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Abstract—In this paper, we describe our experiences in im-
plementing and applying Coarray Fortran (CAF) for the devel-
opment of data-intensive applications in the domain of Oil and
Gas exploration. The successful porting of reverse time migration
(RTM), a data-intensive algorithm and one of the largest uses of
computational resources in seismic exploration, is described, and
results are presented demonstrating that the CAF implementation
provides comparable performance to an equivalent MPI version.
We then discuss further language extensions for supporting
scalable parallel I/O operating on the massive data sets that are
typical of applications used in seismic exploration.

Index Terms—Parallel I/O; PGAS; Compilers; Language De-
sign

I. INTRODUCTION

New programming models are needed to meet the chal-
lenges posed by ever-increasing data processing requirements.
They must provide mechanisms for accessing and processing
large-scale data sets. Moreover, we believe they must be simple
and intuitive to use, particularly for non-expert programmers.
A large fraction of the codes that are used in the Oil and
Gas industry are written in Fortran, and it is important that
new programming models can work interoperably with these
existing codes.

In the latest Fortran 2008 standard, new features were
added which can potentially transform Fortran into an effective
programming language for developing data-intensive, parallel
applications [1]. These features, collectively, are based on
Co-Array Fortran (CAF) [2], a Fortran extension proposed
in the 1990s that incorporated a Partitioned Global Address
Space (PGAS) programming model into the language. How-
ever, there has been an unfortunate lack of available imple-
mentations for these new language features, which therefore
prompted us to develop our own implementation in the open-
source OpenUH compiler.

Our initial evaluations revealed that additional support for
handling large data sets is essential if coarrays are to be used
on very large scale comptuations. As the size of such data
sets, and the computational capacity of platforms, continues
to grow there is an increasing gap between this and the rate

at which data is input and output from and to disk. In order
to accommodate it, we believe that there is a need for parallel
I/O features in Fortran which complement the existing parallel-
processing features provided by the coarray model. In addition
to our work to identify suitable features, we are also exploring
approaches that would allow Fortran applications to share data
in memory in order to avoid the slowdown implied by disk
storage.

This paper is organized as follows. In section II we provide
an overview of the CAF features that were adopted in Fortran
2008. We then describe our implementation of these features
in section III. We present our experience in porting an existing
reverse time migration (RTM) application, widely used by Oil
and Gas exploration teams for seismic images processing, to
CAF in section IV. In section V, we discuss our thoughts
on extending the language for enabling scalable, parallel I/O.
We present related work in section VI, and close with our
conclusions in section VII.

II. COARRAY FORTRAN

The CAF extension in Fortran 2008 adds new features
to the language for parallel programming. It follows the
Single-Program, Multiple-Data (SPMD) programming model,
where multiple copies of the program, termed images in
CAF, execute asynchronously and have local data objects that
are globally accessible. CAF may be implemented on top
of shared memory systems and distributed memory systems.
The programmer may access memory of any remote image
without the explicit involvement of that image, as if the data
is “distributed” across all the images and there is a single,
global address space (hence, it is often described as a language
implementation of the PGAS model). The array syntax of
Fortran is extended with a trailing subscript notation in square
brackets, called cosubscripts. A list of cosubscripts is used
when the programmer intends to access the address space of
another image, where an image index may range from 1 to
the total number of images that are executing.
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Figure 1 shows the logically shared but partitioned memory
view that characterizes PGAS programming models. Spec-
ifying A Coarray(n) without cosubscripts (square brackets)
accesses only the local coarray. Since the remote memory
access is explicit, it provides a clearly visible marker for
potentially expensive communication operations in the code.
This differentiates PGAS implementations like CAF from
shared memory models which do not distinguish between local
and remote data.

Fig. 1: Logical view of memory in CAF

Only objects declared as coarrays (i.e. one or more codi-
mensions) can be accessed from a different image. Coarrays
can be global/static or dynamically allocated, but in any case
they must exist on all images. This has many consequences
described in the standard, among them being that the allocation
of an allocatable coarray is a collective operation with an
implicit barrier. Coarrays may be declared with multiple
codimensions, in which case the number of images are log-
ically organized into a multi-dimensional grid. For example,
the declaration real :: c(2,3)[2,3:4,*] logically arranges the
images into a 2× 2× n grid for all cosubscripted references
to the coarray c. A cosubscripted coarray reference generally
indicates a remote memory access. For example, the statement
b(5:6)[2] = a(3:4) writes to the 5th and 6th element of coarray
b on image 2. Similarly, the statement a(1:2) = b(5:6)[2] reads
from the 5th and 6th element of coarray b on image 2.

CAF provides both a global barrier synchronization state-
ment (sync all) and a partial barrier synchronization statement
(sync images) which may be used to to synchronize with a
specified list of images. Critical sections, locks, and atomic
operations are also part of the language. Additionally, CAF in-
cludes several intrinsic functions for image inquiry such as re-
turning the image index of the executing process (this image),
the total number of running images (num images), and the
image index holding a coarray with specified cosubscripts
(image index).

III. CAF IMPLEMENTATION

We have implemented support for coarrays in
OpenUH [3][4], an open-source research compiler based
on the Open64 compiler suite. CAF support in OpenUH
comprises three areas: (1) an extended front-end that accepts
the coarray syntax and related intrinsic functions/subroutines,
(2) back-end translation, optimization, and code generation,

and (3) a portable runtime library that can be deployed on a
variety of HPC platforms. Additionally, we have implemented
a number of (currently) non-standard features that would be
beneficial in developing more scalable parallel codes.

