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Optimization of Geometric Multigrid for Emerging
Multi- and Manycore Processors

Samuel Williams1, Dhiraj D. Kalamkar2, Amik Singh3, Anand M. Deshpande2, Brian Van Straalen1,
Mikhail Smelyanskiy2, Ann Almgren1, Pradeep Dubey2, John Shalf1, Leonid Oliker1

1Lawrence Berkeley National Laboratory, 2Intel Corporation, 3University of California Berkeley

Abstract—Multigrid methods are widely used to accelerate
the convergence of iterative solvers for linear systems used
in a number of different application areas. In this paper,
we explore optimization techniques for geometric multigrid on
existing and emerging multicore systems including the Opteron-
based Cray XE6, Intel R© Xeon R© E5-2670 and X5550 processor-
based Infiniband clusters, as well as the new Intel R© Xeon
Phi

TM
coprocessor (Knights Corner). Our work examines a va-

riety of novel techniques including communication-aggregation,
threaded wavefront-based DRAM communication-avoiding, dy-
namic threading decisions, SIMDization, and fusion of operators.
We quantify performance through each phase of the V-cycle
for both single-node and distributed-memory experiments and
provide detailed analysis for each class of optimization. Results
show our optimizations yield significant speedups across a variety
of subdomain sizes while simultaneously demonstrating the
potential of multi- and manycore processors to dramatically
accelerate single-node performance. However, our analysis also
indicates that improvements in networks and communication will
be essential to reap the potential of manycore processors in large-
scale multigrid calculations.

Index Terms—Geometric Multigrid, communication-avoiding,
multicore, Xeon Phi, Knights Corner, OpenMP, auto-tuning

I. INTRODUCTION

In the past decades, continued increases in clock frequencies
have delivered exponential improvements in computer system
performance. However, this trend came to an abrupt end a few
years ago as power consumption became the principal rate
limiting factor. As a result, power constraints are driving ar-
chitectural designs towards ever-increasing numbers of cores,
wide data parallelism, potential heterogenous acceleration, and
a decreasing trend in per-core memory bandwidth. Under-
standing how to leverage these technologies in the context
of demanding numerical algorithms is likely the most urgent
challenge in high-end computing.

In this work, we explore the optimization of geometric
multigrid (MG) — one of the most important algorithms for
computational scientists — on a variety of leading multi- and
manycore architectural designs. Our primary contributions are:

• We examine a broad variety of leading multicore platforms,
including the Cray XE6, Intel R© Xeon R© E5-2670 and
X5550 processor-based Infiniband clusters, as well as
the new Intel R© Xeon Phi

TM
coprocessor (Knights Cor-

ner). This is the first study to examine the performance
characteristics of the recently announced Knights Corner
(KNC) production architecture. We introduce preliminary

work on porting this multigrid solver to an ECC-enabled
NVIDIA M2090 GPU.

• We optimize and analyze all the required components
within an entire multigrid V-cycle using a variable-
coefficient, Red-Black, Gauss-Seidel (GSRB) relaxation
on these advanced platforms. This is a significantly
more complex calculation than exploring just the stencil
operation on a large grid.

• We implement a number of effective optimizations geared
toward bandwidth-constrained, wide-SIMD, manycore ar-
chitectures including the application of wavefront to
variable-coefficient, Gauss-Seidel, Red-Black (GSRB),
SIMDization within the GSRB relaxation, and intelligent
communication-avoiding techniques that reduce DRAM
traffic. We also explore message aggregation, residual-
restriction fusion, nested parallelism, as well as CPU-
and KNC-specific tuning strategies.

• Additionally, we proxy the demanding characteristics of
real simulations, where relatively small subdomains (323

or 643) are dictated by the larger application. This results
in a broader set of performance challenges on manycore
architectures compared to using larger subdomains.

Overall results show a significant performance improvement
of up to 3.8× on KNC compared with the parallel reference
implementation (highlighted in Figure 7), while demonstrating
scalability on up to 24K cores on the XE6. Additionally, our
performance analysis with respect to the underlying hardware
features provides critical insight into the approaches and
challenges of effective numerical code optimization for highly-
parallel, next-generation platforms.

II. MULTIGRID OVERVIEW

Multigrid (MG) methods provide a powerful technique
to accelerate the convergence of iterative solvers for linear
systems and are therefore used extensively in a variety of
numerical simulations. Conventional iterative solvers operate
on data at a single resolution and often require too many
iterations to be viewed as computationally efficient. Multigrid
simulations create a hierarchy of grid levels and use correc-
tions of the solution from iterations on the coarser levels to
improve the convergence rate of the solution at the finest level.
Ideally, multigrid is an O(N) algorithm; thus, performance
optimization on our studied multigrid implementation can only
yield constant speedups.
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progress within V-cycle	


Fig. 1. The Multigrid V-cycle for solving Luh = fh. Superscripts represent
grid spacing. Restriction (coarsening) is terminated at 8h. Nominally, a high-
performance, iterative solver is employed at the bottom.

Figure 1 shows the three phases of the multigrid V-cycle
for the solve of Luh = fh. First, a series of smooths reduce
the error while restrictions of the residual create progressively
coarser grids. The smooth is a conventional relaxation such
as Jacobi, successive over-relaxation (SOR), or Gauss-Seidel,
Red-Black (GSRB) which we used in our study as it has
superior convergence properties. The restriction of residual
(fh − Luh) is used to define the right-hand side at the next
coarser grid. At each progressively coarser level, the correction
(e.g. u2h) is initialized to zero. Second, once coarsening stops
(the grid size reaches one or terminated for performance), the
algorithm switches to a bottom solver which can be as simple
as applying multiple relaxes or as complicated as an algebraic
multigrid or direct sparse linear solver. Finally, the coarsest
correction is interpolated back up the V-cycle to progressively
finer grids where it is smoothed.

Nominally, one expects an order of magnitude reduction
in the residual per V-cycle. As each level performs O(1)
operations per grid point and 1

8 the work of the finer grid,
the overall computation is O(N) in the number of variables in
u. The linear operator can be arbitrarily complex as dictated
by the underlying physics, with a corresponding increase in
run time to perform the smooth computation. Section IV-B
details the problem specification used in our study.

