
MUSA: A Multi-Level Simulation Approach
for Next-Generation HPC Machines1

Thomas Grass∗† César Allande† Adrià Armejach† Alejandro Rico‡ Eduard Ayguadé∗†
Jesus Labarta∗† Mateo Valero∗† Marc Casas† Miquel Moreto∗†

∗Universitat Politècnica de Catalunya †Barcelona Supercomputing Center ‡ARM Inc.

large shared-memory multi-core configurations [16, 28, 35].
For example, OpenMP, the most popular approach for shared
memory programming, has significantly evolved and currently
incorporates advanced features such as tasking support [4, 39].
For all these reasons, parallel operations such as schedul-
ing and synchronization are expected to become key system
software components. As a result, simulators targeting next-
generation HPC systems must take into account such parallel
operations performed at the runtime system level.

Existing tools make simulation of large-scale HPC ma-
chines with thousands of cores unfeasible. Conventional cycle-
accurate architectural simulators offer a great level of detail,
but make simulation times impractical when using more than
a few tens [6, 7, 51] or a few hundreds of cores [45]. Higher-
level simulators are able to simulate thousands of cores at
the cost of not modelling any microarchitectural details or
the impact of the system software [2, 14, 55]. Raising the
level of abstraction is necessary, but needs to be done to an
appropriate degree. Hence, it is critical to develop flexible
simulation infrastructures that allow to quickly trim the vast
design space while still capturing the impact of the simulated
microarchitecture and system software.

In this paper we make the following contributions:
• We present MUSA, a multi-scale simulation approach

that enables fast and accurate performance estimations of
next-generation HPC machines. Our methodology seam-
lessly captures inter-node communication as well as intra-
node microarchitectural and system software interactions,
improving usability and simplifying the simulation work-
flow. MUSA relies on native execution traces with two
levels of detail to allow simulation of different communi-
cation networks, numbers of cores per node, and relevant
microarchitectural parameters.

• We validate MUSA using the NAS Multi-Zone Parallel
Benchmark suite [27], and then evaluate three large-scale
case studies (with up to 16,384 cores) using BT-MZ,
HYDRO [33], and SPECFEM3D [31]. Our evaluation
shows that MUSA provides accurate performance predic-
tions by combining information at different levels of gran-
ularity. When comparing native executions and MUSA
simulations with up to 2,048 cores, we achieve relative
errors within 10% in the common case, demonstrating
that our detailed model is able to capture microarchitec-
tural and system software effects. In addition, we show
that our simulations complete in an affordable amount of

Abstract—The complexity of High Performance Computing
(HPC) systems is increasing in the number of components and
their heterogeneity. Interactions between software and hardware
involve many different aspects which are typically not transpar-
ent to scientific p rogrammers a nd s ystem a rchitects. Therefore,
predicting the behavior of current scientific applications on future
HPC infrastructures is a challenging task.

In this paper we present MUSA, an end-to-end methodology
that employs a multi-level simulation infrastructure. By combin-
ing different levels of abstraction, MUSA is able to model the
communication network, microarchitectural details and system
software interactions, providing different trade-offs in terms
of simulation cost and accuracy. We compare detailed MUSA
simulations with native executions of up to 2,048 cores and
find r elative e rrors t hat a re w ithin 1 0% i n t he c ommon case.
In addition, we use MUSA to simulate up to 16,384 cores
and successfully identify scalability bottlenecks due to different
factors, e.g. memory contention or load imbalance. We also
compare different system configurations, s howing h ow MUSA
can help system designers to assess the usefulness of future
technologies in next-generation HPC machines.

I. INTRODUCTION

The process of designing next-generation High Performance
Computing (HPC) machines is extremely challenging. The
increasing amount of computational resources each generation
integrates makes this challenge even more difficult. In addition,
the trend to use commodity server processors as the common
choice for designing such machines is changing, as processors
with leaner core designs that feature significantly different
microarchirectural characteristics are starting to make their
debut in the HPC market [40, 52, 54]. Consequently, the
design space for next-generation HPC machines is expanding.
Novel solutions are required in order to quickly predict the
performance of current and future scientific a pplications on
those systems and to identify the best design points.

Besides taking into account the hardware, it is important to
also consider its interactions with the system software (e.g. op-
erating system, runtime system) [12, 50]. Hybrid programming
models are pervasive nowadays, employing MPI for inter-node
communication and a shared-memory programming model
for node-level parallelism. Motivated by larger core counts
within the same node, sophisticated ways of handling shared
memory parallelism are becoming increasingly attractive to
reduce load imbalance and thus improve parallel efficiency in

1 The last two authors have equally lead the research effort that produced
this paper.

time, i.e. less than a day of total aggregated CPU time for
detailed 16,384-core simulations. This allows to quickly
identify scalability problems in the targeted case studies.

• Finally, we perform a design space exploration analy-
sis using high-performance, low-power, and die-stacked
DRAM processor profiles on a system with 16,384 cores.
We find that for one of the evaluated HPC applications,
HYDRO, the low-power processor can achieve on par
performance even with the same number of cores, as
the high-performance memory hierarchy and aggressive
microarchitecture are over-dimensioned. In contrast, the
other two applications benefit from an aggressive out-of-
order microarchitecture, and SPECFEM3D achieves bet-
ter scalability by exploiting the higher memory bandwidth
provided by die-stacked DRAM technology.

II. BACKGROUND AND MOTIVATION

This section describes the co-design challenges in next-
generation HPC systems. Afterwards, we discuss the difficul-
ties of simulating large HPC applications and the limitations
this imposes in exploring designs for future systems.

A. Co-Design of HPC Applications and Systems

In current HPC applications, the Message Passing Interface
(MPI) is the most common way to expose parallelism across
multiple computing nodes. As the number of nodes increases
with the deployment of new HPC systems, node-to-node
communication costs become more relevant and need further
consideration when designing such systems. For example,
certain applications might experience communication time
overheads in the presence of load imbalance across different
nodes. Finding the right ratio between the number of nodes and
the number of processing units per node is a primary design
decision that can greatly impact application performance.
Hence, exploring such trade offs beforehand is a fundamental
step when designing a new system.

In current HPC systems, nodes typically consist of a small
number of sockets with shared memory. Shared-memory pro-
gramming models such as OpenMP are the most common
approach to express parallelism within a node. Recently,
advanced tasking features or support for accelerators and
SIMD constructs have been included in OpenMP. These fea-
tures allow to exploit the computational power of the node
while increasing programmer productivity [4, 16, 39]. In next-
generation HPC systems, an appropriate amount of cache per
core and enough memory bandwidth are paramount to achieve
the desired performance within a node when running one of
the targeted applications. Therefore, provisioning a node with
enough resources to fit such demands is a design decision that
needs to be considered when designing an HPC system.

Hybrid programming models simultaneously employ differ-
ent paradigms to exploit both inter- and intra-node parallelism,
e.g. MPI and OpenMP. To achieve peak performance it is
important to have an even amount of computation distributed
across the different nodes, and that the available parallelism

within a node maps well to the available resources. By prop-
erly dimensioning a system the node-to-node communication
overheads can be minimized, while at the same time achieving
the desired node level performance.