A. OpenUH Compiler

We have used OpenUH to support a range of research ac-
tivities in the area of programming model research. OpenUH,
depicted in Fig. 2, includes support for C/C++ and Fortran,
inter-procedural analysis, a comprehensive set of state-of-
the-art loop nest optimizations, an SSA-based global scalar
optimizer, and code generators for a variety of target platforms.
OpenUH can emit source code from an optimized intermediate
representation and also selectively instrument the lowered
intermediate code for low-overhead performance profiling.

Fig. 2: The OpenUH Compiler Infrastructure

B. CAF Implementation Method in OpenUH

Front-end: Historically, the Fortran front-end of the
OpenUH compiler derives from an older version of the Cray
Fortran compiler. We modified this front-end to support our
coarray implementation. Cray had provided some support for
the extended CAF syntax. It could parse the [] syntax for
recognizing coarray declarations and coindexed variables, it
handled certain CAF intrinsics, and it translated the CAF
language features to SHMEM-based runtime calls for targeting
distributed systems with global address spaces. In order to
take advantage of the analysis and optimizing capabilities in
the OpenUH back-end, however, we needed to preserve the
coarray representation into the back-end. To accomplish this,
we adopted a similar approach to that used in Open64/SL-
based CAF compiler [5]: the front-end emits an intermediate
representation which retains the cosubscripts as extra array
subscripts. Furthermore, we extended our front-end to support
the set of new intrinsics subroutines/functions defined in For-
tran 2008 for the CAF model, added support for dynamically
allocating coarrays (where the lower and upper bounds for all
dimensions and codimensions are specified at runtime), and we
extended our compiler’s internal representation for allocatable
pointers/arrays to support coarrays.
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Back-end: In the back-end, we first added a prelowering
phase which normalizes the intermediate code (represented as
an abstract syntax tree (AST) and emitted from the front-end)
to facilitate dependence analysis. Next, we added a coarray
lowering phase in which the compiler will generate communi-
cation based on remote coarray references. This step currently
occurs prior to the Fortran 90 (F90) lowering phase, during
which elemental array operations and array section references
are translated into loops. We make use of the higher-level F90
array operations, supported by our compiler’s very high-level
internal representation, for generating bulk communication.
AST nodes for representing single-element array references
and array section references are processed to determine if
they include cosubscripts, in which case it is a coindexed
reference. A coindexed coarray variable signifies a remote
access. For certain remote accesses that occur in the code,
a compiler-generated temporary local communication buffer
(LCB) is allocated for writing to or reading from the remotely
accessed elements, functioning as a local source or destination
buffer, respectively. In cases where a program variable can be
used directly as the source or destination buffer, the compiler
may not use an LCB to avoid the additional buffer space and
memory copy that it would entail. After coarrays are lowered
in this fashion, their corresponding type in the compiler’s
symbol tables are adjusted so that they only contain the local
array dimensions.

Suppose the Coarray Lowering phase encounters the fol-
lowing statement:

A(i, j, 1 : n)[q] =B(1, j, 1 : n)[p] + C(1, j, 1 : n)[p] (1)
+D[p]

This means that array sections from coarrays B and C
and the coarray scalar D are brought in from image p.
They are added together, following the normal rules for array
addition under Fortran 90. Then, the resulting array is written
to an array section of coarray A on image q. To save all
the intermediate values used for communication, temporary
buffers are made available. Our translation creates 4 buffers –
t1, t2, t3, and t4 – for the above statement. We can represent
transformation carried out by the compiler as:

A(i, j, 1 : n)[q]← t1 =t2← B(1, j, 1 : n)[p] (2)
+t3← C(1, j, 1 : n)[p]

+t4← D[p]

For each expression of the form t ← R(...)[...], the
compiler generates an allocation for a local communication
buffer (LCB) t of the same size as the array section R(...).
The compiler then generates a get runtime call. This call
will retrieve the data into the buffer t using an underlying
communication subsystem. The final step is for the compiler to
generate a deallocation for buffer t. An expression of the form
L(...)[...] ← t follows a similar pattern, except the compiler
generates a put runtime call.

pseudocode:
get( t2, B(1, j, 1:n), p )
get( t3, C(i, j, 1:n), p )
get( t4, D, p )
t1 = t2 + t3 + t4
put( t1, A(i, j, 1:n), q )

The above pseudo-code depicts the result of the initial
lowering phase for the statement representation given in (2).

One of the key benefits of the CAF programming model
is that, being language-based and syntactically explicit in
terms of communication and synchronization, programs are
amenable to aggressive compiler optimizations. This includes
hoisting potentially expensive coarray accesses out of loops,
message vectorization where the Fortran 90 array section
syntax is not specified by the programmer, and generating
non-blocking communication calls where it is feasible and
profitable. For instance, a subsequent compiler phases may
then convert get and put calls to non-blocking communica-
tion calls and use data flow analysis to overlap communication
with computation and potentially aggregate messages, similar
to work described in [6].

Runtime Support: The implementation of our supporting
runtime system relies on an underlying communication subsys-
tem provided by GASNet [7] or ARMCI [8]. This work entails
memory management for coarray data, communication facili-
ties provided by the runtime, and support for synchronizations
specified in the CAF language. We have also added support
for reduction operations in the runtime, as well as point-to-
point synchronization using event variables. It is expected that
both these features will be included in the next revision of the
Fortran standard.

Fig. 3: Remotely-Accessible Memory Segment

The communication layer reserves a segment of remotely-
accessible memory – registered and pinned-down for direct
memory access by the network – for storing coarrays and other
data that should be accessible across images. The structure
of this memory segment is shown in Figure 3. Coarrays
declared with static array bounds are reserved space at the
top of the segment. The rest of the segment serves as a
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remote memory access heap, reserved for dynamic memory
allocations. Allocatable coarrays, which must exist with the
same bounds on every image, are dynamically allocated and
deallocated during the run of the program in a symmetric
fashion across all images. Data objects which need not exist
symmetrically across all images, but nevertheless should be
remotely accessible, are allocated from the bottom of the heap.

