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Abstract—Workflows are widely used in data-intensive applica-
tions since it facilities the composition of individual executables
or scripts, providing an easy-to-use parallelization to domain
experts. With considerable popularity of MapReduce framework,
some researchers start to develop MapReduce-enabled workflows
instead of general file-based ones. Meanwhile, being commercially
available for nearly two decades for large-scale data process-
ing, parallel database systems have also gotten wide attention
in the support of workflows. This paper studies three real-
world text processing workflows and develops them on top of
several different large data processing approaches including an
open source MapReduce implementation - Hadoop, a workflow-
oriented parallel database system - ParaLite, and a hybrid of
MapReduce and parallel DBMS - Hive. We discuss their strength-
/weaknesses both in terms of programmability and performance
for each workflow. Our experiences and experimental results
reveal some interesting trade-offs: (1) High-level query languages
(SQL of ParaLite and HiveQL of Hive) are helpful for expressing
data selection, aggregation and calculation by typical executables;
(2) To reuse existing NLP tools, it is often important to be able
to track the association between a document and its annotation
attached by the tool, for which the expressiveness of SQL is
particularly useful; (3) Each system has similar performance in
the execution of overall workflows because essentially performing
executables takes most of the time, but some small differences
could reveal some potential trade-offs that each system entails
for workflows.

I. INTRODUCTION

Workflows [1] are widely used in data-intensive text pro-
cessing applications since it facilities the composition of
individually developed executables or scripts, making it easier
for domain experts to focus on their research rather than
the management of computation. Many systems are proposed
to execute workflows, including GXP Make [2], Swift [3],
Pegasus [4] and Taverna [5]. A workflow is generally a DAG
with many data processing tasks and their dependencies. Each
task is a typical existing binary or executable. For example,
workflows in natural language processing (NLP) typically
consist of sentence splitters, part-of-speech taggers, named
entity recognizers, parsers, data indexers, and so on. Many
of them (e.g., parsers [6], [7]) are third-party components
that received a considerable amount of development efforts in
the community. Others are ad-hoc scripts. Either way, they
almost always work on text data which are usually stored
in and transferred through files. Tasks in the workflow are
communicated with each other through files [8]. Each task is
fed with input files and produces at least one output file which

becomes the input of a following job.
Recently, MapReduce [9] has attracted wide interests from

both industry and academia due to its simple programming
model and good scalability across hundreds of nodes. After
the emergence of MapReduce and its open-source incarnation
Hadoop [10] in particular, lots of scientific researchers start to
focus on constructing map-reduce enabled workflow systems
in which a heavy task can be expressed as Map and Reduce
jobs [11] or a whole workflow composition is created as
MapReduce style [12].

With consideration of making workflows simple and effi-
cient, a natural idea is to build workflows on top of the parallel
database systems[13] which have been commercially available
for nearly two decades, including Teradata, Vertica, DB2,
and Oracle. They are robust, high performance computing
platforms to provide a high-level programming environment
and parallelize data processing easily. In addition, with ex-
pressive SQL, database systems can simplify the description
of workflows. For instance, SQL with a proper support of user-
defined functions and reductions can express many data pro-
cessing tasks much more elegantly and easily than MapReduce
[14] [15]. Furthermore, databases are efficient for processing
relational data in ways expressible in SQL due to data indexing
and sophisticated query optimization [14] [15].

However, to support workflows better, both MapReduce
and parallel database systems have their own disadvantages.
MapReduce in general requires users to develop Map and
Reduce functions; Hadoop requires them to be written in Java
conforming to the class library framework, at least by default.
In addition, a workflow typically consists of many third-party
binaries and ad-hoc scripts written in a variety of languages,
but integrating them in Hadoop is not straightforward. Fortu-
nately, a utility coming with Hadoop – Hadoop Streaming [16]
allows a simple reuse of executables by creating and running
Map/Reduce jobs with any executable or script as the mapper
and/or the reducer. Furthermore, to alleviate the burden of
writing low-level language to express a user’s requirement,
some systems are proposed to provide high-level language on
top of the current interface, such as Pig [17], Hive [18] and
HadoopDB [19].