III. RELATED WORK

Throughout this paper, we leverage the 3C’s taxonomy
when referring to cache misses [14]. In the past, operations
on large structured grids could easily be bound by capacity
misses, leading to a variety of studies on blocking and tiling
optimizations [9], [10], [16], [21], [22], [28], [29]. However,
a number of factors have made such approaches progressively
obsolete on modern platforms. On-chip caches have grown
by orders of magnitude and are increasingly able to capture
sufficient locality for the fixed box sizes associated with typical
MG methods. The rapid increase in on-chip parallelism has
also quickly out-striped available DRAM bandwidth resulting
in bandwidth-bound performance.

Thus, in recent years, numerous efforts have focused on
increasing temporal locality by fusing multiple stencil sweeps
through techniques like cache oblivious, time skewing, or

wavefront [8], [11], [12], [17], [19], [24], [27], [30]–[32].
Many of these efforts examined 2D or constant-coefficient
problems — features rarely seen in real-world applications.

Chan et al. explored how, using an auto-tuned approach, one
could restructure the MG V-cycle to improve time-to-solution
in the context of a 2D, constant-coefficient Laplacian [5]. This
approach is orthogonal to our implemented optimizations and
their technique could be incorporated in future work.

Studies have explored the performance of algebraic multi-
grid on GPUs [1], [2], while Sturmer et al. examined geometric
multigrid [25]. Perhaps the most closely related work is
that performed in Treibig’s, which implements a 2D GSRB
on SIMD architectures by separating and reordering the red
and black elements [26], additionally a 3D multigrid on an
IA-64 (Itanium) is implemented via temporal blocking. Our
work expands on these efforts by providing a unique set of
optimization strategies for multi- and manycore architectures.

IV. EXPERIMENTAL SETUP

A. Evaluated Platforms

We use the following systems in all our experiments. Their
key characteristics are summarized in Table I.

Cray XE6 “Hopper”: Hopper is a Cray XE6 MPP at NERSC
built from 6384 compute nodes each consisting of two 2.1 GHz
12-core Opteron (Magny Cours) processors [15]. In reality,
each Opteron socket is comprised of two 6-core chips each
with two DDR3-1333 memory controllers. Effectively, the
compute nodes are comprised of four (non-uniform memory
access) NUMA nodes, each providing about 12 GB/s of
STREAM [18] bandwidth. Each core uses 2-way SSE3 SIMD
and includes both a 64KB L1 and a 512KB L2 cache, while
each socket includes a 6MB L3 cache with 1MB reserved for
the probe filter. The compute nodes are connected through the
Gemini network into a 3D torus.

Intel R© Xeon R© X5550-Infiniband Cluster “Carver”: The
Carver cluster at NERSC is built from 1202 compute nodes
mostly consisting of two 2.66 GHz, quad-core Intel R© Xeon R©

X5550 processors [4]. Thus, each compute node consists of
two NUMA nodes. Each quad-core Nehalem (NHM) socket
includes an 8 MB L3 cache and three DDR3 memory con-
trollers providing about 18 GB/s of STREAM bandwidth.
Each core implements the 2-way SSSE3 SIMD instruction
set and includes both a 32KB L1 and a 256KB L2 cache.
HyperThreading is disabled on Carver. The compute nodes are
connected through the 4X QDR Infiniband network arranged
into local fat trees and a global 2D mesh.

Intel R© Xeon R© E5-2670-Infiniband Cluster “Gordon”: The
Gordon cluster at the San Diego Supercomputing Center is
comprised of 1024 compute nodes each with two 2.6 GHz,
8-core Intel R© Xeon R© E5-2670 processors [13]. Each 8-core
Sandy Bridge (SNBe) processor includes a 20 MB L3 cache
and four DDR3-1333 memory controllers providing about
35 GB/s of STREAM bandwidth. Each core implements the 4-
way AVX SIMD instruction set and includes both a 32KB L1
and a 256KB L2 cache. This provides Gordon with four times



Core AMD Intel Intel Intel NVIDIA
Arch. Opteron NHM SNBe KNC§ Fermi

Clock (GHz) 2.10 2.66 2.60 1.30 1.30
DP GFlop/s 8.40 10.66 20.80 20.80 83.21

D$ (KB) 64+512 32+256 32+256 32+512 481

Memory- HW- HW- HW- HW- multi-
Parallelism prefetch prefetch prefetch prefetch threading

Node Cray Xeon Xeon Xeon Tesla
Arch. XE6 X5550 E5-2670 Phi§ M2090

Cores/chip 6 4 8 60 161

LL$/chip 5 MB 8 MB 20 MB — 768 KB
Chips/node 4 2 2 1 1

DP GFlop/s 201.6 85.33 332.8 1248 665.6
STREAM2 49.4 GB/s 38 GB/s 70 GB/s 150 GB/s 120 GB/s

Memory 32 GB 24 GB 64 GB 4 GB 6 GB
System Hopper Carver Gordon

Gemini InfiniBand InfiniBandInterconnect
3D Torus Fat Tree 3D Torus

— —

Prog Model MPI/OMP MPI/OMP MPI/OMP OMP CUDA
Compiler icc 12.1.2 icc 12.1.2 icc 12.1.2 icc 13.0.036 4.1

TABLE I
Overview of Evaluated Platforms. 1Each shared multiprocessor (SM)
is one “core” and includes 32K thread-private registers. 2STREAM

copy on CPUs, SHOC [7] on GPUs.

the peak performance and twice the sustained bandwidth as
Carver. HyperThreading is disabled on Gordon. The compute
nodes are connected through the 4X QDR Infiniband network
with switches arranged into torus.

Intel R© Xeon Phi
TM

coprocessor “KNC”: Knights Corner
(KNC) is the first production coprocessor in the Intel R© Xeon
Phi

TM
product family. It is an x86-based, many-core processor

architecture based on small, in-order cores that uniquely com-
bines the full programmability of today’s general purpose CPU
architecture with the compute throughput and memory band-
width capabilities of modern GPU architectures. As a result,
standard parallel programming approaches like Pthreads or
OpenMP apply to KNC — a potential boon to portability. Each
core is a general-purpose processor that includes a scalar unit
based on the Pentium processor design and a vector unit that
may perform eight 64-bit floating-point or integer operations
per clock. The KNC pipeline is dual-issue: scalar instructions
can pair and issue in the same cycle as vector instructions. To
further hide latency, each core is 4-way multithreaded. This
provides KNC§ with a peak double-precision performance of
1.2 TFLop/s and STREAM bandwidth of 150 GB/s (with ECC
enabled). KNC has two levels of cache: a low latency 32KB
L1 data cache and a larger, globally-coherent L2 cache that is
partitioned among the cores, with 512KB per core. All KNC
experiments were run in native mode in which the memory
hierarchy and thread execution model are Xeon Phi-centric.
Thus, on KNC, heterogeneity is invisible to the programmer.

