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A. Many-Task Computing (MTC) 
Grids have been the preferred platform for loosely coupled 

applications that tend to be managed and executed through 
workflow systems or parallel programming systems. These 
loosely coupled applications make up a new class of 
applications called Many-Task Computing (MTC), which are 
composed of many tasks (both independent and dependent 
tasks) that can be individually scheduled on many different 
computing resources across multiple administrative boundaries 
to achieve some larger application goal. MTC is reminiscent of 
high throughput computing (HTC); MTC differs from HTC, 
however, in the emphasis on using much large numbers of 
computing resources over short periods of time to accomplish 
many computational tasks, where the primary metrics are in 
seconds (e.g., FLOPS, tasks/sec, MB/sec I/O rates). HTC, on 
the other hand, requires large amounts of computing for longer 
times (months and years, rather than hours and days), where the 
primary metrics are generally in operations per month) [11]. 

MTC denotes high-performance computations comprising 
multiple distinct activities, coupled via file system operations 
or message passing. Tasks may be small or large, uniprocessor 
or multiprocessor, compute-intensive or data-intensive. The set 
of tasks may be static or dynamic, homogeneous or 
heterogeneous, loosely coupled or tightly coupled. The 
aggregate number of tasks, quantity of computing, and volumes 
of data may be extremely large. Is MTC really different enough 
to justify coining a new term? There are certainly other choices 
we could have used instead, such as multiple program multiple 
data (MPMD), high throughput computing, workflows, 
capacity computing, or embarrassingly parallel.  

MPMD is a variant of Flynn’s original taxonomy [12], used 
to denote computations in which several programs each operate 
on different data at the same time. MPMD can be contrasted 
with SPMD, in which multiple instances of the same program 
each execute on different processors, operating on different 
data. MPMD lacks the emphasis that a set of tasks can vary 
dynamically. High throughput computing [11], a term coined 
by Miron Livny within the Condor project [13], to contrast 
workloads for which the key metric is not floating-point 
operations per second (as in high performance computing) but 
“per month or year.” MTC applications are often just as 
concerned with performance as is the most demanding HPC 
application; they just don't happen to be SPMD programs. The 
term “workflow” was first used to denote sequences of tasks in 
business processes, but the term is sometimes used to denote 
any computation in which control and data passes from one 
“task” to another. We find it often used to describe many-task 
computations (or MPMD, HTC, MTC, etc.), making its use too 
general. “Embarrassingly parallel computing” is used to denote 
parallel computations in which each individual (often identical) 
task can execute without any significant communication with 
other tasks or with a file system. Some MTC applications will 
be simple and embarrassingly parallel, but others will be 
extremely complex and communication-intensive, interacting 
with other tasks and shared file-systems. 

Is “many task computing” a useful distinction? Perhaps we 
could simply have said “applications that are communication-
intensive but are not naturally expressed in MPI”. Through the 

new term MTC, we drawing attention to the many 
computations that are heterogeneous but not “happily” parallel.  

B. Hypothesis  
We claim that MTC applications can be executed 

efficiently on today’s supercomputers; this paper provides 
empirical evidence to prove our hypothesis. The paper also 
describes the set of problems that must be overcome to make 
loosely coupled programming practical on emerging petascale 
architectures: local resource manager scalability and 
granularity, efficient utilization of the raw hardware, shared file 
system contention, and application scalability. We address 
these problems, and identify the remaining challenges that need 
to be overcome to make loosely coupled supercomputing a 
practical reality. Through our work, we have enabled a Blue 
Gene/P to efficiently support loosely coupled parallel 
programming without any modifications to the respective 
applications (except for recompilation), enabling the same 
applications that execute in a distributed Grid environment to 
be run efficiently on a supercomputer. The Blue Gene/P that 
we refer to in this paper is the new IBM Blue Gene/P 
supercomputer (also known as Intrepid) at the U.S. Department 
of Energy's Argonne National Laboratory, which is ranked 
number 3 in the Top500 rankings [15] with 160K processor-
cores with a Rpeak of 557 TF and Rmax of 450 TF.  

We validate our hypothesis by testing and measuring two 
systems, Swift [5, 14] and Falkon [6], which have been used to 
execute large-scale loosely coupled applications on clusters and 
Grids. We present results for both microbenchmarks and real 
applications executed on the Blue Gene/P. Microbenchmarks 
show that we can scale to 160K processor-cores with high 
efficiency, and can achieve sustained execution rates of 
thousands of tasks per second. We also investigated two 
applications from different domains, economic energy 
modeling and molecular dynamics, and show excellent 
application scalability, speedup and efficiency as they scale to 
128K cores. Note that for the remainder of this paper, we will 
use the terms processors, CPUs, and cores interchangeably. 

C. Why Petascale Systems for MTC Applications? 
One could ask, why use petascale systems for problems that 

might work well on terascale systems? We point out that 
petascale scale systems are more than just many processors 
with large peak petaflop ratings. They normally come well 
balanced, with proprietary, high-speed, and low-latency 
network interconnects to give tightly-coupled applications that 
use MPI good opportunities to scale well at full system scales. 
Even IBM has proposed in their internal project Kittyhawk [16] 
that the Blue Gene/P can be used to run non-traditional 
workloads, such as those found in the general Internet, which 
are by definition part of a loosely coupled system.  

Four factors motivate the support of MTC applications on 
petascale HPC systems.  

1) The I/O subsystem of petascale systems offers unique 
capabilities needed by MTC applications. For example, 
collective I/O operations could be implemented to use the 
specialized high-bandwidth and low-latency interconnects. We 
have not explored collective I/O operations in this work, but 
will do so in future work. MTC applications could be 



 

composed of individual tasks that are themselves parallel 
programs, many tasks operating on the same input data, and 
tasks that need considerable communication among 
themselves. Furthermore, the aggregate shared file system 
performance of a supercomputer can be potentially larger than 
that found in a distributed infrastructure (i.e., Grid), with data 
rates in the 8GB/s range, rather than the more typical 0.1GB/s 
to 1GB/s range of most Grid sites.  

2) The cost to manage and run on petascale systems like the 
Blue Gene/P is less than that of conventional clusters or Grids. 
[16] For example, a single 13.9 TF Blue Gene/P rack draws 40 
kilowatts, for 0.35 GF/watt. Two other systems that get good 
compute power per watt consumed are the SiCortex with 0.32 
GF/watt and the Blue Gene/L with 0.23 GF/watt. In contrast, 
the average power consumption of the Top500 systems is 0.12 
GF/watt [15]. Furthermore, we also argue that it is more cost 
effective to manage one large system in one physical location, 
rather than many smaller systems in geographically distributed 
locations.  

3)Large-scale systems inevitably have utilization issues. 
Hence it is desirable to have a community of users who can 
leverage traditional back-filling strategies to run loosely 
coupled applications on idle portions of petascale systems.  