Database systems generally have a limited support for
integrating external executable into data processing pipeline.
As mentioned above, such integration is very important in
workflows. Although some databases support User-defined



Functions (UDF), they either do not support parallel execution
of them or lack flexibility in input/output formats, develop-
ment language and reusability of code. In addition, general
database systems do not optimize data transfers between data
nodes and parallel clients that process large query results.
Generally, big query results are always returned to a single
client and then distributed to external programs for parallel
execution. So the single client can easily become a bottleneck.
Moreover, it prohibits us to take advantage of co-allocating
computing clients with data. ParaLite, a workflow-oriented
parallel database system, extends SQL syntax to integrate
User-Defined Executables (UDX) into a query and proposes a
concept of collective query to parallelize them.

In our previous study, we developed three real-world text
processing workflows on top of ParaLite [20]. In the present
paper we extend the previous study by comparing four ap-
proaches, files, Hadoop, Hive, and ParaLite, and discuss their
strength/weaknesses both in terms of programmability and
performance for these workflows. We target to find the trade-
offs that all these systems entail for workflows. In general,
high-level query languages (SQL of ParaLite and HiveQL of
Hive) are helpful for expressing data selection, aggregation and
join. Moreover, they provide elegant expression for pipeline-
style workflows by chaining several executables in a single
query while Hadoop lacks good support of such workflows
since it cannot pipe multiple executables within a single
command. In typical NLP workflows, to reuse existing NLP
tools, it is often important to be able to track the association
between a document and its annotation attached by the tool,
for which the expressiveness of SQL in ParaLite is particularly
useful while Hive and Hadoop need extra efforts. In terms of
performance, a workflow build on top of each system takes
similar execution time because most of computation comes
from the execution of executables. However, compared with
other systems, ParaLite has small superiority (10% ∼ 20%)
due to (1) data is well partitioned which allows the system to
take the advantage of its underlying database system SQLite to
perform local aggregation and join; (2) the powerful expressive
ability mentioned above that reduces some overheads existing
in other systems such as writing intermediate data into files
and parsing records for each executable.

II. REVIEW OF SEVERAL APPROACHES

A. Hadoop

Hadoop [10] is an open-source incarnation of MapReduce
model to process large-scale data across large clusters of
compute nodes. It provides users easy programing model by
which only two user-customized Map and Reduce functions
are required to be written. Hadoop consists two layers:

(1) Hadoop Distributed File System (HDFS) layer for data
storage. HDFS is a block-structured file system which splits
individual files into blocks with a fixed size and distributes
them across multiple DataNodes in the cluster. HDFS is
controlled by a central NameNode which keeps the directory
structure of all files in the file system, and tracks the location
of blocks and their replicas.

(2) MapReduce layer for data processing. The MapReduce
Framework follows the master/worker pattern. A single master
called JobTracker receives MapReduce jobs from user applica-
tions and schedules tasks to some specific nodes in the cluster
determined by the information on NameNode. The policy for
job scheduling takes both data locality and load balancing into
consideration. Each worker node called TaskTracker accepts
tasks including Map, Reduce and Shuffle operations, and
spawns separate processes to do the actual work.

Hadoop Streaming (HS) is a utility that comes with the
Hadoop distribution. The utility allows you to create and run
map/reduce jobs with any executable or script as the mapper
and/or the reducer. For instance, to perform the word count
task which is to calculate the occurrences of words from a big
text, hadoop streaming uses the following statements:

Hadoop jar hadoop-streaming.jar

-input myInputDir

-output myOutputDir

-mapper wc_mapper.py

-reducer wc_reducer.py

In the above example, both the mapper and the reducer are
python executables. The mapper reads the input from stdin
(line by line), splits the input into words and emits the output
of 〈word, 1〉 to stdout. The reducer reads the output of
the mapper from stdin and calculates the total number of
occurrences for each word. HS creates a map/reduce job,
submits the job to a cluster, and monitors the progress of the
job until it completes.

B. Hive

Hive is a data warehouse system built on top of Hadoop. It is
considered as a hybrid of MapReduce model and database sys-
tem since it projects structured data files to relational database
tables and supports queries on the data. These queries are
expressed in a SQL-like declarative language called HiveQL
and compiled into MapReduce jobs executed on Hadoop.
Meanwhile, Hive also allows users’ own mappers and reducers
which are executables written in any language to be plugged
in the query when it is inconvenient or inefficient to express
the logic in HiveQL.

