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Abstract— Many scientific applications operate in a bulk-
synchronous mode of iterative communication and computation
steps. Even though the communication steps happen at the same
logical time, important patterns such as stencil computations
cannot be expressed as collective communications in MPI. We
demonstrate how neighborhood collective operations allow to
specify arbitrary collective communication relations during run-
time and enable optimizations similar to traditional collective
calls. We show a number of optimization opportunities and algo-
rithms for different communication scenarios. We also show how
users can assert constraints that provide additional optimization
opportunities in a portable way. We demonstrate the utility of
all described optimizations in a highly optimized implementation
of neighborhood collective operations. Our communication and
protocol optimizations result in a performance improvement of
up to a factor of two for small stencil communications. We found
that, for some patterns, our optimization heuristics automatically
generate communication schedules that are comparable to hand-
tuned collectives. With those optimizations in place, we are able
to accelerate arbitrary collective communication patterns, such
as regular and irregular stencils with optimization methods for
collective communications. We expect that our methods will
influence the design of future MPI libraries and provide a
significant performance benefit on large-scale systems.

I. INTRODUCTION

The Bulk Synchronous Parallel (BSP) style of programming
using the Message Passing Interface (MPI) is one of the most
popular parallel programming paradigms in High Performance
Computing. BSP applications exhibit characteristic commu-
nication and computation phases, called supersteps [1]. The
inherently clear division of functionality supports modularity
(abstraction of communication layers) and ease of program-
ming (all processes are in a similar global state that is easy to
reason about). Some static communication patterns fit one of
the pre-defined collective communication operations in MPI,
for example, the global alltoall of a Fast Fourier Transform,
or the allreduce convergence check of many Monte Carlo
methods.

Traditional collective communications always include some
form of global synchronization where either all processes
synchronize with one process (the root) or all processes
synchronize with all other processes. Also, communication
typically scales with Θ(log(P )) time and a total number
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of Θ(P · log(P )) messages on P processes. Newer parallel
algorithms try to reduce such global dependencies by only
using limited or sparse communications where each process
communicates only with a small subset of the whole process
set.

This inherently more scalable programming technique is
unfortunately not supported well by traditional collective
operations and users often resort to point-to-point commu-
nication to implement highly scalable algorithms. However,
a collective formulation of a communication superstep may
not only improve performance and performance portability
significantly [2], but it can also improve readability and
maintainability [3] of application code.

MPI defines only a set of 17 common communication pat-
terns as collective communication functions [4, §5]. Important
sparse communication patterns such as 2d and 3d Cartesian
neighborhoods that occur in many stencil computations, or
irregular process patterns, that may result from load balancing
or adaptive mesh refinement, are not supported. In order to
close this gap, the MPI Forum added “neighborhood col-
lective operations”, two new operations (with three variants
each). Those operations allow the user to specify arbitrary
communication topologies as collective operations and provide
additional optimization opportunities to the MPI library.

The MPI-3.0 standard will include neighborhood collectives
as part of the process topology chapter. Process topologies can
either be constructed as n-dimensional Cartesian topologies
(with optional wrap-around) or arbitrary (distributed) graph
topologies [5]1. Neighborhood collectives can be used to
communicate along the edges of the resulting graph. Thus,
neighborhood collectives either communicate along an n-
dimensional regular process grid on Cartesian communicators
or in arbitrary user-defined neighborhoods on general or dis-
tributed graph communicators. Therefore, a user can express
any collective communication pattern, including all predefined
collective communications, as neighborhood collectives.

Figure 1 shows two example graphs: (a) a Cartesian graph
with nine processes in a 3x3 grid, which may result from a 5-
point stencil computation, and (b) a graph communicator with
nine processes that reflects the logical communication pattern

1Using the MPI-1.0 graph topology is possible but not recommended due
to its scalability issues.
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Fig. 1. Example Process Topologies

of a broadcast or scatter communication.
Neighborhood collectives can be seen as generalized col-

lective communications. In this work, we show how to apply
techniques known from optimizing traditional collective com-
munications toward generalized neighborhood collectives. We
also show how additional information about the application
code can lead to portable optimizations that enable perfor-
mance portable execution across different architectures.

We focus on MPI in our discussions, mainly due to its wide
availability and use, however, we point out that the concept of
neighborhood collectives is general in parallel programming
and all developed optimization techniques can be applied in
different environments. In fact, our software stack is divorced
from MPI and allows for easy application to other relevant
parallel programming frameworks or runtime libraries. The
following section discusses the MPI-3.0 interface.