4) Perhaps most important, some applications are so 
demanding that only petascale systems have enough compute 
power to get results in a reasonable timeframe, or to leverage 
new opportunities. With petascale processing of ordinary 
applications, it becomes possible to perform vast computations 
quickly, thus answering questions in a timeframe that can make 
a quantitative difference in addressing significant scientific 
challenges or responding to emergencies. This work has 
opened up the door for many important serial applications to 
use emerging petascale systems. 

II. RELATED WORK 
Only recently have parallel systems with 100K cores or 

more become available for open science research.  Even scarcer 
is experience or success with loosely coupled programming at 
this scale. We found two papers [22, 23] that explored a similar 
space, focusing on HTC on the IBM Blue Gene/L [18]. 

Cope et al. [22] aimed at integrating their solution as much 
as possible in the Cobalt scheduling system (as opposed to 
bringing in another system such as Falkon); their 
implementation was on the Blue Gene/L using the HTC-mode 
[21] support in Cobalt, and the majority of the performance 
study was done at a small scale (64 nodes, 128 processors). The 
results of Cope et al. were at least one order of magnitude 
worse at small scales than the results we obtained in this paper, 
and the performance gap would only increase with larger-scale 
tests as their approach has higher overheads (i.e., nodes reboot 
after each task, in contrast with simply forking another 
process). Peter’s et al. from IBM also recently published some 
performance numbers on the HTC-mode native support in 
Cobalt [23], which show a similar one order of magnitude 
difference between HTC-mode on Blue Gene/L and our Falkon 
support for MTC workloads on the Blue Gene/P. Subsection 
IV.C.1 compares and contrasts the performance between our 

proposed system on the Blue Gene/P and the results presented 
by Cope at al. [22] and Peters et al. [23].  

In the world of high throughput computing, systems such as 
Condor [13], MapReduce [4], Hadoop [24], and BOINC [25] 
have used highly distributed pools of processors, but the focus 
of these systems has not been on single highly parallel 
machines such as those we focus on here. MapReduce is 
typically applied to a data model consisting of name/value 
pairs, processed at the programming language level. It has 
several similarities to the approach we apply here, in particular 
its ability to spread the processing of a large dataset to 
thousands of processors. However, it is far less amenable to the 
utilization and chaining of exiting application programs, and it 
often involves the development of custom filtering scripts. We 
have compared our work with Condor glide-ins [16] in the past 
[6], but our work focuses on performance and efficiency, while 
Condor emphasizes more on robustness and recoverability, 
which limits its efficiency for MTC applications in large-scale 
systems. An approach by Reid called “task farming” [26], also 
at the programming language level, has been evaluated on the 
Blue Gene/L as a proof of concept, but offered no performance 
evaluation for comparison, and required that applications be 
modified to run over the proposed middleware. 

III. REQUIREMENTS AND IMPLEMENTATION 
The contribution of this work is the ability to enable a new 

class of applications—large-scale and loosely coupled—to 
efficiently execute on petascale systems, which are traditionally 
HPC systems. This is accomplished primarily through three 
mechanisms: 1) multi-level scheduling, 2) efficient task 
dispatch, and 3) extensive use of caching to minimize shared 
infrastructure (e.g. file systems and interconnects). 

Multi-level scheduling is essential on a system such as the 
Blue Gene/P because the local resource manager (LRM, Cobalt 
[27]) works at a granularity of psets [28], rather than individual 
computing nodes or processor cores. On the Blue Gene/P, a 
pset is a group of 64 quad-core compute nodes and one I/O 
node. Psets must be allocated in their entirety to user 
application jobs by the LRM, which imposes the constraint that 
the applications must make use of all 256 cores. Tightly 
coupled MPI applications are well suited for this constraint, but 
loosely coupled applications generally have many single 
processor jobs, each with possibly unique executables and 
parameters. Naively running such applications on the Blue 
Gene/P using the system’s Cobalt LRM would yield a 
utilization of 1/256. We use multi-level scheduling to allocate 
compute resources from Cobalt at the pset granularity, and then 
make these resources available to applications at a single 
processor core granularity. Using this multi-level scheduling 
mechanism, we are able to launch a unique application, or the 
same application with unique arguments, on each core, and to 
launch such tasks repetitively throughout the allocation period. 
This capability is made possible through Falkon [6] and its 
resource provisioning mechanisms.  

A related obstacle to loosely coupled programming when 
using the native Blue Gene/P LRM is the overhead of 
scheduling and starting resources. The Blue Gene/P compute 
nodes are powered off when not in use and must be booted 
when allocated to a job. As the compute nodes do not have 



 

local disks, the boot-up process involves reading the 
lightweight IBM compute node kernel (or Linux-based 
ZeptoOS [29] kernel image) from a shared file system, which 
can be expensive if compute nodes are allocated and de-
allocated frequently. Using multi-level scheduling allows this 
high initial cost to be amortized over many jobs, reducing it to 
an insignificant overhead. With the use of multi-level 
scheduling, executing a job is reduced to its bare and 
lightweight essentials: loading the application into memory, 
executing it, and returning its exit code – a process that can 
occur in milliseconds. Contrast this with the cost of rebooting 
compute nodes, which is on the order of multiple seconds (for a 
single node) and can be as high as a thousand seconds in the 
case of concurrently booting 40K nodes (see Figure 3).  

The second mechanism that enables loosely coupled 
applications to be executed on the Blue Gene/P is a streamlined 
task submission framework (Falkon [6]). Falkon relies on 
LRMs for many functions (e.g., reservation, policy-based 
scheduling, accounting) and client frameworks such as 
workflow systems or distributed scripting systems for others 
(e.g., recovery, data staging, job dependency management). 
This specialization allows it to achieve several orders of 
magnitude higher performance (2534 tasks/sec in a Linux 
cluster environment, 3186 tasks/sec on the SiCortex, and 3071 
tasks/sec on the Blue Gene/P, compared to 0.5 to 22 jobs per 
second for traditional LRMs such as Condor [13] and PBS [30] 
– see section IV.C). These high throughputs are critical in 
running large number of tasks on many processors as 
efficiently as possible. For example, running many 60-second 
tasks on 160K processors on the Blue Gene/P requires that we 
sustain an average throughput of 2730 tasks/sec; considering 
the best LRM performance of 22 tasks/sec [31], we would need 
two hour long tasks to get reasonable efficiency.  

