
A Scalable Master-Worker Architecture
for PaaS Clouds

Vibhor Aggarwal, Shubhashis Sengupta, Vibhu Saujanya Sharma, and Aravindan Santharam
Accenture Technology Labs, Bangalore, India

{vibhor.aggarwal, shubhashis.sengupta, vibhu.sharma, aravindan.santharam}@accenture.com

Abstract—Clouds provide an attractive infrastructural option
to deploy highly-scalable distributed applications. Platform as
a Service (PaaS) clouds offer basic software stack and services
along with the execution containers to simplify the hosting of
user applications. However, traditional many task computing
architectures cannot be hosted as-is on current PaaS platforms
due to certain limitations. This paper describes a novel mod-
ified architecture for master-worker, a well-known many task
computing paradigm, to take advantage of the fast scalability
provided by PaaS. The architecture is transformed into a multi-
agent system where the distributed agents use a message broker
for communication and to store the computation progress. The
agents are capable of dynamically shifting between a master and
a worker role based on the information available with a durable
message broker. This state-less feature of the agents makes them
amenable for a PaaS platform and adds fault-tolerance to the
system. The experiments illustrate the promising potential of the
architecture to efficiently scale computationally intensive tasks
on PaaS.

I. INTRODUCTION

Cloud computing provides an emerging and cost-effective
infrastructure which can be used on-demand in a “pay-as-
you-go” mode. One of the key advantages of cloud is its
ability to scale-up infinitely to match the application needs.
For a perfectly parallel application, theoretically, this implies
that cloud can handle any size of the workload in almost
no time. This is a very attractive proposition as compared to
hosting the application in-house, if the application load varies
significantly. In-house infrastructure is usually difficult to
scale, due to difficulty in procurement and system management
related issues, than the options available on cloud.

Cloud computing can be broadly categorized into three
types [1]: Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS). IaaS vendors
provide infrastructure such as virtual machines, storage and
network and the users maintain their own software stack and
applications. SaaS providers offer user-customizable business
applications in the cloud. PaaS platforms offer a basic software
stack for example operating system, run-time, databases etc.
and services such as message broker, logging etc. This allows
the users to deploy their own applications (similar to IaaS)
without the responsibility of maintaining the basic software
stack (similar to SaaS). In PaaS, the user applications are
typically hosted in containers which can be added or deleted
nearly instantaneously (horizontal elastic scaling) to adjust to
fluctuating workloads. The key strengths of PaaS platforms are
ease of use and flexibility as compared to the other two types.

However, few issues will have to be addressed in order to
take the full advantage of a PaaS cloud. Typically, a PaaS
container has ephemeral storage. Therefore, any persistent
data needs to be moved outside the container using one or
more of the available services. Also, the PaaS middleware
handling these containers can shift them around for better load
management or recycle them after a given time period. This
volatility of the containers can be overcome by hosting state-
less applications. Applications which need to maintain state
have to be carefully re-engineered to checkpoint their state
outside the container. The dynamic nature of the containers
also prevents mechanisms for direct communication between
them; thus seamless synchronization, message passing and
clustering of the instances running in the containers become
problematic.

Master-worker architecture is a distributed application
paradigm, frequently employed for Many Task Computing
(MTC) [2], to complete large number of loosely-coupled tasks
in parallel. The master acts as the central authority to drive the
computation forward and is in charge of delegating relevant
tasks to the workers, who perform them independently in
parallel. The global state of affairs is generally available at the
master, making it a crucial entity in the system. The workers
typically do not communicate with each other or use the master
to route messages. Many applications such as batch systems,
parallel work-flows, map-reduce, parameter sweep applica-
tions etc. can be implemented using the master-worker design
pattern. Message Passing Interface (MPI) benchmarking of
the cloud by Zhai et al. [3] suggested that its performance
is similar to low-cost clusters but the communication can be a
challenge. However, for a master-worker system computation
to communication ratio is high therefore its workload is
expected to be more amenable to cloud.