B. Challenges Simulating Large HPC Applications

Simulation is a key tool in order to design next-generation
HPC systems and applications. However, simulating future
HPC systems at a meaningful scale is challenging due to
the large amount of components that need to be considered.
Consenquently, HPC system designers have to constantly trade
off accuracy for simulation speed. As explained before, the
number of nodes in the system and the amount of resources
within a node can create performance bottlenecks at the
inter-node and intra-node levels. Hence, scaling down the
simulated system or focusing only on the node level may
lead to suboptimal design decisions. Moreover, applications
used in large-scale systems exhibit long execution times and
downsizing the input sets to make them more manageable
can change the application’s characteristics, i.e. the amount
of cache or memory bandwidth needed to perform well under
the original input sets.

In order to simulate such large HPC systems, new method-
ologies are needed to gauge the necessary requirements both
at the overall inter-node level as well as the intra-node level.
In this paper we propose MUSA, a multi-level simulation
infrastructure capable of simulating large-scale HPC systems.
MUSA combines different levels of abstraction to provide
insights on the expected performance of an application on a
hypothetical HPC system. The following section describes the
proposed infrastructure in detail.

III. MULTI-LEVEL SIMULATION APPROACH

In this section, we present MUSA, our multi-level sim-
ulation infrastructure for hybrid programs running on next-
generation HPC systems.

A. MUSA - General Overview

MUSA is an end-to-end methodology that uses traces to
enable large-scale simulations with different communication
networks, numbers of cores per node, and microarchitectural
parameters in a comprehensive HPC environment that con-
siders the effects of system software. To this end, MUSA
employs two components: (i) a tracing infrastructure that
captures communication, computation and runtime system
events; and (ii) a simulation infrastructure that leverages these
traces for simulation at multiple levels. Figure 1 illustrates our
modular methodology that provides a streamlined workflow
from tracing to the final simulation output.

HPC applications stress a system at multiple levels, includ-
ing both the hardware (i.e. pipeline, core, chip, node, network)
and the software (i.e. scheduling, synchronization, commu-
nication and computation phases). Using a single simulation
approach across all levels would be too rigid to adapt to the
degree of detail appropriate for each level. For this reason,
MUSA’s simulation infrastructure is capable of changing the

2

Fig. 1. MUSA tracing and simulation methodology.

level of simulation detail, from cycle-accurate microarchitec-
tural simulations to high-level analytical models. The method-
ology allows to combine detailed (higher computational cost)
and high-level (higher simulation speed) simulations, enabling
simulation of large-scale machines with thousands of cores in a
reasonable amount of computational time, while guaranteeing
a high degree of accuracy. The rest of this section provides
further details on the tracing and simulation infrastructures.

B. Tracing - Capture Multi-Level Behavior

The initial step is to trace an application’s execution at mul-
tiple levels. Given our targeted hybrid programming model, we
start tracing each MPI process representing a rank. Within a
rank multiple threads running in parallel may coexist, managed
by a runtime system. As shown in Figure 1, MUSA traces an
application by running it natively with the number of ranks to
be used in future simulations and instructs the runtime system
to execute each rank using a single thread.

The tracer then generates a file with the communication
and computation information per rank. This trace file contains
information about the MPI communication phases, including:
(i) timestamps of beginning and end of each communication
phase for all ranks, (ii) the type of communication (e.g. collec-
tive or point-to-point), and (iii) the size of the data to be sent.
At the same time the computation information for each rank is
recorded, storing timestamps for each computation phase and
multiple runtime events such as creation and synchronization
of parallel sections. The instrumentation required to obtain
these traces is coarse-grained, leading to a small overhead that
does not significantly affect the application’s behavior.

In order to simulate a node in detail, MUSA requires
additional instruction-level instrumentation for computational
phases; such as the operation code, the program counter and

the involved registers and memory addresses. Such detailed
instrumentation is deferred to a separate native execution due
to its higher overhead that might alter application behavior.
Hence, when tracing in detailed mode, the timestamps taken in
the first trace are used to correct any deviation in the behavior
of the application introduced in the detailed trace step.

Figure 2a shows a trace generated by MUSA’s tracing
infrastructure with communication and computation informa-
tion for a fraction of an application’s execution time. The
tracing methodology generates traces that allow simulations
even if the characteristics of the simulated computational
node (e.g. the number of cores, the memory hierarchy) or
the communication network change. As a result, we can
perform architectural analysis of a large design space using
the same set of traces, reducing trace generation time and
storage requirements. Section IV-C contains further details on
the employed tracing tools and their overheads.

C. Simulation - Leverage Multi-level Traces

MUSA’s simulation step employs the communication and
computation events gathered in the tracing step. As shown
in Figure 1, the methodology initially identifies the different
computation phases for each rank, which are independent
and can be simulated in parallel. Each of these rank level
computation phases is simulated with the specified number of
cores and parameters of the microarchitecture and the memory
hierarchy. However, MUSA is able to simulate an arbitrary
number of cores per rank. To accomplish this, MUSA injects
runtime system API calls by using the runtime system events
recorded in the trace, effectively simulating the runtime sys-
tem, including scheduling and synchronization for the number
of simulated cores. The architectural simulator we employ can
perform simulations either in burst or detailed mode, which
allow from faster than native simulation speeds to slower but
more detailed design space exploration studies, respectively.
Details about the chosen architectural and network simulators
can be found in Section IV-C.

Burst mode simulation: Simulations using burst mode
replay the computation events traced during native execution
with coarse grained instrumentation. Burst mode simulations
do not take into account the contention that the memory
hierarchy of a node might experience when running multiple
threads, hence the obtained performance estimations are to
be treated as upper bounds. However, MUSA allows the
user to specify IPC correction factors to account for the
impact of inter-thread contention if there is any application-
specific knowledge, making burst simulations more accurate
and flexible. Burst mode simulations allow faster than native
simulation speeds, thus enabling quick design space explo-
ration studies with a variable number of cores per rank and
different communication networks.

Detailed mode simulation: When simulating a computation
phase in detail, MUSA also uses the detailed traces, enabling
cycle-accurate simulations with detailed models for microar-
chitecture and memory hierarchy. The detailed information in
the instruction-level trace allows to use different cycle-accurate

3

(a) Coarse-grain instrumentation trace of HYDRO with 4 ranks. Delimits computation and communication phases and includes runtime events.

(b) Simulation output trace for the above input trace when simulating a system with 2 cores per rank. The runtime system is faithfully modeled.

Fig. 2. Traces used in MUSA’s methodology: (a) tracing infrastructure and (b) simulation infrastructure output. Traces are shown using the same time scale.

simulators, ranging from component-specific simulators, such
as main memory, cache hierarchy, or interconnects, to detailed
pipeline microarchitecture simulators. Detailed simulations
can be time consuming and an appropriate simulator has to
be chosen depending on the envisioned target study.