With Hive, we can express the word count task by the
following query:

insert overwrite table word_count

select mapout.word, count(*) from (

map text using ’wc_mapper.py’ as word

from data) mapout group by mapout.word

As Hadoop does, it firstly splits text into words using
a nested query in which the executable wc_mapper.py
is specified as a mapper and outputs an intermediate table
mapout of words. Then the outer query aggregates the oc-
currence of each word using group by operation. However,
although HiveQL is similar with general SQL and targets
to achieve SQL compatibility, it still introduces significant
new syntax to normal SQL to integrate MapReduce scripts;
for instance, in addition to the usual SELECT, it adds MAP,
REDUCE and TRANSFORM.



C. ParaLite

ParaLite[21] is a workflow-oriented parallel database sys-
tem. The basic idea of ParaLite is to provide a coordination
layer to glue many single-node database systems together,
specifically SQLite [22], and parallelize SQL query across
them. To provide a better support of workflows, ParaLite
extends SQL syntax to easily embed user’s arbitrary command
line called User-Defined Executable (UDX) into a single
SQL query. A ParaLite UDX is an executable written in any
language and defined within a query using WITH clause. It
can work on and produce arbitrary columns while UDF in
traditional database system can only support one column input
and output. Let’s also take the word count task as an example.
It is straightforward to perform this task by integrating text
splitter into general aggregate SQL query. The nested query
splits the text into words using awk script as the UDX and
outputs words in the format of one word per record. The
occurrences for each word is simply counted by grouping
words from the output of the nested query.

select word, count(*) from

select F(text) from data

with F= "awk ’for(i=1;i<=NF;i++) print $i’"

group by word

To parallelize the execution of UDX, ParaLite proposes a
concept of collective query, a single query issued by
multiple computing clients who collectively receive data from
data nodes. Data are processed by clients in parallel using
UDX. Collective queries provide co-allocation of parallel com-
pute clients and data sources. Data are transferred from data
nodes to computing clients based on the principles of both data
locality and load balance of all clients. Moreover, collective
queries allow the separation of data nodes and computing
nodes on which UDXes-related software is installed.

III. TEXT PROCESSING WORKFLOWS

Next, we introduce three real-world text-processing work-
flows with different structures in natural language processing:

• Japanese Word Count
• Event Recognition
• Sentence Chunking Problem
Since all these three systems do not provide any language to

describe the dependencies of components/jobs, we generally
perform each single job using them and leave the creation of
the whole workflows to a known workflow engine called GXP
Make [2]. GXP Make uses make to describe the workflow and
provides the parallelization of tasks across clusters. So in the
following sections, we ignore the descriptions of dependencies
among jobs and only focus on the expressiveness of each job
based on different systems.

A. Japanese Word Count

Japanese Word Count calculates the occurrence of
Japanese words from crawled Japanese web pages. Word count
task is widely used to extract key words or phrases from web
data which is very useful in the web analysis of various fields,

such as, revealing hot topics in Twitter, popular products in
on-line stores and attracting customs in different countries.

Japanese Web Pages

html2sf

sf2rs

juman

wordcount

<word, count>

Fig. 1. Workflow of Japanese Word Count

As Fig 1 shows, this workflow is a simple pipeline with
four jobs: (1) html2sf: convert the source data crawled
from Japanese web pages to an XML-based canonical format
developed by Kurohashi group at Kyoto University. The format
defines XML tags to identify plain text and accommodates
annotations such as named entities. (2) sf2rs: extract plain
text, identified with tag 〈raw string〉 from the canonical format
data, (3) juman: tokenize text into Japanese words, (4)
wordcount: calculate the frequencies of Japanese words.

Hadoop: The first two jobs are expressed by two Hadoop
Streaming commands each of which only contains a mapper
html2sf or sf2rs. To reduce redundant IO operations, we
perform the last two jobs together using one command with a
mapper juman and a reducer word_count_reducer. The
mapper parses Japanese sentences into words and outputs each
word with an associated count of occurrences 1 and then the
reducer aggregates all counts emitted for a particular word.

