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Abstract—With the number of cores on a chip continuing to
increase, proper evaluation of on-chip network is critical for not
only network performance but also overall system performance.
In this paper, we show how a network-only simulation can
be limited as it does not provide an accurate representation
of system performance. We evaluate traditionally used open-
loop simulations and compare them to closed-loop simulations.
Although they use different methodologies, measurements, and
metrics, we identify how they can provide very similar results.
However, we show how the results of closed-loop simulations do
not correlate well with execution-driven simulations. We then
add simple extensions to the closed-loop simulation to model the
impact of the processor and the memory system and show how the
correlation with execution-driven simulations can be improved.
The proposed framework/methodology provides a fast simulation
time while providing better insights into the impact of network
parameters on overall system performance.

I. INTRODUCTION

With the number of cores on a chip continuing to increase,

the on-chip network or network-on-chip (NoC) is becoming

a critical part of future chip multiprocessor (CMP) systems,

as the performance of on-chip networks impacts the overall

system performance. Different design parameters of NoC such

as network topology, routing algorithm, and router parameters

affect not only network performance but also overall system

performance. Thus, proper evaluation of NoC is critical to

understand the impact of NoC.

Historically, interconnection networks have been evaluated

using a synthetic traffic workload via open-loop simula-

tions [8] – i.e., the network does not impact the traffic

pattern injected into the network. This evaluation methodology

can accurately evaluate network performance under different

design parameters. However, this does not necessarily measure

overall system performance, as the network performance can

impact the packets injected into the network in systems. For

example, the latency of the remote cache line can determine

how long a processor is stalled and when the next packet

can be injected into the network. In CMPs where processors,

caches, and network are integrated onto a single chip, the NoC

is much more closely coupled with processors and caches,

compared to off-chip, large-scale networks. As a result, it is

not clear if an open-loop evaluation is appropriate for on-chip

networks.

Recent studies on interconnection networks have used al-

ternative synthetic traffic models in their evaluation in order

to complement the traditional open-loop evaluation [18], [4],

[10], [16], [9]. Although closed-loop synthetic workloads have

been previously used in these studies, the overall characteris-

tics of closed-loop simulations have not been properly studied

or evaluated. In this paper, we first evaluate the closed-loop

synthetic workload model as a tool to evaluate the impact of

NoC on the overall system. We then validate the accuracy

of the closed-loop model against a detailed execution-driven

simulation and extend the model to provide better correlation

with the execution-driven simulation.

The contributions of this work are as follows:

• We compare open-loop and closed-loop measurements in

on-chip networks and show how they mostly provide very

similar results. Some differences between the two occur

since the open-loop conventionally measures average
performance while the closed-loop measures worst-case
performance.

• We show how the closed-loop batch model can be ex-

tended with very simple models to mimic the behavior

of the processor cores and the memory hierarchy. We

demonstrate how these modifications increase correlation

with results from execution-driven simulations.

• In an attempt to better correlate the batch model to

the execution-driven simulation, we identify the impact

of kernel traffic through full-system simulations on the

overall system performance. We show how our simulation

framework can be further extended to provide better

correlation with full-system simulation results.

II. BACKGROUND AND RELATED WORK

Different simulation methodologies have been used in the

evaluation of interconnection networks. They can be classified

into three types [8]: execution-driven simulation, trace-driven

simulation, and synthetic workload simulation.

Execution-driven simulations involve modeling all aspects

of a system, including the processing cores, memory hierarchy,

and the interconnection network, and execute the application.

An example of this methodology is Simics/GEMS[12][13], a

full-system simulator with a detailed on-chip network model

(GARNET [2]). Although execution-driven simulation pro-

vides accurate simulation results for a given application, the

simulation is very time-consuming, even for a CMP with a

small number of cores. As a result, it is not feasible for

evaluating a large design-space of alternative architectures in

a large-scale on-chip network.

An alternative to this approach is a trace-driven simula-
tion, which replays a sequence of messages captured from
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Fig. 1. Latency vs. offered traffic curve.

an execution-driven simulation on a network-only simulator.

Since only abstract information of network packets such as the

timestamp, packet size, and source and destination of packets

is stored and replayed, the simulation can be performed signif-

icantly faster than an execution-driven simulation. However,

since the traces are captured in advance, feedback from the

network does not affect the workload and ignores the causality

of messages. On the other hand, traces from applications

running in a large number of cores on a chip are difficult

to obtain, store, and manage, and typically it is not easy to

vary the trace characteristics.