There are two main concerns with master-worker architec-
ture. First, the master is a single point of failure in the system.
It is necessary to ensure that the master node is fault-tolerant
for the computation to progress. If a worker dies, the loss of
computation is minimal as compared to if the master dies.
Second, the master can become a bottleneck in the whole
process if it is not able to delegate tasks at the same rate
at which the workers are finishing them. This can happen if
too many workers are connected to a single master and can
limit the scalability of the system.

This paper presents a novel scalable agent-based alternative
to the traditional master-worker system for PaaS cloud. The

key intention of the work is to exploit the immense scalability
of the cloud to execute parallel tasks, and in order to do so,
effectively tacking the limitations of volatility of the containers
and absence of effective message passing scheme. This is
achieved using multiple state-less agents running in the PaaS
containers, each capable of performing both master and worker
tasks depending on the current state of the overall execution.
This global state is stored outside the containers with a reliable
and scalable message broker and each agent can take actions
based on its perception of the global state. This adds fault-
tolerance to the architecture. The scalability of the system re-
lies on the scalability of the containers and that of the message
broker. The application also needs to be efficiently parallelized
for good scalability because scalability is a property dependent
on the algorithm and machine combination rather than being
exclusive to the either of them [4].

II. RELATED WORK

Master-worker architecture is a generic parallel computation
paradigm which has been widely studied and applied in many
domains where the problem can be broken into multiple
independent parallel tasks. It has been used for various fla-
vors of distributed computing - cluster computing [5], grid
computing [6], cloud computing [7] and volunteer computing
[8]. Scalability of master-worker systems is an active area of
research and many decentralized or hierarchical approaches
have been presented. Banino et al. [9] discuss a cost model for
deploying of multiple masters to optimize system throughput
without budget violations. Scalability analysis of applications
on hierarchical platforms is presented in [10]. Bendjoudi
et al. [11] have recently published an adaptive hierarchical
framework where each distributed process can switch between
master and worker at run-time depending on the resource
availability. This enables the computations to start faster and
performs more efficiently than a static hierarchical approach.
However, traditional master-worker architecture is not well
suited for PaaS platforms as explained in Section III.

Traditional parallel infrastructures have been expensive and
the prospect of cheaper and elastic resources is driving re-
searchers to explore the potential offered by cloud computing
to solve their challenges. Wang et al. [12] proposed a dynamic
service provisioning model for cloud vendors to offer MTC
run-time environments and also showed that the MTC service
providers can leverage cloud platforms economically. The
viability of deploying a compute cluster for MTC, using
resources from multiple cloud vendors, has been studied
in [13]. It presents a favorable scalability, performance and
cost considerations for such clusters with small number of
resources and extrapolates the results for larger infrastructures.

Iosup et al. [14] studied the performance of IaaS platforms
for MTC scientific applications. They found the IaaS perfor-
mance to be an order of magnitude worse than traditional
parallel infrastructures. But IaaS was cheaper and feasible
alternative for jobs with short deadlines due to low and
steady wait times. However, ramping-up a computation on
IaaS can be time consuming as compared to a PaaS platform

where basic software stack is pre-installed. Prodan et al.
[15] evaluated Google App Engine [16], a PaaS platform,
for computationally intensive tasks and observed that it can
be cheaper for jobs shorter than one hour as compared to
Amazon EC2 [17], an IaaS. However, they were limited to
small problem sizes due to a 30 second execution time limit
enforced by the platform earlier.

III. SYSTEM ARCHITECTURE

In traditional distributed computing systems, direct com-
munication methods such as Message Passing Interface (MPI),
Parallel Virtual Machine (PVM) or even Transmission Control
Protocol (TCP) are employed for communication between
master and workers. The node running the master is usually
hosted on reliable infrastructure; therefore, master replication
may not be required. If the workers run on unreliable hosts
then redundancy and result voting mechanisms can be em-
ployed for obtaining reliability and consistency [8].