Simulating all computation phases of an application in
detail is feasible for small systems and short execution times.
However, when going into the domain of thousands of cores,
full detailed simulation becomes prohibitive both in terms of
trace size and simulation time. Fortunately, HPC applications
follow certain execution patterns that are easy to identify with
our visual trace format. We can leverage this information by
specifying a subset of the ranks, or even a subset of the
iteration phases within a rank, to be traced and simulated
in detailed mode. Therefore, MUSA allows the user to de-
fine such bounds as input parameters, giving great flexibility
in deciding which computation phases are to be simulated
in detail, while the performance of the remaining phases
is extrapolated. Section III-D details how MUSA performs
sampling of computation phases at different levels.

Network simulation and final output: After the computa-
tion phases have been simulated, MUSA replays the execution
of the communication trace events in order to simulate the
communication network and generate the final output trace
of the simulation. During this process, the durations of the
computation phases are replaced by the results obtained in the
simulations (either in burst or detailed mode), and the com-
munication phases are simulated using a network simulator.
At the end of this process the entire simulation is complete
and the output trace is generated for visualization.

Figure 2b shows an output simulation trace generated by
MUSA when simulating two cores per rank. The simulation
models the OpenMP scheduling events by calling the actual
runtime system through inserted API calls for the traced
events, faithfully modeling the impact of having two cores on
each node. The MPI communication is processed by thread
T0 on each rank, while the computation phase load of each
rank is distributed across the two cores.

D. Sampling - Reducing Simulation Time
Accurate microarchitectural simulation is time consuming.

Conventional simulators achieve simulation speeds of 100 to

1000 KIPS [6, 42, 45]. As a consequence, detailed simulation
of large systems or long-running applications becomes infea-
sible. While MUSA allows simulations at different levels of
detail, it still requires to simulate some computation phases in
detail. In an HPC application, these phases typically run for a
few seconds, before starting a new communication phase.

A common technique for reducing simulation time is sam-
pling. Sampling can be employed to allow detailed simulation
of larger portions of an application or to further reduce
simulation time. Sampling seeks to minimize the amount of
detailed simulation by only simulating the representative parts
of an application. In the following, we point out how MUSA
employs sampling at three orthogonal levels of granularity in
an application, namely (i) the whole application, (ii) a single
MPI rank, and (iii) a computation phase within an MPI rank.

Application level: Many applications in HPC show iterative
behavior, with each iteration representing a step in time or
space. In many cases, different iterations show very simi-
lar performance. Automatic techniques to identify iterations
based on performance monitoring counters or traces of logical
events have been proposed in the past [11, 26]. However,
the simplest approach relies on directly analyzing the code
of the application, annotating the start and end of an iteration.
When sampling at the application level, MUSA leverages these
techniques to identify repetitive behavior and select a small
number of iterations for detailed simulation.

MPI rank level: As described in Section II, a common
programming technique in HPC applications is the division
of the problem domain into blocks. Afterwards, each block is
processed by a different MPI rank. Often, different MPI ranks
show similar performance across all processes. Consequently,
MUSA can select a subset of the MPI ranks for detailed
simulation at the microarchitecture level. MUSA adopts a
simple approach consisting in simulating one out of every N
MPI ranks (periodic sampling). There are existing techniques
to automatically select representative computation phases of
an application [22, 46].

Computation phase level: After selecting a subset of
iterations and MPI ranks, all computation phases have to
be simulated in detail. Identifying representative sections of
a computation phase can be done automatically [47, 53],

4

TABLE I
APPLICATION CHARACTERISTICS AND TRACING STATISTICS.

Benchmark Characteristics Tracing
Name Input Ranks Tasks/rank Iterations Regions/iteration Overhead Burst Trace Detailed Trace

BT-MZ Class D 16 2.3M 250 1 3.4% 5.6 GB 53.3 GB
SP-MZ Class D 16 131K 500 1 1.2% 0.4 GB 13.7 GB
LU-MZ Class D 16 1.3M 300 1 1.0% 3.2 GB 12.5 GB

HYDRO big 256 1.0M 200 2 6.0% 16.1 GB 16.9 GB
BT-MZ Class E 256 1.3M 250 1 8.5% 57.4 GB 120.0 GB
SPECFEM3D n/a 256 1.9M 10700 1 9.3% 101.4 GB 106.4 GB

and applied to parallel applications with barriers [9], as is
the case of typical OpenMP programs with parallel loops.
In the case of task-based programs, a computation phase
typically comprises several thousands of task instances. These
task instances stem from task types which are instantiated
many times during the execution of an application. Different
instances of the same task type show similar behavior, which
allows to periodically sample task instances to be simulated
in detail [23]. Then, these results are extrapolated to the rest
of the computation phase by fast-forwarding, using the IPC
of the representatives simulated in detail [9, 23]. Simulating a
reduced set of instructions shows very good accuracy while it
reduces simulation time by one or two orders of magnitude in
large multi-core systems. MUSA can exploit these sampling
techniques to accelerate the simulation of a single computation
phase within an MPI rank.

IV. EXPERIMENTAL METHODOLOGY

This section introduces the experimental methodology em-
ployed to evaluate our multi-level simulation infrastructure.

A. Applications

To validate MUSA we use the NAS multi-zone bench-
marks [15]: BT-MZ, SP-MZ and LU-MZ. These representative
HPC benchmarks have been designed to exploit multiple levels
of parallelism using a hybrid programming model. For this
validation step we use 16 MPI ranks with a mapping of one
rank per node. Simulations are performed with 1 to 8 cores
per node. We run the benchmarks with the input class D, for
which we observe enough parallelism for the 16 MPI ranks
employed.

In order to illustrate the potential of MUSA, we evalu-
ate large-scale machines using HYDRO [33], BT-MZ with
the large input class E, and SPECFEM3D [31]. HYDRO
implements a simplified version of RAMSES [49], a code
developed to study large-scale structure and galaxy formation.
It uses a fixed rectangular two-dimensional space domain and
solves the compressible Euler equations of hydrodynamics.
Fluxes at the interface of two neighbouring computational
cells are computed using a Riemann solver. SPECFEM3D uses
the continuous Galerkin spectral-element method to simulate
forward and adjoint seismic wave propagation on arbitrary
unstructured hexahedral meshes. For these applications we
employ 256 MPI ranks, one per node, and up to 64 cores
per node, resulting in simulations of up to 16,384 cores.

All applications use a hybrid programming model based on
MPI [38], and a task-based programming model, OmpSs [16].
OmpSs allows to annotate tasks with data inputs and outputs.
Using this information, the OmpSs runtime system schedules
task instances taking data dependencies into account and
performs synchronization only when necessary. These OmpSs
features were included into the specifications of OpenMP 3.0
and 4.0 [4, 39]. The whole OmpSs environment is available as
open source. Applications are compiled with GCC 4.7.2 and
the -O3 optimization flag set.

Table I summarizes the main characteristics of each applica-
tion. It includes the number of MPI ranks, the total number of
tasks per MPI rank, the number of iterations of the application
and the number of parallel regions within an iteration. For
example, in the case of BT-MZ with input class E there is an
average of 5,200 tasks per parallel region (tasks/rank

iterations × regions).