A. Neighborhood Collectives in MPI-3.0

The concept of neighborhood collectives has initially been
motivated under the name sparse collectives in [6], [7]. The
MPI Forum simplified and renamed the proposed functions.
The two main functions are MPI Neighbor allgather and
MPI Neighbor alltoall. As described before, the commu-
nication pattern for each function is specified by an MPI
process topology. The main difference between the functions
are the local buffer semantics: while allgather is sending
the same buffer to all destinations and receives into distinct
buffers from all sources, alltoall sends different (personal-
ized) buffers to all destinations while receiving into different
buffers from all sources. Thus, the example graph shown
in Figure 1(b) would be equivalent to an MPI Bcast when
using MPI Neighbor allgather and it would be equivalent
to MPI Scatter when using MPI Neighbor alltoall on the
shown topology. Figure 2 illustrates the semantic difference
in buffer access for the 2D Cartesian graph of Figure 1(a).
Bold gray arrows are the neighborhood relations specified in
the graph and thin black arrows show the data movement from
send and to receive buffers at process 0.

The following code fragment shows the simple
construction of the Cartesian communicator and an allgather
communication where the integer value in sbuf[0] is sent
to all four neighbors and the integer sent by neighbor i (in
dimension order) is received in rbuf[i].
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Fig. 2. Neighborhood Allgather vs. Alltoall

i n t dims [ 2 ] ={2 , 3} , p e r i o d s [ 2 ] ={1 , 1} ;
MPI Comm comm cart ;
MPI Cart create (MPI COMM WORLD, 2 , dims , p e r i o d s , 0 ,

&comm cart ) ;
i n t s b u f [ 1 ] , r b u f [ 4 ] ;
MPI Neighbor al lgather ( sbuf , 1 , MPI INT , rbu f , 1 ,

MPI INT , comm cart ) ;

A call to alltoall looks fairly similar but specifies a
send buffer with four elements and sends the value in
sbuf[i] to neighbor i. MPI also specifies vector variants
(e.g., MPI Neighbor allgatherv) and variants with neighbor-
specific datatypes (e.g., MPI Neighbor allgatherw) that fol-
low the usual MPI semantics. All neighborhood collectives
have a blocking and a nonblocking interface.

The distributed graph topology interface (example omitted
for brevity) accepts an additional MPI Info argument where
the user can communicate additional optimization hints or
assertions about his code to the MPI library. The standard
suggests to use info arguments to communicate semantics of
edge weights for topology mapping, but we identify other
optimization possibilities in the following.

During the neighborhood creation call (either the Cartesian
or a graph constructor in MPI), the communication library
can optimize the communication topology, similarly to the
optimizations that are performed during communicator cre-
ation (e.g., algorithm selection [8], [2]). Yet, unlike traditional
collective operations, different edges in the topology may carry
different communication volumes which makes optimizations
harder. An info argument could be used to assert that all
edges carry the same load in order to re-gain this knowledge.
However, we also demonstrate the applicability of our scheme
in the general case of varying edge loads.

In this work we show how neighborhood collectives together
with info arguments enable the user to specify detailed infor-
mation about the memory access and communication pattern
of a collective communication step. This enables a plethora of
communication opportunities that we describe and classify in
the following.

The key contributions of our work are:



1) We classify different levels of persistence (static prop-
erties) of collective communications in parallel codes
and propose a mechanism to specify this knowledge in
a portable way to the runtime library.

2) We develop an open-source execution and optimization
framework for arbitrary nonblocking neighborhood col-
lectives.

3) We propose and evaluate different optimization tech-
niques for arbitrary collective operations to improve
performance.

4) We demonstrate the applicability of our approach with
a wide set benchmarks and applications.

II. PERSISTENCE LEVELS IN COLLECTIVE
COMMUNICATION

Numerous optimizations in different communication models
(cf. [9], [10], [11] among many others) have been proposed
to optimize predefined collective communications with known
static patterns. Common techniques are to schedule commu-
nications in order to avoid congestion and to use message
coalescing and forwarding through proxy processes to reduce
injection rate limitations.

We now describe how those techniques can be used dynam-
ically, i.e., during runtime, to optimize arbitrary neighborhood
communications. As with most optimizations being able to
make additional assumptions about the problem that constrain
the optimization space leads to higher optimization potentials.
For neighborhood collectives, such assumptions can be made
about the communication topology, sizes, and buffer access.
We define three “persistence levels” that indicate how fixed
each of the parameters is across iterations.

