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ABSTRACT
End-to-End guaranteed network QoS is a requirement for
reliable and predictable data transfers between geographi-
cally distant end hosts. Existing QoS systems, however, do
not have the capability or intelligence to decide what re-
sources to reserve and which paths to choose when there are
multiple and flexible resource reservation requests. In this
paper, we design and implement an intelligent system that
can guarantee end-to-end network QoS for multiple flexible
reservation requests. At the heart of this system is a poly-
nomial time scheduling algorithm called resource reserva-
tion and path construction (RRPC). The RRPC algorithm
schedules multiple flexible end-to-end data transfer requests
by jointly optimizing the path construction and bandwidth
reservation along these paths. We also show that construct-
ing such schedules is an NP-hard problem. We implement
our intelligent QoS system, and present the results of de-
ploying the system on real world production networks such
as ESnet and Internet2. An important aspect of our im-
plementation is that it does not require any modification or
any new software to be deployed on the routers within the
network.

1. INTRODUCTION
The networking research community has dedicated signifi-
cant amounts of effort in developing novel QoS mechanisms.
Such mechanisms include architectures for implementing QoS
(such as Diffserv [3] and Intserv [4]), as well as protocol-
s/tools that can be used to reserve resources within QoS
enabled networks (such as RSVP [2, 5] and TeraPaths [14]).
Furthermore, research and education networks such as Inter-
net2 [13], ESnet [8], and GEANT [9] connect large number
of educational and government institutions, and allow these
institutions to reserve available resources (e.g., bandwidth1).
Although such networks allow reservation of resources, these

1In this paper, we consider bandwidth as the resource to
be reserved, and use the terms “bandwidth” and “resource”
interchangeably.
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Figure 1: An example network connecting two end
hosts. Path from one end host to the other goes
via two Wide Area Networks and two Local Area
Networks.

reservation capabilities are only a first step towards achiev-
ing a true end-to-end network QoS. Note that our focus in
this paper is not on providing intelligent QoS within Inter-
net. Instead, we focus on research and education networks
such as Internet2 and ESnet that allow for bandwidth reser-
vations.

True end-to-end QoS is achieved when resources can be re-
served along the complete path between two end hosts (e.g.,
the two end points of a TCP connection). This complete
path includes the local area networks of the end sites (such
as educational institutions and government organizations),
in addition to any intermediate domains (such as Internet2
or ESnet) that connect these end sites (see e.g., Fig. 1). In
almost all end sites, end hosts usually do not have a di-
rect connection to the connecting router of the intermediate
domain. The route from an end host to the border router
usually goes via few other intermediate routers. As a result,
in order to guarantee a true end-to-end network QoS, it is
important for the end sites to also have resource reservation
capabilities within their local area networks (LANs). The
task of reserving resources becomes even more challenging
as the end site networks and the intermediate domains may
not implement the same QoS enabling technologies (e.g.,
Intserv, Diffserv, MPLS, etc.). A reservation tool should be
able to coordinate resource reservations among these het-
erogeneous networks. Such a reservation tool forms an im-
portant component of the system that can provide a true
end-to-end intelligent network QoS. Note that we do not
aim to provide an alternative to existing QoS enabling tech-
nologies. Instead, our proposed intelligent system is built
on top of these technologies. We assume the existence of
bandwidth reservation mechanisms within network domains
along the end-to-end path.

One important limitation of existing QoS systems is the lack
of intelligence/flexibility in reserving requested resources.



That is, existing systems typically reserve exactly the amount
of resources that were requested. However, many times, user
requests are flexible or less rigid in terms of bandwidth and
time requirements. Handling flexible requests require addi-
tional intelligence to be built into the current QoS ecosys-
tem. In general, user requests have the following character-
istics:

• Requests can be flexible in nature, e.g., a user may
require a set of data to be successfully transferred from
one end point to another by a certain deadline. Any
resource reservation that can meet that deadline would
be acceptable.

• There may be multiple flexible requests that are needed
to be satisfied.

• Requests can be available ahead of time, in advance.
As an example, scientists at one site may know that
their experiments are going to generate a certain amount
of data by a certain time. This data would need to be
transferred for analysis to a site located in a geograph-
ically different location in a timely manner. In such a
case, it is desired to reserve an appropriate amount of
network resources ahead of time.

The above characteristics create situations where there can
be multiple end-to-end paths that can satisfy reservation re-
quests. Furthermore, there could be multiple options on how
much bandwidth (and time) needs to be reserved to satisfy
reservation requests. This is beyond the capabilities of cur-
rent QoS systems as there is no more a single or obvious
option, and the QoS system needs to intelligently choose a
solution among many options. Our goal in this paper is to
design and implement an end-to-end QoS ecosystem that is
capable of accommodating and intelligently scheduling mul-
tiple and flexible resource reservation requests.

1.1 Desired Properties
We now list a set of properties/capabilities that an intelli-
gent end-to-end network QoS system should possess in order
to accommodate multiple flexible reservation requests.

1. The QoS system should have the capability to collect
and maintain knowledge about the availability of re-
sources within all network domains (local, remote and
intermediate) that connect the two end hosts.

2. Given the resource availability and a set of reservation
requests, the QoS system should be able to make intel-
ligent reservations across all domains connecting two
end hosts. Such resource reservations should satisfy all
reservation requests, if possible.

3. The QoS system should be flexible enough so that the
researchers can implement and test different schedul-
ing (i.e., resource reservation) algorithms with mini-
mum effort.

Our goal in this paper is to design and implement an end-to-
end network QoS system that possess all of the above prop-
erties, and should be able to accommodate and intelligently
schedule multiple flexible resource reservation requests.

