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Abstract—To attain scalable performance efficiently, the HPC
community expects future exascale systems to consist of multiple
nodes, each with different types of hardware accelerators. In
addition to GPUs and Intel MICs, additional candidate ac-
celerators include embedded multiprocessors and FPGAs. End
users need appropriate tools to efficiently use the available
compute resources in such systems, both within a compute node
and across compute nodes. As such, we present MetaMorph,
a library framework designed to (automatically) extract as
much computational capability as possible from HPC systems.
Its design centers around three core principles: abstraction,
interoperability, and adaptivity. To demonstrate its efficacy, we
present a case study that uses the structured grids design pattern,
which is heavily used in computational fluid dynamics. We
show how MetaMorph significantly reduces the development
time, while delivering performance and interoperability across
an array of heterogeneous devices, including multicore CPUs,
Intel MICs, AMD GPUs, and NVIDIA GPUs.

Index Terms—parallel libraries; performance portability; pro-
grammability; accelerators; accelerator-aware MPI; GPU; MIC;
CUDA; OpenCL; OpenMP; MPI; structured grids; exascale

I. INTRODUCTION

In the last decade, several parallel computing architectures
that span a wide range of execution models have emerged to
meet the increasing demand for high-performance applications
driven by large-scale data sets. Examples of these architectures
are multicore CPUs, many-core GPUs, and Intel Many Inte-
grated Cores (MICs). To attain scalable performance efficiently
— relative to power, energy, and cost — the high-performance
computing (HPC) community expects future exascale HPC
systems to consist of multiple nodes, each with different types
of hardware accelerators, connected over a high-speed, low-
latency network infrastructure. In addition to the expected
hardware accelerators, namely GPUs and Intel MICs, that
populate the top end of the Green500 and TOP500 Lists
[1], additional candidate accelerators for these heterogeneous
computing systems include low-power embedded multiproces-
sors, custom hardware accelerators (potentially emulated on
FPGAs), and even FPGAs themselves [2].

Such heterogeneous systems require hybrid programming
models to exploit their potential performance and energy effi-
ciency, and dealing with such interoperation between different

SC16; Salt Lake City, Utah, USA; November 2016
978-1-4673-8815-3/16/$31.00 (©2016 IEEE

Paul Sathre
Dept. of Computer Science,
Virginia Tech
sath6220@cs.vt.edu

Wu-chun Feng
Dept. of Computer Science and Dept. of
Elec. & Comp. Eng., Virginia Tech
feng@cs.vt.edu

devices and programming models is a tedious and error-prone
task. In addition, the abundance of parallel architectures has
complicated the design and development of high-performance
applications even more. Scientists face several design choices
and have to decide which architecture, programming model,
algorithm, and implementation technique are the most suit-
able for their applications. For example, NVIDIA GPUs can
be programmed via CUDA, OpenCL, OpenACC, potentially
OpenMP 4.0, PTX, and several other research programming
models. Each option has a different learning curve and poten-
tial performance, but typically the best performance requires
low-level implementation approach and significant architecture
expertise, which is in short supply.

Further, parallel architectures change faster than parallel
programming models and software, and scientists should not
have to spend their time re-learning and rewriting code for
the new architectures. Thus, to effectively use future exascale
computing systems, end users need appropriate tools to make
efficient use of the available compute resources, both within
and across compute nodes, and to do so without needing
to have extensive architectural expertise and with minimal
development time.

In this paper, we present MetaMorph, a library framework
designed to (automatically) extract as much computational
capability as possible from exascale computing systems with
three core design principles: abstraction, interoperability and
adaptivity.

e MetaMorph abstracts current and future hardware accel-
erators behind a single interface. It does so without com-
plicated installations or extensive application refactoring
that existing solutions require. This, in turn, supports the
development and upgrade of accelerated applications by
end users with minimal development effort and time.
MetaMorph provides not only high-level abstraction, but
also high performance, comparable to hand-coded and
manually-tuned accelerated kernels (Section II-B).

o MetaMorph promotes interoperability across different
accelerators and with existing software. MetaMorph’s
communication interface supports data exchange between
different hardware accelerators not only in a single node,
but also across multiple nodes. Moreover, unlike many
existing solutions that use proprietary data types, Meta-
Morph’s APIs are designed to be as close to pure C as
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possible, using standard data types, and expose internal
device contexts to promote interoperability with hardware
vendors’ libraries, domain-specific libraries, and existing
code. This interoperability is crucial in the adaptation to
any new library framework (Section II-A).

o MetaMorph is designed to be adaptive to the capabilities
of the execution environment. It is built to be modular
and allow users to only select the components relevant to
the application and hardware in hand. Further, it provides
simultaneous access to all accelerators present in a sys-
tem, promoting the development of an overarching run-
time scheduling system to map accelerated computations
to the best hardware platform(s) available and reduce
the execution time. Additionally, transparent interfaces
to both intra-node and inter-node transfers provide an
opportunity for intelligent partitioning and pipelining to
increase overlap of computation and communication and
to hide data transfer latency (Section II-C).

To demonstrate the efficacy of our MetaMorph library
framework, we present a case study with the structured
grids design pattern, which is heavily used in computational
fluid dynamics (CFD). Specifically, we evaluate MetaMorph
with benchmarks and a larger application, namely MiniGhost,
which is a representative CFD application for solving partial
differential equations with the finite difference method. We
demonstrate that MetaMorph significantly reduces develop-
ment time for heterogeneous systems without performance
penalty and can be used to seamlessly utilize all the avail-
able hardware accelerators across multiple compute nodes,
which include multicore CPUs, Intel MICs, AMD GPUs, and
NVIDIA GPUs. In addition, we show MetaMorph’s inter-
operability with hardware vendors’ libraries and third-party
libraries such as cIBLAS [3], Intel MKL [4] and MAGMA
libraries [5] (Section IV).

