
Towards Loo
on

Ioan Raicu*, Zhao Zhang+, Mike
*Department of Com

+Computation Institute, Univer
#Mathematics and Computer

iraicu@cs.uchicago.edu, zhaozhang@uch

Abstract— We have extended the Falkon
execution framework to make loosely coupled
petascale systems a practical and useful prog
This work studies and measures the perf
involved in applying this approach to enable th
systems by a broader user community, and w
Our work enables the execution of highly para
composed of loosely coupled serial jobs with no
the respective applications. This approach all
potentially far larger—class of applications to l
systems, such as the IBM Blue Gene/P sup
present the challenges of I/O performance encou
this model practical, and show resul
microbenchmarks and real applications from
economic energy modeling and molecular
benchmarks show that we can scale up to 160K
with high efficiency, and can achieve sustained
thousands of tasks per second.

Keywords-many task computing; high throu
loosely coupled applications; petascale; Blue Gene

I. INTRODUCTION
Emerging petascale computing systems,

Blue Gene/P [1], incorporate high-spee
interconnects and other features designed to
coupled parallel computations. Most of the ap
these computers have a single program multip
structure, and are commonly implemented
Message Passing Interface (MPI) to achieve t
process communication.

We want to enable the use of these systems
applications, which are linked into useful wo
the looser task-coupling model of passing
between dependent tasks. This potentially larg
parallel applications is precluded from
increasing power of modern parallel systems
of efficient support in those systems for
programming model [2]. With advances in e
growing complexity of scientific analyses, mo
researchers rely on various forms of scripting

This work was supported in part by the NASA Am

GSRP grant number NNA06CB89H, the Mathematic
Computational Sciences Division subprogram of the
Scientific Computing Research, Office of Science, U.
under Contract DE-AC02-06CH11357, and the Nationa
under grant OCI-0721939.

osely Coupled Programm
Petascale Systems

Wilde#+, Ian Foster#*+, Pete Beckman#, Kamil Iskra
mputer Science, University of Chicago, Chicago, IL, USA
rsity of Chicago and Argonne National Laboratory, Chica
Science Division, Argonne National Laboratory, Argonn

hicago.edu, {wilde,foster,beckman,iskra}@mcs.anl.gov, b

lightweight task
programming on

gramming model.
formance factors

he use of petascale
with greater ease.
allel computations
o modifications to
lows a new—and
leverage petascale
percomputer. We
untered in making
lts using both
m two domains:

dynamics. Our
K processor-cores
execution rates of

ughput computing;
e; Falkon; Swift

such as IBM’s
ed, low-latency
o support tightly
pplications run on
ple data (SMPD)
d by using the
the needed inter-

s for task-parallel
orkflows through
g data via files
ger class of task-

leveraging the
because the lack
the “scripting”

e-Science and the
ore scientists and
to automate end-

to-end application processes inv
provenance tracking, and bookkeep
typically based on a model of loose
which data is exchanged among ta
XML documents, or a combination
data volume combined with the gr
analysis procedures and algorithms
manual processing and exploration
with modern high performance com
by scientific workflow systems. [3]

The problem space can be p
categories (Figure 1). 1) At the low
number of tasks and small input siz
MPI applications (white). 2) As t
move into the analytics category,
analysis (blue); MapReduce [4] is an
3) Keeping data size modest, but
tasks moves us into the loosely coup
many tasks (yellow); Swift
Pegasus/DAGMan [7] are examp
Finally, the combination of both ma
moves us into the data-intensive ma
(green); examples of this category
diffusion [8], Dryad [9], and Sawza
on the third category, at the
supercomputers on hundreds of thou

Figure 1: Problem types with respect to

mes Research Center
cal, Information, and

Office of Advanced
.S. Dept. of Energy,
l Science Foundation

ming

a#, Ben Clifford+
A
go, IL, USA
e IL, USA
benc@ci.uchicago.edu

volving task coordination,
ping. Their approaches are
ely coupled computation, in
asks via files, databases or

n of these. Vast increases in
rowing complexity of data
s have rendered traditional
n unfavorable as compared

mputing processes automated

partitioned into four main
w end of the spectrum (low
ze), we have tightly coupled
the data size increases, we

such as data mining and
n example for this category.
increasing the number of

upled applications involving
t/Falkon [5, 6] and

ples of this category. 4)
any tasks and large datasets
ny task computing category
are Swift/Falkon and data

all [10]. This paper focuses
largest scales of today’s

usands of processors.

data size and number of tasks

A. Many-Task Computing (MTC)
Grids have been the preferred platform for loosely coupled

applications that tend to be managed and executed through
workflow systems or parallel programming systems. These
loosely coupled applications make up a new class of
applications called Many-Task Computing (MTC), which are
composed of many tasks (both independent and dependent
tasks) that can be individually scheduled on many different
computing resources across multiple administrative boundaries
to achieve some larger application goal. MTC is reminiscent of
high throughput computing (HTC); MTC differs from HTC,
however, in the emphasis on using much large numbers of
computing resources over short periods of time to accomplish
many computational tasks, where the primary metrics are in
seconds (e.g., FLOPS, tasks/sec, MB/sec I/O rates). HTC, on
the other hand, requires large amounts of computing for longer
times (months and years, rather than hours and days), where the
primary metrics are generally in operations per month) [11].

MTC denotes high-performance computations comprising
multiple distinct activities, coupled via file system operations
or message passing. Tasks may be small or large, uniprocessor
or multiprocessor, compute-intensive or data-intensive. The set
of tasks may be static or dynamic, homogeneous or
heterogeneous, loosely coupled or tightly coupled. The
aggregate number of tasks, quantity of computing, and volumes
of data may be extremely large. Is MTC really different enough
to justify coining a new term? There are certainly other choices
we could have used instead, such as multiple program multiple
data (MPMD), high throughput computing, workflows,
capacity computing, or embarrassingly parallel.

MPMD is a variant of Flynn’s original taxonomy [12], used
to denote computations in which several programs each operate
on different data at the same time. MPMD can be contrasted
with SPMD, in which multiple instances of the same program
each execute on different processors, operating on different
data. MPMD lacks the emphasis that a set of tasks can vary
dynamically. High throughput computing [11], a term coined
by Miron Livny within the Condor project [13], to contrast
workloads for which the key metric is not floating-point
operations per second (as in high performance computing) but
“per month or year.” MTC applications are often just as
concerned with performance as is the most demanding HPC
application; they just don't happen to be SPMD programs. The
term “workflow” was first used to denote sequences of tasks in
business processes, but the term is sometimes used to denote
any computation in which control and data passes from one
“task” to another. We find it often used to describe many-task
computations (or MPMD, HTC, MTC, etc.), making its use too
general. “Embarrassingly parallel computing” is used to denote
parallel computations in which each individual (often identical)
task can execute without any significant communication with
other tasks or with a file system. Some MTC applications will
be simple and embarrassingly parallel, but others will be
extremely complex and communication-intensive, interacting
with other tasks and shared file-systems.

Is “many task computing” a useful distinction? Perhaps we
could simply have said “applications that are communication-
intensive but are not naturally expressed in MPI”. Through the

new term MTC, we drawing attention to the many
computations that are heterogeneous but not “happily” parallel.

B. Hypothesis
We claim that MTC applications can be executed

efficiently on today’s supercomputers; this paper provides
empirical evidence to prove our hypothesis. The paper also
describes the set of problems that must be overcome to make
loosely coupled programming practical on emerging petascale
architectures: local resource manager scalability and
granularity, efficient utilization of the raw hardware, shared file
system contention, and application scalability. We address
these problems, and identify the remaining challenges that need
to be overcome to make loosely coupled supercomputing a
practical reality. Through our work, we have enabled a Blue
Gene/P to efficiently support loosely coupled parallel
programming without any modifications to the respective
applications (except for recompilation), enabling the same
applications that execute in a distributed Grid environment to
be run efficiently on a supercomputer. The Blue Gene/P that
we refer to in this paper is the new IBM Blue Gene/P
supercomputer (also known as Intrepid) at the U.S. Department
of Energy's Argonne National Laboratory, which is ranked
number 3 in the Top500 rankings [15] with 160K processor-
cores with a Rpeak of 557 TF and Rmax of 450 TF.