NVIDIA M2090-accelerated Node: The M2090 Fermi GPU
includes 512 scalar “CUDA cores” running at 1.30 GHz and
grouped into sixteen SIMT-based streaming multiprocessors
(SM). This provides a peak double-precision floating-point

§Evaluation card only and not necessarily reflective of production card
specifications.

helmholtz[i,j,k] = a*alpha[i,j,k]*phi[i,j,k] - b*h2inv*( 
  beta_i[i+1,j,k] * ( phi[i+1,j,k] - phi[i,j,k]   ) - 

  beta_i[i,j,k]   * ( phi[i,j,k]   - phi[i-1,j,k] ) + 
  beta_j[i,j+1,k] * ( phi[i,j+1,k] - phi[i,j,k]   ) - 

  beta_j[i,j,k]   * ( phi[i,j,k]   - phi[i,j-1,k] ) + 
  beta_k[i,j,k+1] * ( phi[i,j,k+1] - phi[i,j,k]   ) - 
  beta_k[i,j,k]   * ( phi[i,j,k]   - phi[i,j,k-1] ) 

) 

phi[i,j,k] = phi[i,j,k] –  
  lambda[i,j,k] * ( helmholtz[i,j,k] - rhs[i,j,k] ) 

Fig. 2. Inner operation for Gauss-Seidel Red-Black relaxation on a variable-
coefficient Helmholtz operator, where phi[] is the correction. Note that 7
arrays must be read, and 1 array written assuming the Helmholtz is not stored.

capability of 665 GFlop/s. Each SM includes a 128 KB register
file and a 64 KB SRAM that can be partitioned between cache
and “shared” memory in a 3:1 ratio. Although the GPU has
a raw pin bandwidth of 177 GB/s to its on-board 6 GB of
GDDR5 DRAM, the measured bandwidth with ECC enabled
is about 120 GB/s. ECC is enabled in all our experiments.

B. Problem Specification

A key goal of our work is to analyze the computational
challenges of multigrid in the context of multi- and manycore,
optimization, and programming model. We therefore construct
a compact multigrid solver benchmark that creates a global
3D domain partitioned into subdomains sized to proxy those
found in real MG applications. We also explore the use of 323

and 1283 subdomains to estimate the ultimate performance of
memory bandwidth-constrained multigrid codes. The resultant
list of subdomains is then partitioned among multiple MPI
processes on platforms with multiple NUMA nodes. All sub-
domains (whether on the same node or not) must explicitly
exchange ghost zones with their neighboring subdomains,
ensuring an effective communication proxy of MG codes.

We use a double-precision, finite volume discretization of
the variable-coefficient operator L = a~αI − b∇~β∇ with peri-
odic boundary conditions as the linear operator within our test
problem. Variable-coefficient is an essential (yet particularly
challenging) facet as most real-world applications demand it.
The right-hand side (f ) is sin(2πx)sin(2πy)sin(2πz) on the
[0,1] cubical domain. The u, f , and ~α are cell-centered data,
while the ~β’s are face-centered.

To enable direct time-to-solution comparisons of different
node architectures, we fix the problem size to a 2563 dis-
cretization on all platforms. This (relatively small) grid size
in conjunction with partitioning into subdomains, the variable-
coefficient nature of our computation, and buffers required for
exchanging data, consumes more than 2.5GB — sufficiently
small for KNC. Our baseline for node comparison is the
performance of the 4-chip Opteron-based Cray XE6 node, the
2-chip Intel Xeon nodes, and the single chip KNC coprocessor
running in native mode solving one 2563 problem.

To allow for uniform benchmarking across the platforms,
we structure a truncated V-cycle where restriction stops at the
coarsest level of 43. We fix the number of V-cycles at 10 and
perform two relaxations at each level down the V-cycle, 24



Collection of 
subdomains 
owned by an 
MPI process 

one subdomain 
of 643 elements 

Thread 0 Thread 1 Thread 2 Thread 3 

Fig. 3. Visualization of the domain/process/subdomain hierarchy (left) and
the threaded GSRB wavefront computation and prefetching strategy within
each subdomain (right). Note, each subdomain is comprised of multiple grids
(correction, RHS, coefficients, etc...)

relaxes at the bottom, and two relaxations at each level up
the V-cycle. As this paper is focused on optimization the MG
V-cycle, a simple relaxation scheme at the bottom is sufficient
to attain single-node multigrid convergence.

Our relaxation scheme uses Gauss-Seidel Red-Black
(GSRB) which offers superior convergence compared to other
methods. It consists of two grid smooths (pardon the over-
loaded term) per relax each updating one color at a time,
for a total of eight smooths per subdomain per level per
V-cycle. The pseudocode for the resultant inner operation
is shown in Figure 2. Here, neither the Laplacian nor the
Helmholtz (Identity minus Laplacian) of a grid is ever actually
constructed, rather all these operations are fused together into
one GSRB relax. A similar calculation is used for calculating
the residual. Nominally, these operators require a one element
deep ghost zone constructed from neighboring subdomain
data. However, in order to leverage communication aggrega-
tion and communication avoiding techniques, we also explore
a 4-deep ghost zone that enables one to avoid DRAM data
movement at the expense of redundant computation. Although
the CPU code allows for residual correction form, it was not
employed in our experiments; observations show its use incurs
a negligible impact on performance of the v-cycle.

The data structure for a subdomain within a level is a list of
equally-sized grids (arrays) representing the correction, right-
hand side, residual, and coefficients each stored in a separate
array. Our implementations ensure that the core data structures
remain relatively unchanged with optimization. Although it
has been shown that separation of red and black points into
separate arrays can facilitate SIMDization [26], our bench-
mark forbids such optimization as they lack generality and
challenge other phases. As data movement is the fundamental
performance limiter, statically separating red and black will
provide little benefit in the long run as the same volume of
data transfer is still required.