II. DESIGN PHILOSOPHY

MetaMorph is designed to effectively utilize HPC systems
that consist of multiple heterogeneous nodes with different
hardware accelerators. Figure 1 shows the proposed library
framework. MetaMorph acts as middleware between the appli-
cation code and compute devices, such as CPUs, GPUs, Intel
MIC and FPGA:s. It hides the complexity of developing code
for and executing on heterogeneous platform by acting as a
unified “meta-platform.” The application developer needs only
to call MetaMorph’s computation and communication APIs,
and the operations are transparently mapped to the proper
compute devices. MetaMorph uses a modular layered design,
where each layer supports one of its core design principles
and each module can be used relatively independently.

A. Interoperability Layer

When designing complex scientific applications for HPC
clusters, two types of interoperability are critical: (1) inter-
operability between nodes that may have different hardware

'Dashed lines and boxes indicate components that are in development or
not yet fully integrated into the prototype.
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Fig. 1: MetaMorph uses a modular, layered design to hide the
complexity of executing on and interoperating across a range
of compute platforms.’

capabilities and (2) interoperability with existing code and
external compute/communication libraries. Existing solutions
only provide one of the two. Many frameworks provide
multi-platform portability via complex data types or custom
compute languages (often utilizing obtuse template meta-
programming), thus satisfying the first type of interoperability,
but falling short of the second, as the entire application must be
ported to the framework’s types and/or language. Conversely,
it is relatively easy to add a platform-specific library to
an existing application that already uses that platform (e.g.,
adding cuBLAS [6] calls to a CUDA application), but these
are not portable to other platforms, thus satisfying the second
type of interoperability, but not the first.

MetaMorph, on the other hand, is designed from the ground
up to support both types of interoperability. Figure 2 provides
a sketch of this interoperatbility, and a concrete example is
detailed in Section IV.

1) Interoperability Across Different Accelerators: Meta-
Morph satisfies this type of interoperability with its unified
API design and transparent communication interface. When
a user application calls a MetaMorph API, the call is trans-
parently mapped to a back-end accelerator supported by the
underlying platform and the MetaMorph library running on
the node, which dramatically simplifies the programming
required to coordinate multiple processes running on different
hardware platforms. Further, MetaMorph provides a commu-
nication interface to transfer back-end-resident data, agnostic
of the underlying execution platform, allowing for seamless
interoperation across multiple nodes with a range of different
hardware configurations.
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Fig. 2: MetaMorph provides interoperability both with external
libraries in a node (dashed lines) and across nodes with varying
hardware (solid lines).

2) Interoperability with existing software: MetaMorph sat-
isfies this type of interoperability by careful design of its inter-
nal representation of data buffers and platform-specific back-
ends. MetaMorph buffers are specified in the top-level APIs
as simple C void pointers, with an enumerator specifying the
primitive type that the back-end implementation should use.
The back-end that a given void pointer actually resides on is
inferred at run time from the state of the run_mode variable.
To support incremental porting of existing applications devel-
oped for a specific platform, MetaMorph’s internal context is
exposed via extra API functions, so that back-end state can be
shared directly with the host application (i.e., an application
can share a context with MetaMorph via meta_get_state
and meta_set_state). Thus, application developers can
use MetaMorph, while they incrementally port and validate
their applications, which significantly eases the transition
process.

B. Abstraction Layer

Achieving (and more importantly, improving) performance
in the real and changing world has become a function of
portability; non-portable code stops gaining performance if (or
more accurately, when) its target platform reaches end-of life.
Code can be manually ported to new generations of hardware,
but both functional and performance portability are often dif-
ficult to achieve without extensive expertise. Therefore, a need
exists to future-proof programming solutions that obviate the
demand for users to manually port performance-critical code
to new hardware devices. The choice to provide this capability
as a library framework was natural, given the proliferation of
libraries in use in scientific applications and the vast range of
domain- or platform-specific libraries for common operations,
such as dense and sparse linear algebra.

MetaMorph provides programmability, functional portabil-
ity, and performance portability by abstracting software back-
ends (currently, OpenMP, CUDA and OpenCL) behind a single
interface. As such, it bridges the performance-programmability
gap by decomposing the problem space into two parts: high
performance and high-level abstraction.

First, MetaMorph achieves high performance by providing
low-level implementations of common operations, based on
the best-known solutions for a given compute platform. More-
over, the software back-ends are instantiated and individually

tuned for the different heterogeneous and parallel comput-
ing platforms (currently, multicore CPUs, Intel MICs, AMD
GPUs, and NVIDIA GPUs).

Second, MetaMorph achieves high-level abstraction by hid-
ing all device- and platform-specific details behind the unified
interface, which enables the end-user to write the application
once and run it on any supported device. Additionally, the
portability criterion is further satisfied by providing an in-
frastructure for adding software back-ends for future compute
devices — without end-user intervention or modifying the
application. This provides the small population of early-
adopter, architecture experts with a framework that enables
them to dramatically extend the impact of their expertise to the
wider community by expanding the library with new design
patterns. So, rather than writing a kernel once for a single
application, these experts can write that same kernel within
the MetaMorph framework, provide it to the community, and
allow it to be used across many applications.