1.2 Contributions
The following are the main contributions of our work in this
paper:

1. We present the design of a QoS system that can ac-
commodate and intelligently schedule multiple flexible
resource reservation requests between two end hosts.
These hosts may not belong to the same local area net-
work (generally they are also geographically distant as
shown in Fig. 1).

2. We consider a novel problem of scheduling multiple
flexible resource reservation requests. We prove that
the problem is NP-hard and present an efficient heuris-
tic, called RRPC, to solve it.

3. We implement the scheduling algorithm as well as the
QoS system that we propose. Our implementation
runs on real hardware. Furthermore, our system does
not require updating or installing any new software on
the routers within the network.

4. We have deployed our system on real world production
networks. Our QoS system is stable and does not have
any negative effect on the operation of regular users of
the production networks. The results presented in this
paper are obtained from real world networks.

The rest of this paper is organized as follows: In Section 2,
we describe the architecture for the intelligent QoS system
in detail. In Section 3, we discuss a scheduling problem and
an efficient algorithm to solve it. In Section 4, we discuss
the details of the deployment of our system on real world
networks, and present results. Section 5 discusses the related
work, and Section 6 concludes this paper.

2. SYSTEM ARCHITECTURE
2.1 Overview
Networking domains between the two end hosts usually em-
ploy heterogeneous technologies to enable QoS (dynamic cir-
cuits, MPLS tunnels, Diffserv, Intserv, etc.). As a result of
this heterogeneity, providing a true end-to-end QoS requires
a mechanism for these heterogeneous systems to coordinate
with each other. This requirement motivates the need for
the first component in our architecture called Domain Con-
troller (DC). Each intermediate domain that connects the
two end hosts has a DC. Such DC coordinates with other
domains and exposes a set of services to enable resource
reservations within its own network. The underlying mech-
anism to enable reservations can be different for different
domains.

In addition to performing coordination with other domains,
each DC further requires a mechanism to obtain and re-
serve the resources within its own LAN. In order to accom-
plish this, we introduce another component called LAN-
manager. Each DC communicates with its corresponding
LAN-manager to obtain and reserve necessary resources within
its LAN.

The third and most important component of our architec-
ture that instills the intelligence within the QoS ecosystem,
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Figure 2: Architecture of an intelligent end-to-end network QoS system.

class pay loadIn fo {
long [ ] amount of data ;
// amount o f data t h a t needs to be
// t r a n s f e r r e d f o r each f l e x i b l e
// r e q u e s t .

long [ ] sTime ;
// t imes when the data w i l l become
// a v a i l a b l e f o r t r a n s f e r

long [ ] eTime ;
// time by which data t r a n s f e r shou ld
// complete f o r each r e q u e s t

long [ ] r a t e l i m i t ;
// maximum r a t e at which data f o r
// each r e q u e s t can be t r a n s m i t t e d

St r ing o b j e c t i v e ;
// o b j e c t i v e o f the data t r a n s f e r

St r ing srcIP , dstIP ;
// source hos t and d e s t i n a t i o n hos t

St r ing port range ;
// the range o f p o r t s t h a t w i l l
// be used f o r data t r a n s f e r

}

Figure 3: Data structure for the reservation request.

is called the Request Scheduler (RS). The objective of RS is
to accept the resource availability and reservation requests
as input, and to construct a feasible reservation schedule
that satisfies the reservation requests according to some ob-
jective. An RS is invoked by a DC. Figure 2 shows com-
ponents of the proposed architecture for our intelligent end-
to-end network QoS system. We now describe the three
components of our architecture in detail.

2.2 Domain Controller (DC)
The domain controllers are the glue that holds the complete
intelligent QoS ecosystem together. An application that
wants to make multiple end-to-end reservations between two
end hosts will contact a DC in order to submit the reserva-
tion requests. The DC being contacted can belong to either
one of the two end site LANs, and is referred to as local DC.
The DC for the LAN of the other end host is referred to as
remote DC. The goal is to provide sufficient information to
the local DC that will help it to perform or initiate appropri-
ate configurations within the local network domain, remote
network domain, and across all the intermediate domains.

Description of the reservation request. An application
can use the data structure shown in Fig. 3 to submit multiple
reservation requests to the local DC. The amount_of_data

array contains the amount of data that needs to be trans-
ferred as part of each flexible request. The variable sTime

indicates the time when the data will become ready to be
transferred for each request, and the variable eTime indi-
cates the deadline by which the application would like the
data transfer to finish for each request. The rate_limit ar-
ray specifies the maximum rate at which the data for each
request can be transmitted. As an example the data that
is being read from a particular disk will be limited by the
rate at which data can be read from that disk. Therefore,
even if network can support a higher data transfer rate, this
field will indicate that there is no need to reserve a larger
amount of bandwidth. The objective variable indicates
the objective of data transfer for all requests. The objective
value dictates the algorithm that the RS will execute in or-
der to schedule the reservations. As an example, an intuitive
objective could be to make reservations for the submitted re-
quests in a way that minimizes the sum of the data transfer
times of all the requests. This is also the objective that we
consider later in Section 3 where we develop our scheduling
algorithm. The srcIP and dstIP indicate two end hosts.
The port_range variable indicates the range of port num-
bers (e.g., port 20 for FTP) that the data transfer appli-
cation will use to perform data transfer. This port range
is required by the LAN-managers to configure the routers
within the local and remote LANs.

Once a DC receives the reservation request, it performs the
following tasks to determine the resource availabilities:

• The first step is to determine the intermediate domains
that connects the two end sites. As an example, the
Brookhaven National Lab (BNL) is connected to the
Lawrence Berkeley National Lab (LBL) via one do-
main (ESnet), whereas BNL is connected to the Uni-
versity of Michigan (UMICH) via two intermediate do-
mains (ESnet and Internet2). Currently, we maintain
this information in a local database at each end site.
However, for large numbers of end sites and intermedi-
ate domains we plan to develop a distributed database
design in future.

