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Abstract—This paper surveys the four software frameworks

being developed as part of the visualization pillar of the

SDAV (Scalable Data Management, Analysis, and Visualiza-

tion) Institute, one of the SciDAC (Scientific Discovery through

Advanced Computing) Institutes established by the ASCR

(Advanced Scientific Computing Research) Program of the

U.S. Department of Energy. These frameworks include EAVL

(Extreme-scale Analysis and Visualization Library), Dax (Data

Analysis at Extreme), DIY (Do It Yourself), and PISTON. The

objective of these frameworks is to facilitate the adaptation

of visualization and analysis algorithms to take advantage of

the available parallelism in emerging multi-core and many-

core hardware architectures, in anticipation of the need for

such algorithms to be run in-situ with LCF (leadership-class

facilities) simulation codes on supercomputers.
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I. INTRODUCTION

Due to fundamental limitations of physics, hardware
manufacturers are no longer able to significantly increase
processor clock rates, and thus are instead increasing the
computational capacity of their machines by increasing the
number of cores that can operate in parallel. Furthermore,
due to a number of constraints, most importantly power con-
sumption, the storage capacity and speeds of supercomputers
is not keeping up with the growth in computational speeds
(flops). Therefore, in order to keep up with larger simulation
runs enabled by the faster computers, visualization and
analysis operations, which have traditionally been performed
serially as a post-processing step, will need to be performed
in-situ (or in-transit) with the simulation codes, running at
the same time as the simulation (either in the same memory
space or on separate processors) and making efficient use of
the massive parallelism on these new architectures.

In anticipation of these in-situ use cases with LCF sim-
ulation codes, the SDAV Institute is developing software
frameworks that will facilitate the adaptation of visualization
and analysis algorithms to take advantage of the available
parallelism in emerging mult-core and many-core hardware

architectures. These frameworks will make it easier for do-
main scientists to take advantage of the parallelism available
on a wide range of current and next-generation hardware
architectures, and to incorporate them in-situ with their
simulations. Collectively, these frameworks are known as the
VTK-m Frameworks, as they attempt to enhance the tradi-
tional visualization and analysis infrastructure embodied by
the popular VTK toolkit to better support multi and many-
core architectures. In many cases, work has already begun to
integrate these frameworks into VTK, in collaboration with
Kitware, the developers of VTK.

II. THE FRAMEWORKS

While all of the SDAV software frameworks have similar
goals and have drawn on ideas from each other, they are
currently pursued as independent research projects with
different emphases. Broadly speaking, EAVL emphasizes
the development of a new data model, Dax emphasizes the
development of a new execution model, DIY provides a
lightweight toolkit of commonly-used parallel functionality,
and PISTON emphasizes portability and parallel algorithm
development.

A. EAVL

EAVL [MAP*12] has three primary objectives: update
the traditional data model to handle modern simulation
codes and a wider range of data; investigate how an up-
dated data and execution model can achieve the necessary
computational, I/O, and memory efficiency; and explore
methods for visualization algorithm developers to achieve
these efficiency gains and better support next-generation
architectures.

EAVL defines more flexible mesh structures which more
efficiently support many non-traditional types of data, re-
ducing memory usage and/or reducing the overhead of
unnecessary copying of data. Examples of data that are
inefficiently represented by traditional data models include
non-physical data such as graphs, in which storing spatial
coordinates for nodes is unnecessary; mixed data types, such



as molecular data in which atoms are represented by vertices
and bonds by lines but atom-specific fields (e.g., atomic
numbers) and bond-specific fields (e.g., bond strength) must
be stored across both element types; very high order fields;
and unique mesh topologies, such as unstructured adaptive
mesh refinement or quad-trees.

Figure 1 shows a traditional data model along side the
EAVL data model. EAVL allows a much more flexible
compositing of the different primitive objects. It can easily
support, for example, a set of coordinates which refer to
either different components of the same field, or different
fields. There can be multiple cell sets (for example, one
for atoms and one for bonds), and fields may be associated
with all or with only a subset of the cell sets (e.g., an atomic
number field with only the atom cell set and a bond strength
field with only the bond cell set).