Further, MetaMorph accelerates the development of new
operations and computation/communication patterns, as shown
in Figure 3. It provides a compilation infrastructure and helper
APIs that handle the boilerplate initialization and compilation
and simplify data exchange between the host and accelerators,
such that MetaMorph developers can focus on developing the
new kernels. In addition, we used our source-to-source trans-
lator [7], [8] to largely automate the generation of MetaMorph
kernels, and in the future, we aim to release a family of such
source-to-source translators and leverage the LLVM Just-In-
Time compiler to simplify the expansion of the MetaMorph
library with new design patterns.

Finally, existing kernels (e.g., CUDA kernels) can be in-
cluded in MetaMorph without re-factoring by adding their
implementation directly into the interoperability layer (e.g.,
CUDA backend) and their C/Fortran interface in the ab-
straction layer. However, advanced features, like seamless
execution on different accelerators within a node and across
nodes, will work only if these kernels are implemented in
all the different back-ends. Contribution of a kernel for even
a single back-end is valuable as it provides the architecture-
expert community a baseline from which to implement and
integrate kernels for the remaining back-ends.
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Fig. 3: MetaMorph accelerates the development of new oper-
ations and kernels.
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C. Adaptivity Layer

Software written for the heterogeneous and coming exascale
era must be highly adaptive, as the expanding range of
compute platforms and the increasing performance demands
continually reshape the computing landscape. Accordingly,
any library framework intended to provide high performance
through such changes must itself be able to quickly respond
to new opportunities to improve the performance. Therefore,
MetaMorph has taken a modular layered approach that makes
upgrading performance-critical components simple, without
affecting user applications.

First, the adaptivity layer provides compile-time and link-
time customization and optimization for performance-critical
components. All performance-critical code for a given com-
pute platform is encapsulated in a shared library object and
separated from the core MetaMorph library and all other
back-ends. This library-of-libraries construction promotes the
optimization of back-ends to target specific compute devices,
by making them disjoint code objects that can be tuned in iso-
lation for new devices and then shared among the community.
Further, the back-ends can be customized for different types
of compute devices. For example, the OpenMP back-end can
be customized for multicore CPUs and Intel MICs, and the
OpenCL back-end can be customized for CPUs, AMD GPUs,
NVIDIA GPUs and Intel MICs.

Second, the adaptivity layer provides run-time services to
accelerate computations and data transfers. The accelerator-
aware communication infrastructure is inspired by MPI-
ACC [9], which allows automatic partitioning and pipelining
of device-resident data buffers to hide data-transfer laten-
cies. Another run-time service that is built into the Meta-
Morph design philosophy is cross-platform run-time schedul-
ing, which intelligently maps the computations kernels to the
best hardware platform(s) available, based on their relative
performance, to reduce execution time. Our cross-platform
scheduler is based on CoreTSAR [10], an adaptive run-time
system. In summary, we highlight that our library framework
facilitates the upgrading and development of such run-time
services without significant modification to user applications,
thus allowing end users to enjoy a “free ride” to better
performance.

III. PROTOTYPE IMPLEMENTATION
A. A Library of Libraries

We realize MetaMorph® as a layered library of libraries.
Each tier implements one of the core principles of abstraction,
interoperability, and adaptivity. The top-level user APIs and
platform-specific back-ends exists as separate shared library
objects, with interfaces designated in shared header files.
Primarily, this encapsulation supports custom tuning of back-
ends to a specific device or class of devices, as we mentioned
in Section II. In addition, it allows back-ends to be separately

2The prototype implementation of MetaMorph can be downloaded from
https://github.com/vtsynergy/MetaMorph

// Memory/ Context Management

meta_alloc (void =xptr, size_t size);

meta_free (void =ptr);

meta_copy_h2d(void xdst, void *src, size_t size ...);
meta_copy_d2h(void *dst, void *src, size_t size ...);
meta_copy_d2d(void =dst, void *src, size_t size ...);

meta_set_acc(int acc, meta_mode mode);

meta_get_acc(int xacc, meta_mode xmode) ;

meta_flush (); //finish any outstanding work

// share meta_context with with existing software

meta_get_state (meta_platform =plat, meta_device =xdev,
meta_context xcontext, meta_command_queue xqueue);

meta_set_state (meta_platform plat, meta_device dev,
meta_context context, meta_command_queue queue);

// Communication Interface
meta_comm_init(int sxargc,
meta_comm_finalize () ;
meta_packed_send(int dst,

char %% argv);

void spacked_buf, size_t len,

meta_type_id type ...);

meta_packed_recv(int src, void xpacked_buf, size_t len,
meta_type_id type ...);

meta_pack_send (int dst, meta_face xface, void xbuf, void x*
packed_buf, meta_type_id type ...);

meta_recv_unpack (int src, meta_face xface, void =xbuf, void

«packed_buf ,
// data marshaling

meta_type_id type ...);

meta_pack_face(void xpacked_buf, void xbuf, meta_face xface
, meta_type type ...);

meta_unpack_face (void spacked_buf, void xbuf, meta_face x*
face , meta_type type ...);

meta_transpose_face (void xind, void xoutd, dim2 xsize,
meta_type type ...);

meta_face xmake_slab(meta_slab_pos position, void =buf,

dim3 =size, int thickness ...);

// Timers
meta_timers_init () ;
meta_timers_finalize () ;

// Compute Kernels
meta_kernel_name(...);

Fig. 4: Overview of the main user API exposed by MetaMorph

used, distributed, compiled, or even completely rewritten,
without interference with the other components.

B. Programming Models

The core API, library infrastructure and communication
interface are written in standard C for portability and per-
formance. Individual accelerator back-ends are generated in C
with OpenMP and optional SIMD extensions (for CPU and
Intel MIC), CUDA C/C++ (NVIDIA GPUs), and C++ with
OpenCL (AMD GPUs/APUs and other devices). In addition,
a wrapper around the top-level API is written in polymorphic
Fortran 2003 to simplify interoperability with Fortran applica-
tions prevalent in some fields of scientific computing.