C. Reference (Baseline) Implementation

The CPUs and KNC share a common reference implemen-
tation. This benchmark builds the MG solver by allocating
and initializing the requisite data structures, forming and
communicating restrictions of the coefficients, and performing

multiple solves. Given that each NUMA node is assigned one
MPI process, the single-node CPU experiments use 4 (XE6) or
2 (NHM, SNBe) MPI processes which collectively solve the
one 2563 problem (see Figure 3(left)). OpenMP parallelization
is applied to the list of subdomains owned by a given process.

When using threads for concurrency, each thread operates
independently on one subdomain at a time. For example, on
Gordon with 64 subdomains per node, each of the 16 OpenMP
threads will be responsible for 4 subdomains. The baseline
KNC code uses the same approach via native mode with
the caveat that only 64 threads scattered across the cores
can be active. We acknowledge that this will underutilize
and imbalance the 60-core, 240-thread machine. Nevertheless,
this style of flat parallelism is designed to proxy today’s
MG frameworks like CHOMBO or BoxLib [3], [6], and
serves as a common baseline. No communication avoiding,
cache blocking, hierarchical threading, SIMDization, or other
explicit optimizations are employed in the baseline OpenMP
version making it highly portable.

D. Distributed Memory Experiments

To quantify the impact of network architecture and com-
munication aggregation on the performance of large-scale V-
cycle simulations, we conduct a series of weak scalability
experiments, assigning a full 2563 domain to each NUMA
node. Thus, a 1K3 domain requires only 64 NUMA nodes —
16 compute nodes on Hopper and 32 nodes on Carver/Gordon.
Future work will expand our study to explore distributed
memory performance on GPUs and KNCs.

V. PERFORMANCE CHALLENGES AND EXPECTATIONS

In our implementation, there are five principal functions at
each level: smooth, residual, restriction, interpolation, and ex-
change. Smooth is called eight times, Exchange nine, and the
others once. In the baseline implementation, data dependencies
mandate each function be called in sequence. Descending
through the V-cycle, the amount of parallelism in smooth,
residual, restriction, and interpolation decrease by a factor of
eight, while working sets decrease by a factor of four. This
creates an interesting and challenging interplay between intra-
and inter-box parallelism.

Smooth: Nominally, smooth dominates the run time. This
function performs the GSRB relax (stencil) on every other
point (one color), and writes the updated correction back to
DRAM. For a 643 subdomain with a 1-deep ghost zone, this
corresponds to a working set of about 340KB (10 planes from
7 different arrays), the movement of 2.3M doubles (8 ∗ 663),
and execution of 3.3M floating-point operations (25 flops on
every other point). As a subsequent call to smooth is not
possible without communication, its flop:byte ratio of less
than 0.18 results in performance heavily bound by DRAM
bandwidth. In fact, with 50 GB/s of STREAM bandwidth,
Smooth will consume at least 1.88 seconds at the finest grid.
Although GSRB is particularly challenging to SIMDize, its
memory-bound nature avoids any performance loss without it.



Residual is quite similar to Smooth but lacking GSRB and
accesses to the coefficient ~λ.

Restriction: Restriction reads in the residual and averages
eight neighboring cells. This produces a grid (f2h) nominally
8× smaller — a 643 grid is restricted down to 323 (plus a
ghost zone). Such a code has a flop:byte ratio of just under
0.09 and is thus likely to be heavily bandwidth-bound.

Interpolation: Interpolation is the mirror image of restric-
tion: each element of u2h is used to increment eight elements
of uh. It typically moves almost twice as much data as restrict
and has a flop:byte ratio less than 0.053.

Exchange Boundaries: For the single-node experiments, this
function contains three loop nests. First, the (non-ghost zone)
surface of each 3D subdomain is extracted and packed into 26
surface buffers representing the 26 possible neighboring sub-
domains. Second, buffers are exchanged between subdomains
into a set of 26 ghost zone buffers. Due to the shape of our
stencil, in the baseline implementation, each subdomain only
communicates with its six neighboring subdomains. Finally,
the data in the ghost zone buffers is copied into the subdomain
grids. Although there are no floating-point operations in this
routine, there is a great deal of data movement often with
poor sequential locality. In the MPI implementation, each
subdomain determines whether its neighbor is on- or off-node,
and uses either an MPI_ISend or a memcpy().

VI. OPTIMIZATION

A. Communication Aggregation

In an MPI version, each subdomain can potentially initiate
its own ISend/IRecv combination, thereby flooding the net-
work. To rectify this, the baseline code aggregates and buffers
off-node ghost-zone exchanges through 26 process-level send
and receive buffers, thus keeping the message count constant
regardless of the number of subdomains per process.

To improve communication performance, it is well known
that transferring a deeper ghost zone can be used to reduce the
number of communication phases at the expense of redundant
computation required to produce a bit-identical result. That
is, rather than four-rounds of smoothing each 643 grid, four
smooths can be performed in one pass through a 703 grid; we
therefore explore sending both a 1-element and a 4-element
deep ghost zone. The latter necessitates communication with
all 26 neighbors (faces, edges, and corners) instead of simply
the 6 faces required by the 1-element ghost zone and our
stencil. As we duplicate the work of neighboring subdomains,
we are required to duplicate their values of the ~α and ~β
coefficients when building the solver, and the right-hand side at
each level of each V-cycle. Thus, communication aggregation
can significantly increase inter-subdomain communication.

B. DRAM Communication Avoiding

Given that the core routines within the V-cycle are memory-
bound, we explore opportunities to improve temporal locality
and avoid DRAM data movement. Although the communi-
cation aggregation approach has the potential for improved

operation 643 323 163 83 43

smooth 3.08× 2.46× 1.69× 0.98× 0.50×
residual+restriction 0.77× 0.61× 0.41× 0.24× N/A

interpolation 0.75× 0.58× 0.38× 0.21× N/A

TABLE II
Theoretical limits on speedups of DRAM communication-avoiding
scheme compared to naive (assuming arbitrarily fast cores/caches)

based on data movement of grid sizes with 1- or 4-deep ghost zones.

locality in smooth, it requires an extremely large working set
of 20MB (seven arrays ×723) per subdomain at the finest
resolution — likely too large to be exploited by our processors.

