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Abstract—As applications become more complex, and the
level of concurrency in systems continue to rise, developers are
struggling to scale complex data models on top of a traditional
byte stream interface. Middleware tailored for specific data
models is a common approach to dealing with these challenges,
but middleware commonly reproduces scalable services already
present in many distributed file systems.

We present DataMods, an abstraction over existing services
found in large-scale storage systems that allows middleware to
take advantage of existing, highly tuned services. Specifically,
DataMods provides an abstraction for extending storage system
services in order to implement native, domain-specific data
models and interfaces throughout the storage hierarchy.

I. INTRODUCTION

From business analytics to scientific simulations, appli-
cation requirements are continually pushing the limits of
high-performance storage systems. However, as application
complexity and concurrency grow, developers face increasing
pressure from existing I/O interfaces. With next-generation,
open-source storage systems currently in development, now is
the right time to look for architectures and abstractions that
are able to serve as a platform for the construction of domain
specific interfaces.

An overwhelming majority of storage systems today are
built assuming a byte-stream I/O interface. This has had a
profound impact on software architecture: the inability of ap-
plications to explicitly represent domain-specific data models
throughout the storage hierarchy has led to the development
of middleware libraries that provide data model abstractions
(e.g., HDF5, NetCDF), and I/O stack extensions that help cir-
cumvent scalability bottlenecks (e.g. MPI-IO, PLFS, IOFSL).
While it is common for applications and middleware to influ-
ence the design of each other, this co-design generally ends
at the level of file interfaces, and as a result, services such as
metadata management, data translation, alignment, and views
are forced into a one-dimensional abstraction that is difficult
to scale to millions of clients.

The key insight driving the work we introduce in this paper
is: many of the services implemented by middleware libraries
already exist in distributed storage systems. We propose
Data Model Modules (DataMods), a framework that exposes
these services through high-level programming models that
allow developers to avoid error-prone duplication of complex
software and instead rely on generalized, robust, efficient,
and scalable implementations. The framework supports the
construction of native, domain-specific data models and inter-
faces that extend throughout the storage hierarchy. DataMods

is a set of generalized abstractions over common services
found in distributed storage systems that provide well-defined
scalability properties. We have identified the following three
components that compose the current version of the DataMods
framework. First, the file manifold provides an abstraction
encapsulating metadata management and file layout to allow
middleware libraries to define complex, non-static striping
strategies tailored to a particular data model. Second, typed
and active storage provide a programming model for defining
computation and interfaces at the lowest-level of the storage
hierarchy. And finally, asynchronous services are used to
coordinate deferred actions, such as indexing, compression,
and de-duplication.

There are already many cases in which file systems expose
limited amounts of information and control to support spe-
cialized optimizations. For instance, HPC applications using
MPI-IO can define complex file layouts for optimizing par-
allel I/O, but many file systems only provide simple, fixed
parameters for tuning data layout (e.g. object size). Other
examples include the numerous storage interfaces (e.g. key-
value pairs) used by the Hadoop project that build directly
upon byte streams, despite being at odds with the underlying
byte stream interface. One reason storage systems with support
for complex data models have not emerged is a lack of
consensus on what such a model would look like. It would
be useful if storage systems provided a mechanism for cre-
ating and extending the set of exported data models without
sacrificing scalability. Such a feature would allow applications
to use domain specific data models, without the storage system
supporting a single, exclusive interface.

We demonstrate the efficacy of the DataMods framework
using a case study based on checkpoint/restart workloads.
Specifically, we base our design off of the Parallel Log
Structured File System (PLFS), and show how index main-
tenance and compression can be offloaded to the file system
and scheduled asynchronously to a computation writing the
checkpoint.

Next we discuss existing storage system services (Sec-
tion II), and typical services that are duplicated in middleware
(Section III). In Section IV we provide an overview of the
DataMods framework, and Section V presents a use case based
on checkpoint/restart workloads. We conclude with related
work (Section VII) and future extensions.



II. STORAGE SYSTEM SERVICES

Large-scale file systems contain many scalable services
that function together to implement the common byte stream
interface. DataMods is a generalization of these services, and
this section provides a brief overview of the services being
targeted. We are using Ceph [1] as a reference, and other
parallel file systems offer a similar set of services.