The user can communicate persistence properties of his
application through passing special info keys that guide the
optimization of neighborhood collectives. This scheme is
completely transparent and portable within the MPI standard.
If an implementation does not understand an info key, then
the key is ignored and the code executes as if the key was
not specified. Thus, info keys can be used to specify hints
about the code but they cannot change the structure of the
communication. We point out that users are not allowed to
“lie” with specified info keys, i.e., if a user specifies a certain
code property, the code must act within the specified limits.
Also, info keys for MPI topologies are collective, i.e., all
processes have to specify the same set of keys for the topology
construction.

If an application has multiple repeating communication
steps with different sizes or collectives, the user can create
one topology communicator for each call-site and provide
the highest optimization options. Creating a communicator for
each set of arguments may seem expensive, however, we point
out that communicators that only differ in their info arguments
can be stored efficiently with simple lossless compression
techniques with a constant (O(1)) time and space overhead.

Our optimizations target networks that are able to per-
form remote direct memory accesses (RDMA). This type
of network recently gained such high popularity due to it’s

simple hardware implementation and high performance, that
is is available on all current large-scale supercomputers. This
section describes high-level approaches to optimize for RDMA
networks while later experiments show the benefits of one
particular implementation.

We now discuss the different persistence levels for neigh-
borhood collectives.

A. Persistent Communication Topology

By definition, the process topology specifies communica-
tion relations for neighborhood collectives persistently. MPI
process topologies are immutable, i.e., in order to change the
communication topology, the user has to create a new topology
object.

Knowledge about the exact communication topology en-
ables the implementation to statically allocate resources for
the communication, perform communication scheduling and
build efficient structures for communication protocols. Since
topology communicators still allow arbitrary communications,
the user may set the info key “cdag strict communication”2 to
“true” to communicate that communication is only performed
along edges of the topology.

1) Fixed Communication Channels: The library can es-
tablish fixed communication channels between each pair of
connected processes and it can initiate communication pro-
tocols. Traditional MPI communications need to support P 2

connections among P processes with P eager buffers per
process [12]. Setting “cdag strict communication” to “true”
may result in a significant memory overhead reduction if the
implementation utilizes eager messaging with fixed buffers per
communication partner.

2) Synchronization Trees: The library could also build tree
structures as it would do for standard collectives, however,
since data-sizes are not known, the best shape of the tree
cannot be determined. Nevertheless, such trees can be built
for notification purposes to support collective synchronization
or rendezvous messaging (cf. Section II-C2). Having a static
communication topology also allows to determine good mes-
sage schedules to avoid endpoint congestion or utilize different
communication mediums.

3) Communication Scheduling: The implementation can
also decide in which order messages are scheduled to the
different destinations. This could either be influenced by the
transport medium to the destination (e.g., shared memory
or off-node network) or by the load at the source or the
destination (to avoid hot-spot traffic).

In order to maximize communication/communication over-
lap, we build a static schedule that issues all off-node com-
munications using an RDMA offloading mechanism and then
performs shared memory copies which occupy the CPU (cf.
Section III-B2). Ideally, both communications overlap com-
pletely.

We apply a second optimization to reduce endpoint conges-
tion. For this, we color the edges of the communication graph

2We chose the “cdag” (communication DAG) prefix to all our info keys to
avoid namespace pollution.



using a greedy coloring heuristic developed by Welsh and
Powell [13]. The colors then correspond to the communication
rounds. This idea was first discussed by Hoefler and Träff [6]
but not tested in practice. Its utility is demonstrated in the
following example of an alltoall communication generated
with the code for(i=0; i<p; ++i) send(i) on all
processes 0 ≤ i < p. In the first step, all processes send
to process 0, in the second step to process 1, ..., in the i-th
step to process i. This results in a total bandwidth of p · bw

p
if each process contributes its local injection bandwidth bw.
One possible (ideal) coloring would be represented by the loop
for(i=0; i<p; ++i) send((r+i)%p) assuming r is
the calling processes’ rank. This coloring would lead to a total
bandwidth of p · bw. Figure 3 shows the original schedule and
one possible ideal coloring.
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Fig. 3. Alltoall Example illustrating Schedule Coloring

B. Persistent Communication Topology and Message Sizes

If the message sizes are known at topology creation time,
then the user can provide a weighted topology graph to the
MPI library and indicate that the specified weights repre-
sent the exact communication sizes by setting the info key
“cdag exact byte communications” to “true”.

Knowing the absolute message sizes statically allows to
perform intelligent re-ordering and forwarding through inter-
mediate processes.