C. Top-Level User API

The top-level API, shown in Figure 4, improves the pro-
grammability of user applications by abstracting the back-
ends, which provide accelerated kernels for each platform.
Specifically, it implements the offload/accelerator computation
model®, in which data is explicitly allocated, copied, and

3For API cohesiveness, the OpenMP back-end mimics the offload model.
However, redundant data transfers can be eliminated, under the user’s control,
via the USE_UNIFIED_MEMORY option.
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manipulated via kernels within the MetaMorph context. In
addition, the front-end interface supports seamless execution
of user applications on different accelerators. It intercepts calls
to the MetaMorph communication and computation kernels
and transparently maps them to a back-end accelerator sup-
ported by the underlying platform. The only times that a
user application needs to explicitly manage platforms are as
follows:

o at compile time, when the library is advised what back-
ends might be available (via conditional compilation with
-D WITH_BACK-END definitions), and

e at run time, when the execution mode is set to one of
the compiled-in back-ends (via the METAMORPH_MODE
environment variable or a call to meta_set_acc ()).

1) Memory Management: The top-level API contains mem-
ory management calls for allocating/freeing a MetaMorph
buffer and transferring data to/from the host. MetaMorph
implements its own implicit buffer types for a set of prim-
itive data types — currently single-precision and double-
precision floating points, signed and unsigned integers, and
unsigned 64-bit integers — using a type enumerator and void
pointer(s). Thus, individual API wrappers can dynamically
map the provided void pointer to the correct type for the back-
end implementation by inferring the backend-native type at
run time from the global run_mode variable. In addition,
these API wrappers take standard C types for scalars and
size_t [N] vectors for N-D problem size variables, which
are transmuted to appropriate types, when the back-end im-
plementation performs the actual kernel launch.

2) Context Management: A number of functions are ex-
posed to exert high-level control on MetaMorph, for example,
getting/setting the current execution back-end, forcing out-
standing asynchronous work to complete, and sharing Meta-
Morph context with exisiting software. To ensure compatibility
and minimize performance overhead, when only a subset of
capabilities is needed, the top-level API code uses conditional
compilation, such that the library users only pay memory and
performance overhead for the back-ends and options that are
needed by “opting-in” at compile time.

3) Communication Interface: MetaMorph has been de-
signed from the start for heterogeneous clusters, hence ensur-
ing convenient data exchange between its processes is critical.

\ g

procO procl

HEEEEEEE
[TTTTTTTT

Fig. 5: Processes must exchange neighbor data every iteration.

Domain-decomposition. In many computational science
domains, including CFD, when the problem domain is suf-
ficiently large and cannot fit on a single compute device or
node, the domain is decomposed into smaller sub-domains that
can be computed relatively independently. However, once de-
composed, each sub-domain needs access to a current copy of
data from its logical neighbors. This results in a compute-then-
communicate iterative loop, where neighboring sub-domains
residing in separate memory spaces must synchronize their
edge data each iteration, i.e., exchange a face or slab of the
sub-domain with neighbors, as shown in Figure 5.

Face Specification. As noted above, boundary (ghost) ele-
ment exchange is an important communication pattern in many
scientific domains. When N-dimensional grids are stored as
standard C arrays, only the two faces at the low and high end of
the N-2 dimensions are stored contiguously, and the remainder
have their elements scattered at well-defined stride offsets.
Therefore, a concise representation is needed for defining the
set of memory addresses that make up a face, so that they can
all be appropriately read and exchanged.

Rather than using a pointer list, we re-purpose the gslice
data structure from 1ibstdc++ that is designed specifically
for recording such structured offset information about an N-
dimensional array. The data structure represents the offset
computation as a tree of height N in which each successive
level from the root is a finer stride through memory. That
is, the leaf nodes represent the unit-stride dimension, their
parents represent the dimg-stride dimension, grandparents the
dimg * dim;-stride dimension, and so on. Figure 6 shows an
example of this data structure, which requires O(D) memory
space (where D is the dimension of the data grid).

Data Marshaling. On-device packing and unpacking of
a multidimensional dense grid can significantly reduce data
transfer and synchronization overhead. So, instead of using
host-side data marshaling, we provide per-back-end variants
of parallel gather/scatter operations to support the exchange of
portions of a back-end-resident data buffer. In these kernels,
threads compute indices into the unpacked buffer in parallel
from the face specification, then perform a direct copy between
the packed and full buffers.

Communication Meta-Operations. We expose a family
of four operations that provide data exchange with other
MetaMorph processes and back-ends, in both blocking and
non-blocking modes. We provide simple packed_send and
packed_recv APIs, which transparently move data be-
tween the back-ends via a host-side staging buffer. In ad-
dition, two more operations are provided: pack_send and
recv_unpack. These operations allow the user to specify
face exchanges at a higher level of abstraction that concisely
describes the exchange being performed. Currently, the user
only provides the target process, the back-end-resident N-D
data buffer and packed buffer, and a valid face specification
as described above. Moreover, MetaMorph’s communication
interface has preliminary GPU-Direct support for exchanging
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Fig. 6: Face description data structure and heirarchical index computation.

buffers directly between two MetaMorph processes with the
CUDA back-end and a GPU-aware MPI, such as MVAPICH?2.