Scalable metadata management. Clients interact with a
metadata service that manages the file system namespace, and
provides cache coherency and security. A key component to
Ceph’s metadata scalability is its use of fixed-size inode struc-
tures that can be embedded in directory fragments allowing
servers to quickly rebalance using tree partitioning as work-
loads change. Ceph also avoids large block lists and expensive
communication to perform block location look-ups by using a
compact function that calculates object locations [2].

Distributed object storage. A scalable cluster of object
storage devices (OSDs) export a key/value-like interface, and
persist both metadata and file data [3]. Each OSD consists of
local storage (e.g. HDD or SSD), a cache, multi-core CPU, and
RAM. Objects managed by the cluster can belong to different
classes, taking on the behavior defined by a class, and allowing
interfaces other than basic read and write functionality. For
example, metadata updates stored within a special metadata-
class object, used by Ceph to serialize directory updates at the
object-level, allow the OSD to avoid locking overhead and
improve scalability.

Recovery and fault-tolerance. Recovery and fault-
tolerance are handled transparently by the cluster of OSDs
in the background. Following the failure of an OSD, other
storage devices in the cluster become responsible for a share
of the data stored on the failed OSD. Ceph employs a scalable
shuffling technique that guarantees only an amount of data
proportional to the volume of data stored on the failed OSD is
moved. Additional services such as scrubbing and repair are
handled as asynchronous background tasks on each storage
device.

File operations. A client retrieves a file inode from the
metadata service when it opens a file. The inode contains
standard file metadata, as well as the parameters needed to
dynamically map the byte-stream to the underlying set of
physical data objects. Ceph allows applications limited control
over file layout by permitting the file layout parameters to
be customized on a per-file basis. Unfortunately, the striping
strategy of a file is applied to the entire byte-stream, despite
many applications using irregular data models within one file,
making the choice of a single layout difficult.

Next we present functionality commonly implemented by
middleware, and then discuss how services found within
storage systems can be re-purposed to support middleware
requirements.

III. MIDDLEWARE SERVICES

Middleware bridges the division between complex applica-
tion data models, and the type-less byte stream interface, by
providing structured access to data. The challenge faced by

middleware is how the translation between the two abstractions
can be made efficient and scalable.

Metadata management and file layout. Middleware of-
ten manages complex abstract data models—(e.g. multi-
dimensional arrays)—instances of which have real-world
meaning that must be kept with the file. Generally this infor-
mation is located in headers that encode free-text knowledge
as well as data type and schema descriptions. In addition to
application-facing metadata, middleware must coordinate the
layout of multiple data model instances within the byte stream,
often using sophisticated index structures that complicate file
layout maintenance (e.g. shifting byte streams when expanding
headers and indices).

Data access methods. Applications make structured re-
quests against instances of a data model implemented by
middleware, and middleware may also support predicate-based
filtering. However, middleware is positioned above the file
system client level, thus there is little to no support for intel-
ligent, data model specific access methods. Rather, structure–
and content-aware indexes, as well as layout metadata must
be read, then queried by middleware [4]. Additional I/Os are
necessary to retrieve the targeted data, and any optimizations
based on locality must have been performed when the data
was originally written.

Asynchronous services. Middleware performs data com-
pression, implements basic workflows, and performs data
management tasks such as indexing. These operations are
performed online (i.e., while a file is open) because there is
no support from the file system for deferred operations despite
many tasks being amenable to asynchronous completion—
after a file is closed.

Next we will examine how the file system services described
in Section II can be generalized to subsume the common
needs of middleware described in this section. It should noted
that we make no formal claim toward the generality of our
abstractions, but rather seek to demonstrate their applicability
in the context of a variety of middleware systems, and expect
that over time a common model will emerge, capable of
handling all cases.

IV. DATA MODEL MODULES

This section presents DataMods, an abstraction over existing
storage system services commonly reproduced in middleware.
The interface consists of three abstractions. First, the file man-
ifold encapsulates metadata management and data placement,
allowing middleware to extend inode structures with custom
schema information, rule-based placement logic, and domain-
specific striping strategies. Second, typed and active storage
provides a safe mechanism for extending the interface and
behavior of the underlying object store. Finally, applications
can take advantage of asynchronous services to schedule
deferred work such as indexing, compression, de-duplication,
and basic workflows.