• In the second step, the local DC contacts the LAN-
manager of its own site and obtains the amount of
available resources.

• In the third step, the local DC contacts the remote DC
and obtains the resource availability within the remote
LAN.



• In the last step, the local DC contacts the DCs for each
of the intermediate domains and collects the resource
availabilities within these domains.

The precise manner in which the resource availability is de-
picted is described in Section 2.3, where we also describe the
operation of a LAN-manager. After collecting the necessary
resource availability information, the local DC passes on this
information to its RS along with the associated reservation
request. The DC then waits for the scheduling results from
the RS. Once the scheduling results are communicated back
to the DC, the DC further communicates these results to all
other DCs involved (itself, remote, and intermediate) along
the path. The objective of this communication is to indi-
cate to the other DCs that the network devices within their
LANs should now be configured in accordance with the gen-
erated schedule. It is the responsibility of the LAN-manager
to actually configure the network devices within the LAN in
accordance with the generated reservation schedule.

Once the network devices within all domains (local, remote,
and intermediate) have been configured, the local DC com-
municate the reservation schedule back to the application
that requested the reservations. The application can now
schedule the data transfers between two end hosts in accor-
dance with the communicated reservation schedules.

2.3 LAN-Manager
A LAN-manger can be subdivided into two main compo-
nents based on the functions they perform. The two com-
ponents are as follows:

• Resource manager. It receives the resource avail-
ability requests from the DC, and replies back with the
resource availability within the LAN.

• Network device manager. It receives the reserva-
tion schedule from the DC, and configures the network
devices within LAN in accordance with the reservation
schedule received.

We next describe these components in detail.

2.3.1 Generating Resource Availability
Upon receiving the request for resource availability, the LAN-
manager has to respond with the resource availability along
the portion of the path/paths within its domain.

End-site LANs. For the end site LAN domains, these
paths connects the end host to the border router. The bor-
der router of an end site connects the end site to an inter-
mediate WAN domain via which the route to the other end
host goes.

In order to determine the resource availability along the por-
tion of paths within an end site LAN, the LAN-manager does
the following:

• It maintains the topology of the LAN and the resources
that are available or reserved along individual hops.

class segment{
long sTime ;
long eTime ;
long bandwidth ;

}
class BAG {

segment [ ] segment ;
}

(a) Data structure for a BAG.
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(b) Graphical representation for BAG-1.
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(c) Graphical representation for BAG-2.
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(d) Intersection of BAG-1 and BAG-2.

Figure 4: Illustration of bandwidth availability
graphs for a single link between two time instances.

• It determines the paths between the end host and the
border router using the stored topology information.
Even in large organizations, the number of paths that
packets follow from end hosts to the border router are
limited to only a few (one/two in most cases).

• It uses a data structure called bandwidth availability
graph (BAG) [21] to indicate the time varying avail-
ability of bandwidth over a certain link for a given
time interval. The BAG for a link is constructed us-
ing the resource usage/availability information stored
in a database. The BAG data structure is shown in
Fig. 4(a), and the graphical representation of an ex-
ample BAG is shown in Fig. 4(b).

To construct the BAG for a particular path, BAGs for all
the hops in that path are intersected with each other. In
the intersected BAG, every time instant will have the avail-
able bandwidth as the minimum of the bandwidths in all
input BAGs at that instant. As an example of intersec-
tion, Fig. 4(d) shows the intersection of BAGs in Figs. 4(b)
and 4(c). The BAGs for all the links in the paths between
the end host and the border router are notified back to the
DC that requested it.



Intermediate WANs. For an intermediate WAN domain,
the path within itself connects the border routers of the two
adjacent domains. The LAN-manager in this case can return
the available resources using a procedure similar to what we
described for an end site LAN. However, we assume that
it is up to the WAN administrators on how they maintain
and generate such information. Our framework in this paper
does not impose any restrictions on intermediate WANs.

As our experiments in this paper are based on using Inter-
net2 and ESnet as the intermediate WAN domains (which
utilize the OSCARS system [18] for resource reservations),
we explain here what kind of information is generated by
the LAN-managers of these networks. These domains re-
quire applications to request bandwidth availability graph
only for a certain number of paths (as opposed to the com-
plete topology). These will be the paths that connect the
two border routers. Furthermore, these domains also need
the applications to specify additional criteria based on which
paths should be returned (e.g., “only paths that can provide
a bandwidth of ≥ 2 Gbps between time t1 and t2”). Without
these limits and criteria, the number of potential paths can
be very large, which can place unnecessary communication
and processing overhead on DCs.

Another important caveat, while requesting availability in-
formation from intermediate DCs, is related to the way in
which two end points are specified to these DCs. As we
have noted before, the route between two end sites can tra-
verse more than one WAN domains. Given that the network
topologies for these domains are available publicly [8, 13],
the LAN-managers for these domains can construct com-
plete routes connecting the two end sites. However, no single
intermediate DC can provide BAGs for the complete path
interconnecting two end sites. Currently, an intermediate
DC can construct BAGs only for the hops that are along the
segment of the path within its domain. As a result, the lo-
cal DC of an end site needs to contact the intermediate DCs
one by one in order to gather the BAG for complete paths
connecting two end site LANs. In the future, if and when
intermediate DCs can exchange information about their re-
source availability, it may become possible to query a single
controller to construct the BAGs along complete paths.

2.3.2 Configuring Network devices
The second task performed by the LAN-manager is to con-
figure individual routers within the LAN in accordance with
the reservation schedule given to it by the DC. Note that the
actual reservation schedule is determined by the RS. The DC
only passes on this schedule to the LAN-manager.