The third mechanism we employ for enabling loosely 
coupled applications to execute efficiently on the Blue Gene/P 
is extensive caching of application data to allow better 
application scalability by avoiding shared file systems. Since 
workflow systems frequently employ files as the primary 
communication medium between data-dependent jobs, having 
efficient mechanisms to read and write files is critical. The 
compute nodes on the Blue Gene/P do not have local disks, but 
they have both a shared file system (GPFS [32]) and local file 
system implemented in RAM (“ramdisk”). We make extensive 
use of the ramdisk local file system, to cache files such as 
application scripts and binary executables, static input data that 
is constant across many jobs running an application, and in 
some cases output data from the application until enough data 
is collected to allow efficient writes to the shared file system. 
We found that naively executing applications directly against 
GPFS yielded unacceptably poor performance, but with 
successive levels of caching we were able to increase the 
execution efficiency to within a few percent of ideal.  

The caching we refer to in this work is a different 
mechanism from the data diffusion described in previous work 
[34, 35, 8]. Data diffusion deals with dynamic data caching and 
replication, as well as with data-aware scheduling. Because of 
the network topology of the Blue Gene/P, and the architecture 
changes in which we distributed the Falkon dispatcher (see 
Section III.B), where compute nodes are grouped into private 

networks per pset (in groups of 256 CPUs) using the Tree 
network, we have not been able to use data diffusion in its 
current form on the Blue Gene/P. We have made good progress 
in implementing TCP/IP over MPI to enable the use of the 
Torus network for node-to-node communication, which should 
allow us to test data diffusion on the BG/P; we will discuss this 
more in the future work section. On the other hand, the simple 
caching scheme we have employed on the Blue Gene/P deals 
with two kinds of data: 1) static data (application binaries, 
libraries, and common input data) that is cached at all compute 
nodes, and the caches are reused for each task; and 2) dynamic 
data (input data specific for a single task) that is cached on one 
compute node, and tasks can run completely local in both 
reading and writing data, and finally persisting the cache 
contents to a shared file system. Note that dynamic data is only 
used once by one task, and needs to be transferred from the 
persistent storage location again if another task needs the same 
input data.  This simple caching scheme has proved to be quite 
effective in scaling applications up to 128K processors, while 
the same applications and workloads didn’t scale well beyond 
8K processors. Our caching strategy  is completely automated, 
via a wrapper script around the application.  

A. Swift and Falkon 
To harness a wide array of loosely coupled applications that 

have already been implemented and executed in clusters and 
grids, we build on the Swift [5, 36] and Falkon [6] systems. 
Swift enables scientific workflows through a data-flow-based 
functional parallel programming model. It is a parallel scripting 
tool for rapid and reliable specification, execution, and 
management of large-scale science and engineering workflows. 
The runtime system in Swift relies on the CoG Karajan [33] 
workflow engine for efficient scheduling and load balancing, 
and it integrates with the Falkon light-weight task execution 
dispatcher for optimized task throughput and efficiency.  

Swift and Falkon have been used in a variety of 
environments from clusters, to multi-site Grids (e.g., Open 
Science Grid [37], TeraGrid [38]), to specialized large 
machines (SiCortex [39]), to supercomputers (e.g., Blue 
Gene/P [1]). Large-scale applications from many domains (e.g., 
astronomy [40, 6], medicine [41, 6, 42], chemistry [36], 
molecular dynamics [43], and economics [44, 45, 45]) have 
been run at scales of up to millions of tasks on up to hundreds 
of thousands of processors.  

B. Implementation Details 
Significant engineering efforts were needed to get Falkon to 

work on systems such as the Blue Gene/P; this subsection 
discusses these extensions. 

Static Resource Provisioning: When using static resource 
provisioning, an application requests a number of processors 
for a fixed duration directly from the Cobalt LRM. For 
example, the command “falkon-start-bgp-ram.sh prod 1024 
60” submits a single job to Cobalt to the “prod” queue and asks 
for 1024 nodes (4096 processors) for 60 minutes; once the job 
goes into a running state and the Falkon framework is 
bootstrapped, the application interacts directly with Falkon to 
submit single processor tasks for the duration of the allocation.  



 

Alternative Implementations: Performance depends 
critically on the behavior of our task dispatch mechanisms. The 
initial Falkon implementation was 100% Java, and made use of 
GT4 Java WS-Core to handle Web Services communications. 
[46] The Java-only implementation works well in typical Linux 
clusters and Grids; but the lack of Java on the Blue Gene/L, 
Blue Gene/P compute nodes, and SiCortex prompted us to re-
implement some functionality in C. To keep the 
implementation simple yet able to support these specialized 
systems, we used a simple TCP-based protocol (to replace the 
prior WS-based protocol), internally between the dispatcher 
and the executor. We implemented a new component called 
TCPCore to handle the TCP-based communication protocol. 
TCPCore is a component to manage a pool of threads that lives 
in the same JVM as the Falkon dispatcher, and uses in-memory 
notifications and shared objects for communication. For 
performance reasons, we implemented persistent TCP sockets 
so connections can be reused across tasks..  

Distributed Falkon Architecture: The original Falkon 
architecture [6] used a single dispatcher (running on one login 
node) to manage many executors (running on compute nodes). 
The architecture of the Blue Gene/P is hierarchical, in which 
there are 10 login nodes, 640 I/O nodes, and 40K compute 
nodes. This led us to the offloading of the dispatcher from one 
login node (quad-core 2.5GHz PPC) to the many I/O nodes 
(quad-core 0.85GHz PPC); Figure 2 shows the distribution of 
components on different parts of the Blue Gene/P.  

 
Figure 2: 3-Tier Falkon Architecture for BG/P. 

Experiments show that a single dispatcher, when running 
on modern node with 4 to 8 cores at 2GHz+ and 2GB+ of 
memory, can handle thousands of tasks per second and tens of 
thousands of executors. As we ramped up our experiments to 
160K processors (each executor running on one processor), 
however the centralized design began to show its limitations. 
One limitation (for scalability) was the fact that our 
implementation maintained persistent sockets to all executors 
(two sockets per executor). With the current implementation, 
we had trouble scaling a single dispatcher to 160K executors 
(320K sockets). Another motivation for distributing the 
dispatcher was to reduce the load on login nodes. The system 

administrators of the Blue Gene/P did not approve of the high 
system utilization (both memory and processors) of a login 
node for extended periods of time when we were running 
intense MTC applications. 

Our change in architecture from a centralized one to a 
distributed one allowed each dispatcher to manage a disjoint set 
of 256 executors, without requiring any inter-dispatcher 
communication. The most challenging architecture change was 
the additional client-side functionality to communicate and 
load balance task submission across many dispatchers, and to 
ensure that it did not overcommit tasks that could cause some 
dispatchers to be underutilized while others queued up tasks. 
Our new architecture solved both the scalability problem to 
160K processors and the excess load on the login nodes. 