Migrating applications to PaaS requires their architectural
patterns to be modified to gain full advantages as mentioned
earlier in Section I. The same applies to master-worker based
applications as well. The container which hosts the master
needs to store the global information outside so that the
application progress is unaffected in case the container is
restarted/migrated to another node by the PaaS middleware
during task execution. Furthermore, as direct communication
methods such as the ones employed in traditional distributed
computing are not supported, asynchronous message queue
based communication (present in most PaaS platforms) be-
tween the instances needs to be devised.

The idea behind master-worker system is that it is much
easier to nominate one machine to keep records to maintain
the global state (results, finished and unfinished tasks) in
a distributed system, than have the state in all machines,
as update and synchronization operations become expensive.
Therefore, workers do not have the information on what needs
to be done for progression and they query the master to
find that out. However, a master on PaaS needs to store the
information about global state outside which the workers can
query directly rather than querying the master. Furthermore,
any worker can perform the master job as it has access to
information needed to drive the system forward. The system
can thus be transformed into a multi-agent system where each
agent is capable of behaving as a master or a worker depending
on the state of the system.

Each agent is modeled as a simple reflex agent [18]. It uses
a library of condition-action rules to choose an appropriate
action to be performed based on the current condition. The
agent relies only on current perception rather than any stored
past information, i.e. it is state-less. The master-worker system
can be implemented in a fault-tolerant manner using such
agents. If an agent dies, another agent can take up its predeces-
sor’s responsibilities efficiently as no information related to the
progress of complete workload is lost. Simple reflex agents can
only work if the environment is fully observable and a message
broker can serve this purpose on a PaaS infrastructure.

Start
Are tasks

available?

Is there a

Master?
No No

Gain control

and Push tasks

to Message

Queue

Yes

Fetch and

Process a task

Yes

No

No

Timed

Wait

Is there

more work?
Stop

Yes

Are all tasks

finished?

Compile and

Store Results

Yes

Fig. 1: Flowchart for the distributed agent-based MTC system

Message Queue

Task Queue Exclusive Master Queue

Data Store

(Task Data,

Results, Logs)

Agent

(PaaS

Container)

Agent

(PaaS

Container)

Agent

(PaaS

Container)

Agent

(PaaS

Container)

.....

Fig. 2: System architecture for the agent-based MTC system on a typical PaaS platform

(a) Race Car Animation (W1) (b) Sponza Animation (W2)

Fig. 3: Sample Animation Frames

An emerging open standard messaging protocol, Advance
Message Queuing Protocol (AMQP) [19] provides scalable,
durable, and inter-operable brokering mechanism for guaran-
teed asynchronous messaging. In one of the first projects, it
was deployed for 2000 users to process 300 million messages
in a day [20]. AMQP has also been successfully used earlier
for session management of web-based software systems on
PaaS clouds [21].

The proposed architecture employs AMQP message bro-
ker to achieve scalability and decoupling of the architecture
components. The agents can asynchronously store messages
in queues to maintain the state as it would be light-weight in
comparison to database updates. If the input data needed for
computation is structured as files, then they can be stored in a
data store accessible by all agents and the messages can hold
their locations. The information that an agent is performing
as a master has to be shared with other agents, hence it
must be able to exclusively publish and gain control. AMQP
provides a mechanism to create an exclusive queue which
can be accessed only with a single connection and is deleted
when this connection closes. Such an exclusive queue can be

used to gain control to act as a master. If the agent which
holds the exclusive queue dies due to a fault, the connection
is closed thereby relinquishing the control to another agent
which ensures system progress.

The flowchart of the system is depicted in Fig. 1. An agent
starts and checks if there are tasks placed in a message queue
marked for execution. If such tasks exist, the agent fetches one
and processes. The results are then stored outside the container
in a message queue and data store, and then the agent checks
if all the tasks of a type have been finished. If so, it compiles
the partial results and the process repeats. If there is no task
available for execution, the agent checks for presence of a
master in the distributed system by querying for an exclusive
master queue. If no other master is present, it checks if any
more work description is present in a data store. If so, it creates
an exclusive queue indicating to the other agents that it has
taken control and they should wait until the task queue is
populated. Once it places the tasks in the queue it deletes the
exclusive queue marking the end of its role as a master and
allowing any other agent to takeover as a master when the need
arises. In case no work description is present, the agent stops

execution. The architecture diagram depicting the components
of the system is presented in Fig. 2.