1) Tree Transformations: We now show a scalable dis-
tributed algorithm to determine a good communication sched-
ule based on the parameters of the communication network
and the message sizes. For this, we consider a simplified
version of the LogGP model [14]. In LogGP, one assumes
a communication operation among P processes, a maximum
network latency of L, a per-message overhead of o, an
injection overhead (at the network level) of g, and a time per
byte sent of G. To simplify the model, we assume o > g,
which renders g insignificant. We assume a globally fixed
uniform message size of k Bytes.

Since each message requires a constant overhead o to be
sent, a possible optimization would be to balance the number
of messages from high-outdegree processes to low-outdegree
processes. This can be repeated for multiple iterations to create
multiple tree levels. The algorithm stops when a convergence
criteria is met. The main gain of the tree balancing is the
distribution of o across multiple processes for neighbor alltoall
and the better bandwidth utilization for neighbor allgather,
respectively.

a) Neighbor Alltoall: The tree optimization algorithm for
alltoall repeats the following two steps until it converged:

Step 1: Determine process pm with most outgoing edges m
and process ps with the smallest number of outgoing
edges s.

Step 2: If m− s > t move m+s
2 − s−

⌈
L
o

⌉
messages from

pm to ps else stop iterating.
The subtraction of

⌈
L
o

⌉
in the second step exists because

process pm balances its excess load to ps which in turn can
only start sending after it received the message (L) and process
pm can continue sending

⌈
L
o

⌉
messages during that time. As

with the usual scatter tree optimizations, this only applies for
small messages (small k) when the additional bandwidth con-
sumed by message forwarding is not the bottleneck. Figure 4
shows an example where a hot-spot neighbor alltoall pattern
is transformed to a scatter tree which is similar to an optimal
scatter tree in LogGP [14].

b) Neighbor Allgather: The tree optimization algorithm
for allgather repeats the following two steps until it converged:

Step 1: Determine process pm with most outgoing edges m
and process ps with the smallest number of outgoing
edges s.

Step 2: If m − s > t move m−s
2 −

⌈
L

o+(k−1)G

⌉
messages

from pm to ps else stop iterating.

The subtraction of
⌈

L
o+(k−1)G

⌉
in the second step exists

because process pm balances its excess load to ps which in
turn can only start sending after it received the message (L)
and process pm can continue sending

⌈
L

o+(k−1)G

⌉
messages

during that time. This algorithm can be used for arbitrarily
large k because it does not increase the total communication
volume if forwarding processes are neighbors of the source.
The example shown in Figure 4 is also illustrating a valid
allgather optimization (messages 1, 3, and 5 are identical in
this case).

The parameter t is generally architecture-dependent. We
chose t = 2 for all our experiments. Both heuristics con-
verge rather quickly in practice, e.g., for the hotspot pattern
in O(logP ) steps and each step has a cost of O(logP )
(allreduce). Thus, our balancing algorithm is scalable to large
process counts. However, the resulting tree may not be optimal
in the LogGP model. Optimal tree configurations (cf. [14]) are
an interesting direction for future work.

C. Persistent Communication Buffers

If not only the message sizes but also the communication
buffers are static, i.e., the buffer addresses and sizes of all
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calls to the same neighborhood collective on this communi-
cator are the same, then the user may set the info argument
“cdag static buffers” to “true”. Having static buffer addresses
allows similar optimizations as for persistent point-to-point
messages, however, those optimizations can now be applied in
a collective manner, taking advantage of the knowledge about
the full communication schedule.

1) Static RDMA Regions: Static buffers allow to register
the buffer memory to the network interface at the first call.
The keys to access (RDMA remote access handles) are then
exchanged along all communication edges and all the infor-
mation is saved for future calls to the same function. The next
call will then simply “fire off” the communications which have
all RDMA descriptors already prepared. The direct memory
access to remote nodes enables also advanced synchronization
protocols.

Having static information about the communication buffers
enables us to apply static protocol optimizations. Every
RDMA communication requires two synchronizations: (1)
Ready to Receive (RTR), where the receiver needs to indicate
that the buffer is ready for remote writes (i.e., the receiver
entered the collective communication function) and (2) Ready
to Exit (RTE), where sender notifies the receiver that the
data communication is finished and the receive buffer is in a
consistent state. Figure 5(a) illustrates the state of the art point-
to-point RDMA synchronization scheme [12]. A collective
communication function can return when a process received
RTEs from all neighbors and finished its own sends.