B. Native HPC Infrastructure

We validate MUSA against the MareNostrum 3 supercom-
puter. Each node has two sockets with an Intel Xeon E5-2670
featuring eight cores running at 2.6GHz. The cores implement
aggressive superscalar capabilities, have private L1 and L2
caches, and a shared 20MB L3 cache. The nodes are connected
via a high-bandwidth Infiniband FDR10 network. To validate
MUSA, we simulate the same HPC infrastructure.

For the native executions, we present results with up to eight
cores per node, making use of a single socket. This avoids
factoring in non-uniform memory access timings that may
bias the results. In addition, we run each native experiment
five times and select the measurement that presents the lowest
amount of interference due to current system load.

C. Tracing and Simulation Infrastructure

Traces are obtained using different lightweight tracing tools
based on extrae [19] and PIN [36]. To obtain the traces for
an application, we instrument a native execution that runs
only a single thread per node, i.e. per MPI rank. Extrae
generates the high-level trace (burst trace) using coarse-grain
instrumentation. The tracer instruments the entire application,
i.e. all ranks and iterations. However, for the detailed trace,
such an approach would be impractical and require too much
storage. For the evaluated set of applications, we observe that
tracing the second iteration of a single MPI rank is enough
to later reconstruct an application’s entire execution using this

5

information and the burst trace. This allows for manageable
tracing times and storage requirements.

Table I details the overhead of generating traces at burst
level, and the sizes of the burst and detailed traces for each
application. The overheads include the trace disk I/O costs,
which actually do not affect the application behavior, as I/O
is performed at points where the application is halted by the
tracer. In terms of trace sizes, burst traces are relatively small,
while covering the entire execution of applications running
for several minutes on the real machine. On the other hand,
detailed traces are bigger, even though they only cover the
second iteration of a single MPI rank. Note that a detailed trace
for the entire BT-MZ application with input class D would
require more than 200 terabytes of storage. The obtained
detailed traces are manageable while still allowing MUSA to
perform meaningful detailed microarchitectural simulations.

Our methodology requires both an architectural and a com-
munication network simulator. To simulate the computation
phases we use TaskSim, a detailed multi-core simulator with
two operation modes, a fast exploration mode based on pre-
calculated computation phase execution times (burst) and a
detailed mode with accurate microarchitecture and memory
models [42, 43]. For the network we employ Dimemas,
which is able to model MPI communication primitives using
analytical models [20]. However, we strongly believe that the
MUSA methodology can be applied to nearly any simulator
currently available in the community.

V. EVALUATION

In this section, we first validate the proposed simulation
infrastructure. Afterwards, we apply our methodology to de-
tect scalability bottlenecks in hybrid applications both at the
algorithmic level, due to the lack of parallelism, and at the
hardware level, due to contention on shared resources. Finally,
we also present simulation time results and a design space
exploration analysis.

A. Validation

We validate MUSA by performing several experiments with
the NAS Multi-Zone benchmarks. As described in Section IV,
all validation experiments are done with 16 MPI ranks and the
class D input set, always assuming a single MPI rank per node.
Figure 3 shows the speedup for a single iteration (Figure 3a),
and for the entire application (Figure 3b) when increasing the
number of cores per MPI rank. Having both figures is very
useful, as the overall execution time of the whole application
or a single iteration can be biased by the sequential execution
of a particular phase of the application, such as reading input
files, initializing data structures or writing output files.

Native executions are performed with up to eight cores
per rank, as this is the number of cores per socket on the
available machine. Consequently, in our validation we use up
to 128 cores, with parallel efficiencies that range from 48%
(LU-MZ) to 92% (BT-MZ). Using a performance visualization
tool, we observe that in all benchmarks the first iteration is
less representative than the others. We therefore chose to trace

the second iteration in detail to avoid capturing the impact of
cold hardware structures in the processor. Figure 3 shows that
scalability in native and simulated executions closely match
when comparing a single iteration and the entire application.

First, we evaluate the accuracy of MUSA with burst simula-
tions, denoted MUSA (burst) in the figure. A first observation
is that burst simulations accurately model the system for BT-
MZ, with negligible relative errors. This is due to the fact that
BT-MZ is compute bound and contention on shared resources
does not increase significantly with larger core counts, leading
to a speedup of 7.3× on an 8 core node. However, SP-MZ
and LU-MZ have higher memory contention and performance
predictions start to differ from the native execution as the
number of cores per node increases. For SP-LU and LU-
MZ, MUSA (burst) predicts speedups of 6.9× and 7.5× with
relative errors of 33% and 88% with respect to native runs.

The results obtained in burst simulation clearly indicate that,
as we scale the number of cores in the system, cycle-accurate
memory simulations are necessary to capture contention on
shared resources. We perform a second set of simulations with
MUSA using detailed microarchitectural and memory models,
denoted MUSA (detailed) in the figure. In this case, MUSA
simulates one iteration of a single MPI rank and extrapolates
the results to the remaining MPI ranks and iterations.

MUSA (detailed) improves accuracy with respect to MUSA
(burst) for both SP-MZ and LU-MZ when simulating a system
with 128 cores. In the case of SP-MZ, the relative error is
reduced from 33% to 10%, capturing the trend observed in
native execution. For LU-MZ the error is reduced from 88%
to 25%. However, the trend is not captured as accurately as
in the other two benchmarks due to modeling inaccuracies in
the simulated DRAM subsystem. LU-MZ has poor row-buffer
locality and internal bank conflicts, and thus needs a detailed
component-specific simulator to capture these behavior. There-
fore, for this application we would suggest to use tools like
DRAMSim2 [44] or Ramulator [30]. In the case of BT-MZ,
the error is negligible as happens in the burst simulation and,
as expected, the performance is again accurately predicted.

Next, we evaluate the accuracy of MUSA using Task-
Point [23] to speed up detailed simulation, denoted MUSA
(detailed+sampling) in the figure. In this case, we only per-
form detailed microarchitectural simulation on a fraction of the
task instances of the application. We apply TaskPoint’s default
parameters: first, we simulate 2 task instances in each thread
in order to warm up microarchitectural state. Afterwards, we
simulate a total of 4 task instances of each task type as
samples. This reduces the total simulation time by a factor
of 2.5× in BT-MZ, 1.9× in SP-MZ, and 3.0× in LU-MZ.
As shown in Figure 3b, MUSA (detailed+sampling) predicts
nearly the same speedups as MUSA (detailed). The average
difference between these approaches is less than 3%. These
results are consistent with previously published results with
TaskPoint [23].