In the case where a single master becomes a bottleneck,
multiple agents can be used to parallelize the master’s task
for example parallel compilation of results to decide further
set of tasks for the next phase of computation. In such a case,
multiple exclusive queues would have to be created, one for
each master. However, still each agent can still choose to be
a master or a worker dynamically based on the computation
progress and the global state.

IV. IMPLEMENTATION DETAIL

A. Application details

High-fidelity rendering was chosen as a suitable MTC
application for deployment in the PaaS cloud. High-fidelity
rendering is the process of generating realistic images from
a three-dimensional description of an environment using
physically-based material properties of the objects and light
source details. The computation is carried out by solving the
rendering equation [22] which is estimated using Monte Carlo
integration. For each pixel of the image, the light reaching
the camera through it, is estimated multiple times to find
its final color value. This makes the process computationally
expensive; an image can take multiple hours to render on a
single machine depending on the resolution and quality.

Parallelization is frequently used to render realistic images
in reasonable times [23]. An image can be subdivided into set
of tiles which can be rendered in parallel and then the results
can be combined to form the final image. As a set of such im-
ages is required to create an animation, parallelization is highly
essential for generating them. Traditionally dedicated clusters
known as render farms are employed for such renderings, how-
ever cloud computing provides an interesting alternative by
offering scalable on demand resources. High-fidelity rendering
of animations rendering fits the MTC paradigm due to the large
number of heterogeneous tasks with variable execution times,
each producing an output file for compilation into one of the
frames of the animation. It can be easily parallelized using
the master-worker architecture and thus it was used to conduct
scalability studies to evaluate the proposed architecture.

B. PaaS Platform

The master-worker architecture has been implemented and
deployed on Heroku, a PaaS cloud [24]. Heroku was chosen as
at the time of experimentation because some other open-stack
based PaaS platforms were still in a beta preview stage while
it provides full production support. Also, it provides a worker
role which can run long asynchronous jobs while most other
PaaS providers only offer a web role where the container is tied
to short web requests. The agents are hosted inside Heroku’s
containers, known as dynos, which can be horizontally scaled
easily using a toolkit provided by Heroku.

The parameters required for describing the computation are
stored in a MongoDB [25], a NoSQL database addon service
provided for Heroku. The agent which spawns first, creates an
exclusive queue in RabbitMQ [26], an AMQP-based message

broker, to inform any other agents that it has taken over. Then
it pushes the tasks for the workloads into the queue using the
parameters stored in MongoDB. The exclusive queue is deleted
and the agents read the task descriptions from RabbitMQ to
carry them out in parallel. The agents also fetch the model
description files required for the rendering from MongoDB at
the start. Each computed tile is then stored into MongoDB
for later composition as Heroku provides ephemeral local
file storage. Time stamp data is also saved in MongoDB for
gathering timing statistics.

The RabbitMQ is configured such that each agent can
dequeue only a single task from the task queue and fetch
another one after an acknowledgement of the task completion
is sent back to RabbitMQ. In case the acknowledgement is
not received, RabbitMQ enqueues the task back. This is done
to provide fault-tolerance in the system so that in case an
agent dies the workload computation would be unaffected.
A message is also stored into the RabbitMQ after a tile is
rendered so that once all the tiles of an animation frame are
computed, it can be compiled by an agent. This work is usually
done at the master, but since any agent can check the status of
completion of a frame from the messages in RabbitMQ, it can
carry out the compilation by fetching the individual tiles from
MongoDB. The compiled frame is also pushed to MongoDB.