Configuring a routing device within a domain depends on the
particular device and the options that the device provides for
its configuration. Automated configuration is done typically
via the Command Line Interface (CLI) of a device driven by
software connecting to the router using the TELNET or SSH
protocols. This is the way we use currently in our work to
perform configuration changes. Alternatively, configuration
changes can be applied through the SNMP protocol. The
emerging OpenFlow [17] standard is promising way towards
a unified method to configure routers of multiple different
vendors. OpenFlow has been adopted by several network
device vendors, including Juniper and Cisco. We plan to

Table 1: An example reservation schedule.
# Reservation St- Reservation End Reserved

-art Time (Hrs) Time (Hrs) BW ( Gb/s)
1 0900 1030 4.5
2 0430 0930 3.0
3 N/A N/A N/A
4 1230 1300 1.0

add OpenFlow as one of the network device managers within
our LAN-manager to support OpenFlow-enabled network
devices.

In our current implementation, the LAN-managers of local
and remote sites utilize a combination of differentiated ser-
vices (diffserv) and policy-based routing (PBR) techniques
to setup the segment of a path within an end site LAN. The
traffic that is allowed to enter the path is identified by an
Access Control List (ACL). The diffserv configuration as-
signs this traffic to a high-priority class of service, typically
the Expedite Forward (EF) class, and polices the bandwidth
to the reserved amount. The PBR configuration forwards
the traffic into an acquired layer 2 circuit within the WAN.
There are some more details regarding the configuration of
network devices in [14].

2.4 Request Scheduler (RS)
The Request Scheduler is the component that instills in-
telligence in the end-to-end network QoS system. The RS
accepts a set of flexible requests (see Fig. 3) along with the
resource availability (i.e., BAGs) on the relevant links be-
tween two end sites. These are the set of requests that
were originally submitted by the user to the DC. The re-
source availability was collected by all the DCs via their
LAN-managers. The local DC, to which the reservation re-
quests were submitted, collects the availability information
from all other DCs. Once the local DC has collected the
resource availability as well as the reservation requests, the
information is passed onto the RS. The objective of the RS
is to generate a feasible network reservation schedule so that
the submitted requests are satisfied according to some ob-
jective.

Table 1 shows an example reservation schedule generated by
the RS for some set of requests. Request #3 was not satis-
fied. Note that in our current implementation, the system
maintains the time in UNIX epoch form. The algorithm used
by the RS to generate the reservation schedule depends on
the objective in the reservation requests passed by the user.
Different algorithms will result in different schedules. We
now consider one such objective and design an algorithm to
accomplish it in the next section.

3. JOINT OPTIMIZATION OF PATH CON-
STRUCTION AND RESOURCE RESER-
VATION

3.1 Problem Definition
We consider a joint problem of constructing an end-to-end
path and a reservation schedule for multiple flexible requests
along the constructed path.

Objective. The objective is to jointly construct an end-to-



end path between two end hosts and a reservation schedule
along the links of that path. The constructed path and
reservation schedule should maximize the number of satisfied
requests while minimizing the total data transfer time.

Input. Any algorithm that solves the problem will take
the following as input:

• The addresses for two end hosts.

• A set of input requests. Every input request for the
algorithm consists of (i) the amount of data that needs
to be transferred, (ii) the earliest start time when the
data transfer can start for this request, and (iii) the
deadline by which the data transfer for this request
should complete.

• A set of links between two end hosts along with their
BAGs. The BAGs can be different for different links.

A sample input network is shown in Fig. 1 (on page 1).
BAGs for individual links are not shown.

Output. The output for a set of reservation requests con-
sists of the following:

• The path that is chosen between the two end hosts.

• A set of start times at which the application is guar-
anteed to have reserved bandwidth. Every start time
corresponds to a submitted request. An unsatisfied
request will not have any start time.

• A set of durations for which the bandwidths will be
reserved for individual requests. Each duration cor-
responds to a submitted request. Again, unsatisfied
requests will not have any durations.

• A set of bandwidths that will be reserved for individ-
ual requests for the above mentioned durations. There
is one value of bandwidth corresponding to each sub-
mitted request.

A number of questions arise from the above problem descrip-
tion.

First, why is flow splitting not allowed? The reason is
twofold. One, it is well known that flow splitting can cause
the data packets to arrive out of order at the destination due
to variation in RTT along different paths. This can cause
unexpected behavior in terms of bandwidth utilization [20].
Two, maintaining reservation information for single request
across multiple paths can be very expensive for intermediate
routers. One can explore this option as future work at the
expense of memory and processing power of routers.

Second, why a single path is chosen to satisfy all the re-
quests? The reason for this is more technical than theoreti-
cal. The circuits that can be reserved through intermediate
WANs such as Internet2 and ESnet behave as virtual wires
interconnecting the end site border routers with a single hop.
These virtual wires appear to end site routers as Virtual Lo-
cal Area Networks (VLANs), each with a specific numeric

tag assigned. The number of VLAN tags is limited in num-
ber (currently 4K). Given that several users submit their
own sets of requests and each path needs at least one VLAN
tag, we decided to limit a set of requests to use only one
VLAN tag. Note that it is easy to manipulate the system
by submitting one request per set. This way each satisfied
request gets a different path at the expense of VLAN tags.

Third, why the reserved bandwidth for an individual re-
quest remains constant throughout the reserved time pe-
riod? Again, the reason is more technical than theoretical.
Changing the bandwidth for an individual circuit requires
updating configurations of all the routers along the path.
This is an extremely expensive and time consuming opera-
tion. During this change, traffic may need to be assigned
back to the default best effort path and it may not be pos-
sible to provide QoS guarantees.

3.2 Problem Complexity
We now present a sketch of proof which shows that our prob-
lem is an NP-hard problem.

Theorem 1. Joint optimization of path construction and
resource reservation for multiple flexible requests between
two end hosts is an NP-hard problem.