Our validation shows that MUSA provides accurate per-
formance predictions by combining information at different
levels of granularity. When comparing native executions of

6

16 32 64 128

Total cores

0

2

4

6

8

S
p

ee
d

u
p

BT-MZNative

MUSA (burst)

MUSA (detailed)

MUSA (detailed + sampled)

16 32 64 128

Total cores

0

2

4

6

8

S
p

ee
d

u
p

SP-MZ

16 32 64 128

Total cores

0

2

4

6

8

S
p

ee
d

u
p

LU-MZ

(a) A single iteration of the benchmark

16 32 64 128

Total cores

0

2

4

6

8

S
p

ee
d

u
p

BT-MZNative

MUSA (burst)

MUSA (detailed)

MUSA (detailed + sampled)

16 32 64 128

Total cores

0

2

4

6

8

S
p

ee
d

u
p

SP-MZ

16 32 64 128

Total cores

0

2

4

6

8

S
p

ee
d

u
p

LU-MZ

(b) Entire execution of the benchmark

Fig. 3. MUSA validation using the NAS Multi-Zone Parallel Benchmarks: BT-MZ (left), SP-MZ (middle) and LU-MZ (right). Benchmarks are run natively
and simulated using MUSA with 16 MPI ranks and up to eight cores per node.

the entire application with MUSA simulations, we can see
that the relative errors are low and that the detailed models
are able to capture microarchitectural details such as memory
contention. In addition, we can do this in an affordable amount
of time, as even detailed simulations complete within a few
hours. A more comprehensive study in terms of simulation
time is shown for our large-scale simulations in Section V-C.

B. Large-scale Simulations

We present large-scale simulations of BT-MZ with input
class E, HYDRO and SPECFEM3D for the entire application.
Table I lists the relevant application characteristics. We employ
256 MPI ranks, one per node, with up to 8 cores per node
(2,048 cores) for native executions and up to 64 cores for
simulations with MUSA (16,386 cores). These simulations
allow us to identify scalability bottlenecks occurring for large
core counts per node, a trend that continues to manifest.

Figure 4a shows speedup estimations for BT-MZ. Results
with up to 8 cores per node (2,048 total) are validated against
the native execution of the application, showing a good level of
accuracy. With 8 cores per node, the parallel efficiency reaches
82% for the overall execution of the native application, and
MUSA predicts the parallel efficiency with an error of less
than 5% for all simulation modes.

When performing burst simulations with larger core counts,
the parallel efficiency significantly degrades, reaching 26%
for 64 cores (16× speedup). We analyze if task management
is the limiting factor to scalability. To this end, we run the
master thread with a significantly higher speed and observe

no significant change in scalability. From this experiment
we conclude that BT-MZ does not expose sufficient task
parallelism to achieve a higher parallel efficiency at large core
counts. One possible solution is to reduce task granularity
and thus increase the number of task instances. As this
approach also increases the task management overhead, it
poses an interesting optimization problem. MUSA predicts
similar scalability trends with all simulation modes because
this application is not memory intensive, as stated in the
previous subsection.

In conclusion, we identify that BT-MZ lacks task parallelism
and thus shows limited scalability in executions with larger
core counts per MPI rank. Scalability can be improved by
reducing task granularity, but only if this does not increase
the effort of task management to a point where it becomes the
new limiting factor to scalability.

Figure 4b shows speedup estimations for HYDRO. Results
with up to 8 cores per node (2,048 total) are validated against
the native execution of the application. For up to 8 cores,
detailed simulation modes predict parallel efficiency with an
error of less than 8%. For higher core counts, all simulation
modes predict similar results. We attribute this to HYDRO’s
low memory intensity.

As we increase the number of cores, parallel efficiency
significantly degrades, reaching a value of only 17% at 64
cores per node. A significant percentage of parallel efficiency
is lost due to communication (MPI) overheads. We find the
parallel efficiency of the computation phases to be 31% when
communication is ignored. Therefore, the computational part

7

256 512 1K 2K 4K 8K 16K

Total cores

0

10

20

S
p

ee
d

u
p

BT-MZNative

MUSA (burst)

MUSA (detailed)

MUSA (detailed + sampled)

(a)

256 512 1K 2K 4K 8K 16K

Total cores

0

5

10

15

S
p

ee
d

u
p

HYDRO

(b)

256 512 1K 2K 4K 8K 16K

Total cores

0

5

10

15

S
p

ee
d

u
p

SPECFEM3D

(c)

Fig. 4. Performance estimations of (a) BT-MZ with input class E, (b) HYDRO, and (c) SPECFEM3D for the entire application on 256 MPI ranks. Native
runs with up to 8 cores per node (2,048 cores), and simulated runs with MUSA on up to 64 cores per node (16,384 cores).

of the application has room for improvement. With the help of
conventional performance analysis tools for MPI applications,
we observe that the sequential part in each iteration is lim-
iting the scalability of the application for core counts larger
than 8. To avoid this limitation, the application needs to be
restructured to reduce the amount of sequential computation.

Furthermore, for 32 and 64 cores per node the time devoted
to task creation and scheduling limits the scalability of the
application. There are multiple solutions to alleviate this prob-
lem. The first solution consists in increasing the granularity of
the executed tasks, as this reduces the total number of task
instances and thus the management effort. A second option
is having multiple threads creating and scheduling tasks using
nested parallelism. Finally, a third alternative consists in using
hardware support for the runtime system [18].

Figure 4c shows speedup estimations for SPECFEM3D.
Results for up to 8 cores per node (2,048 total) are compared
to the native execution of the application. For 2 and 4 cores
per node, we observe notable relative errors when comparing
MUSA simulation modes and native execution. However,
for 8 cores per node the detailed simulation modes predict
parallel efficiency with an error of less than 3%. In addition,
we observe that for core counts per node of 8 and more,
performance estimations with burst and detailed mode differ
significantly due to increasing off-chip memory contention,
leading to performance overestimations in burst mode.

As we increase the core count in burst simulation mode,
we observe that the application’s scalability suddenly saturates
from 32 to 64 cores per node. We find that this is because the
number of task instances for this application is small, less
than 200 per parallel region (see Table I). Moreover, there are
several task types that feature significantly different execution
times, which eventually leads to severe load imbalance, limit-
ing scalability. Since MUSA faithfully models task scheduling
in burst mode, we correctly identify this bottleneck.

However, for detailed simulations we see that the perfor-
mance actually saturates when moving from 16 to 32 cores
per node. This is due to the combined effect of load imbalance
and significant off-chip memory contention, which especially
penalizes long running tasks that now execute for an even
longer period of time, exacerbating load imbalance. With

MUSA we are able to identify a bottleneck that manifests
due to the combination of two factors, and gain insight on the
performance penalty each factor imposes.

C. Simulation Time Cost Analysis

Figure 5a shows the time required to run native and simu-
lated executions for BT-MZ (input class E) with 256 ranks. We
plot time-to-solution for native executions and total aggregated
CPU time for simulated runs with MUSA. The total CPU time
required for simulations in burst mode is nearly constant and
comparable to the native execution with 1 thread per rank, as it
uses pre-calculated task execution times. Speedup of sampled
over detailed simulation remains constant, providing around
one order of magnitude simulation time improvements. A
sampled simulation for 16,384 cores requires less than 6 hours
of total CPU time, while the native execution for 1 thread per
rank takes about 24 minutes - only one order of magnitude of
slowdown, even when considering sequential simulation.