C. Additional Supported Features For Scalability

In addition to the work we have done to comply with the
current Fortran 2008 CAF model, we have added support
for some currently non-standard language features. These
comprise support for a set of collective operations, events, and
compiler directives for controlling overlap between communi-
cation and computation. These features enable the programmer
to more easily write scalable CAF codes, while providing
facilities to avoid synchronization and communication latency
costs. The Fortran standard committee is expected to formally
accept language support for an expanded set of collectives and
events in a soon to be released Technical Specification (TS)
detailing new parallel processing extensions.

a) Collectives: Support for collective operations that can
operate on distributed data in a scalable fashion is essential.
The current Fortran 2008 standard is missing a specification
of collective subroutines. We decided to adopt a set of coarray
collectives that were available in the Cray Fortran compiler.
Currently, we support a number of reductions: co_sum,
co_product, co_maxval, and co_minval. The reduc-
tions take two arguments: the first is a source coarray, and the
second is a destination array with the same rank and extents.
The compiler will check that the source and destination arrays
match. We also support broadcasts using the co_bcast
intrinsic subroutine. The broadcast takes two arguments: the
first is a coarray, and the second is the source image. It will
broadcast the values in the coarray at the source image to the
corresponding coarray in the rest of the images.

b) Event Variables: Events provide a much more flex-
ible means for synchronizing two images compared to the
sync images statement. An event variable is a coarray
of type event_type, which is an intrinsic type defined
in iso_fortran_env. An event may be posted, queried,
and waited on using the event post, event query, and
event wait statements, respectively. For example, to post
an event ev on image i, one can use the statement event
post(ev[i]). This is a non-blocking action, meaning it
will return without waiting for the event to be “consumed”
by image i. Image i can then block until the event ev has
been posted with event wait(ev), or it can query if the
event has been posted with event query(ev, state)
where state is a logical variable with value .true. or
.false..

c) Compiler Directives for Communication-Computation
Overlap: CAF does not provide a language mechanism to
explicitly control the use of non-blocking communication,
as for instance is available with MPI using mpi_isend
and mpi_irecv. This puts responsibility on the compiler

to automatically make use of non-blocking get and put
communication while preserving correctness using data flow
analysis. While these optimizations are still in development,
we have in place a directive-based mechanism to give the pro-
grammer some measure of control in affecting communication-
computation overlap. Here is a short example illustrating its
usage:

!dir$ caf_nowait(h1)
y(:) = x(:)[p]
...
!dir$ caf_wait(h1)
z(:) = y(:) * j

In the above example, h1 is a declared variable of an
intrinsic type, implemented internally as a pointer, that acts as
a handle for representing a single outstanding non-blocking
get operation. The caf_nowait directive says that the
following statement should initiate a non-blocking read but
the compiler should not generate a wait instruction for guar-
anteeing completion. Completion of the operation will only
be ensured if a subsequent synchronization statement is en-
countered or a caf_wait directive with the specified handle
is encountered. We only support the use of caf_nowait
directive for assignment statements with a co-indexed variable
as the only term on the right hand side. This is sufficient to
allow the user to specify and control the completion of non-
blocking read operations.

IV. APPLICATION

In this section, the application of Coarray Fortran to imple-
ment an algorithm of relevance to the Oil and Gas industry will
be described. The code that was developed performs Reverse
Time Migration (RTM) [9]. This method is widely used in
subsurface exploration via seismic imaging. A source emits a
wave pulse, which reflects off of subsurface structures and
is recorded by an array of receivers. RTM transforms the
recorded data into an image of the reflector locations. It is
suitable for parallelization by domain decomposition, and is
often executed on distributed memory systems due to the large
volumes of data involved.

RTM uses the finite difference method to numerically solve
a wave equation, propagating waves on a discretized domain.
It consists of two stages. The first is referred to as the forward
stage as it propagates an approximation of the source wave for-
ward in time. In the second, backward stage, the recorded data
is propagated backward in time. The RTM algorithm assumes
that the forward propagated source wavefield and backward
propagated data wavefield overlap in space and time at the
location of reflectors. This imaging condition is evaluated
during the backward pass. As it involves the wavefield from
the forward pass, a technique must be employed to allow this
wavefield to be recovered at each step during the backward
stage. This could be achieved by saving the entire forward
wavefield at each time step, and then reloading the appropriate
data when it is needed. More sophisticated methods, such
as only saving the boundaries of the forward wavefield [10],
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reduce the memory requirement at the expense of additional
computations by recomputing the forward wavefield during the
backward pass.

Typical seismic experiments involve several thousand shots.
Each shot consists of a source wave pulse, usually at a distinct
location, and the associated receiver data. A single shot in a
production survey typically contains several gigabytes of data.
The total acquisition data size is usually in the terabyte range.
For example, one dataset acquired from 30 blocks (3 × 3
square miles per block) consists of 82K shots, 460M traces
with 3600 samples per trace with total data size of about
6.6 TB. Shots are processed individually, but potentially in
parallel, each requiring tens of thousands of time steps of a
3D eighth-order finite difference propagator on a 3D domain
containing billions of cells. Depending on the storage strategy
used, significant volumes of data may need to be saved during
each time step of the forward pass and recovered during
the backward pass to enable the application of the imaging
condition. RTM processing is therefore among the most data
intensive applications used in industry.