The first executable html2sf is a file-based program
which reads input data from file, so a wrapper which receives
data from standard input and stores them into a file is
necessary. Moreover, since the input of each executable has
multiple lines per record, we have to either customize our
own InputFormat and InputReader classes and pack
them along with the streaming jar or write a small wrapper
to convert the complex record into a single-line one. In this
paper, we take the latter method. Therefore, 3 wrappers for
executables are necessary.

Hive: Hive performs the workflow by only one query
insert overwrite table wordcount

select tokens.word, count(*) as count from (

map rst.rs using ’juman’ as word from (

map sft.sf using ’sf2rs’ as rs from (

map html.con using ’html2sf_wrap’ as sf from html)

sft) rst) tokens group by tokens.word

in which the first three executables are nested and the output
Japanese words from juman are aggregated. To deal with
file-based executable html2sf, we still need a wrapper to
produce the input file with data from standard input. Since
data is piped between executables and each one can handle
the output data from the previous one, we don’t need to write



any wrapper to deal with the complicated format of data.
ParaLite: The first three jobs are expressed by a single

query where the executables are specified as three UDXes and
data are piped from one to another.
create table tokens as

select T(S(H(con))) as word from html

with H="html2sf html_file" input ’html_file’

S="sf2rs" T="juman"

partition by word

Then another simple SQL query with group by operation
aggregates the occurrences of Japanese words. To take advan-
tage of SQLite, the results from the first query are partitioned
by words. As a result, ParaLite directly assigns the aggregate
query to SQLite engine on each node. ParaLite can support
file-based UDX, so no wrapper is required for this workflow
and we only need to specify the input option for the executable.

File: In file-based workflows, the first three steps are
expressed simply by a command line. However, to parallelize
the command line, it is necessary to split the big input file
into many small files. As a result, many intermediate files are
produced. Specially, since there is no straightforward method
to express the last aggregation job wordcount, we perform
it by Hadoop Streaming.

Discussion: Japanese Word Count is a simple pipeline
workflow which is expressed by Hive and ParaLite elegantly
where more than one executables can be expressed within
a single query. However, Hive needs more efforts to deal
with file-based executable. Since Hadoop Streaming cannot
support multiple mappers or reducers in a single HS job,
the executables have to be expressed by several separate HS
jobs, leading to a), more steps in the workflow, b), more
efforts to deal with the complicated format of input data,
c), longer execution time due to storing the output of each
executable in files. General jobs with executables are easily
expressed with file system, but the aggregate job cannot be
presented straightforwardly. Users have to either write their
own processing logic or rely on Hadoop.

B. Event Recognition

The goal of Event-Recognition [23] workflow is to
recognize complex bio-molecular relations (bio-events) among
biomedical entities (i.e. proteins and genes) that appear in
biomedical literature. Recognition of such events including
an expression of a certain gene, a phosphorylation of a
protein, and a regulation of certain reactions are important
to understand biomedical phenomena.

The workflow of Event Recognition is shown in Fig 2.
The input of the workflow is the MEDLINE database [24]
which contains over 19 million references to journal articles in
life sciences with a concentration on biomedicine. The event
recognition application consists of 4 steps with 6 jobs: (1)
extract abstract of each article from the source xml files; (2)
split the abstract into sentences with their unique identification;
(3) to each sentence, apply three tools:

• Enju Parser: a HPSG parser which can effectively analyze
syntactic/semantic structures of English sentences.

MEDLINE XML

Enju ParserNER 

Dependency Parser

eventDetect 

Event Structure 

abstractExtract

senSplit

Fig. 2. Workflow of Event-Recognition Application

• Named Entity Recognizer: recognition for bio-medical
entities such as gene and protein.

• Dependency Parser: a dependency parser for biomedical
text.

(4) combine the results from the three tools and extract bio-
medical events. It is a typical real NLP workflow, which
applies several existing tools to each document/sentence and
combines results from them to perform a higher-level reason-
ing. A recurring problem in such workflows is that each tool
reads texts as a single stream and does not have a notion
of document boundaries. The output from such a tool is
similarly a single stream that does not leave anything between
document boundaries. Thus, it is the responsibility of workflow
developers to track the association between a document and a
result from each tool and correctly combines them.