C. Workloads

The master-worker architecture was assessed using three
workloads on Heroku. The first two workloads (W1, W2)
consist of rendering two animations with 120 and 90 frames
respectively, see Fig. 3. They are rendered at a resolution
of 800×600 using a Java-based renderer employing path
tracing algorithm [22]. Each frame of the animations is sub-
divided into 200 tiles which are independently queued-up as
tasks. These two workloads are random in nature i.e. non-
deterministic number of calculations is performed to compute
the results based on a randomized algorithm. A third and
more deterministic workload (W3) is also chosen, consisting
of fixed number of calculations to determine the N th prime
number. Five type of tasks to calculate the value for different
N are queued-up as tasks. A total of 3600 task instances for
each task type are queued in W3. Table I presents statistics
related to the execution times of the three types of workloads
in Heroku’s dynos. It takes approximately 240 dyno hours
to compute a five second long animation, indicating the
computational complexity involved in high-fidelity rendering
of larger animations at higher resolutions. The computational
capability of a single dyno is not published by the vendor,
however, its benchmarking indicates the performance to be
similar to one Amazon EC2 compute unit [27] (Heroku is
hosted on Amazon EC2).

V. RESULTS

The scalability of the proposed architecture was studied by
executing the three workloads on different number of dynos
ranging from 4 to 512.

0

100

200

300

400

500

0 100 200 300 400 500

Sp
ee

du
p

Number of Dynos

W1 W1-AM W2 W2-AM W3 W3-AM Ideal Speedup

Fig. 4: Speedup Graph with respect to time taken using 4 dynos

TABLE I: Workload Statistics

Min Task Time Max Task Time Total Time
(in s) (in s) (in Hr)

W1 1 460 240

W2 20 220 400

W3 20 60 190

A. Speedup and Efficiency

The speedup of a parallel implementation is defined as the
ratio of the wall-time needed to complete the workload on
a single resource to the wall-time needed in parallel. As the
size of the workloads used prevented them to be completed
in reasonable times on a single dyno, perfect speedup was
assumed for four dynos to perform the calculations. The
speedup graph has been plotted in Fig. 4. It shows that the
speedup is almost linear for up to 128 dynos for all the three
workloads after which it becomes sub-linear. W1 and W2
are affected much more as compared to W3. This may be
attributed to presence of uneven task sizes in W1 and W2 -
time needed for the fastest task in W1 is 1 second as compared
to the slowest task which requires 460 seconds, see Table
I. Ideally all tasks should be of similar size, but for image
rendering this can be challenging as it is dependent on the
complexity of light paths in a tile which is difficult to ascertain
before actually performing the computations.

The efficiency of parallelization is shown in Fig. 5. The
wall-time efficiency was calculated by measuring the time
it took for the first task to start until the completion of the
last task. This time was compared with the time taken on
four dynos to calculate the efficiency. Fig. 5a shows a plot
of the wall-time efficiency with different number of dynos.
The efficiency is close to 100% until 128 dynos after which
it shows a decrease.

One of the factors affecting the wall-time efficiency was
the time required to ramp-up the computation. The amount

of time needed to provision the computation on all the dynos
rose significantly as the number of dynos was increased, as
shown in Fig. 6. For example, it took almost 2 minutes to
start the computation on 512 dynos. Although this time for
dynamic ramp-up is comparatively much smaller than what
can be achieved by adding nodes to an in-house cluster or
on an IaaS cloud. The amount of computation that can be
carried out on 512 dynos in 2 minutes is worth about 17
hours. For a 240 hour workload, this can lead to an efficiency
loss of up to 7%. Therefore, to mitigate this factor another
efficiency plot is presented in Fig. 5b by comparing actual
dyno-times. This time was calculated by summing up the
individual times required for computing all the tasks. The
graphs show better dyno-time efficiency as compared to wall-
time efficiency, however it was still found to be worse beyond
128 dynos.