Another alternative is to use a network-only simulation with

synthetic workloads, an approach that has been commonly

used in the evaluation of interconnection networks. This

method provides insights into the behavior of the network

across a wide range of traffic patterns and provides a very

fast simulation, thus enabling the design space exploration of

the network. In this paper, we focus on synthetic workloads

as a methodology for evaluating a large space of alternative

on-chip networks in on-chip networks. We discuss how it can

be extended to provide insights that are more reflective of not

only network performance but also system performance.

A network simulation can be classified as either open-loop
or closed-loop simulation.

A. Open-loop Measurement

Open-loop measurement [8] evaluates the network with

traffic parameters, including spatial distribution, temporal dis-

tribution, and message size of packets, which are independent
of the network itself – i.e., the network performance does not

influence the traffic parameters. By using an infinite source

queue, the traffic parameters are not influenced by the network.

Using open-loop simulations, the network performance is often

characterized by a latency/throughput curve (Figure 1) – for a

specific traffic pattern, steady-state measurements are taken to

plot the average packet latency. The zero-load latency (To), the

maximum throughput (θ), and the impact of contention as the

load increases are shown with this plot and provide measures

of network performance.

B. Closed-loop Measurement

Closed-loop measurements differ from open-loop measure-

ments in two ways: first, the feedback of the network impacts

the simulation, and second, it attempts to measure system
performance and not just network performance. For example,

if the network buffers fill up, additional packets are not

injected into the network. As a result, the network feedback

impacts the overall performance measured. An execution-

driven simulation is an example of a closed-loop simulation.

In this work, we evaluate a synthetic workload with closed-

loop measurement to evaluate the impact of the network on

the overall system.

In a closed-loop synthetic workload, a pre-determined

amount of “work” (which we refer to as the batch size) needs

to be completed prior to termination of the simulation. The

batch size attempts to model the amount of instructions 1 each

core needs to execute a given application. The performance

using closed-loop measurement is determined by the runtime

to finish the work, defined by the batch size. Unlike an open-

loop synthetic workload, the temporal aspect of the traffic

pattern is influenced by the network, as the dependencies

of messages impact the traffic injection rate. Based on the

dependencies captured in the simulation, we classify synthetic

closed-loop traffic simulations into two different types: closed-

loop with intra-node dependency and closed-loop with inter-
node dependency.

1) Closed-loop Model With Intra-node Dependency: Pro-

cessors (and corresponding memory system) in a multicore

processor have limited structural resources, thus restricting the

amount of network traffic generated – for example, MSHRs

(miss status hold registers [17], [11]) track the number of

outstanding requests the processor can have. If the limit of

MSHR is reached, further injection of new requests into the

network is stalled until a reply is received from the network

and the corresponding MSHR entry is removed. This model

creates intra-node dependent traffic, as the injection of the

current packet at a node is impacted by the network behavior

of previously injected packets. This method has been used

in prior work [10], [4], [15], [18] in the evaluation of on-

chip networks, but the accuracy of this model has not been

evaluated.

In this model, each node or processor has a fixed number of

remote memory operations (e.g., remote cache line read/write

requests), which we refer to as the batch size (b). For each

request packet, once it reaches the destination, a reply packet

is generated; we measure the runtime (T ) required for all nodes

to complete their operations. We also assume that each node

has a limited number of outstanding memory operations or

request packets (m) to model the effect of a MSHR – thus,

if a node has injected m packets without having received any

replies, it stalls until a response is received. The maximum

number of packets in-flight per node (pf ) is m. We initially

assume that a packet is injected in each node if pf < m and

the batch size (b) has not been reached.

Figure 2 shows the impact of m and b in the batch model in

a plot of b vs. runtime normalized to the batch size using the

1More specifically, the batch size represents load instructions that miss in
the local cache; and thus necessitate accessing a remote cache or memory
through the network.



0

10

20

30

40

50

60

1 10 100 1000 10000 100000

N
or
m
al
iz
ed

ru
nt
im

e

Batch size (b)

m = 1 m = 2
m = 4 m = 8
m = 16 m = 32

Fig. 2. Runtime normalized to the batch size in batch model.

default values shown in Table I and the simulation described

in Section III. As we increase b, the normalized runtime

continuously decreases until the value saturates. A higher

value of m results in lower normalized runtime, since it allows

more requests to be overlapped, thus reducing the runtime per
request or operation. The inverse of the asymptotic value that

the runtime per request or operation approaches as the m value

increases is the maximum throughput that can be achieved in

the network. For the remainder of this paper, we use b = 1000
unless otherwise noted to obtain steady-state measurements.