We validate our hypothesis by testing and measuring two
systems, Swift [5, 14] and Falkon [6], which have been used to
execute large-scale loosely coupled applications on clusters and
Grids. We present results for both microbenchmarks and real
applications executed on the Blue Gene/P. Microbenchmarks
show that we can scale to 160K processor-cores with high
efficiency, and can achieve sustained execution rates of
thousands of tasks per second. We also investigated two
applications from different domains, economic energy
modeling and molecular dynamics, and show excellent
application scalability, speedup and efficiency as they scale to
128K cores. Note that for the remainder of this paper, we will
use the terms processors, CPUs, and cores interchangeably.

C. Why Petascale Systems for MTC Applications?
One could ask, why use petascale systems for problems that

might work well on terascale systems? We point out that
petascale scale systems are more than just many processors
with large peak petaflop ratings. They normally come well
balanced, with proprietary, high-speed, and low-latency
network interconnects to give tightly-coupled applications that
use MPI good opportunities to scale well at full system scales.
Even IBM has proposed in their internal project Kittyhawk [16]
that the Blue Gene/P can be used to run non-traditional
workloads, such as those found in the general Internet, which
are by definition part of a loosely coupled system.

Four factors motivate the support of MTC applications on
petascale HPC systems.

1) The I/O subsystem of petascale systems offers unique
capabilities needed by MTC applications. For example,
collective I/O operations could be implemented to use the
specialized high-bandwidth and low-latency interconnects. We
have not explored collective I/O operations in this work, but
will do so in future work. MTC applications could be

composed of individual tasks that are themselves parallel
programs, many tasks operating on the same input data, and
tasks that need considerable communication among
themselves. Furthermore, the aggregate shared file system
performance of a supercomputer can be potentially larger than
that found in a distributed infrastructure (i.e., Grid), with data
rates in the 8GB/s range, rather than the more typical 0.1GB/s
to 1GB/s range of most Grid sites.

2) The cost to manage and run on petascale systems like the
Blue Gene/P is less than that of conventional clusters or Grids.
[16] For example, a single 13.9 TF Blue Gene/P rack draws 40
kilowatts, for 0.35 GF/watt. Two other systems that get good
compute power per watt consumed are the SiCortex with 0.32
GF/watt and the Blue Gene/L with 0.23 GF/watt. In contrast,
the average power consumption of the Top500 systems is 0.12
GF/watt [15]. Furthermore, we also argue that it is more cost
effective to manage one large system in one physical location,
rather than many smaller systems in geographically distributed
locations.

3)Large-scale systems inevitably have utilization issues.
Hence it is desirable to have a community of users who can
leverage traditional back-filling strategies to run loosely
coupled applications on idle portions of petascale systems.

4) Perhaps most important, some applications are so
demanding that only petascale systems have enough compute
power to get results in a reasonable timeframe, or to leverage
new opportunities. With petascale processing of ordinary
applications, it becomes possible to perform vast computations
quickly, thus answering questions in a timeframe that can make
a quantitative difference in addressing significant scientific
challenges or responding to emergencies. This work has
opened up the door for many important serial applications to
use emerging petascale systems.

II. RELATED WORK
Only recently have parallel systems with 100K cores or

more become available for open science research. Even scarcer
is experience or success with loosely coupled programming at
this scale. We found two papers [22, 23] that explored a similar
space, focusing on HTC on the IBM Blue Gene/L [18].

Cope et al. [22] aimed at integrating their solution as much
as possible in the Cobalt scheduling system (as opposed to
bringing in another system such as Falkon); their
implementation was on the Blue Gene/L using the HTC-mode
[21] support in Cobalt, and the majority of the performance
study was done at a small scale (64 nodes, 128 processors). The
results of Cope et al. were at least one order of magnitude
worse at small scales than the results we obtained in this paper,
and the performance gap would only increase with larger-scale
tests as their approach has higher overheads (i.e., nodes reboot
after each task, in contrast with simply forking another
process). Peter’s et al. from IBM also recently published some
performance numbers on the HTC-mode native support in
Cobalt [23], which show a similar one order of magnitude
difference between HTC-mode on Blue Gene/L and our Falkon
support for MTC workloads on the Blue Gene/P. Subsection
IV.C.1 compares and contrasts the performance between our

proposed system on the Blue Gene/P and the results presented
by Cope at al. [22] and Peters et al. [23].

In the world of high throughput computing, systems such as
Condor [13], MapReduce [4], Hadoop [24], and BOINC [25]
have used highly distributed pools of processors, but the focus
of these systems has not been on single highly parallel
machines such as those we focus on here. MapReduce is
typically applied to a data model consisting of name/value
pairs, processed at the programming language level. It has
several similarities to the approach we apply here, in particular
its ability to spread the processing of a large dataset to
thousands of processors. However, it is far less amenable to the
utilization and chaining of exiting application programs, and it
often involves the development of custom filtering scripts. We
have compared our work with Condor glide-ins [16] in the past
[6], but our work focuses on performance and efficiency, while
Condor emphasizes more on robustness and recoverability,
which limits its efficiency for MTC applications in large-scale
systems. An approach by Reid called “task farming” [26], also
at the programming language level, has been evaluated on the
Blue Gene/L as a proof of concept, but offered no performance
evaluation for comparison, and required that applications be
modified to run over the proposed middleware.

III. REQUIREMENTS AND IMPLEMENTATION
The contribution of this work is the ability to enable a new

class of applications—large-scale and loosely coupled—to
efficiently execute on petascale systems, which are traditionally
HPC systems. This is accomplished primarily through three
mechanisms: 1) multi-level scheduling, 2) efficient task
dispatch, and 3) extensive use of caching to minimize shared
infrastructure (e.g. file systems and interconnects).

Multi-level scheduling is essential on a system such as the
Blue Gene/P because the local resource manager (LRM, Cobalt
[27]) works at a granularity of psets [28], rather than individual
computing nodes or processor cores. On the Blue Gene/P, a
pset is a group of 64 quad-core compute nodes and one I/O
node. Psets must be allocated in their entirety to user
application jobs by the LRM, which imposes the constraint that
the applications must make use of all 256 cores. Tightly
coupled MPI applications are well suited for this constraint, but
loosely coupled applications generally have many single
processor jobs, each with possibly unique executables and
parameters. Naively running such applications on the Blue
Gene/P using the system’s Cobalt LRM would yield a
utilization of 1/256. We use multi-level scheduling to allocate
compute resources from Cobalt at the pset granularity, and then
make these resources available to applications at a single
processor core granularity. Using this multi-level scheduling
mechanism, we are able to launch a unique application, or the
same application with unique arguments, on each core, and to
launch such tasks repetitively throughout the allocation period.
This capability is made possible through Falkon [6] and its
resource provisioning mechanisms.

A related obstacle to loosely coupled programming when
using the native Blue Gene/P LRM is the overhead of
scheduling and starting resources. The Blue Gene/P compute
nodes are powered off when not in use and must be booted
when allocated to a job. As the compute nodes do not have

local disks, the boot-up process involves reading the
lightweight IBM compute node kernel (or Linux-based
ZeptoOS [29] kernel image) from a shared file system, which
can be expensive if compute nodes are allocated and de-
allocated frequently. Using multi-level scheduling allows this
high initial cost to be amortized over many jobs, reducing it to
an insignificant overhead. With the use of multi-level
scheduling, executing a job is reduced to its bare and
lightweight essentials: loading the application into memory,
executing it, and returning its exit code – a process that can
occur in milliseconds. Contrast this with the cost of rebooting
compute nodes, which is on the order of multiple seconds (for a
single node) and can be as high as a thousand seconds in the
case of concurrently booting 40K nodes (see Figure 3).