Hadoop: Each job in the workflow could be expressed by
one or several Map-Reduce jobs. Generally, tools used in the
steps (3) and (4) consist of several executables and some
of them work on the joined data from other two previous
executables. Hadoop performs join operation separately before
the executable is executed and uses several scripts for these
executables. For example, the final eventDetector job
which joins data from the previous three tools on the sentence
ID to detect complex relations between entities is expressed by
two MR jobs. The first one only performs the join operation
using both Map and Reduce functions and outputs records each
of which consists of a sentence ID followed by the sentence
and the three result of this sentence. Then the next MR job
specifies the executable as a mapper which reads output from
the previous job and emits the final results.

Hive: Hive expresses each job with one or several equivalent
queries. Different from Hadoop, Hive is able to chain several
executables or express them together with a join operation
within a single query. For example, the eventDetector is
expressed by the following query:
insert overwrite table event_so

select out.SID, out.event

from (map abst.SID, abst.sentence, enju_so.enju,

ksdep_so.ksdep, gene_so.gene



using ’event-detector’ as (SID, event)

from abst

join enju_so on (abst.SID = enju_so.SID)

join ksdep_so on (abst.SID = ksdep_so.SID)

join gene_so on (abst.SID = gene_so.SID)) out

ParaLite: ParaLite expresses each job by a similar query
as Hive. Still taking eventDetector as an example, it is
expressed by the following query:
create table event_so as

select F(abst.SID, abst.sentence, enju_so.enju,

ksdep_so.ksdep, gene_so.gene) as (SID, event)

from abst, enju_so, ksdep_so, gene_so

where abst.SID = enju_so.SID

and abst.SID = ksdep_so.SID

and abst.SID = gene_so.SID

with F="event-detector" output_row_delimiter EMPTY_LINE

File: Similar with JAWC application, the input file is firstly
splitted into thousands of small files and several executables
are applied to each single file. Specially, for all the merge
jobs, we take a in-order processing method, that is, all data
is stored in the same order on the sentence ID. To fulfill this
requirement, we define the name of each result file before the
execution of the workflow.

Discussion: The workflow of Event Recognition generates
both data access patterns of pipeline and reduce. Hadoop
Streaming and file-based method are not sufficient to present
join job. Hive and ParaLite are able to use queries to express
the workflow elegantly. However, some extra efforts are nec-
essary when the workflow is performed by Hive and Hadoop
because they cannot track the association of the input sentence
and the output from the NLP tools as we mentioned in the
beginning of this section.

For example, let’s say we have an executable X that reads
sentences and outputs annotated sentences. In the workflow
using such a tool as a component, we like to find (document id,
annotated sentence) from (document id, the original sentence).
In Hive and Hadoop, it is necessary to write an extra program
which extracts sentences fed to the tool, receives the results
and maps the annotated sentence to the original one. This
is because that MapReduce programming model leaves all
the computation inside of the mapper and reducer and it
cannot handle complex logical processing outside. Specifically,
The model reads data from HDFS, feeds them to a mapper,
shuffles and sorts the output of the mapper and finally gives
to a reducer. So it doesn’t have any mechanism to do some
complex processing to the output of mapper of reducer. Hence
we need to write ten such wrappers in total. On the other
hand, ParaLite, or SQL for that matter, naturally supports such
an association through a simple query of the form ”select
sentence id,X(sentence) from ...”, as long as the output of the
last executable in the chain has a fixed string , such as an
empty line in most cases, between records boundaries.

C. Sentence Chunking Problem

Splitting sentences into meaningful chunks or phrases (N-
grams) is very important in natural language processing since

it is the first step of extracting concepts and relations within
statements across a large text. Significant chunks would typ-
ically correspond to semantic units such as named entities
(proteins, genes, diseases) or relations [25]. A recent paper
[26] focused on the improvement of the performance of
this application based on MapReduce through a proposed
distributed looking-up system.

The problem for Sentence Chunking is to find the best way
to chunk a sentence with the most meaningful phrases. We
use a statistical model to solve it. Every sentence is generated
by randomly sampling and the number of ways to chunk
a sentence into phrases is finite. The model calculates the
likelihood of each sentence by:

L(S) =
∑
σ∈Φ

∏
i∈σ

fi

Φ is the set of the chunked sentence by all chunking methods;
σ represents all phrases in the sentence under a specific
chunking method and fi is the probability of phrase i occurs
in a corpus calculated based on its frequency.

