priorities in the IBM POWER5 can be

changed by issuing an or-nop instruction. In order to

change its thread priority, a task has to execute an

instruction like or X,X,X, where X is a specific register

number (see Table II). This instruction does not perform

any operation except changing the hardware thread prior-

ity of the task. Table II shows the priorities, the privilege

level required to set each priority and how to change
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priority using this interface. The OS (supervisor) can set

6 out of 8 priority values, from 1 to 6; user software can

only set priority 2, 3, 4; the Hypervisor can always span

the whole range of priority values.

III. THE LINUX SCHEDULER FRAMEWORK

A new process task scheduler (the Complete Fair
Scheduler, CFS) has been introduced in the Linux kernel

version 2.6.23. This new scheduler replaces the old

O(1) [6] scheduler used in Linux 2.6 for several years.

The O(1) scheduler provided good performance and

its overhead was constant regardless of the number of

runnable processes. However, this scheduler was not free

of problems, such as consuming too much memory even

with few runnable tasks. The CFS aims to solving some

of those problems.

Together with the new CFS algorithm, a new scheduler
framework has also been introduced, mainly to simplify

the structure of the task scheduler. The new framework

divides the scheduler in two main components: three

Scheduling Classes, which implement the policy details,

and a Scheduler Core, which handles the Scheduling

Classes as objects, i.e., calling the appropriate Schedul-

ing Classes methods for any low-level operations (for

example, selecting the next task to run or accounting

for the time elapsed). Each of the three Scheduling

Classes contains one ore more scheduling policies (see

Figure 1(a)).

In order to improve scalability, each CPU has

a list of Scheduling Classes. Each class, in turn,

contains a list of runnable processes belonging to

one of the policies handled by the class. The first

class (the highest priority) contains real-time processes

(SCHED_FIFO and SCHED_RR); the second class

(the new CFS class) contains the normal processes

(SCHED_NORMAL, previously called SCHED_OTHER,

and SCHED_BATCH); finally, the last class contains the

idle process (SCHED_IDLE).

The order with which the Scheduling Classes are

linked together introduces an implicit level of prioriti-

zation: no processes from a low priority class will be

selected as long as there are available processes in one

of the higher priority classes. For example, no processes

from the CFS class will be selected if there is one process

in the real-time class; this design choice preserves the

semantic of the SCHED_FIFO and SCHED_RR policies.

In the same way, the idle process will never be selected if

there are runnable processes in one of the other classes.

When the scheduler is invoked, the Scheduler Core

starts looking for the best process to run from the

highest priority class (i.e., the real-time class) and checks

whether there are runnable processes in this class. If

the class contains at least one process, the scheduler

selects this process and assigns it to the CPU. If the class

is empty, i.e., no runnable process available, then the

Scheduler Core moves to the next class. This operation

repeats until the Core Scheduler finds a runnable task to

run on the CPU. Notice that the idle class always contains

at least the idle process, thus the scheduler cannot fail

in its search.

A very interesting property of the new scheduler

framework is that each class may provide different data

structures and algorithms to select the next process to

run. For example, the real-time class uses a set of

priority, round-robin run queue lists, one list for each real

time priority (0-99). The real-time scheduler first selects

the highest (non-empty) priority run queue and then

picks up the first task in the list. In fact, a real-time task is

either SCHED_FIFO, in which case the task stays in the

first position until it yields the CPU, or a SCHED_RR, in

which case the process is moved to the back of the queue

if its time slice expires. This algorithm is essentially

the old O(1) scheduler algorithm and maintains the O(1)
scheduler’s implementation details (like the 0-cost swap

between the active and expired arrays).

The CFS class, instead, uses a red-black tree and

does not use the concept of time quantum. Each process

receives a time slice proportional to the actual workload

(the higher the number of running processes, the smaller

the time slice). The key concept is the time spent by

a runnable task waiting for a CPU (i.e., waiting to be

executed). This value is used to sort the tasks in the red-

black tree so that the “leftmost task” in the tree is the

process that has been waiting for more time (i.e., the one

with gravest need to run), therefore the next task to run.