Figure 5b shows the same data for HYDRO with 256 ranks.
Again, the simulation time in burst mode is nearly independent
from the number of simulated cores. A detailed simulation
of HYDRO on 16,384 cores requires less than 3 hours. This
time is reduced to less than an hour when performing sampled
simulation. We observe that the speedup of sampled over
detailed simulation decreases with increasing core counts.
HYDRO has two computation phases per iteration. Therefore,
architectural warmup and measuring of samples is performed
twice per iteration. In addition, the number of tasks per
computational phase is lower than in the case of BT-MZ. Both
aforementioned effects hinder effective simulation sampling.

Figure 5c shows similar data for SPECFEM3D with 256
ranks. In this case we see that burst and detailed executions
take a similar amount of time. This is because this application
has a large number of iterations (i.e. 10,700). However, only
one iteration is simulated in detailed mode. As a consequence,
the time it takes to simulate the burst trace for the entire
application is similar. Also note that sampling is not effective
and its simulation time eventually converges to the detailed
simulation time. The number of tasks per computational phase
is so small that all of them are simulated in detail as samples.

8

256 512 1K 2K 4K 8K 16K

Total cores

102

103

104

105

106

T
im

e
[s

ec
]

BT-MZNative

Total CPU time - burst

Total CPU time - detailed

Total CPU time - detailed + sampled

(a)

256 512 1K 2K 4K 8K 16K

Total cores

101

102

103

104

105

T
im

e
[s

ec
]

HYDRO

(b)

256 512 1K 2K 4K 8K 16K

Total cores

103

104

105

T
im

e
[s

ec
]

SPECFEM3D

(c)

Fig. 5. Total aggregated CPU time for MUSA simulations versus time-to-solution for native executions.

TABLE II
ARCHITECTURAL PARAMETERS OF HIGH-PERFORMANCE, LOW-POWER

AND DIE-STACKED DRAM CONFIGURATIONS FOR A 64 CORE PROCESSOR.

Parameter High-perf. Low-power Stacked DRAM

ROB 168 entries 40 entries 72 entries

Issue width 1/2/4 1/2/4 1/2/4

L1 cache 32KB private 32KB private 32KB private
4 cycles 4 cycles 4 cycles
8-way 2-way 8-way

L2 cache 256KB private 8MB shared 32MB shared
11 cycles 21 cycles 16 cycles
8-way 16-way 16-way

L3 cache 128MB shared none none
28 cycles
20-way

DRAM off-chip off-chip die-stacked
4 channels 3 channels 8 channels
DDR3-1600 DDR3-1600 DDR3-3200

For 16,384 cores detailed simulation and native execution with
1 thread require 7.3 hours and 5.6 hours, respectively.

D. Design Space Exploration

We demonstrate the usefulnes of the MUSA infrastructure
by performing a design space exploration study. Prior simu-
lations focused on increasing the core count per node while
leaving microarchitectural and memory parameters unchanged.
Given that the trend to use commodity server processors is
starting to change and that new technologies like die-stacked
DRAM start to be available [48], we show how MUSA can
aid to explore this vast design space with simulations using
16,384 cores - i.e. 256 MPI ranks and 64 cores per node - on
BT-MZ with input class E, HYDRO and SPECFEM3D.

With this objective, we study the performance of these
applications on three different multi-core architectures. The
first system resembles a high-end server-class processor with a
large reorder buffer and a three-level cache hierarchy, as found
in traditional HPC environments. The second configuration is
inspired by a low-power mobile platform. It has a smaller
reorder buffer and only two levels of cache, as is typical for
battery-powered mobile systems. The third configuration rep-
resents an emerging many-core chip with die-stacked DRAM,

featuring medium cores and moderate LLC capacity, but lower
latency and higher bandwidth access to DRAM. Table II lists
the key characteristics of the simulated architectures.

Figure 6 shows the predicted performance on these plat-
forms for different issue width values of 1, 2, and 4 instruc-
tions per cycle. The reported speedup is normalized to an
execution with one thread per rank using the high-performance
configuration. The evaluated applications show very different
behavior. BT-MZ benefits from running on a high-performance
processor, achieving more than 35% additional performance
compared to the speedup of the low-power processor for an
issue width of 4. This compute intensive application favors the
combination of a large reorder buffer with quad-issue width,
which also outperforms the die-stacked DRAM configuration
that has a medium sized reorder buffer. A final observation
is that, for the low-power configuration, increasing the issue
width from 2 to 4 improves performance by merely 6%, while
significantly increasing the complexity of the core.

In contrast, HYDRO shows a completely different behavior.
The speedup achieved by the low-power processor nearly
matches the speedup of the high-performance and die-stacked
DRAM configurations. Since HYDRO has low memory inten-
sity, deep cache hierarchies or low-latency and high-bandwidth
DRAM memory does not improve performance significantly.
Moreover, as explained in Section V-B; existing factors that
limit the scalability of the application, such as communication
overheads and sequential code, hinder the performance of
the aggressive cores. Furthermore, HYDRO benefits much
less from an increased issue width - performance improves
by less than 25% when increasing the issue width from
1 to 4 instructions per cycle. Thus, we conclude that the
much simpler low-power architecture can deliver competitive
performance for HYDRO.

Finally, for SPECFEM3D we observe that for issue widths
of 2 and 4, the low-power configuration falls behind due to
a less performing memory hierarchy. This application has a
significant degree of memory contention. For this reason, the
die-stacked DRAM configuration is able to outperform the
high-performance configuration even though it features a less
agressive core. However, the gains are not as significant as
one might expect. This is due to the fact that the performance
is limited by severe load imbalance at the node level due to

9

1 2 4 1 2 4 1 2 4

Issue width

0

5

10

15

20
S

p
ee

d
u

p
BT.E HYDRO SPECFEM3D

high performance

low power

die-stacked DRAM

Fig. 6. Design space exploration of BT-MZ, HYDRO and SPECFEM3D for
different issue widths and processor profiles for 256 MPI ranks (16,384 cores).

the small number of tasks per parallel region, as explained in
Section V-B. Nontheless, we conclude that die-stacked DRAM
is beneficial over an agressive core design for SPECFEM3D.

VI. RELATED WORK

In this section, we review prior work on simulation of both
shared and distributed memory machines as well as techniques
to speed up simulation of parallel applications.

Simulating distributed machines: Prior work proposed
simulation methodologies to evaluate the performance of
large-scale parallel applications. Some proposals also employ
a multi-level approach, combining different simulation layers.
However, only a few evaluate scenarios with thousands of
cores, but at the cost of not modeling microarchitectural details
or system software interaction [14, 24, 55]. The other propos-
als evaluate lower core counts [1], while also lacking important
features, e.g. detailed microarchitectural simulation [10], or
support to capture operating system or runtime system inter-
actions [21]. Finally, in other infrastructures each simulation
requires a large computational effort due to the use of full
system simulation [25] or the lack of sampling techniques [34],
making them impractical for large-scale studies.

The usefulness of parametric models based on basic ma-
chine performance metrics and application characteristics has
also been explored [5, 29]. These models are applied to
understand the performance of current systems, to unveil
bottlenecks, and to show where tuning efforts can be useful,
but are tailored to specific applications.

Simulating shared-memory systems: Most simulation in-
frastructures at this level tend to be cycle-accurate to faith-
fully model the processing cores and the memory hierarchy.
However, this level of detail comes at a significant slowdown,
making simulations with more than a few tens or hundreds of
cores impractical [6, 7, 45].