Asynchronous Communication. To overlap computation
with communication, MPI exchanges are frequently performed
in asynchronous mode. As such, all exchange functions can
operate in either blocking or non-blocking mode (via callbacks
and helper functions). In practice, each high-level exchange
operation consists of two to four asynchronous steps. For
example a pack_send on a non-GPU Direct back-end must
1) run the pack kernel asynchronously, 2) whenever the pack
kernel finishes, perform an asynchronous device-to-host copy
of the packed buffer, 3) send the host buffer using MPI_ISend
, and 4) free the temporary host buffer.

Therefore, an infrastructure is provided to coordinate such
asynchronous pipelines, which is built from three main compo-
nents: an MPI request queue, helper functions that trigger after
requests finish, and callback functions that are triggered by the
back-ends after kernels/transfers finish. When an asynchronous
MPI operation is invoked, its corresponding request is regis-
tered on a queue alongside the type of meta-operation being
performed, and the necessary data and helper function required
to finish any remaining work. At this time, submitted requests
are only checked for completion, when a meta_flush is
called. However, there is an opportunity to check for comple-
tion more frequently. Each time an asynchronous device kernel
or transfer is invoked, the necessary data and callback function
can be specified such that the back-end run-time triggers the
remaining work upon completion of the device operations.

4) Companion Features: The final software component in
the front-end API is a set of companion features that provide
optional capability, which may not be needed by all users.
Currently, we provide the following features:

o Timing infrastructure that performs transparent timing of
kernels and data transfers across the different software
back-ends.

o Fortran compatibility that exposes both polymorphic For-
tran 2003 and ISO_C_BINDINGS-compatible versions
of the user-level API.

D. Accelerator Back-Ends

Back-ends are less uniformly constructed as a consequence
of the dissimilarity of platform-specific programming. How-
ever, ultimately each is responsible for providing a standard
C interface to the accelerated kernels. They are segregated
from one another in order to allow separate compilation and
encapsulation of platform-specific nuances. Consequently, if a
given back-end requires special-purpose libraries or tools to
build that are not present on the target machine, it can be
easily excluded from a given build of the library as a whole
without loss of function in the remaining back-ends.

1) OpenMP Back-End: The OpenMP back-end provides
standard C variants of all API functions and should be
considered the default back-end, as it provides functionally
correct results on any CPU, regardless of whether the com-
piler respects OpenMP pragmas. For some kernels, additional
compile-time options are provided to further accelerate code,
such as the option to use AVX intrinsics.

2) CUDA Back-End: The CUDA back-end includes both
the kernel functions and the host-side wrappers responsible for
executing the kernel — and when necessary, auto-generating
a CUDA grid/block configuration from the provided problem
size. It uses the CUDA C execution configuration syntax
and mixed device/host source. In most cases where a kernel
supports multiple data types, simple templates are used in
order to minimize code duplication.

3) OpenCL Back-End: The OpenCL back-end is similar to
the CUDA back-end, with a few exceptions. OpenCL kernels
and host code are stored in separate files, as is common in
OpenCL development. The OpenCL host code includes func-
tions for automatically performing the OpenCL initialization
boilerplate. This includes selection of OpenCL platform and
device, construction of a command queue and context for
executing on the device, just-in-time compilation of kernel
code, and management of the resulting program and kernel
objects.
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We present a case study with the structured grids design

IV. A CASE STUDY WITH STRUCTURED GRIDS

Algorithm 2 MiniGhost with SVAF communication mode

: INPUT: Nz X Ny X Nz
. INPUT: N
: INPUT: Nvar

> global domain size
> number of sub-domains
> number of variables

pattern, which is heavily used in computational fluid dynamics.
We demonstrate MetaMorph’s capabilities with benchmarks
and a representative CFD application. We show that a program
written once using MetaMorph’s abstraction layer can seam-
lessly utilize a wide range of hardware accelerators across
multiple compute nodes. Moreover, we show MetaMorph’s
interoperability with platform-specific libraries. We evaluate
MetaMorph on an experimental heterogeneous cluster with
multicore CPUs, Intel MICs, NVIDIA GPUs, and AMD
GPUs. In addition, we perform scalability analysis on a large-
scale CPU-GPU cluster.

A. Applications

1) 3D Dot-Product Benchmark: We designed a benchmark
that simulates the exchange of boundary or “ghost” regions
in a structured grid computation, followed by a global dot-
product on a 3D grid. This benchmark represent a heavily-used
pattern in iterative solvers for partial differential equations,
e.g., conjugate gradient (CG), biconjugate gradient stabilized
(Bi-CGSTAB), and generalized minimum residual (GMRES).
Algorithm 1 describes our test benchmark that models a 3D
structured grid computation on a domain of size NxxNyxNz.
After initialization, the global domain is decomposed into
multiple regions (sub-domains) of size nxxnyxnz, which are
logically connected in a torus along the X dimension, and
each local domain is assigned to a process. Each MPI process
exchanges boundary elements with neighbors, and performs
a 3D dot-product on its local domains. The final result is
computed by combining the partial results from all processes.

Algorithm 1 3D Dot-Product Benchmark

INPUT: Nz X Ny x Nz
INPUT: N
INPUT: Iters
OUTPUT: result
Allocate and initialize global domain
Perform domain-decomposition along the X dimension
Allocate and Initialize local domains of size (nz + 1) X ny X nz
for i € O:Iters-1 do
Pack ghost cells into send_buffer
10: Send send_buffer to proc + 1 process
11: Receive ghost cells from proc — 1 process into recv_buffer
12: Unpack ghost cells from recv_buffer into local domains
13: Compute 3D dot-product on the local domains
14: Perform global reduction to compute result
15: end for
16: return result