The CFS scheduler tries to balance the execution of the

runnable tasks so that no one waits for a CPU more than

a maximum allowed amount of time2 (latency). As the

time passes, the waiting time of the running process is

decreased at every timer interrupt (or scheduling event)

by the amount of time the task has been running (minus

its fair running time). As the waiting time of the running

task decreases, the task may eventually be moved to

the right side of the red-black tree. Sooner or later the

running task will not be the “leftmost task” anymore, in

that moment the CFS scheduler will select another task.

As the previous examples show, the Scheduling

Classes may have completely different algorithm and

data structures. As a matter of fact, the new scheduler

framework allows kernel developers to write scheduler

algorithms specifically tailored for a class of applica-

tions. Moreover, adding a new scheduler algorithm is

easier than in the past and does not require heavy

modification of pre-existing kernel code.

2The default maximum value for normal tasks is 20ms.
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(a) Standard Linux Scheduling Classes (b) HPCSched Scheduling Classes

Fig. 1. Scheduling classes for the standard and the modified Linux kernel

IV. THE HPC SCHEDULER

In this paper we propose a dynamic mechanism to

balance MPI applications using the hardware priority

mechanism provided by IBM POWER5 processors. We

implemented our dynamic solution inside the Linux

kernel as a new scheduler (HPCSched) for a special class

of applications (HPC applications).

In order to balance the HPC application, the scheduler

tracks the application behavior and detects when to

increase or decrease the amount of processor’s internal

resources assigned to a specific process.

Since we want to prioritize HPC over normal pro-

cesses, we introduced the HPCSched class between the

Real-Time and the CFS class (see Figure 1(b)). In

this way, we preserve the semantic of the real-time

tasks (SCHED_FIFO and SCHED_RR) and give a higher

priority to HPC processes over normal tasks.

The HPC scheduler we propose is based on three

components, mainly independent from each other:

Scheduling policy: The scheduler algorithm used by

the Scheduler Core to select the next task to run among

the runnable tasks in the HPC class.

Load Imbalance Detector and Heuristics: We use

a Load Imbalance Detector and heuristic functions to

select, according to the scheduler metrics, the new hard-

ware priority for the task.

Mechanism: Architecture-dependent, utility functions

necessary to set the new hardware priority or read the

current priority of a task.

A. Scheduling policy

Taking advantage of the new scheduler framework

described in the last Section, we introduced a new

Scheduler Class (sched_hpc) and a new scheduler

policy (SCHED_HPC) for HPC applications. A user can

move an application to the HPC class by means of

the standard sched_setscheduler() system call.

Actually, this is all the effort the user has to put in

order to use our new scheduler (comparable to the use

of the nice() system call commonly used in HPC

applications).

Our scheduler algorithm is specific for HPC appli-

cations, more specifically for MPI applications. The

typical way of running MPI applications on current

supercomputers is to run one MPI process per-CPU.

Thus, we expect to have one process in the HPC class

of every CPU (maybe two or three during workload

balancing). Under this assumption, it is not worth to

have a complex algorithm for selecting the next task to

run. In fact, with this small number of processes in the

run queue list, a simple round-robin list is as good as a

more complex red-black tree. However, the code for a

round-robin run queue is much simpler and performing

(for example, the scheduler does not have to balance any

tree). Nevertheless, we implemented two algorithms:

FIFO: Fist-In-First-Out algorithm. The selected

task will run until the end or until it yields the CPU.

RR: Round-Robin algorithm. Each task has a pre-

defined time slice. When this time slice expires, the

task is placed at the end of the run queue.

We observed that, with one process per CPU running

at any given moment, there is essentially no difference

between these two policies, thus, we only include the

results for the round robin policy in this paper. However,

as we have already remarked, the scheduling policy is

independent of the other components, hence, it can be

changed, if required, without affecting the heuristics or

the applying mechanism.

In the new Linux kernel framework, workload bal-

ancing, i.e., splitting evenly the workload among all

the available domains [6] (at core-, chip- and system-

level), is also performed at Scheduling Class level.