Reliability Issues at Large Scale: We discuss reliability 
only briefly, to explain how our approach addresses this critical 
requirement. The Blue Gene/L has a mean-time-to-failure 
(MTBF) of 10 days [18], which can pose challenges for long-
running applications. When running loosely coupled 
applications via Swift and Falkon, the failure of a single node 
affects only the task(s) being executed by the failed node at the 
time of the failure. I/O node failures affect only their respective 
psets (256 processors); these failures are identified by heartbeat 
messages or communication failures. Falkon has mechanisms 
to identify specific errors and act on them with specific actions. 
Most errors are generally passed back up to the client (in this 
case, Swift) to deal with them, but other (known) errors can be 
handled by Falkon directly by rescheduling the tasks. Falkon 
can suspend offending nodes if too many tasks fail in a short 
period of time. Swift maintains persistent state that allows it to 
restart a parallel application script from the point of failure, re-
executing only uncompleted tasks. There is no need for explicit 
check-pointing as is the case with MPI applications; check-
pointing occurs inherently with every task that completes and is 
communicated back to Swift.  

IV. MICROBENCHMARKS PERFORMANCE 
We use microbenchmarks to determine performance 

characteristics and potential bottlenecks on systems with many 
cores. We measure startup costs, task dispatch rates, and costs 
for various file system operations (read, read+write, invoking 
scripts, mkdir, etc.) on the shared file systems (GPFS) that we 
use when running large-scale applications. 

A. System Descriptions 
The IBM Blue Gene/P supercomputer Intrepid [1, 47] 

(hosted at Argonne National Laboratory) has quad-core 
processors with a total of 160K cores. The Blue Gene/P is rated 
at 557TF Rmax (450TF Rpeak) with 160K PPC450 processors 
running at 850MHz, with a total of 80 TB of main memory. 
The Blue Gene/P GPFS is rated at 8GB/s. In our experiments, 
we use an alpha version of Argonne’s Linux-based ZeptoOS 
[29] compute node kernel. 

B. Startup Costs 
Our first micro-benchmark captures the incremental costs 

involved (see Figure 3) in booting the Blue Gene/P at various 
scales (red), starting the Falkon framework (green), and 
initializing the Falkon framework (blue). On a single pset (256 
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processors), it takes 125 seconds to prepare Falkon to process 
the first task; on the full 160K processors, it takes 1326 
seconds. At the smallest scale, starting and initializing the 
Falkon framework constitutes 31% of the total time; but at 
large scales, the boot time starts to dominate and on 160K 
nodes the Falkon framework takes only 17% of total time. We 
examine where the 1090 seconds is spent when booting 
ZeptOS on 160K nodes. The largest part of this time (708 
seconds) is spent mounting GPFS. The next big block of time 
(213 seconds) is spent sending the kernels and ramdisks to the 
compute and I/O nodes. Mounting NFS (to access system 
software) takes 55 seconds. Starting various services from 
NFS, such as SSH, takes 85 seconds. These costs account for 
over 97% of the 1090 seconds required to boot the Blue 
Gene/P.  

 
Figure 3: Startup costs in booting the Blue Gene/P, starting the Falkon 

framework, and initializing Falkon 

C. Falkon Task Dispatch Performance 
One key component to achieving high utilization of large-

scale systems is achieving high task dispatch and execute rates. 
Figure 4 shows the dispatch throughout of Falkon across 
various systems (Argonne/Univ. of Chicago Linux cluster, 
SiCortex, and Blue Gene/P) for both versions of the executor 
(Java and C, WS-based and TCP-based respectively) at 
significantly larger scales.  

 
Figure 4: Falkon dispatch throughputs across various systems 

In previous work [6] we reported that Falkon with a Java 
Executor and WS-based communication protocol achieves 487 
tasks/sec in a Linux cluster (Argonne/Univ. of Chicago) with 
256 CPUs, where each task was a “sleep 0” task with no I/O. 
Our latest benchmarks for the Java Executor on a faster 
machine achieved 604 tasks/sec and 2534 tasks/sec for the C 
Executor (Linux cluster, 1 dispatcher, 200 CPUs).  The rest of 
the benchmarks only tested the C Executor as Java does not 
have good support on either the SiCortex or the Blue Gene/P; 
we achieved 3186 tasks/sec on the SiCortex (1 dispatcher, 5760 
CPUs), 1758 tasks/sec on the Blue Gene/P with 1 dispatcher 
(4096 CPUs), and 3071 tasks/sec on the Blue Gene/P with 640 
dispatchers (163840 CPUs). The throughput numbers that 
indicate “1 dispatcher” are tests done with the original 
centralized dispatcher running on a login node. The last 
throughput of 3071 tasks/sec was achieved with the dispatchers 
distributed over 640 I/O nodes, each managing 256 processors. 

1) Comparing Falkon to Other LRMs and Solutions 
It is instructive to compare task execution rates achieved by 

other local resource managers. In previous work [6], we 
measured Condor (v6.7.2, via MyCluster [11]) and PBS 
(v2.1.8) performance in a Linux environment (the same 
environment where we test Falkon and achieved 2534 tasks/sec 
throughputs). The throughput we measured for PBS was 0.45 
tasks/sec and for Condor was 0.49 tasks/sec; other studies in 
the literature have measured Condor’s performance as high as 
22 tasks/sec in a research prototype called Condor J2 [31].  

We also tested the performance of Cobalt (the Blue 
Gene/P’s LRM), which yielded a throughput of 0.037 
tasks/sec; recall that Cobalt also lacks the support for single 
processor tasks, unless HTC-mode [21] is used. HTC-mode 
means that the termination of a process does not release the 
allocated resource and initiates a node reboot, after which the 
launcher program is used to launch the next application. There 
is still some management required on the compute nodes, as 
exit codes from previous application invocations need to persist 
across reboots (e.g. to shared file system), be sent back to the 
client, and have the ability to launch an arbitrary application 
from the launcher program. Running Falkon in conjunction 
with Cobalt’s HTC-mode support yielded a 0.29 task/sec 
throughput. We investigated the performance of HTC-mode on 
the Blue Gene/L only at small scales, as we realized that it will 
not be sufficient for MTC applications because of the high 
overhead of node reboots across tasks; we did not pursue it at 
larger scales, or on the Blue Gene/P.  