2) Collective RDMA RTR Protocol: The RTR and RTE
protocols can be optimized separately. The RTR protocol can
be performed collectively, e.g., a global barrier may be used at
the beginning of the collective call to communicate RTR. This
may be a good strategy if the machine offers fast (O(1) time)
global barrier support, like BG/L and BG/P [15]. However, if
the barrier is implemented with point-to-point messages, this
will add Ω(log(P )) communication overhead.

Instead of a global barrier, we propose a collective RTR
protocol on each process’ neighborhood using neighborhood
RTR trees with each sender as root. This protocol combines
RTR messages in a tree shape and can reduce the RTR time
from Ω(τ) to O(log τ) for a process with τ neighbors. The
desired degree of the tree depends on the system parameters
(L/o as discussed before). Figure 5(b) shows a direct compar-
ison between the traditional model (with four RTR messages
going to the root) and the optimized tree model (with two RTR

messages going to the root) for process 0 in the 2D Cartesian
topology in Figure 1(a). We remark here that most of today’s
networks require trees with an outdegree larger than two.
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Fig. 5. Illustration of our collective tree RDMA protocol. RTE was omitted
from this figure for readability because it would simply invert the RTR arrows.

3) Canary RTE Protocol: RTE can be optimized with
a similar collective protocol like RTR. However, for small
messages, we propose a protocol which, in the common case,
works without additional communications. This protocol relies
on the ordering semantics of the network and memory buses.
If one can ensure that all bytes are committed in order (or at
least the last byte is committed last), one can use the last byte
(or some bytes) as canary value to check for communication
completion. For this, we pick a constant C as canary. When
the collective function is entered, we initialize all last bytes
of the receive buffers of each neighborhood communication
to C before we start the RTR protocol. RTE is detected as
soon as the canary value changes from C. However, this
protocol would not terminate if the last byte of the transmitted
user-data is identical to C. For this case, we are using an
additional flag outside the user data which may also indicate
completion. If the sender detects that the last byte in the send
buffer is equal to C, then it triggers the additional flag at
the receiver (with an additional RDMA put). The receiver
then completes if either the canary value changes from C or
the additional flag is triggered. This protocol will save the
additional message in most of the cases. The likelihood of
conflict can even be reduced if multiple bytes are used to
encode the canary value C. Figure 6 shows a comparison of
the traditional RDMA protocol (Figure 6(a)) and our optimized
canary protocol (Figure 6(b)).

III. IMPLEMENTING NONBLOCKING NEIGHBORHOOD
COLLECTIVES

We now discuss how we use the optimization principles
described in the previous section in order to implement high-
performance non-blocking nearest neighborhood collective op-
erations in our open-source framework.

A. Reference Implementation

The reference implementation for MPI-3.0 standardization
of neighborhood collectives in the MPI Forum is integrated in
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LibNBC [16]. LibNBC uses an internal schedule to represent
multiple stages of nonblocking collectives [16]. However, the
specific implementation of neighborhood collective operations
simply starts all corresponding nonblocking MPI sends and
receives and thus only utilizes a single stage.

B. Remote Direct Memory Access

We use two different low-level RDMA transport mecha-
nisms for our implementation: DMAPP [17] for off-node com-
munication over Cray’s XE6/XK6 Gemini interconnect [18],
which is directly connected to AMD’s Hypertransport [19],
and XPMEM [20] Cray’s on-node shared address space com-
munication layer. Both layers allow direct remote memory
access.

1) DMAPP: DMAPP supports two request modes: Fast
Memory Access (FMA) and Block Transfer Engine (BTE).
In the FMA mode, the CPU is used to push the data to the
network interface (NIC), which is fastest for small messages.
The BTE mode programs the DMA controller, which has some
constant overhead but then enables asynchronous message
transmission. We will describe how we use both protocols in
our implementation.

DMAPP also allows the user to select deterministic in-
order, node-hash, or adaptive routing. We can only use the
canary RTE protocol up to the Gemini packet size of 64 Bytes
because Gemini (AMD Hypertransport) does not guarantee
that messages are committed in-order to memory. We always
use the adaptive routing mode because message striping re-
sults in a higher bandwidth. We generally use non-blocking
communication with bulk completion semantics for DMAPP.

2) XPMEM: XPMEM is a kernel module that enables
process A to directly map and access process B’s memory
space if process A and B are running within the same coherent
operating system image. We use XPMEM to allow direct
remote access to the send and receive buffers just as RDMA
would do for off-node. The main difference is that the data is
always copied by the CPU (we utilize standard libc memcpy).