The second mechanism that enables loosely coupled
applications to be executed on the Blue Gene/P is a streamlined
task submission framework (Falkon [6]). Falkon relies on
LRMs for many functions (e.g., reservation, policy-based
scheduling, accounting) and client frameworks such as
workflow systems or distributed scripting systems for others
(e.g., recovery, data staging, job dependency management).
This specialization allows it to achieve several orders of
magnitude higher performance (2534 tasks/sec in a Linux
cluster environment, 3186 tasks/sec on the SiCortex, and 3071
tasks/sec on the Blue Gene/P, compared to 0.5 to 22 jobs per
second for traditional LRMs such as Condor [13] and PBS [30]
– see section IV.C). These high throughputs are critical in
running large number of tasks on many processors as
efficiently as possible. For example, running many 60-second
tasks on 160K processors on the Blue Gene/P requires that we
sustain an average throughput of 2730 tasks/sec; considering
the best LRM performance of 22 tasks/sec [31], we would need
two hour long tasks to get reasonable efficiency.

The third mechanism we employ for enabling loosely
coupled applications to execute efficiently on the Blue Gene/P
is extensive caching of application data to allow better
application scalability by avoiding shared file systems. Since
workflow systems frequently employ files as the primary
communication medium between data-dependent jobs, having
efficient mechanisms to read and write files is critical. The
compute nodes on the Blue Gene/P do not have local disks, but
they have both a shared file system (GPFS [32]) and local file
system implemented in RAM (“ramdisk”). We make extensive
use of the ramdisk local file system, to cache files such as
application scripts and binary executables, static input data that
is constant across many jobs running an application, and in
some cases output data from the application until enough data
is collected to allow efficient writes to the shared file system.
We found that naively executing applications directly against
GPFS yielded unacceptably poor performance, but with
successive levels of caching we were able to increase the
execution efficiency to within a few percent of ideal.

The caching we refer to in this work is a different
mechanism from the data diffusion described in previous work
[34, 35, 8]. Data diffusion deals with dynamic data caching and
replication, as well as with data-aware scheduling. Because of
the network topology of the Blue Gene/P, and the architecture
changes in which we distributed the Falkon dispatcher (see
Section III.B), where compute nodes are grouped into private

networks per pset (in groups of 256 CPUs) using the Tree
network, we have not been able to use data diffusion in its
current form on the Blue Gene/P. We have made good progress
in implementing TCP/IP over MPI to enable the use of the
Torus network for node-to-node communication, which should
allow us to test data diffusion on the BG/P; we will discuss this
more in the future work section. On the other hand, the simple
caching scheme we have employed on the Blue Gene/P deals
with two kinds of data: 1) static data (application binaries,
libraries, and common input data) that is cached at all compute
nodes, and the caches are reused for each task; and 2) dynamic
data (input data specific for a single task) that is cached on one
compute node, and tasks can run completely local in both
reading and writing data, and finally persisting the cache
contents to a shared file system. Note that dynamic data is only
used once by one task, and needs to be transferred from the
persistent storage location again if another task needs the same
input data. This simple caching scheme has proved to be quite
effective in scaling applications up to 128K processors, while
the same applications and workloads didn’t scale well beyond
8K processors. Our caching strategy is completely automated,
via a wrapper script around the application.

A. Swift and Falkon
To harness a wide array of loosely coupled applications that

have already been implemented and executed in clusters and
grids, we build on the Swift [5, 36] and Falkon [6] systems.
Swift enables scientific workflows through a data-flow-based
functional parallel programming model. It is a parallel scripting
tool for rapid and reliable specification, execution, and
management of large-scale science and engineering workflows.
The runtime system in Swift relies on the CoG Karajan [33]
workflow engine for efficient scheduling and load balancing,
and it integrates with the Falkon light-weight task execution
dispatcher for optimized task throughput and efficiency.

Swift and Falkon have been used in a variety of
environments from clusters, to multi-site Grids (e.g., Open
Science Grid [37], TeraGrid [38]), to specialized large
machines (SiCortex [39]), to supercomputers (e.g., Blue
Gene/P [1]). Large-scale applications from many domains (e.g.,
astronomy [40, 6], medicine [41, 6, 42], chemistry [36],
molecular dynamics [43], and economics [44, 45, 45]) have
been run at scales of up to millions of tasks on up to hundreds
of thousands of processors.

B. Implementation Details
Significant engineering efforts were needed to get Falkon to

work on systems such as the Blue Gene/P; this subsection
discusses these extensions.

Static Resource Provisioning: When using static resource
provisioning, an application requests a number of processors
for a fixed duration directly from the Cobalt LRM. For
example, the command “falkon-start-bgp-ram.sh prod 1024
60” submits a single job to Cobalt to the “prod” queue and asks
for 1024 nodes (4096 processors) for 60 minutes; once the job
goes into a running state and the Falkon framework is
bootstrapped, the application interacts directly with Falkon to
submit single processor tasks for the duration of the allocation.

Alternative Implementations: Performance depends
critically on the behavior of our task dispatch mechanisms. The
initial Falkon implementation was 100% Java, and made use of
GT4 Java WS-Core to handle Web Services communications.
[46] The Java-only implementation works well in typical Linux
clusters and Grids; but the lack of Java on the Blue Gene/L,
Blue Gene/P compute nodes, and SiCortex prompted us to re-
implement some functionality in C. To keep the
implementation simple yet able to support these specialized
systems, we used a simple TCP-based protocol (to replace the
prior WS-based protocol), internally between the dispatcher
and the executor. We implemented a new component called
TCPCore to handle the TCP-based communication protocol.
TCPCore is a component to manage a pool of threads that lives
in the same JVM as the Falkon dispatcher, and uses in-memory
notifications and shared objects for communication. For
performance reasons, we implemented persistent TCP sockets
so connections can be reused across tasks..

Distributed Falkon Architecture: The original Falkon
architecture [6] used a single dispatcher (running on one login
node) to manage many executors (running on compute nodes).
The architecture of the Blue Gene/P is hierarchical, in which
there are 10 login nodes, 640 I/O nodes, and 40K compute
nodes. This led us to the offloading of the dispatcher from one
login node (quad-core 2.5GHz PPC) to the many I/O nodes
(quad-core 0.85GHz PPC); Figure 2 shows the distribution of
components on different parts of the Blue Gene/P.

Figure 2: 3-Tier Falkon Architecture for BG/P.

Experiments show that a single dispatcher, when running
on modern node with 4 to 8 cores at 2GHz+ and 2GB+ of
memory, can handle thousands of tasks per second and tens of
thousands of executors. As we ramped up our experiments to
160K processors (each executor running on one processor),
however the centralized design began to show its limitations.
One limitation (for scalability) was the fact that our
implementation maintained persistent sockets to all executors
(two sockets per executor). With the current implementation,
we had trouble scaling a single dispatcher to 160K executors
(320K sockets). Another motivation for distributing the
dispatcher was to reduce the load on login nodes. The system

administrators of the Blue Gene/P did not approve of the high
system utilization (both memory and processors) of a login
node for extended periods of time when we were running
intense MTC applications.

Our change in architecture from a centralized one to a
distributed one allowed each dispatcher to manage a disjoint set
of 256 executors, without requiring any inter-dispatcher
communication. The most challenging architecture change was
the additional client-side functionality to communicate and
load balance task submission across many dispatchers, and to
ensure that it did not overcommit tasks that could cause some
dispatchers to be underutilized while others queued up tasks.
Our new architecture solved both the scalability problem to
160K processors and the excess load on the login nodes.