The likelihood of whole corpus is simply calculated by the
multiplication of the likelihood of each sentence:

L(C) =
∏
Si∈C

L(Si)

We can then maximize the likelihood function of the whole
corpus to get the best parameter f .

f = argmax
f

L(C)

Then, based on the best value of f , we can calculate the
likelihood of each sentence in different chunking methods and
the best one leads to the largest likelihood of the sentence.

The workflow of Sentence Chunking is shown in Fig 3.
The input of the workflow is sentences of articles from the
MEDLINE database. The workflow consists of five steps.
The first three are required for initialization and only run
once per input corpus: (1) senSplit: Extract text from
input xml files and splitting into sentences, (2) freqGen:
Generate phrases from sentence and get their frequencies, (3)
filter: Store phrases with frequencies greater than one into
a SQLite database to reduce the size of the database because
most phrases occur only once according to the paper [26]. So
receiving NULL for a frequency lookup query means that the
frequency for the phrase is one. The following two steps are
iterated: (4) probGen: newly estimated model parameter f is
updated at the end of each iteration if a better distribution is
found, (5) likelihoodCal: calculate the likelihood of the
whole corpus based on the new parameter.

Hadoop: The freqGen job is expressed by a single
streaming job in Hadoop in which the mapper executable
generates phrases from sentences and emits pairs of 〈phrase,
1〉. Then an aggregate reducer reads the output of the mapper
and sums the frequency for each phrase. The next filter
job only requires a mapper which reads phrases from stdin
and emits those with frequencies greater than one. Phrases
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Fig. 3. Workflow of Sentence Chunking Problem

that passed the filter are stored in SQLite database which
is queried against those phrase frequencies at each iteration.
Next, we calculate the probability of phrase based on their
frequencies, so we firstly have another aggregate job to obtain
the number of phrases with the same frequency and then a
script is invoked to get the related probability. Finally, the last
job specifies an executable as the mapper which outputs the
likelihood of each sentence to the reducer to get the likelihood
of the whole corpus by multiplying likelihood of all sentences.

Hive: Hive uses equivalent streaming operations in a query
to express each job, such as freqGen and likelihoodCal
job. Specially, it performs filter job by a simple selective
query without a customized mapper.

ParaLite: Similar with Hive, ParaLite expresses each job
by an equivalent query in which UDXes are used instead of
mappers. Specially, for the last job, ParaLite supports a user-
defined aggregation mul to get the product of all records.

File: In this workflow, aggregate jobs such as freqGen,
probGen and likelihoodCal appear alternately. These
jobs cannot be elegantly expressed only based on file systems
and as general we use Hadoop instead. Since most of jobs
are performed in Hadoop style, we finally did not develop the
whole workflow based on files.

Discussion: Each iteration of this workflow is a simple
pipeline which is easily expressed by Hadoop, Hive and
ParaLite. Although Hadoop provides an overall elegant expres-
sion, it still requires more efforts (an extra mapper or reducer)
to perform data selection and aggregation. In addition, file-
based method is not appropriate for such workflow in which
most jobs perform aggregations to all data.

IV. EVALUATION

We conducted several experiments to compare the per-
formance of the three workflows built on top of Hadoop
Streaming, Hive, ParaLite and a shared file system in a cluster
of 32 nodes. Each node uses 2.40 GHz Intel Xeon processor
with 8 cores running 64-bit Debian 6.0 with 24GB RAM.

A. System Configuration

Hadoop: In our experiments, we use Hadoop version 1.0.3
running on Java 1.6.0. We deploy the system on the cluster
with the default configuration settings except for (1) we
configure the system to run six Map instances and six Reduce
instance concurrently on each node. The reason we set them

Hadoop Hadoop(parallel) Hive Hive(parallel) ParaLite File
1280 126 1310 131 432 980

TABLE I
DATA PREPARATION TIME FOR JAWC(SEC)

to be six is that Hive often uses a single query with 2∼3
executables to perform a job, that is, 2∼3 processes are
running for each Map task and we observed that Hive cat
get the best performance with this configuration. (2) we allow
JVM to be reused by all tasks instead of starting a new process
for each Map/Reduce task. The number of mappers is decided
by the system for most jobs while set manually for some time-
consuming jobs to make sure that the execution time of each
job is no more than 10 or 30 minutes. Since some jobs have
large start-up cost, we do not limit the execution time within
1 minute as Hadoop suggested. To make the comparison fair,
we store all input and output data in HDFS with the settings
of one replica per block and without compression.