As we discussed in Section II, Cope et al. [22] also explored 
a similar space as we have, leveraging HTC-mode [21] support 
in Cobalt on the Blue Gene/L. The authors conducted various 
experiments, which we tried to replicate for comparison 
reasons. The authors measured an overhead of 46.4±21.2 
seconds for running 60 second tasks on 1 pset of 64 processors 
on the Blue Gene/L. In a similar experiment running 64 second 
tasks on 1 pset of 256 processors on the Blue Gene/P, we 
achieve an overhead of 1.2±2.8 seconds, more than an order of 
magnitude better. Another comparison is the task startup time, 
which they measured to be on average about 25 seconds, but 
sometimes as high as 45 seconds; the startup times for tasks in 
our system are 0.8±2.7 seconds. Another comparison is average 
task load time by number of simultaneously submitted tasks on 
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a single pset and executable image size of 8MB (tasks return 
immediately, so the reported run time shows overhead). The 
authors reported an average of 40~80 seconds for 32 
simultaneous tasks on 32 compute nodes on the Blue Gene/L (1 
pset, 64 CPUs). We measured our overheads of executing an 
8MB binary to be 9.5±3.1 seconds on 64 compute nodes on the 
Blue Gene/P (1 pset, 256 CPUs). Since these times include the 
time it took to cache the binary in ramdisk, we believe these 
numbers will remain relatively stable as we scale up to full 
160K processors. Note that the work by Cope et al. is based on 
Cobalt’s HTC-mode [21], which implies that they perform a 
node reboot for every task, while we simply fork the 
application as a separate process for each task.  

Peter’s et al. also recently published some performance 
numbers on the HTC-mode native support in Cobalt [23].  
Their results show a similar order of magnitude difference 
between the HTC-mode on Blue Gene/L and our Falkon 
support for MTC workloads on the Blue Gene/P. For example, 
the authors reported a workload of 32K tasks on 8K processors 
and noted that 32 dispatchers take 182.85 seconds to complete 
(an overhead of 5.58ms per task), but the same workload on the 
same number of processors using Falkon completed in 30.31 
seconds with 32 dispatchers (an overhead of 0.92ms per task). 
Note that a similar workload of 1M tasks on 160K processors 
run by Falkon can be completed in 368 seconds, which 
translates to 0.35ms per task overhead.   

2) Efficiency and Speedup 
To better understand the performance achieved for different 

workloads, we measured performance as a function of task 
length. We made measurements in two different 
configurations: 1) 1 dispatcher and up to 2K processors, and 2) 
N/256 dispatchers on up to N=160K processors, with 1 
dispatcher managing 256 processors. We varied the task 
lengths from 1 second to 256 seconds (using sleep tasks with 
no I/O), and ran workloads ranging from 1K tasks to 1M tasks 
(depending on the task lengths, to ensure that the experiments 
completed in a reasonable amount of time). Figure 5 shows the 
effects of efficiency of 1 dispatcher running on a faster login 
node (quad core 2.5GHz PPC) at relatively small scales. With 4 
second tasks, we can get high efficiency (95%+) across the 
board (up to the measured 2K processors).  

  
Figure 5: Efficiency graph for the Blue Gene/P for 1 to 2048 processors and 
task lengths from 1 to 32 seconds using a single dispatcher on a login node 

Figure 6 shows the efficiency with the distributed 
dispatchers on the slower I/O nodes (quad core 850 MHz PPC) 
at larger scales. It is interesting to notice that the same 4 second 
tasks that offered high efficiency in the single dispatcher 
configuration now achieve relatively poor efficiency, starting at 
65% and dropping to 7% at 160K processors. This is due to 
both the extra costs associated with running the dispatcher on 
slower hardware, and the increasing need for high throughputs 
at large scales. If we consider the 160K processor case, based 
on our experiments, we need tasks to be at least 64 seconds 
long to get 90%+ efficiency. Adding I/O to each task will 
further increase the minimum task length in order to achieve 
high efficiency. 

To summarize: distributing the Falkon dispatcher from a 
single (fast) login node to many (slow) I/O nodes has both 
advantages and disadvantages. The advantage is that we 
achieve good scalability to 160K processors.  The disadvantage 
is significantly worse efficiency at small scales (less than 4K 
processors) and short tasks (1 to 8 seconds). We believe both 
approaches are valid, depending on the application task 
execution distribution and scale of the application.  

 
Figure 6: Efficiency graph for the Blue Gene/P for 256 to 160K processors 

and task lengths ranging from 1 to 256 seconds using N dispatchers with each 
dispatcher running on a separate I/O node  

D. Shared File System Performance 
Another key component to getting high utilization and 

efficiency on large-scale systems is to understand the shared 
resources well. This sub-section discusses the shared file 
system performance of the Blue Gene/P. This performance is 
important because many MTC applications use files for inter-
process communication, and these files are typically transferred 
from one node to another through the shared file system. Future 
work will remove this bottleneck, by using TCP pipes, MPI 
messages, or data diffusion [34, 8] to transfer files directly 
between compute nodes over the specialized networks of the 
Blue Gene/P.  

We conducted several experiments (see Figure 7) with 
various data sizes (1KB to 10MB) on a varying number of 
processors (4 to 16K); we conducted both read-only tests 
(dotted lines) and read+write tests (solid lines). At 16K 
processors, we were not able to saturated GPFS – note the 
throughput lines never plateau. GPFS is configured with 16 I/O 
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servers, each with 10Gb/s network connectivity, and can 
sustain 8GB/s aggregate I/O rates. We were able to achieve 
4.4GB/s read rates, and 1.3GB/s read+write rates with 10MB 
files and 16K processors (we used the Linux “dd” utility to 
read or read+write data in 128KB blocks). We made our 
measurements in a production system, where the majority 
(90%+) of the system was in use by other applications, which 
might have been using the shared file system as well, 
influencing the results from this micro-benchmark.  

 
Figure 7: GPFS Throughput in MB/s measured through Falkon on various file 

sizes (1KB-10MB) and number of processors (4-16384) 

It is important to understand how operation costs scale with 
increasing number of processors (see Figure 8). We tested file 
and directory creation in two scenarios: when all files or 
directories are created in the same directory (single dir), and 
when each file or directory is created in a unique pre-created 
directory (across many dirs). We investigated the costs to 
invoke a script from GPFS. We also measured the Falkon 
overhead of executing a trivial task with no I/O (sleep 0).  

 
Figure 8: Time per operation (mkdir, touch, script execution) on GPFS on 

various number of processors (256-16384) 

Both the file and directory create when performed in the 
same directory are expensive operations as we scale up the 
number of processors; for example, at 16K processors, it takes 
(on average) 404 seconds to create a file, and 1217 seconds to 
create a directory. These overheads translate to an aggregate 

throughput of 40 file creates per second and 13 directory 
creates per second. At these rates, 160K processors would 
require 68 and 210 minutes to create 160K files or directories. 
In contrast, when each file or directory create take place in a 
unique directory, performance is significantly improved; at 
small scales (256 processors), a file/directory create (in a 
unique directory) takes only 8 seconds longer than a basic task 
with no I/O; at large scales (16K processors), the overhead 
grows to 11 seconds. We conclude that I/O writes should be 
split over many directories, to avoid lock contention within 
GPFS from concurrent writers. These times reflect the costs of 
creating a file or directory when all processors perform the 
operation concurrently; many applications have a wide range of 
task lengths, and read/write operations occur only at the 
beginning and/or end of a task (as is the case with our caching 
mechanism), so the time per operation will be notably less 
because of the natural staggering of I/O calls. 