The scalability of the proposed architecture is inherently
tied to the assumption that the message queue can scale
perfectly. The RabbitMQ addon for the Heroku platform
however was a beta version with limited scalability where
only limited numbers of concurrent connections from agents
were supported. This meant that it might not have been
hosted on a server powerful enough to handle large number of
connections without degradation in quality of service. To test
this hypothesis, a private RabbitMQ server was hosted close
to Heroku in a large Amazon EC2 instance [17]. The speedup
and efficiency plots (W1-AM, W2-AM and W3-AM) for this
are shown in Figs. 4 and 5 with dashed lines. These plots
show a marked increased in all the data series indicating that
the native Heroku RabbitMQ addon was indeed a bottleneck.
Therefore, efficient scale up of the proposed architecture can
only be realized when the message queue can handle the
load seamlessly. For an even better scalability and availability,
clustering support provided by RabbitMQ can be leveraged
[26].

50%

60%

70%

80%

90%

100%

4 8 16 32 64 128 256 512

W
al

l-ti
m

e
Effi

ci
en

cy

Number of Dynos (log2 scale)

W1 W1-AM W2 W2-AM W3 W3-AM

(a) Wall-time Efficiency

50%

60%

70%

80%

90%

100%

4 8 16 32 64 128 256 512

A
ct

ua
l D

yn
o-
tim

e
Effi

ci
en

cy

Number of Dynos (log2 scale)

W1 W1-AM W2 W2-AM W3 W3-AM

(b) Actual Dyno-time Efficiency

Fig. 5: Efficiency Graphs

B. Discussion

The speedup and efficiency are affected by the resource
pooling on a multi-tenant PaaS platform. Multiple containers
hosting different applications compete for the same infrastruc-
ture (for example CPU, RAM, network etc.) on a PaaS and
improper isolation of such containers can result in performance
degradation. Although the vendor claims perfect container
isolation [28], the reality was found to be different than the
claim as shown in Fig. 7. The prime number calculation
workload (W3) gave an insight into dyno isolation on Heroku
platform. The graph shows a plot of time taken to complete
one of the types of the five which constituted W3. Fig. 7a
shows a plot of executing each instance the same tasks of
type 2, computed 3600 times, on a different number of dynos.
It shows that the approximately one-third of the task instances
show a noticeable increase in the execution time when 256
and 512 dynos were employed for computation. This indicates
that the CPU-bound tasks were throttled when the load on the
PaaS platform increased. This can be also noticed for the plot

of average execution time shown in Fig. 7b. The minimum
time required for the computation of an instance remained
constant even with increasing the number of dynos. However,
the maximum time required could be as high as up to 300% of
the mean time which can be attributed to imperfect isolation.
The standard deviation of the execution time also showed a
significant increase beyond 128 dynos.

The statistics for execution times for all five types of
instances of W3 are presented in Fig. 8. Four dynos were
used for computation to study the variation of execution times
between different dynos. The data series have been plotted for
8 distinct dynos because the Heroku platform restarts dynos
after every 24 hour period, however, only four of these dynos
were running at a given point in time. Fig. 8a shows that the
mean times for each task type remained fairly constant across
the 8 dynos, but, Fig. 8b shows that the standard deviation
between the dynos varied by as much as up to two times.
This indicates that a dyno competing for resources on a busy
host would show a higher variation in the execution times.

1

2

4

8

16

32

64

128

256

1 4 16 64 256

Ra
m

p-
up

 T
im

e
(in

 s
on

 lo
g 2

sc
al

e)

Number of Dynos (log2 scale)

W1 W2 W3

Fig. 6: Plot of Ramp-up times

The experiments presented in this paper have indicated that
four things have to be considered while moving to a PaaS
infrastructure: container isolation, restart/migration of contain-
ers, container calibration and ramp-up time. First, the effects of
isolation on the execution time of a task may not be the priority
concern when looking at the system performance over a larger
time. However in an enterprise context, they would play an
important role where service level agreements have to be
guaranteed. Second, the PaaS middleware can restart/migrate a
container transparently to the application, hence long running
computations may need to be check pointed. Third, PaaS
vendors typically do not provide information on the underlying
hardware on which the containers are hosted, thus it is difficult
to ascertain their computational capabilities. This can be a
hindrance for time and resource planning for a given workload,
and benchmarking and extrapolation may be required to do so.
Finally, the computations can be quickly started on a PaaS but
the ramp-up time may not be negligible for small workloads.