Hive: We use Hive version 0.8.1 with default configuration
based on the Hadoop system configured as mentioned above.
We set the same number of mappers and reducers for each
Hive job and Hadoop job.

ParaLite: ParaLite is a serverlessness and zero-
configuration system, so we do not need to configure
anything before it is executed. Each table is stored in the
same 32-node cluster and we start at most 6 clients on each
node for each job. We set the size of blocks which is sent
from data node to the computing clients within each collective
query to make sure the total number of blocks equals to the
number of mappers for the equivalent Hadoop job.

File: In file-based workflows, we use a shared file system
NFS3 to store and transfer data. The parallelism of each job
depends on the number of input files N which is determined
by the parallel granularity of the most time-consuming job in
other systems. For example, N should be equal to the number
of mapper tasks for the job in Hadoop.

B. Japanese Word Count

We perform the experiments for Japanese Word Count
workflow with a collection of Japanese web pages of size 104
GB. These web pages produce 62 GB useful text which are
then loaded into different systems. The data loading time for
each system is shown in Table I.

Hadoop: Since we do not need to alter the input data, we
load the input file into HDFS as plain text using the Hadoop
command-line utility. The input data is a single 62 GB file.
If we directly invoke the command line to store it into HDFS
from a node, a copy of the file is loaded to one HDFS data
node. Another choice is that we split the big file into 32
small ones and store each one in the local disk of each data
node respectively, then we load all local files in parallel into
HDFS by issuing the command on each node. We measure
these two methods and the results are presented in Table I
where label Hadoop indicates the first method while Hadoop



(parallel) means the latter. Obviously, loading data in
parallel reduce a lot time but it brings file split overhead.

Hive: Hive can load data to table from both local disk
and HDFS by Hive Data Definition Language (DDL). Hive
firstly copies it into HDFS and then creates metadata for the
table. Since the metadata creation cost is negligible, so it takes
almost the same time with Hadoop for the two cases.

ParaLite: ParaLite provides the same API with SQLite and
loads data to the database by the .import command line.
Unlike Hadoop, ParaLite distributes the big file automatically
across all data nodes and really loads data to database on each
data node in parallel. The process takes about 7 minutes.

File: The input file is stored in NFS, and we do not need to
do anything but split it into 1000 sub-files which takes about
16 minutes. 1000 is chosen because Hadoop automatically
splits each job into about 1000 tasks to be executed in parallel.
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Fig. 4. The Execution Time of JAWC Workflow

As Fig 4 shows, ParaLite and Hive outperforms other
systems about 15%. Since Hadoop Streaming cannot pipe
multiple executables, three separate Hadoop jobs are launched
which brings some extra overheads. For example, the sf2rs
job is very lightweight and takes less than 2 minutes, but
Hadoop Streaming spends 281 seconds on it. One extra
overhead comes from the start-up cost of Hadoop. From our
observations, it takes 15-25 seconds before all allowed Map
tasks have been started. Besides, storing intermediate data
(such as 25GB result of html2sf) into HDFS which is
then read by next process also takes much more time than
directly piping data between processes. For the last aggregate
job, since the output results from juman is partitioned by
words, ParaLite executes the SQL query by sending it to the
SQLite database on each node and performs local aggregation.
Therefore, it outperforms Hadoop since it needs to reduce data.