V. LOOSELY COUPLED APPLICATIONS 
Synthetic tests and applications offer a great way to 

understand the performance characteristics of a particular 
system, but they do not always easily translate into predictions 
of how real applications with real I/O will behave. We have 
identified various loosely coupled applications as potential 
good candidates to run at large scales:  
• Ensemble runs to quantify climate model uncertainty 
• Identify potential drug targets by screening a database of 

ligand structures against target proteins 
• Study economic model sensitivity to parameters 
• Analyze turbulence dataset from many perspectives 
• Perform numerical optimization to determine optimal 

resource assignment in energy problems 
• Mine collection of data from advanced light sources  
• Construct databases of computed properties of chemical 

compounds 
• Analyze data from the Large Hadron Collider 
• Analyze log data from 100K-CPU parallel computations 

We use two applications (DOCK and MARS) to evaluate 
and demonstrate the utility of executing MTC applications on 
the Blue Gene/P.  

A. Molecular Dynamics: DOCK 
This application, executed on the BG/P screens KEGG [48] 

compounds and drugs against important metabolic protein 
targets using the DOCK6 [43] application to  simulate the 
“docking” of small molecules, or ligands, to the “active sites” 
of large macromolecules of known structure called “receptors” 
A compound that interacts strongly with a receptor (such as a 
protein molecule) associated with a disease may inhibit its 
function and thus act as a beneficial drug. The economic and 
health benefits of speeding drug development by rapidly 
screening for promising compounds and eliminating costly 
dead-ends is significant in terms of both resources and human 
life. In this application run, nine proteins that perform key 
enzymatic functions in the core metabolism of bacteria and 
humans were selected for screening against a database of 
15,351 natural compounds and existing drugs in KEGG’s 
ligand database.  
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1) DOCK6 Performance Evaluation 
The binding affinity between each compound in the 

database and each protein was computed with 138,159 runs of 
DOCK6 on the Blue Gene/P. On 32 racks of the Blue Gene/P 
(128K cores at 0.85 GHz), these runs took 2807 seconds (see 
Figure 9), totaling 3.5 CPU years. The sustained utilization 
(while there were enough tasks to be done, roughly 600 
seconds) was 95%, with the overall utilization being 30%. The 
large underutilization was caused by the heterogeneous task 
execution time (23/783/2802 +/- 300 seconds, for 
min/aver/max +/- stdev respectively). Expecting a significant 
underutilization, we had overlapped another application to start 
running as soon as the sustained period ended at around 600 
seconds. The other application had enough work to be done 
that it actually used all of the idle CPUs from Figure 9 (the red 
area) with 97% utilization.  

 
Figure 9: 138,159 DOCK6 runs on 131,072 CPU cores on Blue Gene/P 

2) DOCK5 Performance Evaluation 
We also worked with another group that had a larger set of 

runs using an older version of DOCK (version 5) [43]. This 
workload consisted of 934,803 molecules, which we ran on 
116K CPU cores in 2.01 hours (see Figure 10). The per-task 
execution time was quite varied (even more so than the 
DOCK6 runs from Figure 9), with a minimum of 1 second, a 
maximum of 5030 seconds, and a mean of 713±560 seconds. 
The two-hour run has a sustained utilization of 99.6% (first 
5700 seconds of experiment) and an overall utilization of 78% 
(due to the tail end of the experiment). Note that we had 
allocated 128K CPUs, but only 116K CPUs registered 
successfully and were available for the application run; the 
reason was the GPFS contention in bootstrapping Falkon on 32 
racks, and was fixed in later large runs by moving the Falkon 
framework to RAM before starting, and by pre-creating log 
directories on GPFS to avoid lock contention. We have made 
dozens of runs at 32 and 40 rack scales, and we have not 
encountered this specific problem again.  

Despite the loosely coupled nature of this application, our 
preliminary results show that the DOCK application performs 
and scales well to nearly full scale (116K of 160K CPUs). The 
excellent scalability (99.7% efficiency when compared to the 
same workload at half the scale of 64K CPUs) was achieved 
only after careful consideration was taken to avoid the shared 
file system, which included the caching of the multi-megabyte 

application binaries, and the caching of 35MB of static input 
data that would have otherwise been read from the shared file 
system for each job. Each job still had some minimal read and 
write operations to the shared file system, but they were on the 
order of tens of kilobytes (only at the beginning and end of 
computations), with the majority of the computations being in 
the hundreds of seconds, with an average of 713 seconds. 

 
Figure 10: 934,803 DOCK5 runs on 118,784 CPU cores on Blue Gene/P 

B. Economic Modeling: MARS 
The third application was MARS (Macro Analysis of 

Refinery Systems), an economic modeling application for 
petroleum refining developed by D. Hanson and J. Laitner at 
Argonne [44]. This modeling code performs a fast, broad-based 
simulation of the economic and environmental parameters of 
petroleum refining, covering over 20 primary and secondary 
refinery processes. MARS analyzes the processing stages for 
six grades of crude oil (from low-sulfur light to high-sulfur 
very-heavy and synthetic crude), as well as processes for 
upgrading heavy oils and oil sands. It analyses eight major 
refinery products including gasoline, diesel and jet fuel, and 
evaluates ranges of product shares. It models the economic and 
environmental impacts of the consumption of natural gas, the 
production and use of hydrogen, and coal-to-liquids co-
production, and seeks to provide insights into how refineries 
can become more efficient through the capture of waste energy. 

While MARS analyzes this large number of processes and 
variables, it does so at a coarse level. It consists of about 16K 
lines of C code, and can process many internal model execution 
iterations, with a range from 0.5 seconds (one iteration) to 
hours (many thousands of iterations) of Blue Gene/P CPU 
time. The goal of running MARS on the BG/P is to perform 
detailed multi-variable parameter studies of the behavior of all 
aspects of petroleum refining. 

As a simple test of using the Blue Gene/P for refinery 
modeling, we performed a 2D parameter sweep to explore the 
sensitivity of the investment required to maintain petroleum 
production capacity, over a four-decade span, to variations in 
the diesel production yields from low sulfur light crude and 
medium sulfur heavy crude oils. This mimics one of the vast 
number of complex multivariate parameter studies that become 
possible with ample computing power. We then executed a far 
larger workload with 1M MARS tasks, combining both internal 
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and external parameters sweeps, running eight
processor core on 128K processors on the B
Figure 11).  