2) Closed-loop Model With Inter-node Dependency:
A barrier is a type of synchronization primitive where

all threads/processes must wait until all the other

threads/processes reach the barrier. These synchronization

primitives create inter-node dependency, as the workload

measurement is dependent on the behavior of other nodes

in the network. Synthetic workloads using this model have

been previously used, and include the barrier model [16] and

burst-synchronized model [9].

Similar to the batch model, this measurement also assumes

that all nodes have a fixed number of computations represented

by a fixed number of communications (b). However, instead

of intra-node dependency created with the m parameter, each

node continues to inject packets into the network until (b)

packets have been transmitted. Once every node has finished

injecting packets and all injected packets have reached their

destinations, the measurement is completed.

In this work, we focus on the batch model, instead of the

barrier model, for two reasons. The barrier model essentially

measures the throughput of the network and is very similar

to open-loop measurements. In addition, it is anticipated that

in future manycore processors, each core will not support

a large number of outstanding requests without stalling the

processor. In off-chip networks, for systems such as the Cray

BlackWidow system [1] which can sustain over a thousand

outstanding requests, this model might be representative, but

for on-chip networks, it is expected that the processor will be

able to tolerate only a handful of outstanding requests. In the

rest of this paper, we focus on the batch model and discuss

the similarities of the batch model to open-loop measurements.

Then, in Section IV, we discuss how the batch model can be

enhanced.
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Fig. 3. Impact of router delay and buffer size in open-loop.

III. EVALUATION OF CLOSED-LOOP MODEL

In this section, we evaluate closed-loop measurements in

an on-chip network described earlier in Section II-B1 and

compare the results with those of open-loop measurements.

The two methods use different performance metrics (average

latency in the case of open-loop measurement, runtime for

closed-loop measurements) but we show how the two differ-

ent methods provide very similar insights into the network

behavior. We compare the relative performance to evaluate

the impact of different network parameters including router

parameters, topologies, and routing algorithms. For some

evaluations, we highlight how the results differ, because an

open-loop evaluation focuses on average performance while

the closed-loop measures worst-case performance. However,

by using worst-case results from the open-loop, we show how

similar trends can be found in the two evaluations.

A. Simulation environment

We use a cycle-accurate network simulator [8] to evaluate

a 64-node on-chip network using an 8-ary 2-cube (2D mesh)

topology. A 256-node on-chip network using a 16-ary 2-cube

topology is also evaluated, but the results are not included

as they show a similar trend. The parameters used in the

evaluation are described in Table I and bold values show our

baseline.

TABLE I
SIMULATION PARAMETERS

Topology 8x8 2D mesh, 16x16 2D mesh

Virtual channels 2, 4
VC buffer size 1, 2, 4, 8, 16
Router delay (cycle) 1, 2, 4, 8
Routing algorithm Dimension ordered routing(DOR),

Valiant (VAL), Min. adaptive(MA),
ROMM [14]

Arbitration Round robin, age-based

Link delay 1 cycle
Link bandwidth 1 flit/cycle

Packet sizes 1 flit, bimodal (1 flit and 4 flit)
Traffic patterns uniform random, bit reversal

bit complement, transpose

The following symbols are used in our description of

network parameters and simulation parameters in the following
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Fig. 4. Impact of router delay and buffer size in batch model.

sections.

tr : router delay

q : queue size

N : network size

b : number of requests/operations that needs to be

executed per node (batch size)

m : number of maximum outstanding requests/opera-

tions per node

pf : number of request packets in flight per node

T : total runtime

p : total number of packets (p = N × b × 2)

B. Experiment 1: Router parameters

We first compare the two simulation method as we vary

two router parameters, router delay (tr) and buffer size (q).

As we increase tr, the zero-load latency of the open-loop

simulation increases while similar saturation throughput is

achieved (Figure 3(a)). For example, by increasing tr from 1

to 2 and 4, the zero-load latency increases by ratios of 1.5 and

2.5, respectively. The expected increase in zero-load latency is

not 2 or 4, since for each hop, the channel delay is added, thus

resulting in zero-load latency increases of only 1.5 and 2.5.