Proof. We first show that our problem is a generalized
version of the so-called SMR3 problem [21]. The SMR3 prob-
lem considers that a path and the BAG for this path between
two end hosts is given. It then tries to accommodate multi-
ple flexible resource reservation requests (as shown in Fig. 3)
along that path. The objective of SMR3 is to construct a
reservation schedule that will accommodate as many reser-
vation requests as possible while minimizing the time re-
quired to perform a data transfer. Therefore, SMR3 is a
special instance of our problem where we have exactly one
path between two end hosts.

Furthermore, in [21], it was shown that an NP-hard variation
of the Generalized Assignment Problem [6] can be converted
to SMR3 in polynomial time, thereby proving that SMR3 is
also an NP-hard problem. Since an NP-hard problem (i.e.,
SMR3) is a special instance of our problem, our problem is
at least NP-hard.

Given the NP-hardness of our problem, we cannot develop
an optimal polynomial time solution procedure unless P =
NP . As a result, we will develop an efficient polynomial time
heuristic that constructs effective solutions for our problem.

3.3 Resource Reservation and Path Construc-
tion (RRPC) Algorithm

In this section, we are going to develop a polynomial time
algorithm, called RRPC, to solve the joint problem of path
construction and resource reservation. The objective is to
maximize the number of satisfied requests while minimizing
the total data transfer time. We first provide an overview
of the RRPC algorithm, followed by a detailed description
and complexity analysis.



3.3.1 Basic Idea
Our RRPC algorithm follows a procedure similar to Dijk-
stra’s shortest path algorithm. However, instead on con-
structing a shortest hop (or shortest distance) route between
the two end hosts, the RRPC algorithms aims to construct
a route that can provide the best solution to our problem.

The RRPC algorithms begins by considering the source end
host as the current node. Connecting the current node with
each neighboring node will provide partial paths (one path
corresponding to each neighboring node). The RRPC algo-
rithm then calculates a solution along each of these partial
paths that have their end nodes as the neighboring nodes.
All the current solutions along with their corresponding par-
tial paths are stored. The end node with the best current
solution becomes the current node, and the above procedure
is repeated again. The procedure stops when the destination
end host becomes the current node.

In addition to the detailed description, there are two funda-
mental questions that we have not described in the above
overview of the algorithm.

1. How to construct the solution for a given (partial)
path?

2. How to determine if one solution is better than the
other? That is, how can two solutions be compared?

We answer the above questions before we present the de-
tailed description of our algorithm.

3.3.2 Creating a Solution for a Partial Path
A solution along a partial path implies a set of time varying
bandwidth reservations along all the hops in that path. As
per our objective, these reservations should be made in a
way that can accommodate as many reservation requests as
possible while minimizing the total data transfer time.

The first step towards creating such a solution is to con-
struct a BAG for the given path. This can be achieved by
intersecting the BAGs for all the hops in the path. These in-
dividual BAGs are part of the input to our algorithm. This
intersection will give us a single BAG that represents the
time varying availability of bandwidth along the given path.
We have developed a linear time algorithm, called BAG-
SECT (BAG-interSECTion), to perform the intersection of
two BAGs. The BAGSECT algorithm can be described as
follows:

BAGSECT. We consider that the input BAGs to the
algorithm are well formed. That is, the segments within the
BAGs are stored in the increasing order of start time values,
and the individual segments do not overlap in time domain.
The algorithm begins by considering the start times of the
first segment from two BAGs; bag1 and bag2. As these start
times will be same2, the start time of the first segment in the
merged BAG (denoted by mBAG) will also be same. The

2Although not possible in our settings, in the case start
times are not same, then we can make them same by adding
a segment with zero bandwidth to the beginning of the BAG
with later start time.

bandwidth in the first segment of mBAG will be equal to
the minimum of the bandwidths in the first two segments
of bag1 and bag2. The algorithm will then move on to the
next segment of both bag1 and bag2, as well as to the next
segment of mBAG.

The start time of the current segment of mBAG will be
made equal to the minimum of the start times of current
segments of bag1 and bag2. Among the two current seg-
ments of bag1 and bag2, the BAGSECT algorithm will next
consider the bandwidth of the segment with earlier start
time. This bandwidth is denoted by bwearly. The algorithm
then uses bwprev to denote the bandwidth of the previous
segment of the segment with later start time. The band-
width of the current segment of mBAG will be made equal
to the minimum of bwearly and bwprev. The algorithm then
increments the current segment for the mBAG and the cur-
rent segment for the BAG corresponding to bwearly. It then
repeats the procedure in the previous paragraph.

The algorithm stops its iterations when it has iterated over
all the segments from both BAGs. It can be easily shown
that BAGSECT is an optimal algorithm. However, we do
not include such proof here. Pseudocode of the BAGSECT
algorithm is omitted due to pare limitations.

It is possible that the intersected BAG has contiguous seg-
ments with equal bandwidth values. If needed, such seg-
ments can be merged by going over the BAG in one pass.

Once the final intersected BAG of all the hops along the path
is obtained, the next (or the final) step is to accommodate as
many requests as possible in this BAG while minimizing the
total data transfer time. As shown in [21], this problem is
also an NP-hard problem. In [21], we have developed an ef-
ficient polynomial time heuristic called resource reservation
algorithm (RRA) to accommodate multiple requests within
a BAG with same objective as that of RRPC. As a result,
instead of developing a new heuristic, we plan to use RRA in
our system implementation to solve this sub-problem. Note
that the design of our RRPC algorithm can accommodate
any alternate sub-procedures to create a solution for partial
path, and is not limited to using RRA. Any sub-procedure
other than RRA may not be suitable for the joint path con-
struction and resource reservation problem considered here.