Figure 11: MARS application (summary view) on the Blu
using 128K processor cores 
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up to 256K processors (e.g., IBM Blue Gene/P) are now 
available to the scientific community. The effort described here 
has demonstrated the ability to manage and execute large-scale 
loosely coupled applications on petascale-class systems. These 
large HPC systems are considered efficient at executing tightly 
coupled parallel jobs within a particular machine using MPI to 
achieve inter-process communication. We proposed using HPC 
systems for loosely-coupled applications, which involve the 
execution of independent, sequential jobs that can be 
individually scheduled, and using files for inter-process 
communication. Our work shows that today’s existing HPC 
systems are a viable platform to host MTC applications. We 
identified challenges in running these novel workloads on 
petascale systems, which can hamper the efficiency and 
utilization of these large-scale machines. These challenges 
include local resource manager scalability and granularity, 
efficient utilization of the raw hardware, shared file system 
contention and scalability, reliability at scale, application 
scalability, and understanding the limitations of the HPC 
systems in order to identify promising and scientifically 
valuable MTC applications. This paper presented new research, 
implementations, and application experiences in scaling loosely 
coupled applications on the Blue Gene/P up to 128K processors 
and microbenchmarks up to 160K processors.  

A. Characterizing MTC Applications for Petascale Systems 
Based on our experience with the Blue Gene/P at 160K 

CPU scale (nearly 0.5 petaflop Rpeak) and its shared file 
system (GPFS, rated at 8GB/s), we identify the following 
characteristics that define MTC applications that are most 
suitable for peta-scale systems: 
• Number of tasks >> number of CPUs 
• Average task execution time > O(60 sec) with minimal I/O 

to achieve 90%+ efficiency 
• 1 second of compute per processor core per 5KB~50KB of 

I/O to achieve 90%+ efficiency  

The main bottleneck we found was the shared file system. 
GPFS is used throughout our system, from booting the 
compute nodes and I/O nodes, to starting the Falkon dispatcher 
and executors, starting the applications, and reading and 
writing data for the applications. Assuming a large enough 
application, the startup costs (e.g. 1326 seconds to bootstrap 
and be ready to process the first task at 160K processors) can 
be amortized to an insignificant value. We offloaded the shared 
file system to in-memory operations by caching the Falkon 
middleware, the applications binaries, and the static input data 
needed by the applications in memory, so repeated use could be 
handled completely from memory. We found that the three 
applications we worked with all had poor write access patterns, 
in which many small line-buffered writes in the range of 
hundreds of bytes were performed throughout the task 
execution. When 160K CPUs are all doing these small I/O calls 
concurrently, it can slow down the shared file system to a 
crawl, or, even worse, crash it. The solution was to read 
dynamic input data from shared file system into memory in 
bulk (e.g., dd with block sizes of 128KB), let applications 
interact with their input and output files directly in memory, 
and write dynamic output data from memory to shared file 

system in bulk (e.g., dd, merge many output files into a single 
tar archive). 

B. Future Work 
Many MTC applications read and write large amounts of 

data. To support such workloads, we want to make better use of 
the specialized networks found on some petascale systems, 
such as the Blue Gene/P’s Torus network. Our efforts will in 
large part focus on having transparent data management 
solutions to offload the use of shared file system resources 
when local file systems can handle the scale of data involved.  

One solution is to exploit unique I/O subsystem capabilities 
of petascale systems. For example, collective I/O operations 
could be implemented to use the specialized high bandwidth 
and low latency interconnects, such as the Torus network. 
Through supporting collective I/O operations, we hope to be 
able to support more efficient and scalable solution for 
common file access patterns, such as broadcasting a common 
file across to all compute nodes or aggregating many unique 
files from many compute nodes into few files that can be 
written to GPFS with relatively small number of I/O calls and 
with little to no contention on GPFS. 

We expect that data caching, proactive data replication, and 
data-aware scheduling will offer significant performance 
improvements for applications that exhibit locality in their data 
access patterns [35]. We have already implemented a data-
aware scheduler, and support for caching in the Falkon Java 
executor, under the umbrella of data diffusion [34, 35, 8]. In 
previous work, we have shown that in both microbenchmarks 
and a large-scale astronomy application, a modest Linux cluster 
(128 CPUs) can achieve aggregate I/O data rates of tens of 
gigabytes of I/O throughput [34, 8]. We plan to port the same 
data caching mechanisms from the Java executor to the C 
executor so we can use these techniques on the Blue Gene/P by 
leveraging the Torus network interconnect to communicate 
directly between compute nodes. We have already completed 
the first step towards this goal, to enable TCP/IP connectivity 
over MPI of the Torus network which gives us a global IP 
space among all compute nodes, as opposed to the private IP 
space per pset that we had using the Tree network.  

MTC applications could also be composed of individual 
tasks that are themselves parallel programs. We plan to add 
support for MPI-based applications in Falkon, specifically the 
ability to run MPI applications on an arbitrary number of 
processors. We have a candidate application that needs to have 
thousands of separate MPI-based application invocations, with 
each invocation getting optimal performance with 32 
processors. This use case is one that is not well supported today 
on the Blue Gene/P because MPI applications currently have to 
use processors in pset granularity (256 processors).   

ACKNOWLEDGMENT 
We thank the Argonne Leadership Computing Facility for 

hosting the IBM Blue Gene/P experiments. We also thank our 
colleagues for valuable help and feedback working with the 
DOCK and MARS applications, namely Don Hanson, Rick 
Stevens, Matthew Cohoon, and Fangfang Xia. Special thanks 
are due to Mike Kubal for his work on, and explanation of, the 
molecular dynamics applications. 



 

REFERENCES 
[1] IBM BlueGene/P (BG/P), http://www.research.ibm.com/bluegene/, 2008 
[2] J. Ousterhout, “Scripting: Higher Level Programming for the 21st 

Century”, IEEE Computer, March 1998 
[3] Y. Zhao, I. Raicu, I. Foster. “Scientific Workflow Systems for 21st 

Century e-Science, New Bottle or New Wine?” IEEE Workshop on 
Scientific Workflows 2008 

[4] J. Dean, S. Ghemawat. “MapReduce: Simplified data processing on 
large clusters.” In OSDI, 2004 

[5] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, I. Raicu, 
T. Stef-Praun, M. Wilde. “Swift: Fast, Reliable, Loosely Coupled 
Parallel Computatio,n” IEEE Workshop on Scientific Workflows 2007 

[6] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M. Wilde. “Falkon: A Fast 
and Lightweight Task Execution Framework,” IEEE/ACM SC, 2007 

[7] E. Deelman et al. “Pegasus: A Framework for Mapping Complex 
Scientific Workflows onto Distributed Systems,” Scientific 
Programming Journal 13(3), 2005, 219-237. 