The simplest implementations of the RTM algorithm make
the assumption that the Earth is isotropic, this means that wave
propagation speed is not dependent on angle. In reality this is
often not a valid assumption as rocks such as shale, a common
material at the depths of interest to hydrocarbon exploration,
can exhibit strong anisotropy. Since hydrocarbon exploration
frequently occurs in regions covered by sedimentary rocks,
which were laid down in layers, a more plausible assumption
is that of transverse isotropy, where waves can propagate at
different speeds parallel and perpendicular to bedding planes.
To account for buckling, uplift, and other processes which
can change the orientation of the rock layers, tilted transverse
isotropy (TTI) [11] may be assumed. The TTI implementation
of RTM is considerably more compute and communication
intensive than the isotropic version.

A. Implementation

A full RTM code was developed using Coarray Fortran,
capable of processing production data. Both isotropic and TTI
propagators were included. A section of the image produced
by the code of the 2004 BP model [12], is displayed in Fig. 4.
This is a synthetic model designed to be representative of
challenging sub-salt environments currently being encountered
in exploration of the Gulf of Mexico and off-shore West
Africa. It consists of more than 1000 source locations spread
over 67 km, on a grid discretized into 12.5m × 6.25m cells.

It was possible to design the code in such a way that
only the communication modules were specific to a coarray
implementation of the algorithm. This permitted an equivalent
MPI version to also be created for performance comparison
by merely writing MPI communication modules.

At each time step in the code, wavefield propagation is
carried out in parallel by all images, utilizing halo exchanges
to communicate face (and, in the case of TTI model, edge)
data amongst neighbors. For the forward stage of the isotropic
model, this entails a total of six halo exchanges for one
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Fig. 4: A section of the 2004 BP model image generated by
RTM using CAF.

wavefield, while for the TTI model there are eighteen halo
exchanges of two wavefields. In the backward stage, if bound-
ary swapping is being employed, then the total number of
halo exchanges for each processor is doubled for the isotropic
and TTI models. In both the CAF and MPI implementations,
the halos from all of the wavefields to be transmitted to
a particular processor were packed into a single buffer and
then unpacked at the destination. This reduces the number
of messages ultimately sent over the network, potentially
improving communication performance. A further advantage
of this approach is that the wavefields themselves do not need
to be declared as coarrays in the CAF implementation, only
the buffers, simplifying the creation of an MPI version free of
coarrays.

As CAF currently lacks parallel I/O, for this RTM im-
plementation we utilized conventional sequential I/O and
performed a post-processing step to merge the output. Two
different inputs are required for RTM. One is the earth model.
This consists of a model of the wave speed in the region of
the earth being imaged, and may also contain models of other
parameters. Each of these parameter files is a single large file,
containing a 3D block of floating point numbers. Each process
only needs access to the part of the model that corresponds to
the part of the domain that it has been assigned. The models
only need to be read once by each process, and are then
stored in memory for the duration of the execution. This was
implemented as each process calling a function to read the
relevant parts of the files by looping over two dimensions,
performing contiguous reads in the third, fast, dimension.
Another input that is required is the data recorded by receivers.
This is the data containing recordings of waves that reflected
in the subsurface and returned to the surface. RTM uses this
data to try to construct an image of where the reflections
took place. Processes only need access to data recorded by
receivers located within their local domain. Typically a single
file contains the data needed by all of the processes. This was
again implemented by having each process repeatedly call a
function that performs a contiguous read. This also only needs
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to be done once by each process. The time required for reading
input data is typically quite small compared to the overall
runtime, as once it is loaded from disk into memory it is used
in a large number of computations.

The output from RTM is the image of the reflectors in
the earth. Each process produces an image for its part of the
domain. In this implementation each process writes its image
as a separate file, with a header file describing which part of
the domain the data corresponds to. The RTM code is executed
many times, once for each shot. A large number of ouput files
are therefore created. Post-processing is performed to load all
of these, and combine them into a single image file. In a
production environment this may require loading hundreds of
thousands of files, potentially straining the filesystem. Parallel
I/O would have been advantageous for this situation, as it
would enable the files from all of the processes working on
a single shot to be joined before being written to disk, so
the total number of files would be divided by the number of
processes working on each shot.

B. Performance
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Fig. 5: Neighbor Communication Time for MPI, CAF GET,
and CAF PUT (strided and buffered)

In Fig. 5, we depict communication time between neighbors.
We compare communication using MPI send and receive
(where non-contiguous data is packed and unpacked as nec-
essary into contiguous buffers), and using 1-sided get and
put via co-indexed accesses. For the latter, we considered
(1) the “buffered” approach where the program packs all
the data to be communicated into a contiguous buffer, and
(2) the “strided” approach where the non-contiguous data
to be communicated is represented directly using Fortran
array-section notation and no additional buffer copy is used
by the programmer (or generated by the compiler). All the
CAF variants for communication worked well for smaller
message sizes (less than 400 elements per side). For larger
message sizes, we see the CAF get variants, and particularly
the buffered version, delivering performance similar to or
exceeding the MPI communication. Similar results reflecting
the advantage CAF has for smaller message sizes over MPI
have been reported for other applications [13][14][15]. The
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Fig. 6: Runtime (communication and computation) of the
forward stage of CAF and MPI versions of the code, for
(a) isotropic and (b) TTI, as the number of processors was
increased with a fixed total problem size.

performance benefit shown here in using contiguous buffers
for CAF communication motivated our decision to employ
such buffers for implementing halo exchanges in the RTM
code.