3.3.3 Comparing Two Solutions
Our objective is to generate a solution that accommodates
largest number of reservation requests while minimizing the
data transfer time. However, by looking at the structure of
possible solutions, we can observe that there can be mul-
tiple different solutions that satisfy such an objective. As
an example, Fig. 5 shows two optimal solutions that accom-
modate three reservation requests and complete the data
transfer in same amount of time. However, the first solution
enables the transfer of 250 GB data, while the second solu-
tion enables the transfer of 300 GB data. From a theoretical
perspective, both of these solutions are optimal. However,
in real world systems, one would definitely prefer the sec-
ond solution. We can now see that there are three funda-
mental building blocks of each solution: (i) the number of
requests that are satisfied, (ii) the time taken to complete
the requests, and (ii) the amount of data transferred. For a
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Figure 5: Two solution with same number of re-
quests and same amount of data transfer times.

particular solution, we define the ratio of “total data trans-
ferred in the satisfied requests” to“the time taken to transfer
that data” as the effective bandwidth utilization (EBU). We
consider a solution to be superior to another solution if it
satisfies larger number of requests. If the number of satisfied
requests is the same, then the solution with shorter trans-
fer time will be considered superior. Finally, if the transfer
times are also the same, then the solution with larger EBU
is considered to be superior. If both solutions accommodate
the same number of requests, have the same transfer time,
and the same EBU, then both solutions are considered to
be equally effective. Note that it is possible that a different
criteria for solution comparison may be appropriate in some
other scenario. For example, someone may prefer EBU over
number of satisfied requests. In that case, the design of our
RRPC algorithm is flexible enough to incorporate the new
user defined criteria.

3.3.4 Detailed Description of the RRPC Algorithm
The RRPC algorithm runs in iterations. To begin with, ev-
ery node in the network stores a path, a BAG, and a solution
that accommodates zero requests (i.e., the worst possible so-
lution). The stored path at a node represents the current
best path from the source node to this node, and is set to
null in the beginning. The BAG stored at a node repre-
sents the intersection of BAGs along the hops of the stored
path, and is also set to null in the beginning. The stored
solution represents the solution obtained if the reservations
are scheduled along the stored path (i.e., solution along the
partial path for nodes that are not destination nodes). The
algorithm then starts the first iteration by considering the
source node as the current node, and performs the following
steps:

1. It considers the path stored at the current node, and
considers all the paths that extend the stored path to
the neighboring nodes.

2. For every new extended path considered, the algorithm
calculates the effective BAG along that path, and cal-
culates the solution. The new solution obtained is com-
pared with the one that is already stored at the corre-
sponding neighboring node. If the new solution is bet-
ter, then the new solution replaces the stored solution

and the stored path in the corresponding neighboring
node.

3. The current node is marked as visited.

4. Among all the nodes that are not visited, the one that
has the best solution becomes the current node.

5. If the current node is the destination node, then the
RRPC algorithm stops. The path and the solution
stored in the destination node is the final solution.

6. If the current node is not the destination node, then
all the steps (from Step 1 to Step 6) are repeated for
this current node.

There are some observations that we can make regarding the
RRPC algorithm.

First, whenever we increase the length of a path by one node,
the new solution on this longer path cannot be better. This
can be easily proven by using the fact that intersection of two
BAGs can never produce a superior BAG. That is, at every
time instant, the intersected BAG will have the available
bandwidth that is not larger than the available bandwidth in
the two intersecting BAGs. As a result, if the solutions being
constructed for partial path are optimal, then our RRPC
algorithm will construct an optimal solution. This statement
may not seem obvious. However, the proof can follow the
same token as the proof of optimality of Dijkstra’s algorithm
on the graphs with non negative weights. Also note, that
creating a solution for a partial path is an NP-hard problem.
Therefore, it is not possible to have an optimal algorithm
with polynomial running time unless P = NP .

Second, instead of saving the complete path from source
node to a particular node, that particular node may only
save its predecessor.

3.3.5 Runtime Complexity
The RRPC algorithm never traverses a node already marked
as “visited”, and each node is marked as “visited” only once.
This results in every hop in the network being considered
only once. As a result, the number of hops being traversed in
worst case is O(|V|2), where V is the set of all vertices/nodes
in the network. Next, whenever a hop is considered, RRPC
(i) intersect two BAGs using the BAGSECT algorithm, and
(ii) constructs a solution using RRA.

For (i), the running time of BAGSECT algorithm is O(Mbi +
Mbj ), where Mbi and Mbj are the number of segments in
bags bi and bj respectively.

For (ii), the running time of RRA is O(N3 + N2M) [21],
where N is the number of flexible requests that needs to be
accommodated in a bandwidth availability graph with M
steps.

In order to identify the next node to be visited, the RRA
algorithm has to select the best node corresponding to the
O(|V|) stored solutions. The selection can be accomplished
in O(|V|) time. As the number of nodes to be visited is also
limited to O(|V|), the total time for identifying next node
during all iterations will be O(|V|2) in worst case. Note that
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Table 2: Individual requests between three pairs of
end sites. These requests were submitted one by
one.

Req- Soure Desti- Volu- Start Dead- BW
uest# -nation -me Time -line Limit

(GB) (Hrs) (Hrs) (Mb/s)
1 B1 U1 200 14:41 15:31 800
2 U1 B0 100 14:46 15:36 400
3 B0 U0 160 14:51 15:41 600

we can do better than O(|V|2), however, it does not affect
the overall running time as we see next.

The total running time of the RRPC algorithm can now
be written as O(|V|2 · (N3 + N2M + Mbi + Mbj ) + |V|2).
Whenever two BAGs, bi and bj , with Mbi and Mbj steps
are intersected, the resulting BAG cannot have more than
Mbi + Mbj steps. As a result, in the worst case, the size of
each BAG at any step in the RRPC algorithm cannot exceed∑

bi∈B Mbi , where B is the set of BAGs along all hops in the
network.