Every Scheduling Class has its own workload balancing

algorithm, which means that each CPU has, roughly, the

same number of real-time or normal tasks. As a side

effect, each CPU runs, more or less, the same number of

tasks.

The workload balancer is invoked whenever the kernel

detects that there is a big imbalance or if one processor

is idle. In the latter case, the idle CPU tries to pull tasks

from other, busiest run queue lists to its run queue.

We implemented our HPC workload balancing algo-

rithm making each processor domain [6] running the

same number of processes. For example, in a POWER5

system there are three domain levels: chip level, core

level and context level (a context is what is recognized

by the OS as a CPU). Our workload balancer tries to

balance the number of task at each domain level. Thus,

a core domain running less tasks than another core will

try to pull tasks from the other core. For example, if one
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core of an IBM POWER5 processor (a domain composed

by two contexts) contains one HPC task and the second

core contains three tasks, the first core will try to pull

one HPC task from the second core so that each core

domain contains two processes so to make the workload

balanced.

B. Load Imbalance Detector and Heuristics

MPI applications alternate computing phase (when

a process is runnable) with waiting phases (when a

process is waiting for an incoming message or for

synchronization, thus, not runnable). We consider the

sum of a computing phase and of a waiting phase as

one iteration of the MPI application.

In some HPC applications during each iteration all the

tasks perform the same operations (most of the time on

the same amount of data), with an iterative structure.

Our solution learns from the execution history of a

process: the general idea is that if a task does not have a

high CPU utilization during the iteration i, it will perform

in the same way in the i+1 iteration. This is a common

case, for example, for those applications that compute an

approximation of a solution of a problem and than try

to reduce the error in they made in the approximation.

The Load Imbalance Detector assumes that the iteration

i is representative of the iteration i + 1, hence, the

HPC scheduler can change the task’s priority and apply

the new priority before the iteration i + 1 starts. The

goodness of our solution strongly depends on how close

this guessing is to the optimum solution. If the guessing

is not correct, in the iteration i + 1 the application may

result to be even more imbalanced than in the iteration i.
Hopefully, the scheduler will detect this anomaly during

the iteration i + 1 and apply the right priority in the

iteration i + 2.

Clearly, not all the applications present a well de-

fined iterative structure with a barrier at the end of the

iterations. Some applications, like SIESTA, are more

dynamic or do not require all the processes to be

synchronized with a global barrier. If the iteration i
is not representative of the iteration i + 1, our current

heuristics will probably fail to balance the application

and new heuristics are required. We leave the study of

new heuristics for future work.

The scheduler may require some iteration to converge

to a balanced solution: the goal of the heuristic is to

find a stable state where the application is balanced and

to remain there as long as the application behavior is

constant. Sometimes it is not possible to balance an

application, for example because the hardware priority

mechanism of the POWER5 processor is too coarse

grain. In this case the scheduler will oscillate between

two solutions without being able to find the perfect bal-

ance, hopefully still reducing the overall load imbalance.

The problem here is to find the correct trade-

off between performance (computing the next priority

quickly), responsiveness (converging to the correct pri-

ority in few iterations) and adaptability (changing the

priority whenever the tasks’ behavior changes).

In order to compute the next task priority quickly

our heuristics are based on the CPU utilization of a

process, a simple metric that does not require complex

computations. Ideally, the scheduler should look at the

tasks running on the two contexts of a POWER5 core

simultaneously and then compute the correct priority for

the current task. In fact, the performance of the current

task depends on the difference between its priority and

the priority of the task running on the other context.

However, this would require to acquire a lock on the

other context’s run queue (in order to ensure that no

process switch occurs), thus, stalling the other context

until the new priority has been computed. Things become

even more complex as the HPC scheduler needs to be

sure that the process running on the other context is a

SCHED_HPC tasks, for the lock on the task descriptor

should also be acquired (in order to avoid concurrent

access to the task descriptor). This solution could be

quite expensive in terms of performance (though very

precise). Hence, we decided to implement a simpler

solution that only computes the new priority of a HPC

task according to its statistics (thus, not considering the

task running on the other context).