However, regardless of tr, the saturation throughput does not

change, as the network saturates at approximately 43%. The

performance impact of buffer depth (q) is shown in Figure 3(b)

for two virtual channels with single-flit packets. Simulations

using different packet sizes (such as a mixture of short and

long packets) did not impact the comparisons. The buffer

depth (q) does not impact zero-load latency but limited buffer

depth impacts the throughput. For example, with q = 4, the

throughput can be reduced by approximately 15.5%, compared

to a network with q = 16. Continuing to increase the buffers

beyond 16 results in limited improvement in throughput, as

the buffers no longer become the network bottleneck.

The results in Figure 3 are well understood, and based on

these open-loop measurements, we obtain insights into the

impact of tr and q on network performance as load increases.

To evaluate the differences between open-loop and closed-loop

measurements, we compare the results of Figure 3 to a closed-

loop simulation model as we vary the same two parameters

(tr, q), which are shown in Figure 4. We plot the runtime
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Fig. 5. Comparison of impact of router delay and buffer size between open-
loop simulation and batch model.

normalized to the runtime with tr = 1, q = 32, and m = 1.

The achieved throughput (θ) of the workload is calculated from

the runtime ( θ = (b × 2)/T ).

Interestingly, simulation results from the closed-loop model

show very similar trends with the open-loop simulation. For

small values of m, the achieved throughput is relatively low,

and increasing tr also increases T with a ratio that is similar

to the increase in zero-load latency (Figure 4(a)). For large

values of m, where the achieved throughput approaches the

saturation throughput, the impact of tr is nearly negligible

– similar to the different values of tr resulting in the same

throughput using an open-loop simulation. A similar trend can

be observed for the impact of buffer size – at near zero-load

(or small values of m), there is minimal impact on the overall

performance but as the load increases with higher values of

m, larger buffer size improves the network performance.

Figure 5 shows the scatter plot comparing the normalized

runtime of the batch model and normalized average latency

obtained from the open-loop measurements. The scatter plot

data points are obtained from the following steps.

1) Run the batch model from Section II-B1 with b = 1000
and different values of m and network parameters (tr,q).

2) Calculate the achieved throughput of the batch simula-

tions using θ = (b × 2)/T .

3) Run the open-loop simulation with an offered load equal

to θ for each of the values of m and (tr, q).

4) Plot the normalized batch runtime vs. the normalized

latency measured for the open-loop simulation. 2

The scatter plot shows a high correlation between the batch

model and open-loop simulations as a correlation coefficient

of 1 indicates a highly correlated relationship. However, for

several data points from a large m, poor correlation can be

found. Since we are measuring the average latency of open-

loop simulations near the saturation throughput, the actual

latency is highly sensitive to the offered load and its high

2To show the correlation across the different values of m on a single
plot, we normalize the values of both the batch model and the open-loop
simulations to the baseline result of each m – e.g., for simulations where we
vary tr , all results of m = 1 are normalized (m = 1, tr = 1), all results of
m = 4 are normalized (m = 4, tr = 1), etc. As a result, normalized latency
of m = 16 can be lower than m = 1.
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Fig. 6. Impact of topology in open-loop and batch model simulation.
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Fig. 7. Runtime of each node under mesh and torus.

variation results in inaccuracy of comparison. 3 As a result,

if we exclude the results for m = 16 and 32, the correlation

coefficient is calculated to be 0.9953 for the evaluation of

tr and 0.993546 for the evaluation of q. Thus, with network

parameters such as tr and q, both open-loop and closed-

loop measurements have very similar impact on performance,

even though the two measurements use different performance

metrics.

C. Experiment 2: Topology

In this section, we compare the two simulation models with

different topologies. We evaluate a mesh, ring, and torus on

64 nodes using the parameters in Table I and the results are

shown in Figure 6 for a uniform random traffic pattern. 4 Open-

loop simulation results show the ring topology has the highest

latency and lowest throughput for 64 nodes. The torus shows

a slightly higher zero load latency than the mesh since we

assume a folded-torus [8], which increases the channel delay.

The torus achieves higher throughput since it has the highest

bisection bandwidth.

Similar trends are also shown in Figure 6(b) with the closed-

loop model. However, for a small m, the mesh shows higher

runtime than the torus, a finding that is different from the

3The saturation throughput is defined as the load where latency approaches
infinity [8] – thus it is difficult to obtain an accurate latency value.