Figure 1. The traditional visualization data model (top) and the EAVL
data model (bottom)

An example of a situation in which the EAVL data model
can eliminate the need for unnecessary data copies is shown
in Figure 2. A 2D structured grid, with its coordinates stored
as alternating x and y values in a single field, is to be
elevated, resulting in a 3D grid, using the computed z values
in another field. Rather than having to allocate new memory
for a 3D coordinate array and copying all the data to fit an
alternating x, y, z format, a single pointer can be added to the
coordinate object to point to the new field. Now, the first two
components of the coordinates (x and y) refer to the zero and
one components of the first field, and the third component
of the coordinates (z) refers to the single component of the
new field, with no data copying required.

Operators in EAVL are classified as either mutators, which
modify existing data in-place, or filters, which create a new
data set from an old one. Similar to other frameworks which
will be described in more detail below, EAVL makes use of
the functor concept to allow the user to write functions that
can be executed on either the CPU or GPU. The EAVLLab

Figure 2. An example of elevating a structured grid using the EAVL data
model

application provides a graphical user interface in which
a user can load data sets, create new pipelines of EAVL
mutators and filters, and visualize the results (Figure 6).

B. Dax

The Dax Toolkit supports the fine-grained concurrency
for data analysis and visualization algorithms required to
drive exascale computing. The basic computational unit of
the Dax Toolkit is a worklet, a function that implements the
algorithms behavior on an element of a mesh (that is, a point,
edge, face, or cell) or a small local neighborhood [MAG*11].
The worklet is constrained to be serial and stateless; it can
access only the element passed to and from the invocation.
With this constraint, the serial worklet function can be
concurrently scheduled on an unlimited number of threads
without the complications of memory clashes or other race
conditions.

The Dax Toolkit provides schedulers that apply worklets
to all elements in an input mesh, the results of which
are collected into a resulting mesh. Although worklets are
not allowed communication, many visualization algorithms
require operations such as variable array packing and coinci-
dent topology resolution that intrinsically require significant
coordination among threads. Dax enables such algorithms
by classifying and implementing the most common and
versatile communicative operations, which, when used in
conjunction with the appropriate worklets, complete the
visualization algorithms.

The Dax Toolkit simplifies the development of parallel vi-
sualization algorithms. For example, Dax provides a generic
mechanism to create a new topology based on input cells.
The code in Listing 2 demonstrates all the code needed to
build a new mesh by removing cells from an existing mesh.
The ability to remove unneeded components and updating



1 struct PolyNormalFunctor

2 {

3 void operator()(float *x, float *y, float *z, float *n)

4 {

5 // get two adjacent edge vectors
6 float ax = x[1]-x[0], ay = y[1]-y[0], az = z[1]-z[0];

7 float bx = x[2]-x[1], ay = y[2]-y[1], az = z[2]-z[1];

8 // calculate their cross product
9 n[0] = ay*bz - az*by; n[1] = az*bx - ax*bz; n[2] = ax*by - ay*bx;

10 }

11 };

12
13 void FaceNormalFilter::Execute(...)

14 {

15 executor->AddOperation(new NodeToCellOp3(xcoord, ycoord, zcoord,

16 outputnormals, inputcells, PolyNormalFunctor()));

17 }

Listing 1. Sample EAVL code for computing normals

fields is built into the system. An example of this code
applied to a supernova dataset is shown in Figure 6.

As shown in Figure 3, Dax consists of a control environ-
ment, a serial environment (per process) used to set up data
structures and dispatch parallel jobs, and an execution envi-
ronment, the parallel environment in which data processing
occurs. These two environments correspond with the typical
configurations of commonly used accelerator programming
models such as GPGPU and Intel Xeon Phi offloading, but
can also work when both environments exist on the same
hardware. Between these two environments, a device adapter
handles data transfers and scheduling, allowing the execution
environment to work on a variety of architectures.

The Dax control environment API provides basic topol-
ogy structures used to represent meshes that are input
and returned from the system. The control environment
also contains generic array containers that allow Dax al-
gorithms to adapt to memory structures of external applica-
tions [MKM*12]. The Dax execution environment API pro-
vides many utilities to facilitate writing functors, including
basic types, vector operations, and small matrix operations.
In addition, worklets can receive a cell as a parameter.
Supported cell types include vertices, lines, triangles, quadri-
laterals, voxels, tetrahedrons, wedges, and hexahedrons.
Each cell type provides functions that implement commonly
used operations that involve the interplay of constituent
components such as interpolations and derivatives.