Reliability Issues at Large Scale: We discuss reliability
only briefly, to explain how our approach addresses this critical
requirement. The Blue Gene/L has a mean-time-to-failure
(MTBF) of 10 days [18], which can pose challenges for long-
running applications. When running loosely coupled
applications via Swift and Falkon, the failure of a single node
affects only the task(s) being executed by the failed node at the
time of the failure. I/O node failures affect only their respective
psets (256 processors); these failures are identified by heartbeat
messages or communication failures. Falkon has mechanisms
to identify specific errors and act on them with specific actions.
Most errors are generally passed back up to the client (in this
case, Swift) to deal with them, but other (known) errors can be
handled by Falkon directly by rescheduling the tasks. Falkon
can suspend offending nodes if too many tasks fail in a short
period of time. Swift maintains persistent state that allows it to
restart a parallel application script from the point of failure, re-
executing only uncompleted tasks. There is no need for explicit
check-pointing as is the case with MPI applications; check-
pointing occurs inherently with every task that completes and is
communicated back to Swift.

IV. MICROBENCHMARKS PERFORMANCE
We use microbenchmarks to determine performance

characteristics and potential bottlenecks on systems with many
cores. We measure startup costs, task dispatch rates, and costs
for various file system operations (read, read+write, invoking
scripts, mkdir, etc.) on the shared file systems (GPFS) that we
use when running large-scale applications.

A. System Descriptions
The IBM Blue Gene/P supercomputer Intrepid [1, 47]

(hosted at Argonne National Laboratory) has quad-core
processors with a total of 160K cores. The Blue Gene/P is rated
at 557TF Rmax (450TF Rpeak) with 160K PPC450 processors
running at 850MHz, with a total of 80 TB of main memory.
The Blue Gene/P GPFS is rated at 8GB/s. In our experiments,
we use an alpha version of Argonne’s Linux-based ZeptoOS
[29] compute node kernel.

B. Startup Costs
Our first micro-benchmark captures the incremental costs

involved (see Figure 3) in booting the Blue Gene/P at various
scales (red), starting the Falkon framework (green), and
initializing the Falkon framework (blue). On a single pset (256

Provisioner

Dispatcher
1

Executor
1

Cobalt

Client
Executor

256

Dispatcher
N

Executor
1

Executor
256

Login Nodes
(x10)

I/O Nodes
(x640)

Compute Nodes
(x40K)

processors), it takes 125 seconds to prepare Falkon to process
the first task; on the full 160K processors, it takes 1326
seconds. At the smallest scale, starting and initializing the
Falkon framework constitutes 31% of the total time; but at
large scales, the boot time starts to dominate and on 160K
nodes the Falkon framework takes only 17% of total time. We
examine where the 1090 seconds is spent when booting
ZeptOS on 160K nodes. The largest part of this time (708
seconds) is spent mounting GPFS. The next big block of time
(213 seconds) is spent sending the kernels and ramdisks to the
compute and I/O nodes. Mounting NFS (to access system
software) takes 55 seconds. Starting various services from
NFS, such as SSH, takes 85 seconds. These costs account for
over 97% of the 1090 seconds required to boot the Blue
Gene/P.

Figure 3: Startup costs in booting the Blue Gene/P, starting the Falkon

framework, and initializing Falkon

C. Falkon Task Dispatch Performance
One key component to achieving high utilization of large-

scale systems is achieving high task dispatch and execute rates.
Figure 4 shows the dispatch throughout of Falkon across
various systems (Argonne/Univ. of Chicago Linux cluster,
SiCortex, and Blue Gene/P) for both versions of the executor
(Java and C, WS-based and TCP-based respectively) at
significantly larger scales.

Figure 4: Falkon dispatch throughputs across various systems

In previous work [6] we reported that Falkon with a Java
Executor and WS-based communication protocol achieves 487
tasks/sec in a Linux cluster (Argonne/Univ. of Chicago) with
256 CPUs, where each task was a “sleep 0” task with no I/O.
Our latest benchmarks for the Java Executor on a faster
machine achieved 604 tasks/sec and 2534 tasks/sec for the C
Executor (Linux cluster, 1 dispatcher, 200 CPUs). The rest of
the benchmarks only tested the C Executor as Java does not
have good support on either the SiCortex or the Blue Gene/P;
we achieved 3186 tasks/sec on the SiCortex (1 dispatcher, 5760
CPUs), 1758 tasks/sec on the Blue Gene/P with 1 dispatcher
(4096 CPUs), and 3071 tasks/sec on the Blue Gene/P with 640
dispatchers (163840 CPUs). The throughput numbers that
indicate “1 dispatcher” are tests done with the original
centralized dispatcher running on a login node. The last
throughput of 3071 tasks/sec was achieved with the dispatchers
distributed over 640 I/O nodes, each managing 256 processors.

1) Comparing Falkon to Other LRMs and Solutions
It is instructive to compare task execution rates achieved by

other local resource managers. In previous work [6], we
measured Condor (v6.7.2, via MyCluster [11]) and PBS
(v2.1.8) performance in a Linux environment (the same
environment where we test Falkon and achieved 2534 tasks/sec
throughputs). The throughput we measured for PBS was 0.45
tasks/sec and for Condor was 0.49 tasks/sec; other studies in
the literature have measured Condor’s performance as high as
22 tasks/sec in a research prototype called Condor J2 [31].

We also tested the performance of Cobalt (the Blue
Gene/P’s LRM), which yielded a throughput of 0.037
tasks/sec; recall that Cobalt also lacks the support for single
processor tasks, unless HTC-mode [21] is used. HTC-mode
means that the termination of a process does not release the
allocated resource and initiates a node reboot, after which the
launcher program is used to launch the next application. There
is still some management required on the compute nodes, as
exit codes from previous application invocations need to persist
across reboots (e.g. to shared file system), be sent back to the
client, and have the ability to launch an arbitrary application
from the launcher program. Running Falkon in conjunction
with Cobalt’s HTC-mode support yielded a 0.29 task/sec
throughput. We investigated the performance of HTC-mode on
the Blue Gene/L only at small scales, as we realized that it will
not be sufficient for MTC applications because of the high
overhead of node reboots across tasks; we did not pursue it at
larger scales, or on the Blue Gene/P.

As we discussed in Section II, Cope et al. [22] also explored
a similar space as we have, leveraging HTC-mode [21] support
in Cobalt on the Blue Gene/L. The authors conducted various
experiments, which we tried to replicate for comparison
reasons. The authors measured an overhead of 46.4±21.2
seconds for running 60 second tasks on 1 pset of 64 processors
on the Blue Gene/L. In a similar experiment running 64 second
tasks on 1 pset of 256 processors on the Blue Gene/P, we
achieve an overhead of 1.2±2.8 seconds, more than an order of
magnitude better. Another comparison is the task startup time,
which they measured to be on average about 25 seconds, but
sometimes as high as 45 seconds; the startup times for tasks in
our system are 0.8±2.7 seconds. Another comparison is average
task load time by number of simultaneously submitted tasks on

0
120
240
360
480
600
720
840
960

1080
1200
1320

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

13
10

72

16
38

40

Number of Processors

Ti
m

e
(s

ec
)

Initializing Falkon Resource
Starting GT4 and Falkon Service
Booting Partitions

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

ANL/UC, Java
200 CPUs
1 service

ANL/UC, C
200 CPUs
1 service

SiCortex, C
5760 CPUs

1 service

BlueGene/P, C
4096 CPUs

1 service

BlueGene/P, C
163840 CPUs
640 services

604

2534

3186

1758

3071

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

Executor Implementation and Various Systems

a single pset and executable image size of 8MB (tasks return
immediately, so the reported run time shows overhead). The
authors reported an average of 40~80 seconds for 32
simultaneous tasks on 32 compute nodes on the Blue Gene/L (1
pset, 64 CPUs). We measured our overheads of executing an
8MB binary to be 9.5±3.1 seconds on 64 compute nodes on the
Blue Gene/P (1 pset, 256 CPUs). Since these times include the
time it took to cache the binary in ramdisk, we believe these
numbers will remain relatively stable as we scale up to full
160K processors. Note that the work by Cope et al. is based on
Cobalt’s HTC-mode [21], which implies that they perform a
node reboot for every task, while we simply fork the
application as a separate process for each task.