4For a more accurate topology comparison, the bisection bandwidth should
be held constant; however, for simplicity, the channel bandwidth is held
constant in our comparison.
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Fig. 9. Impact of routing algorithm in open-loop simulation.

open-loop measurements. Because the mesh is not an edge-

symmetric topology, the closed-loop model shows that the

nodes near the center of the network finish much faster than the

outer nodes (Figure 7(a)). In comparison, the edge-symmetric

torus topology shows very similar runtime for all nodes

(Figure 7(b)). As a result, the mesh results in higher runtime

even with lower average packet latency. Figure 8 shows a

scatter plot of the normalized runtime of the batch model

versus the normalized worst-case latency of the open-loop.

The use of worst-case latency (instead of average latency) in

the open-loop simulation results in a very similar impact of

the network parameter on the overall performance, and the

correlation coefficient is calculated to be 0.999.

D. Experiment 3: Routing algorithms

We evaluate the impact of routing algorithms with differ-

ent traffic patterns including uniform random and transpose

patterns. Other traffic patterns including bit reversal and bit

complement were simulated but follow a similar trend and are

not included due to space constraint. The 2D mesh network

described in Table I was used and the performance results

are shown in Figure 9 for an open-loop and Figure 10 for

a closed-loop. Similar to the impact of router parameters in

Section III-B, the two results show almost the same trend –

at low m, the results of the closed-loop follow the zero-load

latency trend of the open-loop while at high m, the saturation
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Fig. 10. Impact of routing algorithm in batch model.

throughput trends are seen in the closed-loop.

However, there is a noticeable difference between the open-

loop and closed-loop with Valiant routing (VAL) under some

permutation traffic patterns such as transpose traffic. The

latency-throughput curve in Figure 9(b) for the transpose

patterns shows VAL resulting in higher zero-load latency but

also higher throughput, since VAL exploits path diversity to

load-balancing compared to DOR. However, for m = 1 in the

batch model (Figure 10(b)), there is negligible impact of higher

zero-load latency, as VAL results in only a 1.7% increase

in runtime compared to DOR. This discrepancy highlights

the difference between the two evaluation models. Open-loop

simulations measure average network performance through

average packet latency 5 while the closed-loop measurement

is dependent on worst-case performance, as the runtime is

decided by the node with the largest runtime.

To better understand the difference, the average latency

distribution of the open-loop simulation with DOR and VAL

are shown in Figure 11(a,b) and the runtime distributions of the

batch model with DOR and VAL are shown in Figure 11(c,d)

for m = 1. The average runtime for DOR is lower than

VAL by 44% – similar to the zero-load latency difference in

Figure 9(b). However, the worst-case runtime is identical, as

they are determined by the nodes located in the corner for the

transpose traffic pattern (Figure 12). For traffic between these

two nodes in a 2D mesh network, VAL routing still results

in minimal routing – resulting in an identical worst-case zero-

5The saturation throughput does measure the worst-case performance, since
the throughput is determined when one channel in the network is saturated.

(a) DOR (b) VAL

Fig. 12. Example routing using (a) DOR and (b) VAL. S and D represent the
source and destination node and I represents the intermediate node in VAL.

load between DOR and VAL. As a result, the routing algorithm

has minimal impact on such traffic patterns if the worst-case

measurement is used for a low injection rate.

IV. BATCH MODEL VALIDATION

In this section, we attempt to validate the accuracy of the

batch model against an execution-driven simulation and high-

light the shortcomings of the proposed model in measuring

overall system performance. Through very simple extensions,

we show how the batch model can be improved to better

correlate with execution-driven simulations.

A. Evaluation Methodology

We compare our batch model against an execution-driven

simulation using a Simics [12]/GEMS [13] simulator, using

the parameters shown in Table II. We evaluate a 16-core

CMP system with each core consisting of an in-order SPARC

processor. Garnet [2] network is used, as the 16 nodes are

interconnected with a 4x4 2D mesh topology and a 1-cycle

router delay is used as a baseline simulation. Similar to

the simulations in Section III-B, we vary the router delay

to evaluate its impact on overall performance. We used the

barnes, fft, and lu benchmarks from SPLASH-2 [19]

and blackscholes and canneal applications from the

PARSEC [6] benchmark suite. The benchmarks were warmed

up and checkpointed to avoid cold-start effects. We compared

the relative performance or speedup as the network parameters

were changed and compared these changes to our batch

model. The GEMS simulation is obviously a more detailed

simulator than a network-only simulator. However, because

of this additional complexity, the simulation can take on the

order of days to run SPLASH2 or PARSEC benchmarks.



(a) (b)

Fig. 13. (a) Communication pattern of lu and (b) actual traffic communi-
cation pattern.