[8] I. Raicu, Y. Zhao, I. Foster, A. Szalay. "Accelerating Large-Scale Data 
Exploration through Data Diffusion," ACM International Workshop on 
Data-Aware Distributed Computing 2008 

[9] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly. “Dryad: Distributed 
Data-Parallel Programs from Sequential Building Blocks,” European 
Conference on Computer Systems (EuroSys), 2007 

[10] R. Pike, S. Dorward, R. Griesemer, S. Quinlan. “Interpreting the Data: 
Parallel Analysis with Sawzall,” Scientific Programming Journal, 
Special Issue on Grids and Worldwide Computing Programming Models 
and Infrastructure 13(4), 2005,  pp. 227-298 

[11] M. Livny, J. Basney, R. Raman, T. Tannenbaum. “Mechanisms for High 
Throughput Computing,” SPEEDUP Journal 1(1), 1997 

[12] M. Flynn. “Some Computer Organizations and Their Effectiveness”, 
IEEE Trans. Comput. C-21, 1972,  pp. 948 

[13] D. Thain, T. Tannenbaum, M. Livny, “Distributed Computing in 
Practice: The Condor Experience” Concurrency and Computation: 
Practice and Experience 17( 2-4), 2005, pp. 323-356 

[14] “Swift Workflow System”: www.ci.uchicago.edu/swift, 2008 
[15] Top500, June 2008, http://www.top500.org/lists/2008/06  
[16] J. Appavoo, V. Uhlig, A. Waterland. "Project Kittyhawk: Building a 

Global-Scale Computer," ACM Sigops Operating System Review, 2008 
[17] J. Frey, T. Tannenbaum, I. Foster, M. Frey, S. Tuecke. “Condor-G: A 

Computation Management Agent for Multi-Institutional Grids,” Cluster 
Computing, 2002 

[18] J. Cope, M. Oberg, H.M. Tufo, T. Voran, M. Woitaszek. “High 
Throughput Grid Computing with an IBM Blue Gene/L,” Cluster 2007 

[19] A. Peters, A. King, T. Budnik, P. McCarthy, P. Michaud, M. Mundy, J. 
Sexton, G. Stewart. “Asynchronous Task Dispatch for High Throughput 
Computing for the eServer IBM Blue Gene® Supercomputer,” Parallel 
and Distributed Processing (IPDPS), 2008 

[20] A. Gara, et al. ”Overview of the Blue Gene/L system architecture”, IBM 
Journal of Research and Development 49(2/3), 2005 

[21] IBM Coorporation. “High-Throughput Computing (HTC) Paradigm,” 
IBM System Blue Gene Solution: Blue Gene/P Application 
Development, IBM RedBooks, 2008 

[24]  A. Bialecki, M. Cafarella, D. Cutting, O. O’Malley. “Hadoop: A 
Framework for Running Applications on Large Clusters Built of 
Commodity Hardware,” http://lucene.apache.org/hadoop/, 2005 

[25] D.P. Anderson, “BOINC: A System for Public-Resource Computing and 
Storage,” IEEE/ACM International Workshop on Grid Computing, 2004 

[26] F.J.L. Reid, “Task Farming on Blue Gene,” EEPC, Edinburgh 
University, 2006 

[27] N. Desai. “Cobalt: An Open Source Platform for HPC System Software 
Research,” Edinburgh BG/L System Software Workshop, 2005 

[28] J.E. Moreira et al., “Blue Gene/L Programming and Operating 
Environment,” IBM Journal of Research and Development 49(2/3), 2005 

[29] “ZeptoOS: The Small Linux for Big Computers,” http://www-
unix.mcs.anl.gov/zeptoos/, 2008  

[30] B. Bode, D.M. Halstead, R. Kendall, Z. Lei, W. Hall, D. Jackson. “The 
Portable Batch Scheduler and the Maui Scheduler on Linux Clusters,” 
Usenix, 4th Annual Linux Showcase & Conference, 2000 

[31] E. Robinson, D.J. DeWitt. “Turning Cluster Management into Data 
Management: A System Overview,” Conference on Innovative Data 
Systems Research, 2007 

[32] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for 
Large Computing Clusters,” FAST 2002 

[33] G.v. Laszewski, M. Hategan, D. Kodeboyina. “Java CoG Kit 
Workflow,” in I.J. Taylor, E. Deelman, D.B. Gannon, and M. Shields, 
eds., Workflows for eScience, 2007, pp. 340-356 

[34] I. Raicu, Y. Zhao, I. Foster, A. Szalay. “A Data Diffusion Approach to 
Large-scale Scientific Exploration,” Microsoft eScience Workshop at 
RENCI 2007 

[35] A. Szalay, A. Bunn, J. Gray, I. Foster, I. Raicu. “The Importance of Data 
Locality in Distributed Computing Applications,” NSF Workflow 
Workshop 2006 

[36] Y. Zhao, I. Raicu, I. Foster, M. Hategan, V. Nefedova, M. Wilde. 
“Realizing Fast, Scalable and Reliable Scientific Computations in Grid 
Environments”, Grid Computing Research Progress, Nova Pub. 2008 

[37] Open Science Grid (OSG), http://www.opensciencegrid.org/, 2008 
[38] C. Catlett et al., “TeraGrid: Analysis of Organization, System 

Architecture, and Middleware Enabling New Types of Applications,” 
HPC and Grids in Action, ed. Lucio Grandinetti, IOS Press Advances in 
Parallel Computing series, Amsterdam, 2007 

[39] SiCortex, http://www.sicortex.com/, 2008 
[40] J.C. Jacob et al. “The Montage Architecture for Grid-Enabled Science 

Processing of Large, Distributed Datasets,” Earth Science Technology 
Conference 2004 

[41] The Functional Magnetic Resonance Imaging Data Center, 
http://www.fmridc.org/, 2007 

[42] T. Stef-Praun, B. Clifford, I. Foster, U. Hasson, M. Hategan, S. Small, 
M. Wilde, Y. Zhao. “Accelerating Medical Research using the Swift 
Workflow System,” Health Grid , 2007 

[43] D.T. Moustakas et al. “Development and Validation of a Modular, 
Extensible Docking Program: DOCK 5,” J. Comput. Aided Mol. Des. 
20, 2006, pp. 601-619 

[44] D. Hanson. “Enhancing Technology Representations within the Stanford 
Energy Modeling Forum (EMF) Climate Economic Models,” Energy 
and Economic Policy Models: A Reexamination of Fundamentals, 2006 

[45] T. Stef-Praun, G. Madeira, I. Foster, R. Townsend. “Accelerating 
Solution of a Moral Hazard Problem with Swift,” e-Social Science, 2007 

[46] I. Foster, “Globus Toolkit Version 4: Software for Service-Oriented 
Systems,” Conference on Network and Parallel Computing, 2005 

[47] R. Stevens. “The LLNL/ANL/IBM Collaboration to Develop BG/P and 
BG/Q,” DOE ASCAC Report, 2006 

[48] KEGG’s Ligand Database: http://www.genome.ad.jp/kegg/ligand.html, 
2008 

 
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). 
Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract no. DE-AC02-06CCH11357. The 
U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said 
article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on 
behalf of the Government. 