A. File Manifold
A file manifold is a generalization of metadata storage and

data placement services, and addresses the needs of middle-
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Fig. 1. Example of file manifold with three distinct striping strategies in a
single file view.

ware to support heterogeneous byte-streams in which multiple
types of data are combined in arbitrary patterns. For example,
an HDF5 file may store several multi-dimensional arrays in
distinct files, each with a layout tailored for a particular array,
while a high-level file manifold stitches each sub-file together
forming a composite view. Figure 1 illustrates an example
of such a file consisting of three datasets. The first two are
represented by compact, pattern-based striping strategies with
different configurations, and the third uses an index to record
data element placement (e.g. the vertex list of a mesh).

While inodes in Ceph may be flexibly sized, in order to
remain scalable, they must be kept small enough to be stored
inline with directory entries. Thus, applications that require
more state, such as a large index, cannot store all meta data
within the inode. These applications may store within an
inode an object namespace identifier, and rules for locating
and translating auxiliary state, stored within one or more
objects that are accessed indirectly by clients through the use
of the manifold. In Section V we present a case study that
demonstrates this technique.

B. Active and Typed Storage

Advanced interfaces that go beyond interacting with type-
less binary objects are needed to efficiently support the type
of intelligent data access, filtering, and manipulation that
middleware libraries perform at a high-level. There has been a
large amount of previous work done related to active storage at
many levels of the storage system, but each tends to adopt an
approach that assumes arbitrary code injection. This presents
very difficult challenges related to security and quality-of-
service. Rather, we propose that a programming model with
well-defined performance costs be exported by the system,
and used by applications to construct model-specific compu-
tations and custom interfaces. The programming model and
an associated run-time environment control access to existing,
generalized system services and resources, such as indexing
and compression.

C. Asynchronous Services

Compression and indexing are common operations per-
formed by middleware libraries, and are typically performed
online while a file is open. However, these types of processes
are amenable to being performed asynchronously, reducing
the application-level burden, while allowing idle time within
the storage system to be exploited for larger-scale, global
optimizations. In addition to typical data management routines,

middleware implement workflows. For example, the Climate
Data Operators offer regridding services, and can be used
to compute statistical summaries, a highly efficient yet data
intensive function.

Asynchronous services re-use active storage abstractions to
define deferred work. Deferred work should be executed based
on coarse-grained relationships to middleware actions such as
updating an object or closing a file. Using a coarse-grained
schedule will provide flexibility to the storage system for
coordinating computation to reduce resource contention, po-
tentially taking into account long-term scheduling information
from a cluster job management system.

The next section demonstrates how each of these compo-
nents can be used to construct a real-world example based on
optimizing throughput for checkpoint/restart workloads.

V. USE CASE: CHECKPOINT/RESTART

Large-scale, long-running computations rely on parallel file
systems to save periodic checkpoints of application state.
A checkpoint represents a globally consistent view of the
computation and can be used to restart an application from
a known point, following a failure. Since checkpoints require
consistency across potentially millions of threads, compu-
tations are generally suspended during a checkpoint. Thus,
decreasing the time required to complete a checkpoint can
result in immediate increases in compute efficiency. However,
a common I/O workload in which all processes write a single
file (N-1) is notoriously difficult to optimize due to intra-file
serialization.

The Parallel Log-structured File System (PLFS) was devel-
oped as a middleware layer to address throughput scalability
for N-1 workloads by transparently decoupling writers, and
transforming N-1 workloads into N-N workloads, In N-N
workloads each process writes to a dedicated log-structured
file, and avoids the need for finding specific “magic number”
tuning parameters [5]. Since the logical view of the file
being written—a single byte-stream—is no longer explicitly
maintained, each write must be recorded in an index, and this
index must be globally available to all processes when the file
is opened for reading in order to identify the log containing a
particular byte.

The PLFS middleware is implemented as either a FUSE-
based file system, or as an ADIO plugin to MPI-IO, and is
designed to sit directly above a standard POSIX file system
interface. Index and log-structured files are maintained by
PLFS, stored in a special container directory that represents the
high-level logical file, and all index creation and compression
is performed above the file system interface. The scalability
of PLFS can be reduced by two primary factors. First, the size
of an index can become very large resulting in increased I/O
when writing, and memory pressure from the index required
by each client when reading. And second, the number of
individual log and index files can grow to put pressure on
the underlying file system’s metadata services [6].