For example, simulation of barnes using medium-size input

using GEMS took 88.5 hours on a Intel Xeon 2.53 GHz

core. A prior study [20] has shown that adding out-of-order

modeling capabilities to GEMS (through opal module) slows

down the simulations by a factor of almost 17. But with

a network-only simulation using a synthetic workload, the

simulation time can be significantly reduced, as it takes only

a few minutes to simulate a 64-node network.

TABLE II
SIMICS/GEMS+GARNET SIMULATION PARAMETERS

Processor 16 in-order SPARC cores

L1 Caches Split I&D, 32 KB 4-way set
associative, 2 cycle access time, 64-byte line

L2 Caches shared L2, 512KB per tile (total 8MB)
10 cycle access time, 64-byte line

Memory 300-cycle DRAM access time

On-chip 4-ary 2-cube mesh, 16-bytes links,
Network 1/2/4/8 router delay, 8 VCs, 4 buffers/VC

1 cycle on-chip link latency, DOR

For comparison with GEMS+Garnet, we use uniform ran-

dom traffic for the batch model. Prior work [5] has shown

explicit communication patterns for different benchmarks; if

we attempt to characterize the explicit communication between

CPUs in the application, we observe a communication pattern

as shown in Figure 13(a) for the lu benchmark. This figure

plots the spatial communication between the nodes and darker

squares correspond to heavier traffic. However, if we observe

the actual traffic injected from the nodes rather than just

the communication pattern inherent in the application, the

communication distribution shown in Figure 13(b) is observed

where the traffic appears more random. Thus, we use uniform

random traffic in comparing the batch model to the execution-

driven simulation.

B. Evaluation Results

Figure 14 illustrates the impact of the router delay on the

runtime of the batch model (BA) and the real workloads on

GEMS+Garnet, which are normalized to our baseline setup.

In this figure, each benchmark is impacted differently by an

increase in router delay. For example, while the runtime of

lu increases by more than 3× as the router delay increases

from 1 to 8, the runtime of fft is only increased by 1.51×.

However, the batch model does not reflect any difference
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Fig. 14. Normalized runtime of GEMS+Garnet and batch model (BA) as
router delay (tr) is varied.
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Fig. 15. Correlation between GEMS+Garnet and batch model

between these benchmarks. As shown earlier in Section III-B,

by increasing the router delay from 1 to 2, 4, and 8, the runtime

from the batch model increases by ratios of approximately

1.45, 2.4, and 4.2. As a result, a poor correlation between

the performances of the batch model and the execution-driven

simulation is shown in Figure 15, as the correlation coefficient

was calculated to be 0.829.

Simply modeling just the MSHR with the batch model

does not provide accurate modeling of the different bench-

marks, as the batch model is limited in providing insights

into network-only performance. To close the gap between the

batch model and the execution-driven simulation, we propose

several simple extensions to the batch model in an effort to

provide better insights into the impact of the network on the

overall system performance without significantly increasing

the simulator complexity or decreasing the simulation speed.

C. Enhancing the Batch Model

In this section, we propose very simple techniques to extend

the batch model so as to provide better correlation between

the network performance and overall system performance. We

extend the batch model by modeling the processing core and

the memory hierarchy to change the actual injection rate of

packets into the network. Although packets are generated by

complex interactions between the processor architecture, cache

hierarchy, and memory system, the addition of simple models

to adjust the injection rate can provide a better understanding

of the impact of the network parameters on the overall system

performance. The two simple modifications we propose are

adding the injection model of request packets and adding
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Fig. 16. Evaluation of the batch model with an enhanced injection model.
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Fig. 17. Evaluation of the batch model with an enhanced reply model.

latency before reply packets are injected into the network. 6

1) Enhanced Injection Model: In the baseline batch model,

additional packets are always injected into the network if

pf < m. This injection policy might be representative of ap-

plications that are communication bound with a high-network

demand but is not representative of other applications. For

example, as the L1 miss rate is often under 10%, accessing

a shared L2 might be infrequent and would result in a lower

network injection rate [7]. In addition, data dependencies can

stall the execution of the processor, which will also affect

the packet injection rate. To model this effect, we define the

parameter network access rate (NAR) as the packet injection

rate of an application under an ideal on-chip network. 7

The NAR attempts to model the network usage of different

applications by characterizing the injection rate when the

network does not impact the workload. With this addition

to the batch model, if pf < m, additional packets are only

injected at a rate of NAR, and if pf = m, no additional

requests are injected.