Fig. 2. HPC application iterative behavior

While a task is running, the scheduler collects several

metrics, such as the tasks’ execution and waiting time.

Figure 2 shows a typical task trace: the process computes

for tR seconds and then goes to sleep, waiting for

messages coming from the other processes in the MPI

application (tW ). If ti = tR + tW is the total execution

time in the iteration i, then the task utilization in the

same iteration is Ui = tR/ti. The global task utilization

is the ratio of the accumulated running and iteration

times: U =
∑

tR/
∑

ti. These metrics are quite easy to

compute, since the kernel already provides some of the

required values. We only had to add the values necessary

to introduce the concept of iteration that is not present

in the standard Linux kernel.

From our study in [4], we learned that priority differ-

ences greater than 2 drastically reduce the performance

of the low priority task. Therefore, we limited the

range of priorities that the HPC scheduler explores to
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[4, 6] (where 4 is the normal priority assigned to each

task at the beginning), so that the maximum allowed

priority difference is ±2. In this way, the performance

of the highest priority task might increase up to 95% of

the maximum performance improvement but the lower

priority task’s performance does not decrease too much.

Once the information about the tasks’ progress have

been stored, the HPC scheduler has to decide whether

to increase, decrease or keep the same priority for

the current process in the next iteration. Since HPC

applications can be very different, it is hard to find an

heuristic that works well in all the cases. In this paper, we

implemented and tested two heuristics: the first heuristic

(Uniform heuristic) targets constant applications, i.e.,

applications that do not change drastically their behavior

from one iteration to another. The second heuristic

(Adaptive heuristic) is more aggressive and tries do adapt

to different program phases. Which heuristic is better

for a specific application depends on the characteristics

of the applications itself. Section V shows how an

application takes more advantages from one heuristic

than from the other. We decided to allow the user to

select which heuristic to use when compiling the kernel.

Once the heuristic has been chosen, the user can set some

parameters at run time to tune the heuristic and make it

more suitable for the application.

Uniform prioritization: This heuristic uses the global

utilization ratio of a task. Every scheduling tick, the OS

accumulates the running time for the active task and

updates its utilization; the sleeping time is accounted

when a task wakes up at the beginning of the new

iteration. Just before starting the new iteration, the Load

Balancer Detector checks the application’s imbalance

and the heuristic eventually applies the new task priority

according to the global utilization,

We introduced two configurable limits, LOW_UTIL
and HIGH_UTIL that define the boundaries when a task

is considered to be a low, medium or high utilization

task. Those boundaries are required to avoid that the

scheduler changes too quickly the priority of a task,

oscillating between two possible solutions. For the ex-

periments presented in Section V, we set HIGH_UTIL to

85 and LOW_UTIL to 65. The heuristic can be tuned by

the user through specific entries in the sysfs filesystem.

The Uniform heuristic is very simple and adds negligi-

ble overhead to the task scheduler. The heuristic properly

balance applications with constant behavior although it

could be slow to adapt to different behaviors of the

program. If the heuristic is able to balance the appli-

cation, i.e., to find a stable state, the Load Imbalance

Detector only checks whether the application maintain

the same behavior or not, without changing the priority

of each task. If the application’s behavior changes, the

Load Imbalance Detector tracks this and the heuristic

selects the right priority for the next iterations.

Adaptive prioritization: The Uniform heuristic may

be too slow to adapt to new scenario if the application

changes its behavior quickly, especially if the application

runs for a long time (in which case it is hard to impact

the global utilization, as Section V-B shows. We imple-

mented another heuristic, that we called Uniform, which

gives more weight to the recent history of the application.