Peter’s et al. also recently published some performance
numbers on the HTC-mode native support in Cobalt [23].
Their results show a similar order of magnitude difference
between the HTC-mode on Blue Gene/L and our Falkon
support for MTC workloads on the Blue Gene/P. For example,
the authors reported a workload of 32K tasks on 8K processors
and noted that 32 dispatchers take 182.85 seconds to complete
(an overhead of 5.58ms per task), but the same workload on the
same number of processors using Falkon completed in 30.31
seconds with 32 dispatchers (an overhead of 0.92ms per task).
Note that a similar workload of 1M tasks on 160K processors
run by Falkon can be completed in 368 seconds, which
translates to 0.35ms per task overhead.

2) Efficiency and Speedup
To better understand the performance achieved for different

workloads, we measured performance as a function of task
length. We made measurements in two different
configurations: 1) 1 dispatcher and up to 2K processors, and 2)
N/256 dispatchers on up to N=160K processors, with 1
dispatcher managing 256 processors. We varied the task
lengths from 1 second to 256 seconds (using sleep tasks with
no I/O), and ran workloads ranging from 1K tasks to 1M tasks
(depending on the task lengths, to ensure that the experiments
completed in a reasonable amount of time). Figure 5 shows the
effects of efficiency of 1 dispatcher running on a faster login
node (quad core 2.5GHz PPC) at relatively small scales. With 4
second tasks, we can get high efficiency (95%+) across the
board (up to the measured 2K processors).

Figure 5: Efficiency graph for the Blue Gene/P for 1 to 2048 processors and
task lengths from 1 to 32 seconds using a single dispatcher on a login node

Figure 6 shows the efficiency with the distributed
dispatchers on the slower I/O nodes (quad core 850 MHz PPC)
at larger scales. It is interesting to notice that the same 4 second
tasks that offered high efficiency in the single dispatcher
configuration now achieve relatively poor efficiency, starting at
65% and dropping to 7% at 160K processors. This is due to
both the extra costs associated with running the dispatcher on
slower hardware, and the increasing need for high throughputs
at large scales. If we consider the 160K processor case, based
on our experiments, we need tasks to be at least 64 seconds
long to get 90%+ efficiency. Adding I/O to each task will
further increase the minimum task length in order to achieve
high efficiency.

To summarize: distributing the Falkon dispatcher from a
single (fast) login node to many (slow) I/O nodes has both
advantages and disadvantages. The advantage is that we
achieve good scalability to 160K processors. The disadvantage
is significantly worse efficiency at small scales (less than 4K
processors) and short tasks (1 to 8 seconds). We believe both
approaches are valid, depending on the application task
execution distribution and scale of the application.

Figure 6: Efficiency graph for the Blue Gene/P for 256 to 160K processors

and task lengths ranging from 1 to 256 seconds using N dispatchers with each
dispatcher running on a separate I/O node

D. Shared File System Performance
Another key component to getting high utilization and

efficiency on large-scale systems is to understand the shared
resources well. This sub-section discusses the shared file
system performance of the Blue Gene/P. This performance is
important because many MTC applications use files for inter-
process communication, and these files are typically transferred
from one node to another through the shared file system. Future
work will remove this bottleneck, by using TCP pipes, MPI
messages, or data diffusion [34, 8] to transfer files directly
between compute nodes over the specialized networks of the
Blue Gene/P.

We conducted several experiments (see Figure 7) with
various data sizes (1KB to 10MB) on a varying number of
processors (4 to 16K); we conducted both read-only tests
(dotted lines) and read+write tests (solid lines). At 16K
processors, we were not able to saturated GPFS – note the
throughput lines never plateau. GPFS is configured with 16 I/O

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

Number of Processors

Ef
fic

ie
nc

y

32 seconds
16 seconds
8 seconds
4 seconds
2 seconds
1 second

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

256 1024 4096 16384 65536 163840
Number of Processors

Ef
fic

ie
nc

y
256 seconds
128 seconds
64 seconds
32 seconds
16 seconds
8 seconds
4 seconds
2 seconds
1 second

servers, each with 10Gb/s network connectivity, and can
sustain 8GB/s aggregate I/O rates. We were able to achieve
4.4GB/s read rates, and 1.3GB/s read+write rates with 10MB
files and 16K processors (we used the Linux “dd” utility to
read or read+write data in 128KB blocks). We made our
measurements in a production system, where the majority
(90%+) of the system was in use by other applications, which
might have been using the shared file system as well,
influencing the results from this micro-benchmark.

Figure 7: GPFS Throughput in MB/s measured through Falkon on various file

sizes (1KB-10MB) and number of processors (4-16384)

It is important to understand how operation costs scale with
increasing number of processors (see Figure 8). We tested file
and directory creation in two scenarios: when all files or
directories are created in the same directory (single dir), and
when each file or directory is created in a unique pre-created
directory (across many dirs). We investigated the costs to
invoke a script from GPFS. We also measured the Falkon
overhead of executing a trivial task with no I/O (sleep 0).

Figure 8: Time per operation (mkdir, touch, script execution) on GPFS on

various number of processors (256-16384)

Both the file and directory create when performed in the
same directory are expensive operations as we scale up the
number of processors; for example, at 16K processors, it takes
(on average) 404 seconds to create a file, and 1217 seconds to
create a directory. These overheads translate to an aggregate

throughput of 40 file creates per second and 13 directory
creates per second. At these rates, 160K processors would
require 68 and 210 minutes to create 160K files or directories.
In contrast, when each file or directory create take place in a
unique directory, performance is significantly improved; at
small scales (256 processors), a file/directory create (in a
unique directory) takes only 8 seconds longer than a basic task
with no I/O; at large scales (16K processors), the overhead
grows to 11 seconds. We conclude that I/O writes should be
split over many directories, to avoid lock contention within
GPFS from concurrent writers. These times reflect the costs of
creating a file or directory when all processors perform the
operation concurrently; many applications have a wide range of
task lengths, and read/write operations occur only at the
beginning and/or end of a task (as is the case with our caching
mechanism), so the time per operation will be notably less
because of the natural staggering of I/O calls.

V. LOOSELY COUPLED APPLICATIONS
Synthetic tests and applications offer a great way to

understand the performance characteristics of a particular
system, but they do not always easily translate into predictions
of how real applications with real I/O will behave. We have
identified various loosely coupled applications as potential
good candidates to run at large scales:
• Ensemble runs to quantify climate model uncertainty
• Identify potential drug targets by screening a database of

ligand structures against target proteins
• Study economic model sensitivity to parameters
• Analyze turbulence dataset from many perspectives
• Perform numerical optimization to determine optimal

resource assignment in energy problems
• Mine collection of data from advanced light sources
• Construct databases of computed properties of chemical

compounds
• Analyze data from the Large Hadron Collider
• Analyze log data from 100K-CPU parallel computations

We use two applications (DOCK and MARS) to evaluate
and demonstrate the utility of executing MTC applications on
the Blue Gene/P.

A. Molecular Dynamics: DOCK
This application, executed on the BG/P screens KEGG [48]

compounds and drugs against important metabolic protein
targets using the DOCK6 [43] application to simulate the
“docking” of small molecules, or ligands, to the “active sites”
of large macromolecules of known structure called “receptors”
A compound that interacts strongly with a receptor (such as a
protein molecule) associated with a disease may inhibit its
function and thus act as a beneficial drug. The economic and
health benefits of speeding drug development by rapidly
screening for promising compounds and eliminating costly
dead-ends is significant in terms of both resources and human
life. In this application run, nine proteins that perform key
enzymatic functions in the core metabolism of bacteria and
humans were selected for screening against a database of
15,351 natural compounds and existing drugs in KEGG’s
ligand database.