A DataMods-based approach to implementing PLFS makes
three improvements over the middleware-based architecture.
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Fig. 2. The file manifold hierarchy. The top-level file view maps writes to
per-process logs that are automatically indexed by low-level active objects.

First, index creation and maintenance are handled transpar-
ently by the base file system. Second, metadata load is reduced
by avoiding the creation of multiple files per process. And
third, index consolidation and compression are performed of-
fline, allowing the computation to resume as soon as possible.
An overview of the architecture is shown in Figure 2, where
a three level hierarchy is illustrated.

A. Hierarchical File Manifold

Figure 2 illustrates the multi-level file manifold used in
the DataMods implementation of PLFS. The outer manifold,
labeled logical byte stream, represents a single logical file
into which multiple processes are writing checkpoint data,
and is identical to the file view presented by PLFS. This
file manages metadata such as the number of processes, but
does not store any file content. Rather, the outer manifold is
recursively defined by a per-process log file, and routes each
I/O request to the target, inner file manifold.

Log-structured File Manifold. The core abstraction in
PLFS is an auto-indexed, log-structured file that transforms
writes at logical offsets into efficient object append operations.
The inner manifold implements this abstraction directly on
top of intelligent objects that perform automatic indexing,
and exports a log-oriented interface and index maintenance
routines. In its simplest form, the manifold stripes data across
a set of append-only objects that it maintains in a dedicated
namespace, using a basic naming scheme to preserve the
append order (e.g. O0, O1, . . . ). Writes at logical offsets are
received from the outer manifold and routed to the current
object. Once a size threshold has been met a new, empty object
is allocated to extend the append sequence.

Active and typed storage. At the lowest-level is a custom
object class that acts as a building block for the log-structured
file manifold, and is responsible for managing the logical-to-
physical mapping using an internal indexing facility. Figure 3a
illustrates the functionality of the object class when a write
is received. A position for the write is determined, and the
logical-to-physical mapping is recorded directly in an index
structure. In a similar manner, a logical offset is read by
using the index to form a view over the data contained in
the object, and can be used to return multiple extents that
overlap a requested region, potentially useful for reducing I/O
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Fig. 3. Object classes used by PLFS manifold. An index is automatically
generated, and logical views can be constructed.

round-trips.

B. Offline Index Compression and Consolidation

Immediately following the completion of a checkpoint using
the DataMods system, opening a file for reading can be
expensive: the global index is uncompressed and fragmented
across all of the objects composing the file data. To address
this issue DataMods asynchronously performs two types of
index compression, as well as index consolidation. The top-
level logical file manifold signals the underlying asynchronous
service when the file is closed by all processes, and the storage
system independently schedules the deferred work offline.

Index compression by merging. The set of index entries
corresponding to the objects of a process log are compressed
using two strategies implemented as a pipeline, shown in
Figure 4. The first strategy is merging: A PLFS index funda-
mentally consists of a set of 3-tuples (logical offset, physical
offset, length) that map the logical offset of an extent to its
physical location. The current version of PLFS performs basic
compression by merging adjacent entries that correspond to a
contiguous logical extent. For example, the index entries for
two 100-byte writes at offsets 0 and 100 can be replaced by a
single 200-byte index entry at offset 0. This is implemented in
PLFS by buffering index file updates, merging when possible,
and periodically flushing the buffer. The first stage of the
DataMods compression pipeline performs the same merge-
based compression, and achieves the same compression ratio
as if PLFS used an infinite buffer. However, in practice the
periodic buffer flushing will introduce only a small amount of
inefficiency to the resulting compression ratio.