C. Dependency Graph Communication

We use a general directed acyclic graph (DAG) formulation
to specify the local communication schedule on each process.
When a process topology is specified, the DAG represents all
neighborhood relations and is distributed so that each process
knows its immediate neighbors (destinations and sources)
locally.

The DAG allows to express dependencies between two
operations—A and B which mean that operation B can only be
executed after operation A finished. Operations can be send,
recv, or local copy operations. This functionality is needed
to implement the message scheduling and tree reordering
optimizations.

1) Applying Tree Optimizations: Depending on the persis-
tence level (topology, sizes, or buffers), we perform static
optimizations described in Section II either during the graph
creation (for topology and tree reordering) or during the
first call (binding buffers) to the collective operation. Those
optimizations are performed by transforming the DAG. The
coloring heuristic introduces dependencies between the send
vertices which forces them to be executed in the order of their
color. The tree reordering, which moves communication to
a proxy process, may add local copy vertices to pack non-
consecutive buffers, and moves send vertices (including the
remote memory identifiers) to the remote process.

Each optimized DAG is then cached at the communicator
and re-used to execute calls to the respective collective oper-
ation.

2) Communication DAG Execution: The basic idea was
presented in [21], we now discuss how we use dynamic com-
munication scheduling to implement optimized nonblocking
neighborhood collective operations over an RDMA network.
Each send and recv call is encoded as a vertex in a dependency
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Fig. 7. DAG Scheduling

DAG. The scheduler starts with the DAG and puts all roots
(vertices without dependencies) into the active queue (AQ).
Then the scheduler iterates over the queue and progresses each
operation (vertex) in the active queue and checks it for com-
pletion. Upon completion of a vertex, the scheduler removes
all dependencies to this vertex and starts all vertices with no
remaining dependencies. Using this scheme, the scheduler is



essentially moving in a wave-front through the whole DAG
schedule. This is illustrated in Figure 7 where the crossed
operations already finished executing and the operations in
the wavefront (active queue) are being executed.

Each of the vertices can be represented by a state machine
which expresses the progression through the RDMA commu-
nication protocol. For brevity, we only demonstrate the state
machine for an DMAPP small message receive vertex. The
first state is the initial state after it was added to AQ. Right
after adding it, the receiving process initializes the canary
value to C and sends an RTS message to notify the sender.
It then moves to state 1 where it remains in a polling loop
until either the canary value changes or the notification bit
is toggled. After any of those events, the receive finishes.
Figure 8 shows the state state machine for a DMAPP small
message receive. All other operations utilize similar state
machines to implement lower-level protocols.

Fig. 8. DMAPP Small Message Send Protocol State Machine

IV. EXPERIMENTAL EVALUATION

To evaluate each optimization technique, we analyzed mi-
crobenchmark performance with manually crafted commu-
nication patterns and various message sizes to show the
impact of each optimization in isolation. We then extracted
several communication patterns from real-world applications
and examined the resulting microbenchmarks. In addition,
we modified one application kernel and a full application to
support neighborhood collective communications.

Our implementation supports nonblocking and blocking
variants of all collectives. However, all experiments were done
with the blocking implementation of neighborhood collec-
tives because transforming applications to use nonblocking
collectives is a more complex task than simply introducing
neighborhood collectives. Evaluating tradeoffs and benefits for
nonblocking neighborhood communication is an interesting
future work.

A. Experimental Environment

For our experiments, we use the Blue Waters Test System
(JYC), a single cabinet Cray XE6 (approx. 50 nodes with
1600 Interlagos 2.3-2.6 GHz cores). We use the GNU compiler
version 4.6.2 in the Cray compiler environment version 4.0.46.

B. Relevant Communication Patterns

In this section, we will demonstrate each key optimization
with representative communication patterns. We start with
a sparse alltoall pattern to demonstrate the benefit of mes-
sage scheduling (coloring) and then show different real-world
Cartesian stencil examples.

None of those sparse communication patterns can be repre-
sented by MPI’s previous collective functions. Thus, we use
the most common way to implement such exchanges: post all
receives nonblocking (MPI Irecv), start all sends nonblocking
(MPI Isend) and wait for all sends and recvs to complete
(MPI Waitall). We confirmed that this is the fastest method
to implement such exchanges on our test system.

1) Sparse Alltoall Pattern: A sparse alltoall pattern A(s, p)
is specified by a data size s and a parameter p. The parameter
p (0 ≤ p ≤ 1) indicates the probability that process i sends
a message of size s to process j (i.e., there is an edge from
i to j in the neighborhood collective), independent from any
other process pair. The resulting graphs are essentially random
Erdős-Rényi graphs [22].