To minimize the working set and enable a streaming model,
we implement a wavefront approach [32] to the Gauss-Seidel,
Red-Black relax operation. As shown in Figure 3(right), our
communication-avoiding approach constructs a wavefront of
computation 4-planes deep (matching the number of relaxes)
that sweep through the subdomain in the k-dimension (least
unit stride). With 4 planes of seven arrays (plus two leading
and one trailing plane), the aggregate working set of this
technique is roughly 250×Dimi×Dimj , or approximately
1.23 MB at the finest grid. For the CPUs, this is small enough
to allow each thread to operate on independent subdomains
while still attaining locality in the L3 cache (see Table I).
For our other platforms, threading or blocking is necessary
within a subdomain to reduce the working set sufficiently
to fit into on-chip memory. However, as the computation
descends through the V-cycle, the working set is naturally
reduced to the point where it fits into the L2 or L1 cache.
Ideally, the programmer or underlying architecture provides a
mechanism to overlap DRAM-cache data transfers of the next
plane (highlighted in blue Figure 3(right)) and the computation
on the four trailing planes. Failure to do so will result DRAM
overheads being amortized (rather than hidden) by multiple
fast cache accesses.

Table II quantifies the theoretical benefits from improved
locality and costs from increased grid sizes of communication
avoiding on local operations at each level. The model is
based on the volume of data movement (the 663 or 723

grids including ghost zones). Finite cache bandwidth, cache
capacity, and in-core compute capability will limit the realized
benefits attained without affecting the performance costs in
residual, restriction, and interpolation. Despite the fact that
grids nominally increase by at least 30% with the addition of
a 4-deep ghost zone, kernels called multiple times like smooth
can be restructured to move this data once (instead of four
times). Thus, at the finest grid, there is a potential 3× reduction
in smooth run time at the cost of at least a 30% increase
in residual, restriction, and interpolation time. Subsequent
descent through the V-cycle, will reduce the advantage for
smooth as an increasing volume of data is transferred per point
(thick ghost zones dominate the volume). This crossover point
is quantified in Section VII-B.



C. Residual-Restriction Fusion

The residual is immediately restricted to form the right-
hand side for the next level in the V-cycle and then discarded.
We therefore may fuse the residual and restriction into a one
operation to avoid superfluous DRAM communication. Future
work will investigate the potential of fusing Smooth, Residual,
and Restriction, and eliminating the communication of the
correction down the V-cycle via a ghost-zone depth of five.

D. Correction Communication Avoiding

The correction is globally initialized to zero for all levels of
the V-cycle except the finest. Thus when using 2 GSRB relaxes
and a ghost-zone depth of 4, we can guarantee that in the
one exchange of the correction, each subdomain will entirely
receive zeros from its neighboring subdomains. Therefore we
can eliminate communication of the correction for all coars-
ened levels and thus obviate this extraneous communication.

E. CPU-Specific Optimizations

The baseline CPU implementation uses MPI to parallelize
subdomains across NUMA nodes combined with OpenMP to
parallelize computation over the list of subdomains within
each process. However, this form of concurrent execution
within a process demands an aggregate cache working set
proportional to the number of threads. Even when wavefront
is applied to realize communication avoiding, this working
set can reach nearly 8MB on the Opteron — far larger than
the 5MB of usable L3 cache. To rectify this, we developed a
collaborative (or threaded) wavefront for Smooth on grids 643

and larger, which dramatically reduces the cache working set
to the point where locality of 4 planes may be maintained in
the L2 cache. This is realized via the parallelization scheme
shown in Figure 3(right) using an OpenMP parallel region
in which loop bounds are statically calculated and a spin
barrier is implemented to ensure threads proceed in lock-
step. Parallelization in the j-Dimension via a #pragma omp
parallel for or using an OpenMP barrier incurred too
much overhead.

However, the threaded wavefront implementation presents a
new challenge in the form of sequential locality. Each thread
will access a contiguous block of data of size approximately
Dimi ∗Dimj/NThreads or roughly 5KB on SNBe. Unfor-
tunately, hardware prefetchers can become ineffective on such
short stanza accesses. To rectify this, we incorporated software
prefetch intrinsics to prefetch the region highlighted in blue
Figure 3(right) and interleave them with the computation on
the four trailing planes. Essentially, one prefetch is generated
per array for every 32 stencils — the product of the number
of planes in the wavefront and the number of elements in a
cache line. Although this is a crude approach to decoupling
data movement from computation, it did provide a noticeable
performance gain. Note that the collaborative threading ap-
proach has its limits, and is not used on 323 or smaller grids.

To maximize inner loop performance, a code generator was
written in Perl to generate SSE or AVX SIMD intrinsics for
all stencils within a pencil (all values of i for a given j, k

coordinate). Since it is often impractical for MG developers
to change data structures within full-scale applications, we
preserve the interleaving of red and black within memory.
Thus to SIMDize the GSRB kernel, we perform the kernel in
a SIMD register as if it were Jacobi, but merge the original red
or black value into the SIMD register via blendvpd before
committing to memory. Although such an approach potentially
wastes half the compute capability of a core, it incurs no more
L1, L2, or DRAM bandwidth — the latter being a fundamental
bottleneck for existing and future architectural designs.

Finally, the buffer exchange of the communication phase
was optimized via with the cache bypass movnt intrinsic. This
optimization remains important when descending through the
V-cycle as the aggregate buffer size can remain quite large. We
use OpenMP to parallelize over the list of subdomains. CPU-
specific optimization of the bandwidth-bound interpolation or
residual was deemed unnecessary.

F. KNC-Specific Optimizations

KNC optimization started with the common baseline code
between CPU and KNC (plus a few KNC-specific compiler
flags), and explored hierarchical parallelism on inter- and intra-
subdomain levels, added SIMD intrinsics, and finally included
memory optimizations to maximize cache locality and mini-
mize conflict misses through array padding. Orthogonal to this
optimization was the use of communication aggregation and
communication avoiding via wavefront.