Index compression by pattern recognition. The second
type of compression is not performed by the current version of
PLFS, and utilizes pattern recognition to identify regularity in
the I/O pattern, replacing a series of index entries by a compact
representation when a series of entries matches the pattern.
The pattern that a series of index entries must match is the
same as a standard strided I/O pattern, (logical offset, length,
stride, count), plus a starting physical offset. Thus, the pattern
can be expanded using the formula, Ol + i ∗S, i ∈ [1, count),
where Ol is a starting logical offset, S is a constant stride
size, and count is the number of extents represented by the
pattern.
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Index consolidation. While index compression reduces and
consolidates the index entries of a single log file, I/O costs
when opening the logical file can be further reduced by consol-
idating all indexes into a single file. This option can be turned
on in current versions of PLFS when using the ADIO plugin
for MPI-IO. By performing the same consolidation offline we
avoid the additional overhead of consolidation introduced in
the compute cluster. Asynchronous index creation and com-
pression, now decoupled from the original computation, can be
scheduled independently by the storage system or integrated
into a higher-level cluster scheduling strategy. Next we present
results we have obtained from an initial implementation of
the log-structured file manifold, and the pattern-based index
compression technique.

VI. EVALUATION

The preliminary results of using the DataMods abstraction
are promising. We implemented the log-structured object class
in less than 300 lines of C++, and as re-usable functionality
is transformed into native services, this size is expected to
shrink considerably. Initial micro-benchmarks using a single
OSD show between 11% and 17% throughput overheads for
an append workload generated by the low-level object class
I/O transformation. However, the workload is generated by
a single client using a closed-loop workload, and thus the
source of the overhead is likely to be latency. Increasing the
load and optimizing physical layout of the index to reduce the
number of additional I/Os is expected to reduce the throughput
overhead.

We have performed an analytical evaluation of the reduction
factors obtained using index compression techniques discussed
in the previous section. We used PLFS traces 1 from a mix of
8 applications and I/O benchmarks using between 8 and 512
processes. The reduction factors for both techniques are shown
for 82 PLFS traces in Figure 5. For each trace the effect of
merging was reported, and the effect of applying the pattern
recognition technique after merging. The two curves show the
distribution of reduction factors obtained by each technique.

There are three interesting modes present in the graph.
At the high end pattern-based compression offers little to
no benefit over merging, due to the I/O patterns that have
a high degree of sequentiality per process. At the low-end,
strided workloads with small writes are incompressible by
merging, but the I/O pattern is discovered and pattern-based
compression is applied. In the center the distributions are
parallel, indicating workloads with large-scale patterns that can
be detected, and per-process small sequential writes that can
be merged.

1http://institutes.lanl.gov/plfs/maps/
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Fig. 5. Index compression ratios for 82 PLFS traces.

VII. RELATED WORK

Previous work has looked at exposing a rich interface to
developers for expressing file layout. Yu et al. [7] decoupled
MPI-IO writers, and joined the separate data sets using a file
concatenation feature found in Lustre, and the Vesta parallel
file system has a rich mechanism for specifying file layouts [8],
but is restricted to regularly strided I/O patterns.

Recent work has addressed the possibility of alternative
storage system abstractions. Lofstead et al. introduce a new
transaction metadata service, and suggest that applications
using the service may find it more natural to use an object
interface [9]. Dries et al. introduce a container abstraction
for managing checkpoint data on persistent storage co-located
with compute nodes, but the abstraction refers only to the local
view of data [10].

There are many efforts underway to introduce computation
throughout the I/O stack. Abbasi et al. introduce Data Services
that allow data flows to be intercepted and manipulated [11].
Recent work [12], [13], [14] integrates active storage with
object-based storage systems, and protocols such as iSCSI and
T10, but are low-level facilities for arbitrary code injection.
Son et al. raise the abstraction level of active storage up to
that of MPI-IO [15], allowing new MPI calls to trigger co-
located computation.

VIII. CONCLUSION AND FUTURE WORK

We presented DataMods, an abstraction over existing stor-
age system services that allow domain-specific data models
to be constructed natively within the storage system. The file
manifold encapsulates metadata and data distribution, active
and typed storage allow new low-level behavior to be defined
using existing services, and asynchronous services support
offline computation such as compression and indexing. We
showed how the abstraction could be used to duplicate the
behavior of PLFS while offloading index construction and
pattern-based compression to the storage system.

The current status of the project includes a preliminary
implementation of the PLFS use case that we are using to
evaluate end-to-end performance. We are currently designing
new modules for abstractions found in Hadoop and VTK,
and then plan to identify common patterns and formalize the
DataMods abstractions.
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