The plots in Fig. 6 show the runtime per time step of the
CAF and MPI versions during the forward stage of RTM.
For the MPI version we used the Intel Fortran compiler,
and for the CAF version we used the OpenUH compiler
with comparable optimization options. A fixed domain size
consisting of 1024 × 768 × 512 cells was used, on a cluster
with Intel Nehalem CPUs and QDR Infiniband interconnect.
These measurements appear to show good performance of
the CAF code: it was up to 32% faster for the isotropic
case, while approximately equal to the MPI code for TTI.
Recall that for each time step, each image performs halo
exchanges of its wavefield data with its neighbors. For the
forward stage, the TTI model requires eighteen halo exchanges
for two wavefields, while the isotropic model requires only
six halo exchanges for one wavefield. As these performance
results was obtained prior to the availability of directives for
hiding communication latency (described in Section III-C), the
benefits observed for CAF in the isotropic case are offset by
the significantly higher communication latency costs of the
halo exchanges in the TTI case. Nevertheless, we believe this
demonstrates that a production-level industrial code can be
developed using CAF, with performance similar to that of
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an MPI implementation being achievable while retaining the
benefits of a compact, clean syntax that is more accessible to
the non-expert programmer.

V. PARALLEL I/O IN CAF

Although CAF currently lacks support for parallel I/O, for
the RTM implementation described in the preceding section
we were able to utilize traditional sequential I/O. Each proces-
sor wrote its output to a unique file and post-processing was
performed to obtain the final resulting image by combining
these outputs. To load the relevant portion of the input data on
each processor, strided reading was employed. For the number
of processors tested, combined with the use of a Lustre parallel
file system, this was not found to create a bottleneck. Thus,
it was possible to develop a parallel RTM code using CAF,
despite the latter’s lack of support for parallel I/O. It was sug-
gested, however, that the file system may be overloaded by this
approach on larger systems used in production environments.
More generally, we believe that in the petascale/exascale
era, I/O will increasingly become the primary performance
bottleneck for data-intensive applications. Therefore, a sound
parallel I/O mechanism is a crucial aspect for future parallel
programming models and implementations.

A. Design Issues for Parallel I/O

We describe several design points for parallel I/O that we
consider especially relevant.

1) File Handlers: Individual versus Shared While work-
ing on a file, multiple images may use seperate file
handlers, one per image, to keep track of individual
progress of read/write operations within a file. In this
case, each image remains unaware of the progress of
other images. However, the drawback of this approach
is that additional communication needs to be performed
to obtain the position of the shared file handler within
the file. An alternative approach can be to read/write
the same file using a handler which is shared by all the
images. In this case, since the progress of the read/write
operations is indicated by a shared resource, each image
has to communicate with other images to determine the
position of the handler. In a two-way communication
model, such small communications can prove to be
extremely inefficient. A more favorable approach would
be to use direct-access file access operations which
would enable every image to explicitly specify an offset
within the file by specifying a record number. As a
result, there does not arise a need to include shared file
pointer operations for parallel I/O for CAF.

2) Concurrent I/O: Independent versus Collective One
of the primary reasons for performance degradation of
file I/O operations is the high overhead caused due to the
seek latency involved with multiple reads/writes. This
worsens when the read/write requests arrive at the file
system nodes in a discrete unordered sequence. Since
such requests come from images that are unaware of the
progress of other images, the disk header might have to

repeatedly move back and forth through the same sectors
of the disk to service the requests. With increase in the
number of images, the performance takes a clear toll. An
alternative approach is for all the images to aggregate
their requests such that the range of the new request
spans over contiguous sections on the disk, thereby
dramatically increasing the performance. This can be
achieved by collective operations and has been explored
heavily over the past few years. A consideration while
using such a collective operation is that faster images
would wait to synchronize with the slower images so
that the request for file operations can be collectively put
forth to the file system. However, in general the benefits
of aggregated requests have been shown to supercede
the costs of this synchronization for such collective
operations by MPI-I/O[16], OpenMP-I/O[17], and UPC-
I/O[18].

3) Synchronous versus Asynchronous I/O To avoid idle
CPU cycles during the servicing of data transfer re-
quests, images could benefit if such requests could pro-
ceed in an asynchronous manner. In a multi-processing
environment, this leads to an opportunity of overlapping
the I/O operations with useful computation and commu-
nication among the images.

4) File Consistency Among Processors In data-intensive
HPC applications, performing repeated disk accesses to
access consecutive sections of the disk will lead to a
severe degradation of performance. There have been
efforts to exploit the principle of locality by caching sec-
tions of the file which are frequently accessed by differ-
ent images and to service the read/write operations more
efficiently at the risk of relaxed consistency between the
cache buffers and the physical non-volatile disks. This
means that images might benefit from having a local
copy of a section of the file and translate the read/write
operations in the form of quick memory transfers. This
involves additional pre- and post-processing at regular
intervals to provide a consistent view of the shared file.

WG5, the working group responsible for the development
of Fortran standards, has not yet settled upon a solution for
parallel I/O to be part of the Fortran standard. One approach
would be to follow a somewhat modest extension for parallel
I/O that was originally part of Co-Array Fortran [2]. Here,
the OPEN statement is extended to allow multiple images to
collectively open a single file for shared access. Files are
represented as a sequence of records of some fixed length.
Once the file is opened, each image may independently read
or write to it, one record at a time. It is the programmer’s
responsibility to coordinate these accesses to the files with the
use of appropriate synchronization statements. Some details
on how precisely the extension should be incorporated into
the standard are still unresolved and under discussion [19],
and hence it has not been slated for inclusion in the Technical
Specification for extended features [20]. We point out some
potential drawbacks from our perspective:
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• Files are organized as a 1-dimensional sequence of
records. Higher-level representations of data (e.g. multi-
dimensional view of records) would be easier to deal with
for programmers and potentially enable more optimized
I/O accesses.

• Records may be read or written by an image only one at
a time. This hinders the ability of the programmer (and,
to a degree, the implementation) to aggregate reads and
writes for amortizing the costs of I/O accesses.