VI. CONCLUSION AND FUTURE WORK

This paper presented a novel master-worker architecture
for many task computing on PaaS clouds which decoupled
distributed processes using a message broker to create a multi-
agent system. The progress of the computation was also saved
as messages in queues accessible to any agent. This allowed
the agents to be state-less and dynamically switch between
a master and a worker role. The results indicated efficient
scalability for computationally intensive tasks. A 400 hour
workload with 18,000 tasks could be completed in mere 52
minutes on 512 dynos in with 90% wall-time efficiency.

The multi-tenant nature of the PaaS cloud coupled with
imperfect container isolation led to variable task execution
times. This needs further investigation to fully understand the
performance variations as it would be necessary for guaran-
teeing that the quality of service constraints are met. However,
the ease of deploying an application, favorable ramp-up times

as compared to other infrastructures and scalability provided
a glimpse into the potential which PaaS platforms hold for
MTC.

The future work would consist of comparing this architec-
ture by employing alternate message brokers and on other plat-
forms such as Windows Azure [29]. The scalability provided
by clustered message brokers needs to be studied with a larger
number of agents as the scalability of the proposed architecture
is dependent on it. Also, the architecture can be extended for
map-reduce applications which have recently become popular
for data analysis.

ACKNOWLEDGEMENTS

The authors would like to thank Marko Dabrovic for
providing the Sponza model used for rendering and Heroku
engineers who provided valuable assistance for migrating the
application.

REFERENCES

[1] P. M. Mell and T. Grance, “SP 800-145. The NIST Definition of Cloud
Computing,” Tech. Rep., 2011.

[2] I. Raicu, I. Foster, and Y. Zhao, “Many-task computing for grids and su-
percomputers,” in Many-Task Computing on Grids and Supercomputers,
Workshop on, Nov. 2008, pp. 1–11.

[3] Y. Zhai, M. Liu, J. Zhai, X. Ma, and W. Chen, “Cloud versus in-house
cluster: evaluating amazon cluster compute instances for running mpi
applications,” in State of the Practice Reports, ser. SC ’11. ACM,
2011, pp. 1–10.

[4] X.-H. Sun and D. T. Rover, “Scalability of parallel algorithm-machine
combinations,” IEEE Trans. Parallel Distrib. Syst., vol. 5, no. 6, pp.
599–613, 1994.

[5] C. Wu, A. Kalyanaraman, and W. Cannon, “A scalable parallel algo-
rithm for large-scale protein sequence homology detection,” in Proc. of
International Conference on Parallel Processing (ICPP), Sep. 2010, pp.
333–342.

[6] C. Moretti, M. Olson, S. Emrich, and D. Thain, “Highly scalable genome
assembly on campus grids,” in Proc. of the 2nd Workshop on Many-Task
Computing on Grids and Supercomputers. ACM, 2009, pp. 12:1–12:10.

[7] H. Kim, S. Chaudhari, M. Parashar, and C. Marty, “Online risk analytics
on the cloud,” in Proc. of 9th IEEE/ACM International Symposium on
Cluster Computing and the Grid, May 2009, pp. 484–489.

[8] D. P. Anderson, “BOINC: A System for Public-Resource Computing
and Storage,” in Proc. of the 5th IEEE/ACM International Workshop on
Grid Computing. IEEE Computer Society, 2004, pp. 4–10.

[9] C. Banino, “Optimizing locationing of multiple masters for master-
worker grid applications,” in Proc. of the 7th international conference
on Applied Parallel Computing: state of the Art in Scientific Computing.
Springer-Verlag, 2006, pp. 1041–1050.

[10] F. A. da Silva and H. Senger, “Scalability limits of Bag-of-Tasks
applications running on hierarchical platforms,” J. of Parallel and
Distrib. Comput., vol. 71, no. 6, pp. 788–801, 2011.

[11] A. Bendjoudi, N. Melab, and E.-G. Talbi, “An adaptive hierarchical
masterworker (AHMW) framework for grids-Application to B&B algo-
rithms,” J. of Parallel and Distrib. Comput., vol. 72, no. 2, pp. 120 –
131, 2012.