The application of OpenMP in the baseline code presumes
there is more parallelism across subdomains (64) than there is
in hardware. While true on the CPUs, the domain-level par-
allelism is deficient by nearly a factor of four when targeting
KNC which supports 240 hardware threads. To address this
we applied nested parallelism at two levels. In the first level,
the aggregate L2 capacity was used to heuristically estimate
the total concurrency in subdomains (NS) at the finest level
(643) that can be attained without generating capacity misses.
In the second level, 4(b60/NSc) threads are assigned using
compact affinity to smooth a given subdomain. Pencils within
a plane are interleaved among threads to maximize sharing
among threads within a core. A #pragma omp parallel
construct was used to control the complex dissemination of
subdomain- and pencil-level operations among threads.

This static approach to parallelism becomes inefficient when
descending through the V-cycle — exponentially decreasing
grid sizes suggests that intra-box parallelism can be traded
for inter-box. Therefore, profiling was used to construct an
auto-tuner that selects the optimal balance between threads
per subdomain and the number of concurrent subdomains at
each level of the V-cycle. Once again, this is expressed within
a #pragma omp parallel region.

Initial application of the communication avoiding wavefront
yielded disappointing results. This is because the compiler was
unable to accurately insert software prefetches for this complex
memory access pattern (unlike the relatively simple memory
access pattern of the baseline implementations). Thus, for
wavefront approach in GSRB kernel, we inserted prefetches
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Fig. 4. Breakdown of time at the finest level for the baseline and fully-
optimized communication-avoiding (+CA) versions.

manually. The rest of the code still uses automatic software
prefetches inserted by the compiler.

To maximize performance of in-cache computations, SIMD
intrinsics were applied to the GSRB kernel. Similar to the
approach on CPUs, we compute as if doing Jacobi and use
masked stores to selectively update red or black values in
memory. Moreover, large (2MB) TLB pages were used, and
the starting address of each array was padded to avoid a deluge
of conflict misses when multithreaded cores perform variable-
coefficient stencils within near power-of-two grids. Similarly,
the i-dimension (including the ghost zones) was padded to a
multiple of 64 bytes.

To minimize the number of communicating neighbors, the
KNC implementation leverages the shift algorithm [20] in
which communication proceeds in three phases corresponding
to communication in i, j, and k, where in each phase, the
subdomains only communicates with their two neighbors.

VII. SINGLE-NODE RESULTS AND ANALYSIS

All experiments in this section use one MPI process per
NUMA node (i.e. 4 MPI processes on one XE6 node).

A. Performance on the Finest Grids

Figure 4 shows a breakdown of the total time spent on
the finest grids before and after optimization. Note that the
multigrid time is expected to be dominated by the execution at
the finest resolution. Overall results show impressive speedups
from our optimization suite ranging from 1.6× on the X5550
cluster to over 5.4× on KNC. Observe that the overhead of
Smooth for DRAM communication-avoiding accelerated all
CPUs and KNC. Conversely, we see that aggregating ghost
zone exchanges showed practically no performance benefit
on the CPUs, while significantly reducing communication
overheads on KNC by 33%.

In order to understand these seemingly contradictory perfor-
mance effects on Smooth for CPUs and KNC, we construct
a simple data movement and bandwidth model for each

System XE6 NHM SNBe KNC
STREAM (GB/s)1 49.4 38 70 150

Time (seconds) 1.84 2.63 1.37 1.97
Reference Data Moved (109B) 94.2 94.2 94.2 94.2

Bandwidth (GB/s) 51.2 35.8 68.7 47.9
Time (seconds) 1.00 1.64 0.66 0.36Comm.

Data Moved (109B) 30.6 30.6 30.6 30.6Avoiding
Bandwidth (GB/s) 30.7 18.6 46.4 85.0

Speedup 1.8× 1.6× 2.1× 5.4×
TABLE III

Estimated data movement and effective DRAM bandwidth for
smooth() on the finest (643) grids summed across all V-cycles before

and after communication avoiding.. 1See Table I.
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Fig. 5. Time by level before and after full optimization. Note, dotted lines
are baseline, solid are the fully-optimized, communication-avoiding version.
For clarity, only SNBe and KNC are show. Note, there are 24 relaxes in level
4 (the bottom) and 4 relaxes elsewhere.

architecture. Table III shows that the reference implementation
of Smooth on all CPUs attain an extremely high percentage
of STREAM bandwidth. Conversely, the reference implemen-
tation using naive threading dramatically underutilizes KNC.
With optimized nested parallelism using OpenMP, KNC’s
Smooth performance more than doubles, attaining a sustained
bandwidth of over 120 GB/s (80% of STREAM).

In practice, DRAM communication-avoiding implementa-
tions move less than one-third of the data on CPUs and KNC
— the thick ghost zones inhibit attaining the ideal one-quarter.
Unfortunately, the complex memory access pattern does not
synergize well with a hardware prefetcher. As a result Table III
shows the sustained bandwidth is less than ideal.

B. Performance of the V-Cycle

Figure 5 presents the total time spent at each V-cycle level
before and after tuning. Recall that 4 (2 when going down the
v-cycle, plus 2 more when coming up) relaxes are performed at
each level except the bottom, where 24 relaxes are used; thus
explaining the graph’s inflection point at the coarsest level.

As discussed in Section VII-A, results show that our thread-
ing and optimization techniques on CPUs and KNC ensure
significant performance improvements at the finest grids. In-
terestingly, on SNBe, the non-communication avoiding version
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Fig. 6. KNC solver speedup as a function of progressive optimization and
normalized to the baseline implementation. Note, in addition to overall solver
speedup, we also show speedup of Smooth on the finest grids.

is faster than either the optimized SNBe or KNC at the coarsest
grids. Not surprising given that the communication-avoiding
version will perform 27× more flops and move 4× more
data between subdomains on the coarsest grid. However, as
the overhead at the bottom level is more than two orders of
magnitude less than the time at the finest grid, the impact is
minor and does not motivate heterogeneous optimization.

C. KNC Performance Analysis

Given that this is the first study describing performance
of KNC, we now present a more detailed description of our
optimization impact. Figure 6 shows the benefit of progressive
optimization levels for both Smooth and the overall solve
time normalized to the corresponding OpenMP baseline imple-
mentation on KNC. Observe that nested threading’s superior
utilization of hardware threads improves the overall solve
time by a factor of 2.2×. Additionally, our auto-tuned thread-
ing further improves performance another 7% by optimizing
thread distribution for each level. Note that communication-
aggregation/avoiding is only applied starting with wavefront,
where without proper prefetching, the complex data move-
ment patterns cannot be efficiently realized by the compiler
alone, resulting in lowered performance. However, combining
tuned threading, wavefront, hand-tuned prefetching, and SIMD
vectorization, improves performance by 74% on Smooth and
43% overall. Finally array padding and the use of 2MB pages
give an additional performance boost resulting in a significant
overall speedup of 5.4× and 3.8× for Smooth and solver time
respectively.