> global domain size

> number of sub-domains

> number of iterations

> global 3D dot-product result

R ol S

2) MiniGhost: MiniGhost [11], [12] is a representative
(proxy) application for CTH [13], a multi-material shock
hydrodynamics code developed at Sandia Lab to model hy-
drodynamic flow and dynamic deformation of solid materials.
MiniGhost solves the partial differential equations (PDEs)
of multiple variables, which represent a material state such
as energy, mass and momentum, using the finite difference
method. It implements a difference stencil (e.g., 3D seven-
point stencil) and explicit time-stepping scheme on a homoge-
nous 3D domain (grid). MiniGhost supports two communica-
tion modes: BSPMA (bulk synchronous parallel with message

1
2
3
4: INPUT: TimeSteps > number of time steps
5: INPUT: Stencil > stencil type (3D7P, 3D27P,...)
6: OUTPUT: GridSum[Nvar] > global domain value
7 b > number of neighbors per dimension (2 for 3D7P stencil)
8: Allocate and initialize global domain

9: Perform domain-decomposition along the X, Y and Z dimensions

10: Allocate and initialize local domains of size (nz + b) X (ny 4+ b) X (nz + b)
11: for i € 0:TimeSteps-1 do

12: for j € O:Nvar-1 do

13: Pack boundary data into send_buffer

14: Send send_buffer to neighbors

15: Receive boundary data from neighbors into recv_buffer
16: Unpack boundary data from recv_buffer into local domain
17: Apply boundary conditions on the local domain

18: Compute finite-difference stencils on the local domain
19: Perform global reduction to compute GridSum/[j]

20: end for

21: end for

22: return GridSum

aggregation) and SVAF (single variable, aggregated face data).
In BSPMA, the boundary data for all variables are transmitted
in aggregated messages, while in SVAF the boundary data
for each variable is sent in a dedicated message. When the
number of variables is one, the two communication modes
are equivalent. Algorithm 2 illustrates the main computations
and communication patterns in MiniGhost with SVAF com-
munication mode. After initialization, the global domain is
decomposed along the X, Y, and Z dimensions into multiple
sub-domains, and each sub-domain is mapped to a process.
In each time step, the processes exchange boundary elements
(2D faces) with neighbors that share a face in the X, Y, and
Z dimensions, and apply a difference stencil on their sub-
domains. Finally, the value of the global domain is computed
using global summation.

B. Programmability and Productivity

Figure 7 shows the MetaMorph compute APIs that we
used to accelerate the target applications, in addition to the
core APIs (Figure 4). We implemented a MetaMorph version
of the 3D dot-product and MiniGhost applications, and to
show our interoperability with external libraries, we created
a variant of the 3D dot-product benchmark using MetaMorph
and the platform-specific BLAS libraries cIBLAS, Intel MKL
and MAGMA. Since the platform-specific BLAS libraries do
not provide data marshaling primitives nor accelerator-aware
communication interface, we use MetaMorph to do so, and
only perform the dot-product operation with BLAS libraries.

// Compute Kernels
meta_stencil (void *ind, void xoutd, dim3 xsize, dim3 xstart
, dim3 =xend, meta_type type ...);

meta_dotProd (void =xindl, void *ind2, dim3 xsize, dim3 =x

start , dim3 xend, void *result, meta_type type ...);
meta_reduce (void *xind, dim3 xsize, dim3 xstart, dim3 =xend,
void *result, meta_type type ...);

Fig. 7: MetaMorph’s compute APIs that are used to accelerate
the target applications
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Application OpenMP  MetaMorph  MetaMorph+BLAS
3D dot-product 10 19 40
MiniGhost 23 38 NA

TABLE I: The number of effective code lines changed/added
to accelerate the baseline MPI implementation

To evaluate the programmability of MetaMorph, we use the
number of effective code lines changed or added to accelerate
the baseline MPI version as our metric. We are interested in
the source code lines that perform the core functionality. So,
we don’t consider any code lines used for profiling, timing,
debugging or optional features. In addition, we consider that
the applications use a single data type (double), although
applications accelerated with MetaMorph can use five different
data types without code modifications. Table I shows the lines
of code changed or added to accelerate the sequential appli-
cations using MetaMorph, MetaMorph with platform-specific
BLAS libraries, and directive-based programming models such
as OpenMP. Due to its abstraction layer, MetaMorph has
competitive programmability and productivity with OpenMP,
and unlike OpenMP, it provides access to several hetero-
geneous accelerators. Moreover, through the interoperability
layer, MetaMorph enables the user to utilize platform-specific
libraries with an additional programming overhead.

C. Experimental Results

Due to the lack of large-scale heterogeneous cluster with
different accelerators, covering all currently-supported back-
ends, we evaluate MetaMorph on an experimental hetero-
geneous cluster with multicore CPUs, Intel MICs, NVIDIA
GPUs, and AMD GPUs. In addition, we perform scalability
analysis on a large-scale CPU-GPU cluster. Details of the
experimental nodes and the CPU-GPU cluster are provided
in Table II and Table III, respectively. In the experiments,
MiniGhost is configured to apply a 3D 7-point stencil on a
global grid and to use an explicit time-stepping scheme with
100 time steps. We do not include sequential overheads such
as data initialization and boundary conditions in the reported
performance. While MetaMorph supports several datatypes,
we use double-precision floating point only for brevity.