Figure 9 shows the alltoall pattern with varying density on
1024 processes and communicating 16 bytes along each edge.
Coloring was used to improve the ordering of messages. The
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Fig. 9. Alltoall performance with varying density

lines show the absolute latency for neighborhood collective
and Cray MPI and the blue crosses show the relative im-
provement of neighborhood collectives in percent. We observe
a consistent performance advantage about 40% across all
densities.

In the following, we create representative application com-
munication patterns that are widely used in scientific applica-
tions. We assume that communication buffers are persistent,
which is true for all investigated applications.

2) Cartesian Stencil Communication: Regular stencils are
used in many statically decomposed PDE and ODE solvers.
Common stencils are either two-dimensional (e.g., [23]), three-
dimensional (e.g., [24]), or four-dimensional (e.g., [25]). Sten-
cils communicate along each dimension in two directions,
creating a total of 2d communication edges in a d-dimensional
stencil (assuming periodic boundary conditions). Figure 1(a)
shows a two-dimensional stencil.

We create an d-dimensional stencil with P processes by
using MPI Dims create to get the best decomposition and
MPI Cart create to create a Cartesian topology.

Figure 10 compares the performance in an alltoall over a
2d Cartesian topology (each process has four neighbors as
results from a 5-point stencil) on 512 processes. This pattern



is similar to the communication in the Weather Research and
Forecast Code (WRF).
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Fig. 10. 2d Cartesian Performance

We benchmark different data sizes from 16 Bytes to 1 MiB.
The lines represent our neighborhood collectives versus Cray
MPI’s performance and the crosses show the improvement
in percent (right scale). Small messages show the largest
improvement because of all the reduced overheads (static
matching, canary protocol, etc.) down to 50% of the original
communication time, a speedup of 2x. Larger messages show
less improvement (≈15%) due to the bandwidth boundedness
for both communication schemes.

Figure 11 compares the performance of a neighbor alltoall
over a 4d Cartesian topology (each process has eight neighbors
as results from a 9-point stencil) on 512 processes. This pattern
is similar to the communication in MIMD Lattice Computation
(MILC). We again observe a high benefit for small messages,
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Fig. 11. 4d Cartesian Performance

around 75%, a speedup of 4x. Again, the speedup falls to about
18% for large messages due to the bandwidth-boundedness of
the problem. We observe protocol changes in MPI (at 4 kiB)
and DMAPP (at 8kiB) in both graphs.

C. Real World Applications

We also equipped real-world applications with neighbor-
hood collectives. Changing MPI BSP-style applications to use

neighborhood collectives is often simple because the structure
is very similar to existing codes and may even lead to signif-
icant code simplifications, cf. [7]. For brevity, we show two
representative cases for two classes of applications working
with regular and irregular grids. The first case is the Weather
Research and Forecast Model which already implements an
MPI Cartesian communicator on a regular 2D grid. The second
example is a matrix-vector multiplication kernel which is
representative of many irregular applications.

1) The Weather Research and Forecast Model: The
Weather Research and Forecasting (WRF) Model [23] is a
mesoscale numerical weather prediction system designed to
serve both operational forecasting and atmospheric research
needs. We used the WRF-ARW core version 3.3.1 which is
based on an Eulerian solver for fully compressible nonhydro-
static equations, cast in flux (conservative) form, using a mass
(hydrostatic pressure) vertical coordinate. The solver uses
a third-order Runge-Kutta time-integration scheme coupled
with a split-explicit 2nd-order time integration scheme for the
acoustic and gravity-wave modes.

We used the “em b wave” input set with five simulation
days (720 iterations with 600 seconds each) using 215,865
total grid points. We ran this set in strong scaling mode on 32-
512 cores using 32 OpenMP threads per process. We purposely
chose this small system to emulate a strong scaled run on many
processors.

Figure 12 shows the improvement of the communication
phase of the WRF code with neighborhood collectives versus
the original implementation. We observe a 40% maximum

0
5

10
15

20
25

# Cores

C
om

m
un

ic
at

io
n 

O
ve

rh
ea

d 
[s

]

32 128 256 512

0
10

20
30

40
50

Im
pr

ov
em

en
t [

P
er

ce
nt

]

Neighbor colls
Cray MPI
Improvement [in %]

Fig. 12. WRF Communication Performance

improvement which translates to 15% application speedup and
an average of 7-10% improvement which translates to 3-5%
application speedup.