D. Overall Speedup for the MG Solver

Figure 7 presents the overall performance (higher is better)
of the multigrid solver before and after optimization, nor-
malized to baseline Opteron performance. Here we integrate
the performance trends in Figure 5 and observe that the
fastest machine for the baseline implementation is SNBe —
no surprise given the mismatch between parallelism in the
code and parallelism in KNC. However, proper exploitation
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Fig. 7. Solver performance normalized to the baseline implementation on
the Opteron-based Cray XE6 compute node. Note, on all platforms, “Comm.
Avoiding” includes SIMD, and all other architecture-specific optimizations.

of thread-level parallelism on KNC can more than double the
performance of the solver.

With full tuning (communication-avoiding, SIMD, prefetch,
etc.), results show see an 1.5× and 3.8× increase in solver
performance on SNBe and KNC respectively. Although KNC
was able to attain a speedup of about 5.4× on Smooth on the
finest grids, the time spent in the other phases and in the other
levels amortizes this benefit. Overall, the KNC exceeds SNBe
performance by 1.75× while exceed the XE6 by almost 2.5×.
Conversely, the high working sets associated with the smooth
operator in a GPU implementation coupled with limited on-
core memory will limit the GPUs ability to form sufficient
locality on chip, thus wasting much of its bandwidth potential
on redundant or superfluous data movement. Fundamentally,
without sufficient on-chip memory or the ability to schedule
and synchronize thread blocks, GPU’s will be unable to realize
the ultimate potential of communication-avoiding.

E. Impact of Subdomain Size on Solve Time

Many realistic applications, require the use of multiple
subdomains (e.g. multiple chemical species) whose size is
constrained by the full-scale simulation requirements. Appli-
cations with more species or variables further constrain the
size of the subdomains. To proxy this effect, we examine the
impact on performance when using 323 or 1283 subdomains.
Table IV shows there is typically a 30% performance reduction
in the solve time for the smaller subdomain configuration; this
is potentially an acceptable penalty if, for example, it enables
a commensurate reduction in the total number of refined
elements of an AMR calculation. For these 323 subdomains,
the benefits of Smooth are diminished (thick ghost zones
increasingly dominate data movement) while the total time
spent in inter-subdomain communication more than doubles
(additional subdomains). Conversely, the performance gains
for 1283 subdomains can increase by up to 22% (KNC), due
to Smooth speedup and communication overhead reduction.



Subdomain Opteron NHM SNBe KNC
323 0.70× 0.67× 0.65× 0.71×

1283 0.98× 1.16× 1.18× 1.22×
TABLE IV

Solver speedup of varying subdomains sizes for the fixed 2563 per node
problem, normalized to optimized 643 subdomain performance.

F. Preliminary Results on GPUs

Preliminary GPU optimization work by Singh has exam-
ined the implementation and optimization of an identical
communication-avoiding multigrid solver running an identical
problem configuration on an NVIDIA M2090 GPU with ECC
enabled using CUDA [23]. The baseline GPU implementation
was a straightforward port of the CPU implementation with the
caveats that memory allocation was modified to allocate data
directly in device memory on the GPU, and all core OpenMP
routines were replaced with optimized CUDA kernels in which
data is streamed in the k-dimension and temporal locality
is captured in the registers and shared memory. No PCIe
transfers were included in the timings and the GPU code was
compiled with -dlcm=cg to compensate for the misaligned
uncoalesced nature of our stencils.

An initial examination of the non-communication-avoiding
GPU implementation showed that over 30% of the time is
spent in inter-subdomain communication and over 60% in
Smooth. He therefore explored communication-aggregation
to minimize the ghost zone bottleneck and communication-
avoiding to avoid a potential device DRAM bottleneck.

As GPUs lack cache coherency, realizing communication-
avoiding on a GPU requires a somewhat different implementa-
tion. In the non-coherent communication-avoiding implemen-
tation, thread blocks duplicate each other’s work in much the
same way we describe how MPI processes duplicate each
others work. Thus, to advance an 8×8 patch of the correction
by 4 GSRB iterations, a thread block must read a 162 patch and
perform stencils on 142, 122, 102, and 82 patches in sequence
as one streams through the k-dimension in a wavefront. As
GSRB is in-place, to avoid the write-after-read data hazard,
the updated correction is written to an auxiliary array. When
all threads have completed their computation, the auxiliary
array is copied back to the correction in bulk. Thus, his GPU
implementation requires substantially more data movement
than an implementation on a cache-coherent CPU.

One should note that when performing an advance by s-
steps, each thread block must keep at least 7s+3 planes in
fast memory. This translates to at least 31 doubles per thread
and more than 64KB per block. With such high pressure on
shared memory and registers, we have yet to reach parity with
the fastest multicore systems used in this paper. As the GPU
implementation is a work in progress, further GPU results and
analysis will not be included here.

VIII. SCALABILITY OF THE V-CYCLE

We now explore the scalability of the V-cycle in the
distributed memory environments. Note, the scalability of

0.0 

2.0 

4.0 

6.0 

8.0 

10.0 

12.0 

14.0 

1 8 64 512 4096 

To
ta

l T
im

e 
Sp

en
t i

n 
V-

C
yc

le
 

OpenMP Threaded Processes 

Hopper(ref) 
Hopper(opt) 
Carver(ref) 
Carver(opt) 
Gordon(ref) 
Gordon(opt) 

Fig. 8. MG weak scaling results. Note, there are 4, 6, and 8 cores per process
on Carver, Hopper, and Gordon; thus, Hopper uses up to 24,576 cores. All runs
allocate one process per NUMA node and 64×643 subdomains per process.

various bottom solvers is an important yet orthogonal issue
that will be examined in future work. Figure 8 shows the
weak scaling of the more desirable 2563 problem per NUMA
node (vs. 2563 per compute node) by doubling the number of
processes in each dimension, for a total of 24,576 cores on
the XE6 (Hopper). As described in Section VI, all off-node
messages are always aggregated through process-level buffers
to avoid overheads. Additionally, to proxy the limitations of
AMR applications in which the underlying grids are subject
to refinement, we do not leverage a cartesian mapping of MPI
processes. Rather, we are constrained by the performance of
the underlying job schedulers and network architectures.