Figures 8, 9, and 10 show the performance of the 3D
dot-product and MiniGhost applications on the experimental
heterogeneous cluster. In the experiments, we launch four
processes, each running on one of the supported back-end
accelerators: multicore CPU (Intel Xeon E5-2697), Intel MIC
(Intel Xeon Phi SC7120P), NVIDIA GPU (K20Xm) and AMD
GPU (AMD Radeon 7970). We use weak scaling with local
grid sizes that are typically used in CFD applications. How-
ever, AMD Radeon 7970 could not execute the problem size
of 512x512x512, due to its limited global memory. Since the
test resources are only interconnected with a high-traffic 1Gb
ethernet, shared with approximately 30 other nodes, resulting
in too much network noise for meaningful intercommunication
performance characterization, we do not include the inter-node
data transmission time in the reported performance.
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Fig. 8: Performance of the target applications with the different
MetaMorph (MM) back-ends on the experimental cluster

Figure 8 shows the execution time of each process of the
3D dot-product and MiniGhost applications running on one
of the supported back-ends in comparison with the sequential
reference implementation running on Intel Xeon E5-2697. The
results show that MetaMorph achieves up to 21x and 17x
speedup over the serial implementation in 3D dot-product and
MiniGhost, respectively. Since structured grids applications
are characterized by regular memory access pattern and low
computational intensity, their performance is limited by the
memory system; hence, they are suitable for many-core accel-
erators (GPUs and Intel MICs) with large memory bandwidth.
However, the problem size must be large enough such that the
kernel launch overhead and the additional data transfers are
effectively amortized.

Figure 9 shows the run-time distribution of MiniGhost with
256x256x512 local problem size on the different MetaMorph
back-ends. The main computation and communication kernels
of MiniGhost are stencil, reduction sum, data marshaling, and
intra-node data transfer. On many-core accelerators, the intra-
node data transfer includes host-to-device, device-to-host, and
on-device data movement, while on CPUs it includes on-
device data movement. MiniGhost has many on-device data
transfers, as its finite-difference solver uses temporary work
buffers to hold the intermediate results, while solving the
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Machine Name | CPU(s) | Accelerator(s) | 0S | MPI | Compiler(s) | Opt. Level
o | PRRpEI | N | D o | S0 o
dnal ‘ Intel C@?rgi?)—%;ﬁ(; ‘ AMD Radeon 7970 ‘ Debian Wheezy ‘ MPICH 3.1.4 ‘ acc 472 ‘ 03
mic ‘ e 270 G (o0 ‘ SCT120P () ‘ CentOS Linux 6 ‘ MPICH 3.1.4 ‘ icc 13.1.1 ‘ 03

TABLE II: The experimental cluster’s configurations

Cluster Name | CPU(s) | Accelerator(s) |

OS | MPI (Interconnect) | Compiler(s) | Opt. Level

Intel Xeon E5645 | NVIDIA Tesla

HokieSpeed ‘

CentOS Linux 6 ‘

OpenMPI 1.6.4

gcc 4.5/icc 13.1 ‘ 03

@ 2.40 GHz (2x) C2050 (2x) (QDR InfiniBand) nvee 5
TABLE III: The CPU-GPU cluster’s configurations
Y @Intra-node Data Transfer addition, the hardware prefetcher in Intel MIC is less powerful
(oc\“P‘MD cPV) Z fg:&iggﬁha““g than mainstream multicore CPUs, when the memory access
MW a Gpu) m Stencil stream is non-contiguous (scattered) [14].
VO
e o IENE7
MN\(ON\P‘M\ ) = Figure 10 shows the performance of the 3D dot-
(o\\I\P‘CPm product benchmark, when accelerated using MetaMorph with
\

1 2 3 4 5 6 7 8

Runtime (Seconds)

Fig. 9: The run-time distribution of MiniGhost using a
256X256X512 local grid with the different MetaMorph (MM)
backends on the experimental cluster
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Fig. 10: Performance of the 3D dot-product benchmark on the
different MetaMorph (MM) backends with platform-specific
BLAS libraries on the experimental cluster

partial differential equations of the material state variables. On
multicore CPUs, due to their limited memory bandwidth, the
stencil and intra-node data transfer consume the majority of
execution time. Many-core devices, with their large memory
bandwidth, accelerate all kernels. However, data marshaling
suffers from performance degradation on Intel MIC. The
profiling data shows that data marshaling kernels do not utilize
the vector units on Intel MIC efficiently, due to the non-unit
stride memory access pattern and complex control flow. In

platform-specific BLAS libraries. The results show that the
MetaMorph variant (Figure 8a) has comparable performance
to the MetaMorph with BLAS libraries version on multicore
CPU, AMD GPU and NVIDIA GPU, although MetaMorph’s
3D dot product is more flexible than the simple contiguous
dot product available in BLAS libraries, as it allows the user
to perform dot product on an arbitrary sub-region of the 3D
grid; this is very useful for CFD applications, where neighbor
ghost cells data is often stored contiguously with local data to
simplify stencil operations. However, MetaMorph with MKL
outperforms MetaMorph only on Intel MIC for small problem
sizes (less than 256x256x256). Our hypothesis is that Intel
MKL adapts to the different inputs and problem sizes, which
is a feature currently in development in MetaMorph.

Figure 11 shows the scalability analysis of MiniGhost on the
large-scale CPU-GPU cluster. Weak scaling experiments use
a problem size of 512x512x512 per node, and strong scaling
experiments use a global grid of size 1024x1024x1024. In
comparison with the reference MPI+OpenMP implementation,
MetaMorph achieves 7-8x speedup in the weak scaling prob-
lem. The main reason is that MetaMorph effectively utilizes all
the available accelerators (CPUs and GPUs) within a node and
across nodes. Unlike the traditional MPI+OpenMP approach,
the MetaMorph version transparently maps the workload to
accelerators from different vendors with different execution
models and programming approaches. The workload is dis-
tributed based on the relative performance of the accelerators
and the availability of on-device memory. In the strong scal-
ing problem, the performance gap between MetaMorph and
MPI+OpenMP decreases at lower node counts, as most of
the workload is mapped to the host, due to the limited GPU
memory. However, at larger node counts, MetaMorph achieves
up to 6x speedup over the MPI+OpenMP implementation.
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Fig. 11: Scalability analysis of MiniGhost on the HokieSpeed
cluster with MetaMorph vs. the reference MPI+OpenMP im-
plementation

V. RELATED WORK

With the end of frequency scaling and the shift to par-
allel and heterogeneous computing, developing software has
become much more complex [15]. Many approaches have
been proposed to address the challenges of programming
parallel architectures by abstracting the hardware details. Here
we discuss three related approaches: directive-based program-
ming, domain-specific libraries, and portable run-time systems.
MetaMorph is orthogonal to these approaches and subsumes
both directive-based programming models and portable run-
time systems in the back-end layer, while supporting interoper-
ability with domain-specific libraries and existing accelerated
code.