0.001

0.01

0.1

1

10

100

1000

10000

4 256 4096 8192 16384
Number of Processors

Th
ro

ug
hp

ut
 (M

B
/s

)

R(10MB)
R(1MB)
R(100KB)
R(10KB)
R(1KB)
R+W(10MB)
R+W(1MB)
R+W(100KB)
R+W(10KB)
R+W(1KB)

1

10

100

1000

10000

256 4096 8192 16384
Number of Processors

Ti
m

e
pe

r O
pe

ra
tio

n
(s

ec
)

Directory Create (single dir)
File Create (single dir)
Directory Create (across many dirs)
File Create (across many dirs)
Script Invocation
Falkon Overhead (i.e. sleep 0)

1) DOCK6 Performance Evaluation
The binding affinity between each compound in the

database and each protein was computed with 138,159 runs of
DOCK6 on the Blue Gene/P. On 32 racks of the Blue Gene/P
(128K cores at 0.85 GHz), these runs took 2807 seconds (see
Figure 9), totaling 3.5 CPU years. The sustained utilization
(while there were enough tasks to be done, roughly 600
seconds) was 95%, with the overall utilization being 30%. The
large underutilization was caused by the heterogeneous task
execution time (23/783/2802 +/- 300 seconds, for
min/aver/max +/- stdev respectively). Expecting a significant
underutilization, we had overlapped another application to start
running as soon as the sustained period ended at around 600
seconds. The other application had enough work to be done
that it actually used all of the idle CPUs from Figure 9 (the red
area) with 97% utilization.

Figure 9: 138,159 DOCK6 runs on 131,072 CPU cores on Blue Gene/P

2) DOCK5 Performance Evaluation
We also worked with another group that had a larger set of

runs using an older version of DOCK (version 5) [43]. This
workload consisted of 934,803 molecules, which we ran on
116K CPU cores in 2.01 hours (see Figure 10). The per-task
execution time was quite varied (even more so than the
DOCK6 runs from Figure 9), with a minimum of 1 second, a
maximum of 5030 seconds, and a mean of 713±560 seconds.
The two-hour run has a sustained utilization of 99.6% (first
5700 seconds of experiment) and an overall utilization of 78%
(due to the tail end of the experiment). Note that we had
allocated 128K CPUs, but only 116K CPUs registered
successfully and were available for the application run; the
reason was the GPFS contention in bootstrapping Falkon on 32
racks, and was fixed in later large runs by moving the Falkon
framework to RAM before starting, and by pre-creating log
directories on GPFS to avoid lock contention. We have made
dozens of runs at 32 and 40 rack scales, and we have not
encountered this specific problem again.

Despite the loosely coupled nature of this application, our
preliminary results show that the DOCK application performs
and scales well to nearly full scale (116K of 160K CPUs). The
excellent scalability (99.7% efficiency when compared to the
same workload at half the scale of 64K CPUs) was achieved
only after careful consideration was taken to avoid the shared
file system, which included the caching of the multi-megabyte

application binaries, and the caching of 35MB of static input
data that would have otherwise been read from the shared file
system for each job. Each job still had some minimal read and
write operations to the shared file system, but they were on the
order of tens of kilobytes (only at the beginning and end of
computations), with the majority of the computations being in
the hundreds of seconds, with an average of 713 seconds.

Figure 10: 934,803 DOCK5 runs on 118,784 CPU cores on Blue Gene/P

B. Economic Modeling: MARS
The third application was MARS (Macro Analysis of

Refinery Systems), an economic modeling application for
petroleum refining developed by D. Hanson and J. Laitner at
Argonne [44]. This modeling code performs a fast, broad-based
simulation of the economic and environmental parameters of
petroleum refining, covering over 20 primary and secondary
refinery processes. MARS analyzes the processing stages for
six grades of crude oil (from low-sulfur light to high-sulfur
very-heavy and synthetic crude), as well as processes for
upgrading heavy oils and oil sands. It analyses eight major
refinery products including gasoline, diesel and jet fuel, and
evaluates ranges of product shares. It models the economic and
environmental impacts of the consumption of natural gas, the
production and use of hydrogen, and coal-to-liquids co-
production, and seeks to provide insights into how refineries
can become more efficient through the capture of waste energy.

While MARS analyzes this large number of processes and
variables, it does so at a coarse level. It consists of about 16K
lines of C code, and can process many internal model execution
iterations, with a range from 0.5 seconds (one iteration) to
hours (many thousands of iterations) of Blue Gene/P CPU
time. The goal of running MARS on the BG/P is to perform
detailed multi-variable parameter studies of the behavior of all
aspects of petroleum refining.

As a simple test of using the Blue Gene/P for refinery
modeling, we performed a 2D parameter sweep to explore the
sensitivity of the investment required to maintain petroleum
production capacity, over a four-decade span, to variations in
the diesel production yields from low sulfur light crude and
medium sulfur heavy crude oils. This mimics one of the vast
number of complex multivariate parameter studies that become
possible with ample computing power. We then executed a far
larger workload with 1M MARS tasks, combining both internal

0

100

200

300

400

500

600

700

800

900

1000

0

20000

40000

60000

80000

100000

120000

140000

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

Ta
sk

s
C

om
pl

et
ed

N
um

be
r o

f P
ro

ce
ss

or
s

Time (sec)

Idle Processors
Active Tasks
Tasks Completed
Throughput (tasks/sec)

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0
60

0
12

00
18

00
24

00
30

00
36

00
42

00
48

00
54

00
60

00
66

00
72

00

Time (sec)

Ta
sk

s
C

om
pl

et
ed

N
um

be
r o

f P
ro

ce
ss

or
s

0

50

100

150

200

250

300

350

400

450

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

Processors
Active Tasks
Tasks Completed
Throughput (tasks/sec)

and external parameters sweeps, running eight
processor core on 128K processors on the B
Figure 11).

Figure 11: MARS application (summary view) on the Blu
using 128K processor cores

The experiment consumed 9.3 CPU year
seconds to complete, with an average of
execution time per task. Our per task efficien
because of the time it took to dispatch the fir
plus the time to ramp down the experim
efficiency of the experiment dropped to 88% w
115,168X (ideal speedup being 130,816X).

C. Running applications through Swift
The results presented in the preceding s

static workloads processed directly with Falko
other hand, can be used to make workloads mo
reliable, and provide a natural flow from t
application to the input of the following s
complex workflow. We ran a 16384 task w
MARS application on 8192 CPUs. Figur
comparison of this workload side-by-side bet
only run (green lines) and the Swift run (bl
used Falkon as the execution engine; the dotte
submitted tasks and the solid lines are the finis

Figure 12: MARS application comparison between Swif
Blue Gene/P; 16K tasks using 8K processo

0

200000

400000

600000

800000

1000000

Ta
sk

s
C

om
pl

et
ed

N
um

be
r o

f P
ro

ce
ss

or
s

Time (sec)

Processors
Active Tasks
Tasks Completed
Throughput (tasks/sec)

0

2000

4000

6000

8000

10000

12000

14000

16000

0 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

5
Time (sec)

Ta
sk

s

Swift
Falko
Swift
Falko

t MARS runs per
Blue Gene/P (see

ue Gene/P; 1M tasks

rs and took 2483
280±10 seconds

ncy was 97%; but
rst wave of tasks,

ment, the overall
with a speedup of

ections are from
on. Swift, on the
ore dynamic, and
the results of an
stage in a more
workload for the
re 12 shows the
tween the Falkon
lue lines), which
ed lines represent
shed tasks.

ft and Falkon on the

or cores

We see slower submission rate
seconds to dispatch the first round
with 11 seconds of Falkon only).
first round of tasks and the second
the case of Swift with 94 seconds
Falkon only). Some of the additiona
be accounted to the larger standard
times (20 seconds for Swift as co
Falkon); other differences can be
overheads in Swift in processing e
period was 161 seconds for Swift, b
Falkon. The end-to-end workload
seconds for Swift, and 626 second
88% efficiency. The per task effici
as it does not account for the ramp
when not all processors are busy.