With this heuristic, the task utilization in the i − th
iteration is computed as Ui = G ∗Ug(i− 1) +L ∗Ul(i),
where Ug(i−1) is the global utilization until the iteration

i−1 and Ul(i) is the CPU utilization of the last iteration

i. G and L (with G + L = 1) weight, respectively, the

global and the last utilization. These parameters can be

used to make the heuristic more or less aggressive: in

fact, an aggressive heuristic (for example, L = 0.90 and

G = 0.10) quickly adapts to the application’s behavior

but may over-react, meaning that even small changes

caused by external factors, like the OS noise, may cause

the heuristic to change the task priority. On the other

hand, if the value of G is close to 1, the Adaptive
heuristic behaves like the Uniform heuristic.

As for the Uniform heuristic, the Adaptive heuristic

can also be tuned at run time using different values for

HIGH_UTIL, MAX_PRIO (the maximum allowed pri-

ority) and MIN_PRIO. Moreover, if the Load Balancer

stops to change the tasks’ priority if it detects that the

application is well balanced.

C. Mechanism

This is the only architecture-depended part of our

solution. In fact, while the HPC scheduler can be used

on any architecture and may, eventually, provide some

performance improvement (because the HPC class has

higher priority than the CFS class), balancing an MPI

application assigning more or less hardware resources to

a process can only be done if the underneath processor

supports this feature.

V. EXPERIMENTS

In this section we evaluate the performance of our

HPC scheduler and compare it to the standard CFS

scheduler and the static solution proposed in [5]. As we

said in Section IV, the goodness of the HPC scheduler

strongly depends on the heuristics we apply. For this

reason, some application may benefit more than other

from an heuristic while other may experiment some

performance degradation.

Like in [5], we present our results for three differ-

ent cases: MetBench, our micro-benchmark suite (Sec-

tion V-A), BT-MZ from the NAS benchmark suite (Sec-

tion V-C) and SIESTA, a real application (Section V-D).

In order to evaluate how our HPC scheduler handles
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dynamic applications, in this paper we also present

results for MetBenchVar V-B, a version of MetBench

that changes its behavior after k iterations, reversing the

load imbalance.

We performed the experiments on an IBM OpenPower

710 server, equipped with one POWER5 processor. We

ran our experiments on a standard Linux 2.6.24 (the

last available Linux kernel at the moment of writing

this paper) and our modified Linux kernel. All the

benchmarks are MPI applications (in the experiments

we used the MPI-CH 1.0.4p1 implementation of MPI

protocol). In order to graphically show how HPCSched

balances an MPI application, we used PARAVER [20],

a visualization and performance analysis tool developed

at CEPBA to collect data and statistics and to show the

trace of each process during the tests.

As a performance metric we use CPU utilization of

each task, and the total execution time of the applica-

tion. Reducing the load imbalance lead to higher CPU

utilization but does not necessarily improve performance:

other factors, like the communication pattern of the

application, may play an important role and reduce

the performance of the application. On the other hand,

HPCSChed is also able to improve the performance of an

application reducing the overhead an application running

with the standard CFS scheduler may suffer.

A. MetBench

MetBench (Minimum Execution Time Benchmark) is

a suite of MPI micro-benchmarks developed at BSC

which structure is representative of the real applications

running on MareNostrum. MetBench consists of a frame-
work and several loads. The framework is composed

by a master process and several workers: each worker

executes its assigned load and then waits for all the

others to complete their task. The master maintains a

strict synchronization between the workers: once all the

workers have finished their tasks, the master eventually

starts another iteration. The master and the workers only

exchange data during the initialization phase and use an

mpi_barrier() to get synchronized.