Directive-based programming models, such as OpenMP [16]
and OpenACC [17], move the burden of explicit thread man-
agement, workload partitioning and scheduling, data move-
ment across the memory hierarchy, and inter-thread synchro-
nization/communication to the compiler. While OpenMP and
OpenACC abstract away complex details, and provide a conve-
nient interface to describe parallelism to the compiler, achiev-
ing acceptable performance requires deep understanding of the
underlying architecture, run-time system, compiler limitations,
and a number of complex clause specifications. Moreover,
the programmer must use thread-safe functions, eliminate
inter-thread data dependencies, avoid pointer aliasing, and

manage access to shared variables. In addition, the high-
level abstraction of directive-based programming can come

with a performance penalty in comparison with low-level
programming models such as OpenCL and CUDA [18], [19],
[20], [21].

Domain-specific libraries, such as MAGMA, PARALU-
TION and ViennaCL, provide both abstraction and high per-
formance for a set of computation kernels and algorithms
in a specific domain. However, this often comes with the
cost of complicated installations and extensive application re-
factoring. MAGMA [5] provides powerful intelligently sched-
uled BLAS and LAPACK algorithms, but due to the depen-
dency on external libraries is difficult to install, configure, and
tune, and does not yet provide unified or consistent capability
across its CUDA, OpenCL, and Intel MIC implementations.
Although MAGMA supports multi-GPU BLAS kernels, there
is no built-in support for interoperability across different
hardware accelerators, e.g. AMD GPU, NVIDIA GPU and
Intel MIC. PARALUTION [22] and ViennaCL [23] provide it-
erative solvers and preconditioners that supports CPUs, GPUs,
and Intel MICs. Although PARALUTION and ViennaCL
are powerful solver frameworks, they require recasting the
application to use complex cases and object types, which
present a barrier to incremental porting and adaption.

Portable run-time systems, such as OpenCL [24] and
OCCA [25], provide a kernel specification framework and
run-time compilation and execution on multiple platforms.
Although OpenCL and OCCA support functional portability,
performance portability is not guaranteed, and the application
developer need to modify the kernel implementation to achieve
the required performance on the target hardware platform.
Moreover, these approaches have relatively lower programma-
bility in comparison with directive-based programming and
domain-specific libraries, as the programmer must explicitly
manage all hardware control operations.

In summary, directive-based programming models trade
performance with high-level abstraction, while portable run-
time systems can achieve high performance with the cost of
low programmability and explicit hardware control. Domain-
specific libraries can achieve high-level abstraction and high
performance, but only for a set of algorithms in a specific
domain and with a significant application re-factoring, com-
plicated installations and steep learning curve.

On the other hand, MetaMorph addresses the challenges
of programming heterogeneous architectures through its core
design principles: abstraction, interoperability and adaptability.
MetaMorph provides high performance and abstraction using
highly-optimized back-end layer, and light-weight interface
layer that does not require significant application re-factoring.
In addition, it supports interoperability across different hard-
ware accelerators and with existing code. Moreover, Meta-
Morph is designed to eventually exploit run-time information
to improve computation and data transfer latency even more.
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VI. CONCLUSION

In this paper, we introduced MetaMorph, a library frame-
work designed to simplify the process of extracting high per-
formance from a range of current and future accelerator archi-
tectures, without significant time investment in development
and learning platform-specific nuances. We showed how the
core principles of adaptivity, abstraction, and interoperability
are instantiated in our prototype. Further, we demonstrated that
through these principles, MetaMorph is able to transparently
and efficiently map common communication and computation
patterns across several nodes bearing accelerators from differ-
ent vendors with different programming approaches.

The results show that while MetaMorph has comparable
programmability and productivity to directive-based program-
ming models, it provides performance and interoperability
across an array of heterogeneous devices, including multicore
CPUs, Intel MICs, AMD GPUs, and NVIDIA GPUs. In
addition, high performance similar to domain- and accelerator-
specific approaches is achievable through the MetaMorph
library. Further, by effectively utilizing all the available ac-
celerators within a compute node and across compute nodes,
MetaMorph achieves an order of magnitude scalable speedup
over the traditional MPI+OpenMP approach.

There remain many opportunities to expand on the Meta-
Morph prototype, some of which are already in the pipeline.
For example, the unified accelerator meta-platform provided
by MetaMorph is a perfect candidate for a run-time schedul-
ing system capable of intelligently mapping code across all
available accelerator back-ends, providing further abstraction
of device-specific nuances and increasing performance. The
communication abstractions provided by MetaMorph can be
expanded to take more advantage of accelerator-aware MPI
implementations, providing an opportunity for communication
pipelining, DMA-based transfers, and other optimizations.
Finally, we plan to expand MetaMorph’s reach to other ac-
celerator devices — such as FPGAs and DSPs— as well as
other application domains.
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