2) Sparse Matrix-Vector Multiplication: The sparse matrix
vector multiplication represents a large number of irregular
codes. For this example, we load a matrix from the UFL
Sparse Matrix collection [26] to ensure a realistic input. We
then partition this matrix using ParMETIS [27] and perform
a parallel sparse-matrix vector multiplication with an 8-byte
allreduce at each iteration. This represents a typical conjugate



gradient iteration as used in many parallel applications, e.g.,
MILC [25] or Algebraic Multigrid [28].

We use the matrices “aug2dc”, “andrews”, and “tube2”
and compare Cray MPI’s performance to optimized neighbor-
hood collectives. Figure 13 shows the relative performance
if neighborhood collectives (lower is better). Neighborhood
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Fig. 13. Matrix Vector Communication

collectives show a reduction in communication time between
5% and 70%. The curves are not smooth because this is a
strong scaling run and ParMETIS partitions the matrices with
different edge cuts, depending on the size of the allocation.

V. RELATED WORK

Neighborhood collective operations have been introduced
by Hoefler and Träff in [6] and later been proposed for
standardization to the MPI Forum. Even though the concept
of neighborhood or sparse collective operation itself is new,
we were able to borrow several algorithmic principles to
drive our heuristics from established collective communication
primitives such as efficient alltoall implementations [29] or
scatter/gather optimizations [14].

Vetter and Mueller show that scalable applications most
often depend on point-to-point communications where each
process communicates with 3-7 distinct processes (neigh-
bors) [30]. Kamil et al. conclude in a similar study that other
relevant highly scalable applications applications communicate
small messages (less than 2 kiB) with up to 66 neighbors [31].

Several related works discuss optimizations of stencil com-
putations with regards to I/O (out-of-core methods) [32] or
communication-minimizing tiling strategies [33], [34]. Our
work focuses on the optimization of the communication step
itself and is thus complementary to this rich body of stencil
optimizations.

Potluri et al. [35] demonstrated MPI One Sided tech-
niques to optimize different communication patterns. Gabriel
et al. [36] optimize stencil communications by adaptively
choosing different MPI-based point-to-point communication
protocols. Both works experimented with different commu-
nication options without utilizing the collective nature of the
communication in the optimization techniques.

Kumar et al. [37] use BlueGene’s specialized hardware
support to optimize neighborhood collective operations. How-
ever, their proposed interface cannot work with the MPI-3.0
standard interface and makes several simplifying assumptions.

Saltz et al. use the inspector/executor principle to exploit
locality in the communication pattern of irregular applications.
An inspector monitors the communication pattern and an
executor optimizes the corresponding communication call.
Das, Saltz et al. [38] list several optimizations, such as double
send elimination and message coalescing for this scenario.
However, all of their optimizations only target point-to-point
communications and do not perform global schedule optimiza-
tions (coloring or proxy sends) like our approach.

Other related works such as STAR-MPI [39] and ATCC [8]
select different collective operations based on varying input
parameters and environment changes. However, those schemes
simply select from a set of different implementations of
predefined collective operations.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we showed the usefulness of nonblocking
neighborhood collective operations and demonstrated several
optimization approaches. We defined three different persis-
tence levels, topology, data sizes, and buffer addresses that
enable a hierarchy of optimization options. We describe each
optimization in detail and show performance results comparing
different schemes. The two key optimizations, message color-
ing and tree reordering are derived from traditional optimized
collectives and show significant performance benefits on a
Cray XE6 system.

Our high-performance implementation of neighborhood col-
lectives is up to a factor of four faster than the highly optimized
Cray MPI for small point-to-point messages in a 9 point
(4d) stencil communication. We also achieve a 15% higher
bandwidth for large stencil messages. We show application
communication speedups as high as 15%.

As future work, we plan to employ runtime-autotuning to
tune the large number of parameters (e.g., tree degree, protocol
choices etc.). We also plan to offload our optimization engine
to a separate core so that it can constantly optimize communi-
cation schedules while the application is running. Enabling the
new schedules is then just a matter of broadcasting the new
schedule to all processes and swapping a pointer. We also plan
to experiment with optimizations for the underlying network
topology.

We expect that our work will act as a template for the
optimized implementation of neighborhood collectives. The
importance of (localized) neighborhood collectives is growing
with the system size, so we expect that the described prin-
ciple of optimizing communications in their neighborhoods
will become a generic optimization principle for large-scale
applications.
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