The synthetic workloads used in Section III-B are re-

evaluated with the addition of the NAR injection rate and are

shown in Figure 16 for different values of NAR as tr is varied.

NAR = 1 corresponds to the baseline batch model described

earlier in Section III. As the value of NAR decreases, the

impact of the network parameter on the overall performance

6These extensions cannot be applied to open-loop simulations, since injec-
tion of the packets cannot be affected by the network or other components.

7An ideal network is defined as a fully connected network with infinite
bandwidth between the nodes and single cycle latency.

decreases while as NAR increases, the performance compari-

son approaches that of the baseline batch model.

Interestingly, for large values of m (m = 16) and small

values of NAR, the overall injection rate is low, and based

on results of Section III-B, the performance difference should

correspond to the increase in zero-load latency. However, the

router latency has minimal impact on the overall performance.

Since these data points represent non-communication limited

workloads (i.e., the maximum value of m is not reached with

small NAR values), the router latency – although it increases

network latency – has minimal impact on overall performance.

From this simple extension to the baseline model, we can see

how the impact of the network on the overall performance is

reduced by modeling the injection rate through NAR.

2) Enhanced Reply Model: In our baseline batch model,

when requests arrive at their destination, corresponding re-

ply packets are generated immediately and injected into the

network. However, in actual CMP systems, the reply packets

will not be immediately injected but will have an added delay

resulting from either a L2 cache access or main memory

access. In this section, we evaluate the impact of this additional

latency in the batch model using two simple models: a fixed

latency model that adds a fixed latency for all remote memory

accesses and a probabilistic model that adds L2 access latency

for a given L2 hit rate or adds L2 access latency + main

memory access latency otherwise. Figure 17 demonstrates

the result of these models. We use 20 cycles as L2 access

latency, and 300 cycles as memory latency; in Figure 17(c) it is

assumed that 10% of the requests need to access the memory.
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Fig. 18. Normalized runtime of GEMS+Garnet and batch model.
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Fig. 19. Correlation between GEMS+Garnet and batch model.

With this simple addition to the model, we model the obvious

effect that as the memory access latency increases, the impact

of the router delay is reduced, as the overall remote access

latency is dominated by the memory latency itself.

However, interesting observations can be made in Fig-

ure 17(b,c). Both results use the same average memory latency

20 + 0.1 ∗ 300 = 50 but Figure 17(c) shows a lower injection

rate and reduced impact of the router latency. Although the

average memory latency is the same, Figure 17(c) includes

the effect of having long memory operations and reduces the

impact of the router latency on the overall performance.

D. Comparison with GEMS+Garnet

Based on the two simple extensions described in

the previous sections, we again compare the results

of execution-driven simulations with the extended batch

model, that is, BA injection(BA inj), BA reply(BA re), and

BA enhanced(BA inj+re), which include the additional mod-

eling of both the injection and the reply. We evaluate the

correlation of the modified batch model as the router delay

is varied (Figure 19). The performance results are normalized

to the baseline result of tr = 1. The NAR values are calculated

and are shown in Table III. Although better correlation can be

seen than that obtained using the baseline batch model, there

is still a discrepancy with the results of the execution-driven

simulations. Notably, BA inj+re, a more enhanced model,

shows worse correlation than BA inj or BA re, contrary to

our expectations. In the next section, we identify how the
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Fig. 20. Network injection rate of benchmarks in GEMS+Garnet as the
router delay is varied.

kernel traffic from the OS impacts the network traffic and

the overall performance, which provides the reason for the

poor correlation of BA inj+re, and also describe how the batch

model can be extended.

TABLE III
GEMS SIMULATION CALCULATION OF NAR

Benchmarks Ideal cycle count Total flits NAR L2 miss rate

blackscholes 44,228,000 39,576,862 0.028 0.006

lu 247,498,080 86,601,157 0.011 0.183

canneal 70,915,759 90,944,651 0.040 0.207

fft 139,433,783 147,472,376 0.033 0.629

barnes 501,330,834 753,434,335 0.047 0.019

V. MODELING KERNEL EFFECT

As identified in prior work [3], the operating system (OS)

can have significant impact on the variability of simulation

results. To improve the accuracy of our batch model compared

to execution-driven simulation results, we investigate the effect

of the OS on the network traffic and the overall performance.

The kernel activities that are found in the applications we

evaluated can be classified into two types: traps or system

calls invoked by the applications and periodic timer interrupts.