In this experiment we introduce imbalance in the MPI

application by assigning to a worker a larger load than

the worker running on the same core. In this way, the

faster worker will spend most of its time waiting for

the slower worker to process its load. Figure 3(a) shows

part of the execution trace of our reference case, where

MetBench runs with the default CFS (Completely Fair

Scheduler). In this figure dark gray is the computing

time, while light gray is the waiting or communication

time. Table III shows that two of the MetBench workers

are idle for about 75% of the time. Figure 3(b) shows the

solution proposed in [5], where we were able to statically

balance the application: the execution time decrease

TABLE III
METBENCH BALANCED AND IMBALANCED CHARACTERIZATION

Test Proc % Comp Priority Exec. Time

Baseline P1 25.34 4 81.78s
2.6.24 P2 99.98 4

P3 25.32 4
P4 99.97 4

Static P1 99.97 4 70.90s
P2 99.64 6
P3 99.95 4
P4 99.64 6

Uniform P1 96.17 - 71.74s
P2 98.57 -
P3 90.94 -
P4 99.57 -

Adaptive P1 80.64 - 71.65s
P2 99.52 -
P3 87.52 -
P4 99.20 -

from 74.64sec to 70.90sec, with an improvement of

about 13%. The static approach we used in [5] require

previous knowledge of the application and effort from

the programmer to detect the load imbalance and to

properly assign hardware resources to each task.

Figures 3(c) and 3(d) show how HPCSched is able

to properly balance MetBench after the first iteration.

In fact, the behavior of MetBench is constant, thus,

each iteration is representative of the following ones.

In Figure 3(c), the Load Imbalance Detector detects

the imbalance in the first iteration 3 and the Uniform
heuristic computes and apply the correct priority for

each task before the beginning of the second iteration.

At the end of the second iteration, the Load Imbalance

Detector detects no imbalance, thus there is no need of

trying to balance again the application. The execution

time with the Uniform heuristic is 71.74sec (about 12%)

of improvement), comparable with the static solution

shown in Figure 3(b) but without any effort from the

programmer.

The Adaptive heuristic also provides good perfor-

mance: the total execution time is 71.65sec (about 12%

of improvement). In this experiment the Adaptive heuris-

tic uses a very aggressive approach (10% global history,

90% last iteration), thus, even a small variation (caused,

for example, by OS noise) may stimulate the heuristic

to change the priority of some task. If this happens, like

in Figures 3(d), the heuristic may respond too quickly

and take the wrong decision. However, Figures 3(d) also

shows how the Adaptive heuristic is able to recover after

the error.

3Notice that the first iteration already uses non standard priority:
this is the result of the initialization phase, not visible in the trace
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(a) Standard execution (b) Static prioritization

(c) Uniform prioritization (d) Adaptive prioritization

Fig. 3. Effect of the proposed solution on MetBench.

(a) Standard execution (b) Static prioritization

(c) Uniform prioritization (d) Adaptive prioritization

Fig. 4. Effect of the proposed solution on MetBenchVar.

B. MetBenchVar

MetBenchVar is a slightly modified version of Met-

Bench where the workers change their behavior after k
iteration. Figure 4(a) shows the standard execution of

MetBenchVar with k = 15: at the beginning P1 and

P3 execute a small load while P2 and P4 a large load.

At the 15th iteration, P1 and P3 start to execute the

large load while P2 and P4 perform their task on the

small load. In this way, we reverse the load imbalance

at run time making the application’s behavior dynamic.

At the 30th iteration, we switch again the behavior of

the tasks. Figure 4(b) shows how a static works in this

case: the application is perfectly balanced in the first

(iterations 1-15) and third period (iteration 31-45) but the

prioritization is reversed in the second period (iterations

16-30), as a result, in the second period the application

performs worst than in the standard case.

Our dynamic solution, instead, is able to detect that

the application’s behavior has changed and dynamically

adjust the priority of each task in order to re-balance the

application. Figure 4(c) shows how HPCSched performs

in this experiment when applying the Uniform heuristic:

after the switching in the 15th iteration, the scheduler

needs two more iterations to detect and correct the

new load imbalance. However, after the second switch,

the scheduler needs three more iterations to detect and

correct the load imbalance and the trend continue if

the application runs for longer time. Since the Uniform
heuristic uses the global history to detect the imbalance,

it is expected that the longer the application runs, the

less responsive is the scheduler. Thus, increasing the

value of k or the number of periods makes the scheduler

slower to adapt to the new scenario. As Table IV, the

execution time reduces from 368.17sec to 327.17sec,

with an improvement of about 11%).

Figure 4(d) shows how the Adaptive heuristic pre-

forms in this experiment: with k = 15, the scheduler

always needs only two iterations to detect and correct the

load imbalance but, as for the previous case, some times

the heuristic is too aggressive and respond too quickly.