As a result, the final expression for the worst case running
time of the RRPC algorithm is

O

|V|2 ·
N3 + N2 ·

∑
bi∈B

Mbi

 .

We find that in real world experiments, the worst case run-
ning time is never reached, and the RRPC algorithm runs
extremely efficiently.

4. EXPERIMENTS
4.1 Network Setup
We ran our experiments between two geographically distant
sites connected via two intermediate WAN domains. Fig-
ure 6 shows the connectivity of our network. The twp end
sites are Brookhaven National Laboratory (BNL) and Uni-
versity of Michigan (UMICH). BNL is connected to ESnet,
and UMICH is connected to Internet-2. ESnet and Internet-
2 are connected to each other via several peering points.

We have omitted the network topology of ESnet and Internet-
2 as they are rather large and can be obtained online [8, 13].
We have deliberately omitted the LAN topology of end sites
as they are productions networks (as opposed to testbeds),
and their topologies cannot be disclosed publicly.

In Section 4.2, we will show the working of our QoS system,
and in Section 4.3, we will show the working of our RRPC
algorithm.

Table 3: Reservation schedules for individual re-
quests in Table 2.

Request Soure Desti- Start End Reserved
# -nation Time Time BW

(Hrs) (Hrs) (Mb/s)
1 B1 U1 14:41 15:21 800
2 U1 B0 14:46 15:26 400
3 B0 U0 14:51 15:34 600
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Figure 7: Stacked area graph showing the band-
width usage for three data transfers.

4.2 Single Request
Our goal in this section is to demonstrate the operation of
bandwidth reservations within our QoS system. In this sec-
tion, we will limit the number of requests submitted to the
DC of an end site to only one at a time. We will then show
the effect of bandwidth reservations on the data transfers
involving large files.

We consider two end sites, BNL and UMICH, between which
the data transfers will happen. We then consider three pairs
of end hosts between which the individual files will be trans-
ferred. The pairs and the submitted requests are shown in
Table 2. The first two columns in Table 2 show the source
and destination of the submitted request. The third column
shows the volume of data that needs to be transferred. The
fourth column shows the start time, i.e., the time when the
data will become available for transfer. The fifth column
shows the time by which the request would like the data
transfer to finish. Note that in our implementation, we use
UNIX epochs for storing time values. The last column shows
the maximum bandwidth that the request can use.

Source B1 first submits its first request to the DC of BNL.
Source U1 then submits its request to the DC of UMICH.
Source Bo then submits its second request to the DC of
BNL. As there was enough bandwidth available within the
end sites and the intermediate WAN domains, all the three
requests were satisfied. We are allowed to reserve a maxi-
mum of 2 Gb/s between BNL and UMICH at any given time.
Table 3 shows the amount of bandwidths and the durations
for which these bandwidths were reserved for each request.
We can now make few observations and explain some of our
choices.
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First, note that in the Table 2, we omitted the port range
that was submitted along with each request. For the above
transfers, each data transfer request is between three differ-
ent source and destination pairs. As such, we reserved the
bandwidth for all the ports, i.e., the requests were submit-
ted for ports (1 − 65535). Routers can distinguish between
individual flows based on their source and destination ip-
addresses. A second reason for reserving all the ports is the
data transfer tool that we have used, which is GridFTP [10].
GridFTP uses a wide range of ports for performing data
transfers (as opposed to single standard port for scp or ftp).

Second, why have we chosen GridFTP as the data trans-
fer tool? In our experiments, we were unable to scale scp
or ftp to use the large amount of bandwidth that we were
reserving for individual data transfers over long distances.
We believe the reason is the inability of a single TCP flow
to scale to large bandwidth values when the RTT becomes
large. As shown in our experiments, gridFTP can perform
data transfers using multiple TCP flows in parallel, and thus
can utilize large bandwidths much more efficiently. This
brings out another important discussion on the ability of
data transfer applications or transport protocols to utilize
the reserved bandwidth. However, we consider this discus-
sion out of scope for this paper.

Third, from Table 3, one can observe that the amount of
time for which the bandwidth is reserved is slightly more
than what is required (approximately 20% larger). The rea-
son we are doing this is the overhead of the gridFTP data
transfer tool. We observed that GridFTP needs some addi-
tional bandwidth to transfer its meta data related to multi-
ple parallel TCP streams.

Figure 7 shows a stacked area graph for the amount of band-
width used by all three data transfers. The x-axis shows the
time, and the y-axis shows the amount of bandwidth. There
are three bands within Fig. 7. The bottom band shows the
instantaneous bandwidth used by the data transfer corre-
sponding to request #1. It is using a bandwidth of 800
Mb/s, and transferring a 200 GB file. We can see that the
amount of used bandwidth does not remain constant due to
the use of TCP as the underlying transport protocol. We can
also observe that due to the use of multiple TCP streams in
GridFTP, it can start utilizing the available bandwidth al-
most instantaneously. Furthermore, it seems that the band-
width usage is a little below 800 Mb/s. This is because of
the overhead of metadata used within GridFTP. Similarly,
the middle band corresponds to request #2, uses 400 Mb/s,
and transfers a 100 GB file. The top band corresponds to
request #3, uses 600 Mb/s, and transfers a 160 GB file.
We can see that all the three transfers are using the correct
bandwidth that was reserved for them.

4.3 Multiple Requests (RRPC Algorithm)
Now that we have shown the successful reservation and uti-
lization of bandwidth for individual flows, our goal in this

Table 4: Requests beween nodes 0 and 9.
# Start Time Deadline Volume BW Limit

(secs) (secs) (Gb) (Gb/s)
0 0 4 12 8
1 4 10 12 6
2 3 7 18 6
3 2 5 16 8
4 9 14 16 10
5 8 11 12 5
6 4 9 15 5
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Figure 9: Path constructed using the RRPC algo-
rithm.