Observe that for all studied concurrencies our optimizations
yield significant speedups. The Gordon SNBe cluster attains
the best overall performance and comparable scalability. A
detailed analysis of the performance breakdown shows that
only the MPI_Waitall() overhead increases with larger
scalability on all systems. Given the lack of cartesian process
mapping and an underlying 3D torus interconnect, we may
have effectively random placement of processes. Thus, ignor-
ing contention, each octupling in the number processes (for
weak scaling) is expected to double the number of required
message hops. For the large messages at the finest resolution,
we see MPI time saturates at high concurrencies. However,
for all coarser grids, the measured MPI time follows the
expected exponential trend doubling with concurrency through
512 processes. At 4K processes, results show a 4-7× increase
in MPI time, possibly indicating high congestion overheads;
future work will investigate reducing these overheads.

Finally, we can consider the impact of these data in the
context of a KNC-accelerated multi-node system. An extrapo-
lation based on the interconnect characteristics of the Gordon
cluster would result in 46% of the time spent in MPI. Clearly,
enhancements to network performance are essential to reap the
benefits of coprocessors or accelerators on MG calculations.

IX. CONCLUSIONS

Data movement is the primary impediment to high per-
formance on existing and emerging systems. To address this



limitation there are fundamentally two paths forward: algo-
rithmic and architectural. The former attempts to restructure
computation to minimize the total vertical (DRAM–cache) and
horizontal (MPI) data movements, while the latter leverages
technological advances to maximize data transfer bandwidth.

This paper explores both of these avenues in the context
of 3D geometric multigrid with a non-trivial operator —
a demanding algorithm widely-used by the computational
community. To reduce vertical and horizontal data move-
ment, we use communication-aggregation and communication-
avoiding techniques to create larger (but less frequent) mes-
sages between subdomains, while simultaneously increasing
the potential temporal reuse within the GSRB relaxation. Ad-
ditionally, we evaluate performance on the Intel R© Xeon Phi

TM

coprocessor which relies on GDDR5 to maximize bandwidth
at the expense of reduced on-node memory.

Results show that our threaded wavefront approach can
dramatically improve Smooth run time on the finer grids
despite the redundant work. Effectively implementing this
approach poses two significant challenges: how to productively
decouple DRAM loads from the in-cache computation on
the wavefront, and how to efficiently express sufficient par-
allelism without sacrificing sequential locality. On CPUs and
KNC, the hardware prefetchers designed to decouple memory
access through speculative loads are hindered by the lack
of sequential locality — an artifact of extreme thread-level
parallelization. On highly-multithreaded architectures like the
GPU, this is not an issue and parallelization in the unit-
stride is feasible. However, whereas evidence suggests that the
GPU’s limited on-chip memories will hamper realization of
communication-avoiding benefits, we’ve shown the CPUs and
KNC have sufficient on-chip memory and hardware support
for efficient intra-core coalescing of memory transactions to
realize the benefits of communication-avoiding.

On SNBe, our optimizations demonstrated a 50% overall
increase in solver performance over the baseline version; this
is an impressive speedup particularly given the memory-bound
nature of our hybrid MPI+OpenMP calculation. On KNC,
the performance gains are even more dramatic achieving a
3.5× improvement. These large gains are an artifact of thread
under-utilization in the baseline implementation combined
with a 1.6× increase in performance through communication
avoiding and various low-level optimization techniques.

Our work also shows that on CPUs and KNC, neither com-
munication aggregation nor DRAM communication avoiding
provided any substantial value on coarse grids deep in V-cycle.
Additionally, distributed memory experiments demonstrated
that, despite achieving scalability up to 24,576 cores, the
substantial time spent in MPI will be an impediment to any
multi- or manycore system. Unfortunately, communication-
aggregation’s use of deep ghost zones can result in a 50%
increase in memory usage for 643 boxes and a 100% increase
in memory usage for 323 boxes. Thus, if DRAM capacity,
rather than raw bandwidth, is the ultimate constraint on
the road to exascale, the impact of communication-avoiding
techniques will be hindered.

The common OpenMP implementation shared by CPUs and
KNC is a significant step in manycore portability and pro-
grammability. This stands in stark contrast with GPUs which
often required a total rewrite in CUDA to make parallelism
and locality explicit in order to maximize performance. Nev-
ertheless, substantial restructuring for parallelism was required
to deliver high-performance on KNC. Moreover, in order to
maximize performance, CPUs and KNC required the time-
consuming use of SIMD intrinsics in order to make parallelism
explicit. Portable constructs that allow multiple, variably-sized,
collaborating thread teams will be essential in the future
to maximize performance and productivity on all platforms.
Ultimately, one requires the best of both worlds. The fidelity
afforded by CUDA when necessary, and the programmability
of a more conventional OpenMP approach everywhere else.

In the context of communication-avoiding multigrid, as
CUDA is not premised on the concept that programmers
should be able to reason about the execution ordering of
thread blocks, it is particularly challenging for CUDA thread
blocks to form a shared working set in the L2. This stands in
stark contrast to CPUs/KNC where programmers can manually
orchestrate thread execution to form constructive locality.
Compiler analysis that allows software or hardware threading
runtimes to schedule for shared locality may solve this issue.

Future work will complete our studies of multigrid on GPUs
by examining the benefits of expanded register sets in Kepler-
class GPUs on the communication-avoiding implementation.
Will will then extend the GPU and KNC implementations
to hybrid MPI+OpenMP or MPI+CUDA versions so that we
may conduct scalability studies. We have observed that on-
node data marshaling for MPI is a substantial impediment
to communication performance, particularly at the bottom of
the V-cycle. Exploration of techniques to mitigate this are
increasingly important for large-scale MPI concurrency. We
will examine techniques to improve productivity and porta-
bility (e.g. nested OpenMP on CPUs, OpenACC on GPUs)
in collaboratively threaded environments. Finally, we will
explore optimization and communication-avoiding techniques
in matrix-free Krylov Subspace methods like BiCGstab for
fast bottom solves on supercomputers.
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