Again, the Adaptive heuristic is able to correct its over-

reaction in the following iteration and to reduce the ex-

ecution time to 326.41sec (about 11% of improvement).

C. BT-MZ

Block Tri-diagonal (BT) is one of the NAS Parallel

Benchmarks (NPB) suite. BT solves discretized versions

of the unsteady, compressible Navier-Stokes equations

in three spatial dimensions, operating on a structured

discretization mesh. BT Multi-Zone (BT-MZ) [18] is a

variation of the BT benchmark which uses several mesh

(named zone) for, in realistic applications, a single mesh

is not enough to describe a complex domain.

Besides the complexity of the algorithm, BT-MZ

shows a behavior very similar to MetBench: every pro-

cess in the MPI application performs some computation

on its part of the data set and then exchanges data with

its neighbors asynchronously (using mpi_isend()
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(a) Baseline execution (b) Static prioritization

(c) Uniform prioritization (d) Adaptive prioritization

Fig. 5. Effect of the proposed solution on BT-MZ. Each trace represents only some iterations of the application.

TABLE IV
VARIABLE-METBENCH BALANCED AND IMBALANCED

CHARACTERIZATION

Test Proc % Comp Priority Exec. Time

Baseline P1 50.24 4 368.17s
2.6.24 P2 75.09 4

P3 50.22 4
P4 75.08 4

Static P1 99.97 4 338.40s
P2 68.06 6
P3 99.94 4
P4 68.04 6

Uniform P1 91.47 - 327.17s
P2 95.55 -
P3 91.44 -
P4 95.33 -

Adaptive P1 89.61 - 326.41s
P2 93.08 -
P3 89.99 -
P4 95.15 -

and mpi_irecv()). After this communication phase

(0.10% of the total execution time) each process waits

(with a mpi_waitall() function) for its neighbors to

complete their communication phases. In this way, each

process gets synchronized with its neighbors (note that

this does not mean that each process gets synchronized

with all the other processes). Once a process has ex-

changed all the necessary data, a new iteration can start

and the previous behavior repeats again until the end of

the application (in our experiments we used BT-MZ with

default values: class A with 200 iterations).

Figure 5 shows how HPCSched is able to balance BT-

MZ achieving results similar to the static prioritization

(Figure 5(b)). Both the Uniform (Figure 5(c)) and the

Adaptive (Figure 5(d)) heuristics are able to balance the

application and remain in the stable state. Table V shows

that the performance improvement is about 16% for both

heuristics over the standard case shown in Figure 5(a)

D. Siesta

SIESTA [27] is a method for ab initio order-N materi-
als simulation, specifically it is a self-consistent density

TABLE V
BT-MZ BALANCED AND IMBALANCED CHARACTERIZATION

Test Proc % Comp Priority Exec. Time

Baseline P1 17.63 4 94.97s
2.6.24 P2 29.85 4

P3 66.09 4
P4 99.85 4

Static P1 70.64 4 79.63s
P2 42.22 4
P3 60.96 5
P4 99.85 6

Uniform P1 70.31 - 79.81s
P2 37.18 -
P3 65.29 -
P4 99.85 -

Adaptive P1 70.31 - 79.92
P2 37.30 -
P3 65.30 -
P4 99.83 -

functional method that uses standard norm-conserving

pseudo-potentials and a flexible, numerical linear com-

bination of atomic orbitals basis set, which includes

multiple-zeta and polarization orbitals.

In this experiment we used thebenzene particle as

input set and we noticed that the application presents an

imbalance caused by both the algorithm and the input

set (see Figure 6(a) and Table VI). SIESTA behavior,

however, is not constant during each iteration, as can be

seen in Figure 6(a) and an iteration is not necessarily

representative of the next one; this variability decreased

the effectiveness of our static balancing.

As can been seen in Table VI, both the Uniform
and the Adaptive heuristics are only able to reduce

the load imbalance marginally (the CPU utilization of

each task slightly increases). However, the HPCSched is

able to improve the application’s performance, reducing

the total execution time from 81.49sec to 76.82sec for

the Uniform heuristic and 76.91sec for the Adaptive
heuristic. In both cases the improvement is about 6%.