C. Event Recognition

Event Recognition workflow reads 30 GB data from MED-
LINE database and extracts 1 GB abstracts of articles from the
source xml files. We load the data into all systems using the
methods mentioned in Section 4.2. For Hadoop and Hive, we
directly use the single input file without splitting it and loading
from all data nodes in parallel because the data is small. As a
result, Hadoop and Hive take 8 seconds while ParaLite takes
11 seconds. For file-based workflow, we split the input into
10000 small ones according to the most time-consuming job
Enju Parser and the split takes about 8 seconds.
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Fig. 5. The Execution Time of Event-Recog Workflow

Fig 5 shows that ParaLite outperforms other systems from
8% to 30%. Since ParaLite is able to track the association of
the input and output records, most executables work on the
input data directly without parsing while each executable in
Hadoop- and Hive-based workflows requires to parse the input
data to map the input to the according output. Another reason
is that ParaLite has better performance in join operation,
especially for the eventDetector job. The input four tables
of eventDetector are 1 GB sentences, 55 GB enju
results, 11 GB gdep results and 150 MB ner results. ParaLite
partitions all these data on the key SID, so when the join
operation is performed, it pushes the original join SQL query
directly to the SQLite database on each data node and it only
takes about 25 seconds. Hadoop performs this join operation
using about 8 minutes and Hive takes about 4 minutes.

To get the best performance, we tune some parameters for
each job to adjust the degree of jobs parallelization according
to their compute density. Job enju is very computationally
intensive and eventDetector is not as heavy as enju and
it has high start-up overhead, so we set more parallel tasks for
enju and less for eventDetector. It is easy to do the
parameter tuning in ParaLite which allows you to specify the
size of block for each query and Hadoop which allows you to
set the number of mappers and reducers in the script for each
job. However, it is not easy with Hive to tune this parameter.
We have to modify the parameter of number of mappers in
the configuration file and restart the Hadoop cluster every time
when we want to change it. What is the worse is that this kind
of parameter tuning is impossible in file-based workflow. This
is the reason that the execution time of event-detector
job in the workflow with files is much larger than that in the
workflow with other systems. As mentioned in the beginning
of this section, we split the input file into 10000 small ones
based on the execution of enju job. Hence we have 10000
small sub-jobs to be processed in parallel for each step. The
number of sub-jobs is much larger than that in other systems
and each has high start-up overhead (about 20 seconds) , as
a result, the total execution time is increased. Once the input
files is splitted, users have to parallelize each job according
to the number of sub-files unless internal parallelization and
merge is performed independently.



D. Sentence Chunking

Sentence Chunking workflow reads 60 GB data from MED-
LINE database and gets 2 GB abstract. We load the data into
HDFS using the Hadoop command-line utility and it takes
14 seconds. Hive takes several seconds more to create the
metadata and ParaLite takes 21 seconds. From Fig 6 we can
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see that the execution time of the whole workflow by Hive and
Hadoop are almost the same and ParaLite is about 18% faster
than them mainly because of ParaLite has better performance
on the most time-consuming job likelihoodCal. For the
freqGen job, Hadoop and Hive are about 200 seconds faster
than ParaLite. That is because the output of freqGen is about
145 GB and storing them into database takes ParaLite another
420 seconds. For the probGen job, Hadoop is much more
slower than others. The data to be aggregated in this job is very
unbalanced and more than 90% phrases (about 137 GB) occur
only once. So all these data are transferred to a single reduce
task to be aggregated in Hadoop leading to longer execution
time than Hive and ParaLite that firstly aggregate data locally.

V. CONCLUSION

We studied three real-world text-processing workflows,
specifically in the discipline of Natural Language Processing
(NLP), and built them on top of several large-scale data
processing approaches, including Hadoop Streaming, Hive and
ParaLite. We compared the programmability and performance
of these workflows based on the three systems and general
file-based workflows. Our development experience revealed
that high-level query languages such as SQL of ParaLite
and HiveQL of Hive are helpful for expressing both typical
SQL jobs (data selection, aggregation and join) and jobs with
executables. In NLP workflows, the expressiveness of SQL
in ParaLite is particularly useful since it provides natural
supports of file-based NLP executables and reusing existing
NLP tools by tracking the association between a document
and its annotation attached by the tool. On the other hand,
workflows expressed in low-level language lacks good support
of all features mentioned above, requiring some extra efforts.
The evaluation experimental results show that essentially each
system has similar performance in the execution of the whole
workflows because performing executables takes most of time.
However, ParaLite and Hive, especially ParaLite, still has

small superiority in the SQL jobs due to their optimized
execution plans such as allowing local aggregation and join.
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