Table 5: Output of the RRPC algorithm.
# Reservation Start Time End Time Reserved BW

(secs) (secs) (Gb/s)
0 0 2 6
1 4 10 2
2 N/A N/A N/A
3 3 5 8
4 10 12.67 6
5 N/A N/A N/A
6 5 8 5

section is to show the operation of the RRPC algorithm.
We consider an example network shown in Fig. 8, and seven
reservation requests shown in Table 4. The source and desti-
nation for these requests could be different. All the requests
will be submitted at the same time to the DC. Figures 10(a)-
10(k) shows the BAGs of all the links in the network shown
in Fig. 8. Note that different links can have different BAGS
because there could be multiple users with different reserva-
tions at different times.

Figure 9 shows the path constructed by the RRPC algo-
rithm, and Fig. 10(l) shows the BAG along this path. Fig-
ure 10(l) also shows how the requests fit into the BAG of the
constructed path. Table 5 shows the schedule constructed
for the submitted requests by RRPC. It was not possible to
satisfy requests #2 and #5. We can now make end-to-end
reservations according to the generated output schedule.

5. RELATED WORK
There has been a large amount of experimental as well as
theoretical research performed in the area of network QoS.
Here we discuss some of the work which is most relevant to
this paper.

In [14], Katramatos et al. presented a tool called Terapaths
that can be used to make end-to-end bandwidth reservations
across multiple connected domains. Terapaths, however, can
only reserve bandwidth for fixed non-flexible requests; one
request at a time. In contrast, one of the important goals of
the work presented in this paper is to be able to intelligently
schedule multiple and flexible requests.

In [1], Ayyangar et al. proposed extensions to the RSVP-
TE protocol [2] that describes how end-to-end label switched
paths (LSPs) can be established from individual LSP seg-
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Figure 10: BAGs for the links within the network.

ments. However, such an extension is incapable of and does
not aim to determine the appropriate amount of bandwidth
to reserve for multiple flexible requests. In other words,
their proposed protocol does not have the intelligent QoS
component that we develop in this paper.

MPLS traffic engineering (TE) software [15] by CISCO en-
ables traffic engineering only on MPLS enabled networks.
It uses constraint-based-routing and uses RSVP to establish
MPLS tunnels across the backbone. In contrast to MPLS-
TE, our architecture can work with multiple WANs employ-
ing heterogenous QoS enabling technologies. As an example,
in our experimental results, Diffserv and PBR were used
at end site LANs whereas ESnet and Internet2 employed
MPLS within WANs. Furthermore, MPLS traffic engineer-
ing cannot accommodate the type of deadline driven flexible
requests that we consider in our work.

In [17], McKeown et al. proposed an standard called Open-
Flow that aims to provide an interface to update routing
tables within routers and switches. Once a router is Open-
Flow enabled, one can use OpenFlow drivers to update rout-
ing tables. In [7], Curtis et al. proposed another architec-

ture, called DevoFlow, as a modification to the OpenFlow.
DevoFlow was shown to perform better than OpenFlow on
high-performance networks. OpenFlow and DevoFlow, how-
ever, are not available on most commercial routers. As an
example, all the routers used in our experiments do not sup-
port either of these. As a result, we developed the router
configuration drivers by using the API provided by the router
vendors. Once OpenFlow or DevoFlow are adopted by ma-
jor router vendors, we can easily add them as one of the
component within our LAN-manager to configure routers.

In [22], Sherwood et al. used OpenFlow as the underlying
mechanism, and introduced FlowVisor that can be used to
reserve the desired resources (e.g., bandwidth) within real
world networks. In contrast to our work, the bandwidth
reservations in their deployed system had to be made man-
ually via request submissions to a network administrator.
Furthermore, the FlowVisor does not aim to intelligently
handle multiple and flexible resource reservation requests as
we do in our work.

In [23], Wilson et al. developed a deadline aware delivery
control protocol called D3. In contrast to our work, D3



requires explicit modifications to the routers within the net-
work. Furthermore, D3 works within data center networks
and proposes modifications to the underlying transport layer
protocol. In contrast, our QoS architecture works across
WANs and can accommodate any underlying transport layer
protocol.

NetStitcher [16] is another system that proposes to use left-
over bandwidth at different times to transfer data between
data-centers at multiple locations. However, the perfor-
mance of NetSticher depends on an imperfect knowledge of
traffic conditions. Our proposed intelligent QoS architec-
ture maintains this required bandwidth knowledge, and can
perform efficient data transfers between different sites. As a
result, NetSticher could use our proposed system to better
manage and schedule the left-over bandwidths.

In [21], Sharma et al. developed an algorithm to schedule
multiple and flexible resource reservation requests. However,
this algorithm works only when the source and destination
are connected via exactly one path, and cannot work for
a general network topology. Furthermore, in [21], authors
present simulation results and do not deploy their algorithm
on real networks.

There are few other theoretical works (see e.g., [11, 12, 19])
that are similar to [21] and consider the scheduling of flexi-
ble resource reservation requests. For the general overview
of QoS based routing, we refer readers to a comprehensive
survey in [24].

6. CONCLUSION
We have presented the design and implementation of an in-
telligent QoS system. The system can guarantee end-to-end
network QoS for multiple and flexible resource reservation
requests. A major component of the developed system is
a polynomial time scheduling algorithm called RRPC. The
RRPC algorithm performs a joint optimization of path con-
struction and bandwidth reservation for multiple and flex-
ible resource reservation requests. We showed such an op-
timization problem to be NP-hard. We implemented the
intelligent QoS system on real hardware serving real world
production networks. Our intelligent QoS system do not re-
quire any modifications or new software installation on the
routers within the network.
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