Sampling techniques: To reduce simulation time, statistical
sampling is applied to identify a representative section of an
application or even a synthetic trace, much shorter than the
original one [8, 17, 32, 46, 53]. This representative section
is then executed in a cycle-accurate simulator. However, the
accuracy of these simulations is tied to the quality of the
selected representative section of the application.

Finally, to further reduce simulation time and allow the
simulation of larger multi-core processors, parallel simulators
have been proposed [3, 7, 13, 37, 41, 45]. The main drawback
of these proposals lies in the synchronization overhead. This
overhead can be reduced at the expense of sacrificing accuracy
in the final results of the simulation.

VII. CONCLUSIONS

In this paper we have introduced MUSA, a multi-level sim-
ulation approach that enables fast and accurate performance
estimations of large-scale next-generation HPC machines.
MUSA can model microarchitectural and runtime system
effects by leveraging multi-level traces. These traces also allow
for different simulation modes and execution replay to quickly
extrapolate results of entire hybrid applications running on tens
of thousands of cores.

MUSA has been validated using a production supercom-
puter with up to 2,048 cores showing high accuracy, with
relative errors below 10% in the common case. For native
codes that run for several minutes, MUSA allows detailed sim-
ulation of systems with more than ten thousand cores within
a few hours of total aggregated CPU time. Our 16,384-core
simulations revealed scalability bottlenecks in the evaluated
applications that were easily identifiable using the simulation
output trace and conventional performance analysis tools.

The main advantage of MUSA is that it provides results not
only across known systems, but also for future systems not yet
available on the market. Our design space exploration analysis
provides useful insights on the different microarchitectural
requirements of three applications to achieve good scalability,
showing the potential MUSA offers in predicting the perfor-
mance of applications on next-generation HPC machines.

ACKNOWLEDGEMENTS

This work has been supported by the Spanish Government
(Severo Ochoa grants SEV2015-0493, SEV-2011-00067), by
the Spanish Ministry of Science and Innovation (contracts
TIN2015-65316-P), by the Generalitat de Catalunya (contracts
2014-SGR-1051 and 2014-SGR-1272), by the RoMoL ERC
Advanced Grant (GA 321253) and the European HiPEAC
Network of Excellence. The Mont-Blanc project receives fund-
ing from the EUs Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. 610402 and from the
EUs H2020 Framework Programme (H2020/2014-2020) under
grant agreement no. 671697. M. Moretó has been partially
supported by the Ministry of Economy and Competitiveness
under Juan de la Cierva postdoctoral fellowship number JCI-
2012-15047. M. Casas is supported by the Secretary for
Universities and Research of the Ministry of Economy and
Knowledge of the Government of Catalonia and the Cofund
programme of the Marie Curie Actions of the 7th R&D
Framework Programme of the European Union (Contract 2013
BP B 00243). T. Grass has been partially supported by the
AGAUR of the Generalitat de Catalunya (grant 2013FI B
0058).

10

REFERENCES

[1] V. S. Adve, R. Bagrodia, J. C. Browne, E. Deelman, A. Dube, E. N.
Houstis, J. R. Rice, R. Sakellariou, D. J. Sundaram-Stukel, P. J. Teller,
et al. Poems: End-to-end performance design of large parallel adaptive
computational systems. IEEE Transactions on Software Engineering,
26(11):1027–1048, 2000.

[2] E. Anger, D. Dechev, G. Hendry, J. Wilke, and S. Yalamanchili. Appli-
cation Modeling for Scalable Simulation of Massively Parallel Systems.
In 17th International Conference on High Performance Computing and
Communications (HPCC), pages 238–247, 2015.

[3] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and D. Ortega. Cot-
son: infrastructure for full system simulation. ACM SIGOPS Operating
Systems Review, 43(1):52–61, 2009.

[4] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
X. Teruel, P. Unnikrishnan, and G. Zhang. The design of OpenMP tasks.
IEEE Transactions onParallel and Distributed Systems, 20(3):404–418,
2009.

[5] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin, and
J. C. Sancho. Entering the petaflop era: the architecture and performance
of roadrunner. In Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, pages 1–11, 2008.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5 simulator.
ACM SIGARCH Computer Architecture News, 39(2):1–7, 2011.

[7] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: exploring the level
of abstraction for scalable and accurate parallel multi-core simulation.
In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 52:1–52:12, 2011.

[8] T. E. Carlson, W. Heirman, and L. Eeckhout. Sampled simulation of
multi-threaded applications. In 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 2–12,
2013.

[9] T. E. Carlson, W. Heirman, K. Van Craeynest, and L. Eeckhout.
Barrierpoint: Sampled simulation of multi-threaded applications. In 2014
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 2–12, 2014.

[10] L. Carrington, A. Snavely, X. Gao, and N. Wolter. A performance
prediction framework for scientific applications. In Workshop on
Performance Modeling and Analysis (PMA), pages 926–935, 2003.

[11] M. Casas, R. M. Badia, and J. Labarta. Automatic phase detection and
structure extraction of mpi applications. In International Journal of High
Performance Computing Applications, pages 335–360, 2010.

[12] M. Casas, M. Moretó, L. Alvarez, E. Castillo, D. Chasapis, T. Hayes,
L. Jaulmes, O. Palomar, O. S. Unsal, A. Cristal, E. Ayguadé, J. Labarta,
and M. Valero. Runtime-aware architectures. In European Conference
on Parallel Processing, pages 16–27, 2015.

[13] J. Chen, L. K. Dabbiru, D. Wong, M. Annavaram, and M. Dubois.
Adaptive and speculative slack simulations of cmps on cmps. In Pro-
ceedings of the 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, pages 523–534, 2010.

[14] W. E. Denzel, J. Li, P. Walker, and Y. Jin. A framework for end-to-end
simulation of high-performance computing systems. In Proceedings of
the 1st International Conference on Simulation Tools and Techniques
for Communications, Networks and Systems & Workshops, pages 21:1–
21:10, 2008.

[15] R. F. V. der Wijngaart and H. Jin. NAS Parallel Benchmarks, Multi-Zone
Versions. Technical Report NAS-03-010, NAS, 2003.

[16] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas. Ompss: a proposal for programming heterogeneous
multi-core architectures. Parallel Processing Letters, 21(02):173–193,
2011.

[17] L. Eeckhout, S. Nussbaum, J. Smith, and K. D. Bosschere. Statistical
simulation: adding efficiency to the computer designer’s toolbox. IEEE
Micro, 23(5):26–38, 2003.

[18] Y. Etsion, F. Cabarcas, A. Rico, A. Ramı́rez, R. M. Badia, E. Ayguadé,
J. Labarta, and M. Valero. Task superscalar: An out-of-order task
pipeline. In Proceedings of the 2010 43rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, pages 89–100, 2010.

[19] Extrae: User guide manual version 3.2.1, Nov 2015.
[20] S. Girona, J. Labarta, and R. M. Badia. Validation of dimemas

communication model for mpi collective operations. In Proceedings

of the 7th European PVM/MPI Users’ Group Meeting, pages 39–46,
2000.