• There is no mechanism for collective accesses to shared
files. Collective I/O operations are extremely important,
particularly as we scale up the number of images that
may be doing I/O. New collective variants for the READ
and WRITE statements will allow the implementation to
funnel I/O accesses through dedicated nodes to reduce
excessive traffic to secondary storage.

B. Incorporating Parallel I/O in Coarray Fortran

Before a detailed description of our proposed extensions, let
us consider the file access pattern illustrated in Fig. 7, in which
multiple images simultaneously access the non-contiguous,
shaded portions of the file.

Fig. 7: Example of a file access pattern by multiple images

The following code snippet uses MPI I/O to enable each
image to independently access this section of the input file.

1

2 INCLUDE . mpif . h .
3

4 MPI INT b l k l e n s ( 3 )
5 MPI TYPE o l d t y p e s ( 3 )
6 MPI INT i n d i c e s ( 3 )
7 MPI INT i e r r
8 . . . . .
9

10 ! MPI TYPE VECTOR( count , b l k l e n , s t r , o l d t y p e ,
new type , e r r )

11 c a l l MPI TYPE VECTOR ( 2 , 2 , 4 , MPI REAL8 , t y p e 1
, . . . )

12

13 ! MPI TYPE VECTOR( count , b l k l e n , s t r , o l d t y p e ,
new type , e r r )

14 c a l l MPI TYPE VECTOR ( 3 , 1 , 2 , t y p e 1 ,
type2 , . . . )

15

16 ! MPI TYPE VECTOR( count , b l k l e n , s t r , o l d t y p e ,
new type , e r r )

17 c a l l MPI TYPE VECTOR( 3 , 1 , 2 , type1 , type2 ,
. . . )

18

19 c o u n t = 3

20 b l k l e n s = ( / 1 , 1 , 1 / )
21 i n d i c e s = ( / 0 , 48 , 3 8 4 / ) ! i n b y t e s
22 o l d t y p e s = ( / MPI LB , type2 , MPI UB)
23

24 c a l l MPI TYPE STRUCT ( c o u n t , b l k l e n s ,
i n d i c e s , o l d t y p e s , newtype , . . . )

25

26 c a l l MPI TYPE COMMIT( newtype )
27

28 ! s e t t i n g t h e view of t h e f i l e f o r t h e image
29 c a l l MPI FILE OPEN (MPI COMM WORLD,

” / f i l e p a t h / . . . ” , MPI MODE RD ONLY, . . . ,
f h d l , . . . )

30

31 c a l l MPI FILE SET VIEW ( f h d l , 0 , MPI REAL8 ,
newtype , ’ n a t i v e ’ , . . . ) ;

32

33 ! r e a d i n g b e g i n s
34 c a l l MPI FILE READ ( fh , bu f f , 1 , newtype , . . . )
35 . . . .
36 c a l l MPI FILE FREE ( newtype )
37 c a l l MPI FILE CLOSE ( f h d l )

The following is a code snippet to read the same file without
changing the logical data layout in Fig. 7, using our CAF
extension for parallel I/O.

1 OPEN( UNIT=10 , TEAM= ’ yes ’ , ACCESS= ’DIRECT ’ ,
ACTION= ’READ’ , FILE= ’ / f i l e p a t h / . . . ’ ,
RECL=16 , NDIMS=2 DIMS=(\3\ ) )

2

3 READ( UNIT=10 , REC LB = ( / 1 , 2 / ) , REC UB = ( / 3 , 6 / ) ,
REC STR = ( / 2 , 2 / ) ) b u f f ( : )

4

5 CLOSE( 1 0 )

It can be observed that the use of the extensions improves
usability by dramatically reducing the size of the code.

1) OPEN statement: The OPEN statement is used to open
an external file by multiple images. Fortran files which are
used for parallel I/O should contain only unformatted binary
data. Fortran 2008 forbids the simultaneous opening of files by
more than one image. However, to add support for parallel I/O,
this restriction can be lifted with the TEAM=’yes’ specifier,
which indicates that all images in the currently executing
team1 will collectively open the file for access.

Table I enlists the different types of control specifiers within
the OPEN statement which are relevant to Parallel I/O support.

Some of the key specifiers which have been extended or
added have been discussed below:

• UNIT: While OPENing a file collectively, all images must
use the same unit number in the statement.

• FILE: This includes the full path of the file in the file
system. While using a remote file system in a clustered
environment, the programmer must ensure that the path-
name provided should be the same and should evaluate
to the same physical file on all the nodes on which the
images execute.

1Teams are a feature that are likely to be added in the next revision of
the Fortran standard and will be described in the forthcoming Technical
Specification for additional parallel processing features
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TABLE I: List of the primary specifiers related to the modified
OPEN statement. The list includes existing specifiers as well
as the newly proposed ones.

Specifier Same value accross all images (Yes/No)
UNIT1 YES
FILE1 YES
IOSTAT1 NO
TEAM2 YES
NDIMS2 YES
DIMS2 YES
OFFSET2 YES
ACCESS1 YES
ACTION1 YES
1 This specifier already exists in the current Fortran 2008 standard.

However, the restrictions applicable to this specifier has been
modified as part of this proposal.

2 This specifier does not exist in the Fortran 2008 standard and has
been proposed as an extension.

• IOSTAT: If an OPEN statement (with a valid UNIT
number) is executed and if the associated file has
already been opened by the same executing im-
age, the stat-variable becomes defined with the
processor-dependent positive integer value of the con-
stant STAT_FILE_OPENED_BEFORE from the intrinsic
module ISO_FORTRAN_ENV. Also, in accordance with
Section 13.8.2.24 of the Fortran 2008 standard [21], if
an OPEN statement is executed by an image when one
or more images in the same TEAM (described below)
has already terminated, the stat-variable becomes defined
with the processor-dependent positive integer value of the
constant STAT_STOPPED_IMAGE.