It was curious that we obta
execution times on 8K processors
(297±13 seconds on 8K processor
128K processors from Figure 11)
central role the shared file system ha
in memory of the compute nodes, an
task’s input and output data. In our 1
we had dedicated access to the ent
file system load was all due to our o
patterns. In the 8K processor expe
of the machine was busy running o
this case, slowed down our MARS a
the medium scale run of 8K process

Swift incurs its own overheads
experiences when running these app
include 1) managing the data (stagin
data from its original location to a
and back from the workflow direc
location), 2) creating per-task wo
compute nodes (via mkdir on the
creating and tracking several status
Prior to achieving these good effi
efficiency on 8K processors), we
20% efficiency using the default i
same scale. We investigated the ma
determined to be from contention on
then applied three optimizations to
directories in local ramdisk rather th
copying the input data to the local ra
for each job execution; and 3) creati
ramdisk and copying them only to
the completion of each job (rather t
the shared file system at each j
optimizations allowed us to increas
to 88% on 8192 processors for t
future work, we will be working to s
involving 100K to 1M tasks, and to
in the 90% range as we scale up to 1

VI. CONCLUSIONS AND

Clusters with 50K+ processor
Constellation System, Ranger), Grid
a dozen sites and 100K+ processor

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

54
0

60
0

66
0

72
0

Submitted Tasks
n Submitted Tasks
Finished Tasks
n Finished Tasks

es of Swift, as it takes 38
of 8K tasks (as compared

The transition between the
round also takes longer in

(as compared to 33 sec for
al time in this transition can
deviation of task execution

ompared to 13 seconds for
e found in the additional
each task. The ramp-down
but only took 77 seconds for
d execution time was 713
ds for Falkon, yielding an
iency was better with 91%,
p-up and ramp-down phase

ained higher average task
s than on 128K processors
rs and 280±10 seconds on
. The answer lies in the
as in loading the application
nd reading and writing each
128K processor experiment,
tire machine, so the shared
own application data access
riment, the rest of the 95%

other applications, which in
application by 6% to 10% at
ors.

in addition to what Falkon
plications. These overheads
ng data in and out, copying
workflow-specific location,
ctory to the result archival
rking directories from the
shared file system), and 3)
and log files for each task.

ficiency numbers (i.e. 88%
were only able to achieve
installation of Swift at the
ain bottlenecks, which were
n the shared filesystem. We
Swift: 1) placing temporary

han the shared filesystem; 2)
amdisk of the compute node
ing the per job logs on local
persistent shared storage at
than appending to a file on
job status change). These
se the efficiency from 20%
he MARS application. As
scale up Swift to larger runs
maintain Swift’s efficiency

160K processors.

D FUTURE WORK
r cores (e.g., TACC Sun
ds (e.g., TeraGrid) with over
s, and supercomputers with

up to 256K processors (e.g., IBM Blue Gene/P) are now
available to the scientific community. The effort described here
has demonstrated the ability to manage and execute large-scale
loosely coupled applications on petascale-class systems. These
large HPC systems are considered efficient at executing tightly
coupled parallel jobs within a particular machine using MPI to
achieve inter-process communication. We proposed using HPC
systems for loosely-coupled applications, which involve the
execution of independent, sequential jobs that can be
individually scheduled, and using files for inter-process
communication. Our work shows that today’s existing HPC
systems are a viable platform to host MTC applications. We
identified challenges in running these novel workloads on
petascale systems, which can hamper the efficiency and
utilization of these large-scale machines. These challenges
include local resource manager scalability and granularity,
efficient utilization of the raw hardware, shared file system
contention and scalability, reliability at scale, application
scalability, and understanding the limitations of the HPC
systems in order to identify promising and scientifically
valuable MTC applications. This paper presented new research,
implementations, and application experiences in scaling loosely
coupled applications on the Blue Gene/P up to 128K processors
and microbenchmarks up to 160K processors.

A. Characterizing MTC Applications for Petascale Systems
Based on our experience with the Blue Gene/P at 160K

CPU scale (nearly 0.5 petaflop Rpeak) and its shared file
system (GPFS, rated at 8GB/s), we identify the following
characteristics that define MTC applications that are most
suitable for peta-scale systems:
• Number of tasks >> number of CPUs
• Average task execution time > O(60 sec) with minimal I/O

to achieve 90%+ efficiency
• 1 second of compute per processor core per 5KB~50KB of

I/O to achieve 90%+ efficiency

The main bottleneck we found was the shared file system.
GPFS is used throughout our system, from booting the
compute nodes and I/O nodes, to starting the Falkon dispatcher
and executors, starting the applications, and reading and
writing data for the applications. Assuming a large enough
application, the startup costs (e.g. 1326 seconds to bootstrap
and be ready to process the first task at 160K processors) can
be amortized to an insignificant value. We offloaded the shared
file system to in-memory operations by caching the Falkon
middleware, the applications binaries, and the static input data
needed by the applications in memory, so repeated use could be
handled completely from memory. We found that the three
applications we worked with all had poor write access patterns,
in which many small line-buffered writes in the range of
hundreds of bytes were performed throughout the task
execution. When 160K CPUs are all doing these small I/O calls
concurrently, it can slow down the shared file system to a
crawl, or, even worse, crash it. The solution was to read
dynamic input data from shared file system into memory in
bulk (e.g., dd with block sizes of 128KB), let applications
interact with their input and output files directly in memory,
and write dynamic output data from memory to shared file

system in bulk (e.g., dd, merge many output files into a single
tar archive).

B. Future Work
Many MTC applications read and write large amounts of

data. To support such workloads, we want to make better use of
the specialized networks found on some petascale systems,
such as the Blue Gene/P’s Torus network. Our efforts will in
large part focus on having transparent data management
solutions to offload the use of shared file system resources
when local file systems can handle the scale of data involved.

One solution is to exploit unique I/O subsystem capabilities
of petascale systems. For example, collective I/O operations
could be implemented to use the specialized high bandwidth
and low latency interconnects, such as the Torus network.
Through supporting collective I/O operations, we hope to be
able to support more efficient and scalable solution for
common file access patterns, such as broadcasting a common
file across to all compute nodes or aggregating many unique
files from many compute nodes into few files that can be
written to GPFS with relatively small number of I/O calls and
with little to no contention on GPFS.

We expect that data caching, proactive data replication, and
data-aware scheduling will offer significant performance
improvements for applications that exhibit locality in their data
access patterns [35]. We have already implemented a data-
aware scheduler, and support for caching in the Falkon Java
executor, under the umbrella of data diffusion [34, 35, 8]. In
previous work, we have shown that in both microbenchmarks
and a large-scale astronomy application, a modest Linux cluster
(128 CPUs) can achieve aggregate I/O data rates of tens of
gigabytes of I/O throughput [34, 8]. We plan to port the same
data caching mechanisms from the Java executor to the C
executor so we can use these techniques on the Blue Gene/P by
leveraging the Torus network interconnect to communicate
directly between compute nodes. We have already completed
the first step towards this goal, to enable TCP/IP connectivity
over MPI of the Torus network which gives us a global IP
space among all compute nodes, as opposed to the private IP
space per pset that we had using the Tree network.

MTC applications could also be composed of individual
tasks that are themselves parallel programs. We plan to add
support for MPI-based applications in Falkon, specifically the
ability to run MPI applications on an arbitrary number of
processors. We have a candidate application that needs to have
thousands of separate MPI-based application invocations, with
each invocation getting optimal performance with 32
processors. This use case is one that is not well supported today
on the Blue Gene/P because MPI applications currently have to
use processors in pset granularity (256 processors).

ACKNOWLEDGMENT
We thank the Argonne Leadership Computing Facility for

hosting the IBM Blue Gene/P experiments. We also thank our
colleagues for valuable help and feedback working with the
DOCK and MARS applications, namely Don Hanson, Rick
Stevens, Matthew Cohoon, and Fangfang Xia. Special thanks
are due to Mike Kubal for his work on, and explanation of, the
molecular dynamics applications.