[21] J. Gonzalez, J. Gimenez, M. Casas, M. Moreto, A. Ramirez, J. Labarta,
and M. Valero. Simulating whole supercomputer applications. IEEE
Micro, 31(3):32–45, 2011.

[22] J. Gonzalez, J. Gimenez, and J. Labarta. Automatic evaluation of the
computation structure of parallel applications. In 2009 International
Conference on Parallel and Distributed Computing, Applications and
Technologies, pages 138–145, 2009.

[23] T. Grass, A. Rico, M. Casas, M. Moreto, and E. Ayguadé. Taskpoint:
Sampled simulation of task-based programs. In 2016 IEEE International
Symposium on Performance Analysis of Systems and Software, 2016.

[24] E. Grobelny, D. Bueno, I. Troxel, A. D. George, and J. S. Vetter. Fase:
A framework for scalable performance prediction of hpc systems and
applications. Simulation, 83(10):721–745, 2007.

[25] M. Hsieh, K. Pedretti, J. Meng, A. Coskun, M. Levenhagen, and
A. Rodrigues. SST + gem5 = a scalable simulation infrastructure for
high performance computing. In Proceedings of the 1st International
Conference on Simulation Tools and Techniques for Communications,
Networks and Systems & Workshops, pages 196–201, 2012.

[26] K. E. Isaacs, A. Bhatele, J. Lifflander, D. Böhme, T. Gamblin, M. Schulz,
B. Hamann, and P.-T. Bremer. Recovering logical structure from
charm++ event traces. In Conference on High Performance Computing
Networking, Storage and Analysis, pages 49:1–49:12, 2015.

[27] H. Jin and R. F. V. der Wijngaart. Performance characteristics of
the multi-zone NAS parallel benchmarks. Journal of Parallel and
Distributed Computing, 66(5):674 – 685, 2006.

[28] L. V. Kalé and S. Krishnan. Charm++: A portable concurrent object
oriented system based on c++. In Proceedings of the Eighth Annual
Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 91–108, 1993.

[29] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman, and
M. Gittings. Predictive performance and scalability modeling of a large-
scale application. In Proceedings of the 2001 ACM/IEEE conference on
Supercomputing, pages 37:1–12, 2001.

[30] Y. Kim, W. Yang, and O. Mutlu. Ramulator: A Fast and Extensible
DRAM Simulator. IEEE Computer Architecture Letters, 15(1):45–49,
2016.

[31] D. Komatitsch and J. Tromp. Introduction to the spectral element method
for three-dimensional seismic wave propagation. Geophysical Journal
International, 139(3), 1999.

[32] T. Lafage and A. Seznec. Choosing representative slices of program
execution for microarchitecture simulations: A preliminary application
to the data stream. Workload Characterization of Emerging Computer
Applications, page 163, 2001.

[33] P.-F. Lavallée, G. C. de Verdière, P. Wautelet, D. Lecas, and J.-M. Du-
pays. Porting and optimizing hydro to new platforms and programming
paradigms lessons learnt, 2012.

[34] E. A. León, R. Riesen, A. B. Maccabe, and P. G. Bridges. Instruction-
level simulation of a cluster at scale. In Conference on High Performance
Computing Networking, Storage and Analysis, pages 3:1–3:12, 2009.

[35] J. Lifflander, S. Krishnamoorthy, and L. V. Kale. Work stealing and
persistence-based load balancers for iterative overdecomposed applica-
tions. In Proceedings of the 21st international symposium on High-
Performance Parallel and Distributed Computing, pages 137–148, 2012.

[36] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. In ACM Sigplan
Notices, pages 190–200, 2005.

[37] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal. Graphite: A distributed parallel
simulator for multicores. In 2010 IEEE 16th International Symposium on
High Performance Computer Architecture (HPCA), pages 1–12, 2010.

[38] MPI: A Message-Passing Interface Standard. 2003.
[39] OpenMP Architecture Review Board. OpenMP: Application program

interface, 2013.
[40] N. Rajovic, L. Vilanova, C. Villavieja, N. Puzovic, and A. Ramı́rez. The

low power architecture approach towards exascale computing. Journal
of Computational Science, 4(6):439–443, 2013.

[41] P. Ren, M. Lis, M. H. Cho, K. S. Shim, C. W. Fletcher, O. Khan,
N. Zheng, and S. Devadas. Hornet: A cycle-level multicore simulator.
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 31(6):890–903, 2012.

11

[42] A. Rico, F. Cabarcas, C. Villavieja, M. Pavlovic, A. Vega, Y. Etsion,
A. Ramirez, and M. Valero. On the simulation of large-scale architec-
tures using multiple application abstraction levels. In ACM Transactions
on Architecture and Code Optimization (TACO), volume 8, page 36.
ACM, 2012.

[43] A. Rico, A. Duran, F. Cabarcas, Y. Etsion, A. Ramirez, and M. Valero.
Trace-driven simulation of multithreaded applications. In IEEE Inter-
national Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 87–96, 2011.

[44] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle
Accurate Memory System Simulator. IEEE Computer Architecture
Letters, 10(1):16–19, 2011.

[45] D. Sanchez and C. Kozyrakis. Zsim: fast and accurate microarchitectural
simulation of thousand-core systems. In ACM SIGARCH Computer
Architecture News, volume 41, pages 475–486, 2013.

[46] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution
analysis to find periodic behavior and simulation points in applications.
In Proceedings of the 2001 International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), pages 3–14, 2001.

[47] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. ACM SIGOPS Operating
Systems Review, 36(5):45–57, 2002.

[48] A. Sodani, R. Gramunt, J. Corbal, H. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y. Liu. Knights landing: Second-generation
intel xeon phi product. IEEE Micro, 36(2):34–46, 2016.

[49] R. Teyssier. Cosmological hydrodynamics with adaptive mesh
refinement-a new high resolution code called ramses. Astronomy &
Astrophysics, 385(1):337–364, 2002.

[50] M. Valero, M. Moreto, M. Casas, E. Ayguadé, and J. Labarta. Runtime-
aware architectures: A first approach. International Journal on Super-
computing Frontiers and Innovations, 1(1):29–44, 2014.

[51] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi,
and J. C. Hoe. Simflex: Statistical sampling of computer system
simulation. IEEE Micro, 26(4):18–31, July 2006.

[52] S. White. The AMD Opteron Seattle: A 64b ARM Dense Server
Processor. In Hot Chips, 2014.

[53] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. Smarts:
accelerating microarchitecture simulation via rigorous statistical sam-
pling. In Proceedings of the 30th Annual International Symposium on
Computer Architecture, pages 84–95, 2003.

[54] C. Zhang. Mars: A 64-core ARMv8 Processor. In Hot Chips, 2015.
[55] G. Zheng, G. Gupta, E. J. Bohm, I. Dooley, and L. V. Kalé. Simulating

large scale parallel applications using statistical models for sequential ex-
ecution blocks. In International Conference on Parallel and Distributed
Systems (ICPADS), pages 221–228, 2010.

12