• TEAM: The TEAM=’yes’ specifier is used to indicate
that a file is to be opened in a parallel I/O context (i.e.
shared access between multiple images in the current
team). The Fortran standard working group has proposed
a mechanism for team formation by images [20]. Using
team objects for parallel I/O allows the user to limit the
I/O operations to a subset of images. In the absence of this
specifier, the image is connected to the file with exclusive
access.

• NDIMS: This specifier accepts a positive integer which
specifies the number of dimensions of the representation
of the data in the file.

• DIMS: This provides the programmer with the flexibility
of representing sequential records in the file in the form
of multi-dimensional arrays. The array-expr passed to the
specifier contains a list of extents along each dimension
except the last (which can be calculated internally using
the record length and the total size of the file).

• OFFSET: This specifier accepts a positive integer which
defines the offset within the file (in file storage units,
typically bytes) at which the multi-dimensional file data
starts. It may be used to reserve space in the file for
header information.

• ACCESS: Out of the two access modes in Fortran -
direct and sequential, performing a shared file access

in parallel should be limited to direct-access mode. The
WG5 standards committee suggests that sequential access
mode should not be supported for parallel I/O.

• ACTION: All images must pass the same value (read,
write, or readwrite) for the specifier.

Data-intensive scientific applications which require repre-
sentations with multiple dimentional-views of the same data-
set can represent the layout while using the OPEN statement.
For example, Fig. 8 represents how a series of flat 24 records
may be viewed as 8x3, or a 4x2x3 array of records.

Fig. 8: The flexibility of the same dataset being represented
using different dimension layout allows the adaptability of
algorithms semantics to file contents

2) READ/WRITE statements: One of the main concerns
for programming models that support parallel I/O for data
intensive applications is the scalability of I/O requests and
the actual transfer of the data among the multiple nodes and
the I/O servers. To reduce excess network traffic in large scale
systems, the runtime could take advantage of I/O requests from
different images targetting adjacent sections in the shared file.
This allows opportunities for combining the large number of
requests to a few. This helps to avoid bottlenecks at the I/O
servers, reducing average latency among the I/O servers and
the nodes. To meet this end, we extend the READ and WRITE
statements to enable collective accesses to different (though
not necessarily disjoint) sections of the multi-dimensional
data, using the optional COLLECTIVE=’yes’ specifier.

3) Asynchronous operations: I/O intensive applications al-
ternate between computation and I/O phases. As a result, it is
not essential that all the images have the same view of the file
during the complete execution of the application. To support
this, the ASYNCHRONOUS specifier as included by the Fortran
2003 standard can be extended for parallel I/O. The value YES
needs to be passed to this specifier while connecting to a file
(using OPEN). Additionaly, the programmer has a flexibility
to choose which I/O operation on an already connected file,
needs to be made asynchronous. This is achieved by explicitly
specifying ASYNCHRONOUS=’yes’ for every I/O statement
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on that file. Images may write to disjoint sections of the file,
without its changes being immediately visible to other images
sharing the same file. Such semantics enables the runtime to
delay the completion of the effects of read/write operations
until a definitive point is hit. This point in the program can be
the existing FLUSH statement.

Table II enlists the different types of control specifiers
within the READ / WRITE statements which are relevant to
parallel I/O support.

C. Access patterns using the triplet representation

As described before, the DIMS specifier enables the pro-
grammer to set the layouts of the records of a file as a multi-
dimensional array. Once a file is connected, the access pattern
is represented by specifying a triplet <lower bound, upper
bounds, and strides> along each dimension. These can be
defined within the I/O READ and WRITE statements using
the REC LB, REC UB, and REC STR specifiers.

Large scale scientific applications deal with complex data
patterns based on a multi-dimensional view of the algorithmic
data structures. Consider Fig. 10a, where the highlighted sec-
tions of the arrays are accessed by an image. In this, the data
layouts represent the usefulness of the triplet representation
when compared to the flat sequential records view of the
current Fortran standard or the streaming-bytes view of POSIX
compliant C programs.

While most access patterns can be easily represented using a
single triplet notation across each dimension, there exist corner
cases, where multiple disjoint accesses become necessary to
completely represent the complex patterns using a standard
triplet notation. For example, consider Fig. 9. Here, the ele-
ments accessed (3, 4, 7, and 8) do not have a uniform stride
between them when the file is represented as a 1x8 array.
Using this layout, an application programmer might have to
resort to performing multiple I/O operations (two steps in this
case), to completely read the data. Such multiple I/O requests
for small chunks of data clearly would take a toll on the overall
performance. Instead, if the programmer were to choose to
represent the layout of all the records as a 2x4 array (Fig. 10b),

TABLE II: List of the primary specifiers related to the modified
READ/WRITE statement. The list includes existing specifiers
as well as the newly proposed ones.

I/O statement speci-
fier

(if COLLECTIVE=YES) Same value
across all images (Yes/No)

UNIT1 YES
ASYNCHRONOUS1 YES
IOSTAT1 NO
REC LB2 NO
REC UB2 NO
REC STR2 NO
REC STR2 NO
COLLECTIVE2 YES
1 This specifier already exists in the current Fortran 2008 standard.

However, the restrictions applicable to this specifier has been
modified as part of this project.

2 This specifier does not exist in the Fortran 2008 standard and has
been proposed as an extension.

the access pattern can be easily represented using a single
triplet representation. Fig. 11 illustrates this point further.