Clearly this improvement does not come from load

imbalance reduction but from the other components of

our solution, in this case, from the scheduler policy. Fig-
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(a) Standard execution (b) Uniform prioritization

(c) Adaptive prioritization

Fig. 6. Effect of the proposed solution on Siesta.

ure 6(a) shows that the execution phases are very small

and that the tasks need to exchange several messages.

While waiting for an incoming message, tasks sleep and

need to be waken up as soon as the message arrives. The

time between the arrival of the message and the moment

the task resumes its execution is called scheduler latency:

SIESTA is very sensible to this kind of OS noise. With

the CFS scheduler, whenever a task becomes runnable,

it has to compete with all the other processes in the

system for the CPU. An SCHED_HPC task that wakes

up, instead, has to compete only with the other tasks in

its class: considering our initial assumption (i.e., usually

only one HPC task per-CPU at any given time) the task is

able to immediately run on the CPU, thus, its scheduling

latency is reduced.

TABLE VI
SIESTA BALANCED AND IMBALANCED CHARACTERIZATION

Test Proc % Comp Priority Exec. Time

Baseline P1 98.90 4 81.49s
2.6.24 P2 52.79 4

P3 28.45 4
P4 19.99 4

Uniform P1 98.81 - 76.82s
P2 53.38 -
P3 31.41 -
P4 21.68 -

Adaptive P1 98.81 - 76.91s
P2 53.40 -
P3 31.47 -
P4 21.71 -

VI. CONCLUSIONS AND FUTURE WORK

HPC applications are, in most of the cases, Single Pro-
gram Multiple data (SPMD), meaning that all processes

execute the same code on different data sets. Because

of load imbalance these applications do not reach their

synchronization points at the same moment, as they are

supposed to do.

In [5] we showed how assigning more hardware

resources to the most intensive task in an MPI ap-

plication can reduce the load imbalance and improve

performance. We performed this study with a static,

hand-tuned approach. In this paper we proposed a new

dynamic solution for balancing HPC application, HPC-

Sched. We implemented our solution as a new task

scheduler for Linux 2.6 kernels composed by three

components: the scheduling policy (SCHED_HPC), the

metrics and heuristics (Uniform and Adaptive) and the

hardware mechanism.

The heuristic used to balance the tasks in the parallel

application is critical to achieve good results: in this

paper we showed that the perfect heuristic depends

on the application’s characteristics and that constant

applications may not react very well with an aggressive,

high-responsiveness heuristic and vice-versa.

We tested our new Linux scheduler on an IBM

POWER5 machine using four different applications:

MetBench, a suit of micro-benchmarks, MetBenchVar

(which performs like MetBench but with different pe-

riods of execution), BT-MZ, from the NAS benchmarks

suite, and SIESTA, a real application. The results we ob-

tained are good, though they depend on the used heuris-

tic. Our solution works well for constant application

like MetBench or BT-MZ providing good results (12%

and 16% of performance improvement, respectively).

For applications that changes their behavior at run

time, HPCSched achieve good performance compared

with what a programmer can manually do: MetBench-

Var shows a performance improvement of 11% while

SIESTA an improvement of about 6%. Our previous

static approach we could improve the overall execution

time by 8% but that solution required the programmer

to manually balance the application while HPCSched is

able to balance the application automatically.

We also showed that the improvement comes from a

combination of two factors: the scheduling policy and

the load balancing.

As future work we plan to expand our solution at

cluster level: in fact, HPCSched is a task scheduler able

to balance HPC application inside a node but modern

Supercomputers consists of Thousands of nodes. In this

case there is another level of load balancing which con-

sists of assigning the correct group of tasks to each node
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(gang scheduling) considering that the local scheduler

(in our case HPCSched) is able to dynamically assign

more or less hardware resource to each task. Moreover,

we would like to find an heuristic capable of performing

well (even if not optimal) for both constant and dynamic

applications.
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