[12] L. Wang, J. Zhan, W. Shi, and Y. Liang, “In Cloud, Can Scientific
Communities Benefit from the Economies of Scale?” IEEE Trans.
Parallel Distrib. Syst., vol. 23, no. 2, pp. 296–303, Feb. 2012.

[13] R. Moreno-Vozmediano, R. Montero, and I. Llorente, “Multicloud
Deployment of Computing Clusters for Loosely Coupled MTC Applica-
tions,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 6, pp. 924 –930,
Jun. 2011.

[14] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “Performance Analysis of Cloud Computing Services for
Many-Tasks Scientific Computing,” IEEE Trans. Parallel Distrib. Syst.,
vol. 22, no. 6, pp. 931–945, Jun. 2011.

[15] R. Prodan, M. Sperk, and S. Ostermann, “Evaluating High-Performance
Computing on Google App Engine,” IEEE Software, vol. 29, no. 2, pp.
52–58, Mar.-Apr. 2012.

0

20

40

60

80

100

120

140

160

1 601 1201 1801 2401 3001

Ti
m

e
ta

ke
n

(in
 s)

Task Instance

4W 8W 16W 32W

64W 128W 256W 512W

(a) Time taken

0

20

40

60

80

100

120

140

160

4 16 64 256

Ti
m

e
(in

 s)

Number of Dynos (log2 scale)

Average Min Max Std Dev

(b) Time taken statistics

Fig. 7: Execution times for Type 2 tasks of W3

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

M
ea

n
tim

e
(in

 s)

Dyno

Type 1 Type 2 Type 3 Type 4 Type 5

(a) Mean Time

0.0

1.0

2.0

3.0

4.0

5.0

1 2 3 4 5 6 7 8

St
an

da
rd

 D
ev

ia
tio

n
(in

 s)

Dyno

Type 1 Type 2 Type 3 Type 4 Type 5

(b) Standard Deviation Time

Fig. 8: W3 Task Execution Times

[16] (2012) Google App Engine. [Online]. Available: https://developers.
google.com/appengine/

[17] (2012) Amazon Elastic Compute Cloud (Amazon EC2). [Online].
Available: http://aws.amazon.com/ec2/

[18] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Prentice Hall, 2002.

[19] (2012) Advance Message Queuing Protocol. [Online]. Available:
http://www.amqp.org/

[20] J. O’Hara, “Toward a Commodity Enterprise Middleware,” Queue,
vol. 5, no. 4, pp. 48–55, May 2007.

[21] V. Sharma, S. Sengupta, and K. Annervaz, “ReLoC: A Resilient Loosely
Coupled Application Architecture for State Management in the Cloud,”
in IEEE 5th International Conference on Cloud Computing (CLOUD),
Jun. 2012, pp. 906–913.

[22] J. T. Kajiya, “The rendering equation,” SIGGRAPH Comput. Graph.,
vol. 20, no. 4, pp. 143–150, Aug. 1986.

[23] V. Aggarwal, K. Debattista, T. Bashford-Rogers, P. Dubla, and
A. Chalmers, “High-fidelity interactive rendering on desktop grids,”
IEEE Comput. Graph. Appl., vol. 32, no. 3, pp. 24–36, 2012.

[24] (2012) Heroku, Cloud Application Platform. [Online]. Available:
http://www.heroku.com/

[25] (2012) MongoDB, NoSQL Database. [Online]. Available: http:
//www.mongodb.org/

[26] (2012) RabbitMQ Message Broker. [Online]. Available: http://www.
rabbitmq.com/

[27] (2012) Amazon EC2 Compute Unit. [Online]. Available: http:
//aws.amazon.com/ec2/instance-types/

[28] (2012) Heroku Dyno Isolation. [Online]. Available: https://devcenter.
heroku.com/articles/dynos#isolation-and-security

[29] (2012) Windows Azure: Microsoft’s Cloud Platform. [Online].
Available: http://www.windowsazure.com/