Fig. 9: Multiple steps used to access a pattern from a file
represented as a one-dimensional array.

D. Parallel I/O Implementation

We are currently in the process of implementing the pro-
posed parallel I/O language extensions. For our implementa-
tion, we incorporate the use of “global arrays”, provided for
example in the Global Arrays (GA) Toolkit [22] [23], into
our CAF runtime. Global arrays are physically distributed in
memory, but are accessible as a single entity in a logical global
address space through the APIs provided in the GA toolkit.
We make use of global arrays as I/O buffers in memory,
taking advantage of the large physical memory available on
the nodes and the fast interconnect in our HPC system. READ
and WRITE statements are implemented using get or put
to a segment of this global array buffer in memory. At the
same time, an independent group of processes, managed by
the runtime, will handle the data movement between the global
array buffer and the actual storage devices asynchronously.
The mapping of global arrays to disk could be implemented
using disk resident arrays, as described by Nieplocha et al.
in [24], but we are also exploring other options. We believe
that the domain decomposition approach to parallelism used in
RTM, which matches CAF’s communication model, naturally
lends itself to this array-based approach to parallel I/O.

VI. RELATED WORK

Having an open-source compiler is important for an emerg-
ing language as it promotes sharing of ideas and encourages
people to freely experiment with it. There have been few
public Coarray Fortran implementations to date. Dotsenko et
al. developed CAFC [5], a source-to-source implementation
based on Open64 with runtime support based on ARMCI [8]
and GASNet [7]. They used Open64 as a front-end and
implemented enhancements in the IR-to-source translator to
generate Fortran 90 source code that could then be com-
piled using a vendor compiler. G95 [25] provides a coarray
implementation which adheres to the Fortran 2008 standard.
G95 allows coarray programs to run on a single machine
with multiple cores, or on multiple images across (potentially
heterogeneous) networks (a license is required in this case for
more than 4 images). There has been an on-going effort to
implement coarrays in gfortran [26], and an updated design
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(a) Different triplet notations can target the same file
sections for different data layouts

(b) File sections that cannot be accessed using a single
triplet notation can be rearranged using a different layout
to allow ease of access

Fig. 10: Use of triplet notations to access different data patterns
in a file

Fig. 11: The triplet notation can easily be used to represent
the data access pattern if the file is represented logically as a
one dimensional array instead of higher dimensions.

document for this implementation is maintained online. The
gfortran implementation provides comprehensive support for
single-image execution, but as of this writing the runtime
support (which may be MPI- or ARMCI-based) for multi-
image execution is mostly incomplete. Rice University, more

recently, has developed an open source compiler for CAF
2.0 [27] which uses the ROSE compiler infrastructure. While
CAF 2.0 provides support for “coarrays” that are functionally
similar to coarrays as defined in Fortran 2008, their language
features diverge significantly from the Fortran 2008 specifica-
tion.

To utilize parallel I/O in CAF applications, one may com-
bine the use of MPI library calls within CAF programs. How-
ever, this negates the goal of enhancing the programmability
of data-intensive scientific applications. As illustrated in past
examples, one of the strong features of parallel I/O in MPI
is the availability of library interfaces to set file-views and
read sections of the file. However, as illustrated in the prior
code example, the use of MPI requires the programmer to
explicitly calculate offsets for performing file I/O and then
use different library functions to initialize the view. Since
the proposed parallel I/O extension for Fortran allows for
direct mapping of the data from the algorithm-domain to the
actual application, a compiler’s knowledge of the data types
of the buffer involved in I/O and the actual control flow of the
program itself can help determine the low-level details. Parallel
I/O for Unified Parallel C (UPC), an extension to C which
provides a PGAS programming mode similar to CAF, has been
described [18]. However, the majority of the file operations
are provided by collective operations and replicates MPI in
terms of the file model. Parallel I/O support for OpenMP, a
prevalently used API for shared memory programming, has
also been proposed [17].

There exist supporting parallel I/O libraries which are im-
plemented to serve a certain class of applications. For example,
ChemIO [28] is a set of tuned parallel I/O libraries (like the
Disk Resident Arrays [29]) with an execution model suited
for data models common in chemistry applications. Efforts
have also been directed towards designing a more abstract
set of libraries which are closer to the data models used by
scientific applications. Examples include Hierarchical Data
Format (HDF5) [30] and Parallel Network Common Data
Form (PnetCDF) [31][32]. The abstractions provided by these
libraries can be implemented using middleware libraries like
MPI. Such libraries store the data layout and dimensionality
information in the form of file headers. However, scientific
applications which dump raw data into storage disks can not
always be relied upon to use such libraries to prepend the files
with such headers. Doing so also restricts programmers from
using different I/O interfaces, thereby affecting portability of
the data files. Since we provide the option of specifying offsets
in the OPEN statement (using the OFFSET specifier), in our
proposed scheme CAF programs can be used with a wider
variety of files.

VII. CONCLUSION

In this paper, we described the CAF programming model
which has been standardized in Fortran 2008, and its imple-
mentation in an open-source compiler. Our implementation
of the Fortran coarray extension is available at the OpenUH
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website [33]. We have demonstrated that a widely used, data-
intensive seismic processing application, reverse time migra-
tion (RTM), could be implemented using coarrays, and share
much of the same code base as an MPI version. Performance
was found to be comparable to the MPI implementation,
outperforming the MPI version by up to 32% in one setting.
The lack of a scalable parallel I/O feature in the program-
ming model still needs to be addressed. We have defined
an extension to Fortran for enabling parallel I/O. We are
exploring a new approach for implementing these extensions
which utilizes global arrays in memory as I/O buffers and
asynchronously manages the data transfer between the buffer
and secondary storage.
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