REFERENCES
[1] IBM BlueGene/P (BG/P), http://www.research.ibm.com/bluegene/, 2008
[2] J. Ousterhout, “Scripting: Higher Level Programming for the 21st

Century”, IEEE Computer, March 1998
[3] Y. Zhao, I. Raicu, I. Foster. “Scientific Workflow Systems for 21st

Century e-Science, New Bottle or New Wine?” IEEE Workshop on
Scientific Workflows 2008

[4] J. Dean, S. Ghemawat. “MapReduce: Simplified data processing on
large clusters.” In OSDI, 2004

[5] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, I. Raicu,
T. Stef-Praun, M. Wilde. “Swift: Fast, Reliable, Loosely Coupled
Parallel Computatio,n” IEEE Workshop on Scientific Workflows 2007

[6] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M. Wilde. “Falkon: A Fast
and Lightweight Task Execution Framework,” IEEE/ACM SC, 2007

[7] E. Deelman et al. “Pegasus: A Framework for Mapping Complex
Scientific Workflows onto Distributed Systems,” Scientific
Programming Journal 13(3), 2005, 219-237.

[8] I. Raicu, Y. Zhao, I. Foster, A. Szalay. "Accelerating Large-Scale Data
Exploration through Data Diffusion," ACM International Workshop on
Data-Aware Distributed Computing 2008

[9] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly. “Dryad: Distributed
Data-Parallel Programs from Sequential Building Blocks,” European
Conference on Computer Systems (EuroSys), 2007

[10] R. Pike, S. Dorward, R. Griesemer, S. Quinlan. “Interpreting the Data:
Parallel Analysis with Sawzall,” Scientific Programming Journal,
Special Issue on Grids and Worldwide Computing Programming Models
and Infrastructure 13(4), 2005, pp. 227-298

[11] M. Livny, J. Basney, R. Raman, T. Tannenbaum. “Mechanisms for High
Throughput Computing,” SPEEDUP Journal 1(1), 1997

[12] M. Flynn. “Some Computer Organizations and Their Effectiveness”,
IEEE Trans. Comput. C-21, 1972, pp. 948

[13] D. Thain, T. Tannenbaum, M. Livny, “Distributed Computing in
Practice: The Condor Experience” Concurrency and Computation:
Practice and Experience 17(2-4), 2005, pp. 323-356

[14] “Swift Workflow System”: www.ci.uchicago.edu/swift, 2008
[15] Top500, June 2008, http://www.top500.org/lists/2008/06
[16] J. Appavoo, V. Uhlig, A. Waterland. "Project Kittyhawk: Building a

Global-Scale Computer," ACM Sigops Operating System Review, 2008
[17] J. Frey, T. Tannenbaum, I. Foster, M. Frey, S. Tuecke. “Condor-G: A

Computation Management Agent for Multi-Institutional Grids,” Cluster
Computing, 2002

[18] J. Cope, M. Oberg, H.M. Tufo, T. Voran, M. Woitaszek. “High
Throughput Grid Computing with an IBM Blue Gene/L,” Cluster 2007

[19] A. Peters, A. King, T. Budnik, P. McCarthy, P. Michaud, M. Mundy, J.
Sexton, G. Stewart. “Asynchronous Task Dispatch for High Throughput
Computing for the eServer IBM Blue Gene® Supercomputer,” Parallel
and Distributed Processing (IPDPS), 2008

[20] A. Gara, et al. ”Overview of the Blue Gene/L system architecture”, IBM
Journal of Research and Development 49(2/3), 2005

[21] IBM Coorporation. “High-Throughput Computing (HTC) Paradigm,”
IBM System Blue Gene Solution: Blue Gene/P Application
Development, IBM RedBooks, 2008

[24] A. Bialecki, M. Cafarella, D. Cutting, O. O’Malley. “Hadoop: A
Framework for Running Applications on Large Clusters Built of
Commodity Hardware,” http://lucene.apache.org/hadoop/, 2005

[25] D.P. Anderson, “BOINC: A System for Public-Resource Computing and
Storage,” IEEE/ACM International Workshop on Grid Computing, 2004

[26] F.J.L. Reid, “Task Farming on Blue Gene,” EEPC, Edinburgh
University, 2006

[27] N. Desai. “Cobalt: An Open Source Platform for HPC System Software
Research,” Edinburgh BG/L System Software Workshop, 2005

[28] J.E. Moreira et al., “Blue Gene/L Programming and Operating
Environment,” IBM Journal of Research and Development 49(2/3), 2005

[29] “ZeptoOS: The Small Linux for Big Computers,” http://www-
unix.mcs.anl.gov/zeptoos/, 2008

[30] B. Bode, D.M. Halstead, R. Kendall, Z. Lei, W. Hall, D. Jackson. “The
Portable Batch Scheduler and the Maui Scheduler on Linux Clusters,”
Usenix, 4th Annual Linux Showcase & Conference, 2000

[31] E. Robinson, D.J. DeWitt. “Turning Cluster Management into Data
Management: A System Overview,” Conference on Innovative Data
Systems Research, 2007

[32] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for
Large Computing Clusters,” FAST 2002

[33] G.v. Laszewski, M. Hategan, D. Kodeboyina. “Java CoG Kit
Workflow,” in I.J. Taylor, E. Deelman, D.B. Gannon, and M. Shields,
eds., Workflows for eScience, 2007, pp. 340-356

[34] I. Raicu, Y. Zhao, I. Foster, A. Szalay. “A Data Diffusion Approach to
Large-scale Scientific Exploration,” Microsoft eScience Workshop at
RENCI 2007

[35] A. Szalay, A. Bunn, J. Gray, I. Foster, I. Raicu. “The Importance of Data
Locality in Distributed Computing Applications,” NSF Workflow
Workshop 2006

[36] Y. Zhao, I. Raicu, I. Foster, M. Hategan, V. Nefedova, M. Wilde.
“Realizing Fast, Scalable and Reliable Scientific Computations in Grid
Environments”, Grid Computing Research Progress, Nova Pub. 2008

[37] Open Science Grid (OSG), http://www.opensciencegrid.org/, 2008
[38] C. Catlett et al., “TeraGrid: Analysis of Organization, System

Architecture, and Middleware Enabling New Types of Applications,”
HPC and Grids in Action, ed. Lucio Grandinetti, IOS Press Advances in
Parallel Computing series, Amsterdam, 2007

[39] SiCortex, http://www.sicortex.com/, 2008
[40] J.C. Jacob et al. “The Montage Architecture for Grid-Enabled Science

Processing of Large, Distributed Datasets,” Earth Science Technology
Conference 2004

[41] The Functional Magnetic Resonance Imaging Data Center,
http://www.fmridc.org/, 2007

[42] T. Stef-Praun, B. Clifford, I. Foster, U. Hasson, M. Hategan, S. Small,
M. Wilde, Y. Zhao. “Accelerating Medical Research using the Swift
Workflow System,” Health Grid , 2007

[43] D.T. Moustakas et al. “Development and Validation of a Modular,
Extensible Docking Program: DOCK 5,” J. Comput. Aided Mol. Des.
20, 2006, pp. 601-619

[44] D. Hanson. “Enhancing Technology Representations within the Stanford
Energy Modeling Forum (EMF) Climate Economic Models,” Energy
and Economic Policy Models: A Reexamination of Fundamentals, 2006

[45] T. Stef-Praun, G. Madeira, I. Foster, R. Townsend. “Accelerating
Solution of a Moral Hazard Problem with Swift,” e-Social Science, 2007

[46] I. Foster, “Globus Toolkit Version 4: Software for Service-Oriented
Systems,” Conference on Network and Parallel Computing, 2005

[47] R. Stevens. “The LLNL/ANL/IBM Collaboration to Develop BG/P and
BG/Q,” DOE ASCAC Report, 2006

[48] KEGG’s Ligand Database: http://www.genome.ad.jp/kegg/ligand.html,
2008

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”).
Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract no. DE-AC02-06CCH11357. The
U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on
behalf of the Government.