These two types of events have very different impact on the

network traffic – the network traffic from the timer interrupt

handler is proportional to the simulation runtime while the

traffic from traps or system call handlers is independent of

the runtime.

Figure 20 shows how a significant portion of the network

traffic is generated by the kernel activities. We show the

results for two different core clock frequencies, 75MHz and

3GHz, where 75MHz is the default clock frequency in the

Simics configuration for a Serengeti server [12] while 3GHz

represents a clock frequency of a modern high-end processor.

For benchmarks such as lu, the kernel traffic account for more

than 80% of the total network traffic. In addition, the ratio of

the kernel traffic is much higher with the 75MHz clock than

the 3GHz clock. The effect of periodic timer interrupts is much

more significant with 75MHz than with 3GHz configuration,

as the interval of the timer interrupts is influenced by the

wall clock time, not the number of simulation cycles. For



0

0.5

1

1.5

2

2.5

0 10000 20000 30000 40000 50000 60000

fli
ts
/c
yc
le

Time (thousands of cycles)

user kernel

(a) 75 MHz

0

0.5

1

1.5

2

2.5

0 10000 20000 30000 40000 50000 60000 70000

fli
ts
/c
yc
le

Time (thousands of cycles)

user kernel

(b) 3 GHz

Fig. 21. Injection rate of blackscholes in GEMS+Garnet.
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Fig. 22. Correlation between GEMS+Garnet and batch model with/without
OS modeling.

example, in blackscholes, as we vary tr, the numbers

of timer interrupts that we counted are 6, 6, 8, and 10 in a

3GHz simulation but increase to 422, 495, 575, and 915 in a

75MHz simulation.

In Figure 21, we plot the overall injection rate of the 16

cores for blackscholes benchmark with 75MHz and 3GHz

clock frequency in Simics to identify the two types of kernel

activities more clearly. For the periodic timer interrupts, we

can see six small peaks in the 3GHz simulation while there are

significantly larger numbers of small peaks in the 75MHz sim-

ulation. In addition, we can also identify a significant amount

of kernel traffic at the beginning and the end of the simulation

in Figures 21 – which is caused by system calls such as thread

creation or synchronization. This additional network traffic

from the kernel activities needs to be incorporated into the

batch model by adjusting the batch size.

To incorporate the network traffic from the kernel activities,

we increase the batch size in two ways. The batch size

is statically increased (prior to simulation) to represent the

application dependent additional traffic from system calls or

traps. In addition, the batch size is dynamically increased to

represent the additional traffic from periodic timer interrupts.

After determining the rate of the periodic timer interrupt

(Rtimer) from the execution-driven simulations, the actual

additional traffic generated in the batch model is dependent on

the batch model simulation runtime – i.e., additional packets

or “batch” is injected into the network approximately every

1/Rtimer cycles and the total amount of packets injected in

the simulation is proportional to the batch model simulation

runtime.

TABLE IV
CHARACTERISTICS OF BENCHMARKS

Benchmarks
NAR L2 miss rate Application

Rtimeruser OS user OS
dependent
additional traffic

black
0.024 0.266 0.004 0.013 0.58 0.00245

scholes
lu 0.021 0.048 0.418 0.005 0.53 0.0080

canneal 0.038 0.126 0.274 0.029 0.57 0.0038

fft 0.033 0.442 0.708 0.021 0.34 0.0056

barnes 0.055 0.063 0.011 0.017 0.67 0.0015

With these additional modeling, Figure 22 shows the cor-

relation plot of the normalized runtime of the enhanced

batch model versus the normalized runtime measured using

GEMS+Garnet. By incorporating this additional modeling of

the kernel traffic, the correlation coefficient is improved to

0.9724 (compared to 0.954136 without any additional model-

ing of the kernel traffic) for the 3GHz simulation; meanwhile,

for the 75MHz simulation, significant correlation improvement

can be seen, from 0.705246 in Section IV to 0.9311.

VI. CONCLUSION

On-chip networks are different from off-chip networks, as

the processors, memory, and the network are closely coupled

together. In this work, we show how conventional open-loop

simulations can provide very similar results as closed-loop,

batch model simulations. However, we also show how open-

loop simulations can provide misleading results as it only

measures network performance and not system performance.

We extend the batch model with a simple methodology that

incorporates the impact of the processor and the memory

system on the simulation results. As a result, different insights

into the impact of the network parameters compared to open-

loop measurements are obtained. The proposed methodology

is intended to help architects with the evaluation of on-chip

network design and facilitate design space exploration of

future on-chip network designs.
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