C. DIY

DIY [PET12] provides a lightweight, easily-maintainable
library of functions commonly used in parallel visualization
and analysis operators, including in-situ, coprocessing, and
traditional post-processing use cases. It allows researchers
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Figure 3. Diagram of the Dax control and execution environments

to focus on their own work rather than on assembling
the parallel infrastructure from scratch. As shown in Fig-
ure 4, it consists of parallel I/O, domain decomposition,
network communication, and utility functions. It supports
global and neighborhood communication patterns, includ-
ing nearest neighbor, merge-based reductions, and swap-
based reductions. It has been used with a wide variety of
large-scale simulations, including Morse-Smale complex of
combustion, information entropy analysis of astrophysics,
Voronoi tesselation of cosmology data, and particle tracing
of thermal hydraulics flow (Figure 6).

D. PISTON

The primary goal of PISTON [LSA12] is to facilitate the
development of visualization and analysis operators with
highly portable performance. Due to the wide variety of
current and next-generation parallel hardware architectures,



1
2 struct ThresholdTopology : dax::exec::WorkletGenerateTopology

3 {

4 typedef void ControlSignature(Topology, Topology(Out));

5 typedef void ExecutionSignature(Vertices(_1),Vertices(_2));

6
7 template<class InCellVerticesType, class OutCellVerticesType>

8 DAX_EXEC_EXPORT

9 void operator()(const InCellVerticesType &inVertices,

10 OutCellVerticesType &outVertices) const
11 {

12 outVertices.SetFromTuple(inVertices.GetAsTuple());

13 }

14 };

15
16 template<class InGridType, class ClassifyArrayType,

17 class OutGridType, class ScalarArrayType>

18 DAX_CONT_EXPORT

19 void InvokeThreshold(const InGridType &inGrid,

20 const ClassifyArrayType &classifyArray,

21 OutGridType &outGrid,

22 const ScalarArrayType &inScalars,

23 ScalarArrayType &outScalars)

24 {

25 using namespace dax::cont;

26
27 // Create new geometry.
28 ScheduleGenerateTopology<ThresholdTopology> resolveTopology(classifyArray);

29 Scheduler<> scheduler;

30 scheduler.Invoke(resolveTopology, inGrid, outGrid);

31
32 // Convert input point scalar array to new grid.
33 resolveTopology.CompactPointField(inScalars, outScalars);

34 }

Listing 2. Sample Dax worklet and control code to threshold cells based on a given classification. This includes reconfiguring the connectivity to remove
unused points and mapping a scalar field to the new topology.

developers are frequently forced to re-tune or even re-write
their operators in order to take advantage of the available
parallelism on new multi-core or many-core platforms. Some
standards, such as OpenCL, may allow the same code to
run on multiple supported platforms, but to actually run
efficiently still requires architecture-specific optimizations
in algorithm design and tuning. However, by restricting the
programmer to using only a limited set of data-parallel prim-
itives, portable performance can be obtained. Architecture-
specific optimizations are thus only required for the small
set of data-parallel primitives. Algorithms may still require
clever design to run efficiently, but these efficiencies should
be realized across all supported platforms.

Data parallelism [BLE90] is a programming model in
which independent processors simultaneously perform the

same task on different pieces of data. Data-parallel prim-
itives operate on vectors, and may be customized through
user-defined functors. For example, the transform operator
simply applies a unary functor to each element of the input
vector, or a binary functor to each pair of elements in two
input vectors. The scan operator with a binary addition
functor produces a vector of partial sums from the input
vector. The reduction operator with a binary maximum
functor returns the maximum element of the input vector. As
the data sizes produced by simulations continue to increase,
data parallelism is likely to be an effective approach to
exploit available parallelism.

PISTON is built on top of NVIDIA’s Thrust library
[THR12]. Thrust is a C++ template library that pro-
vides implementations of data-parallel primitives in CUDA,



Figure 4. Diagram of the DIY library

OpenMP, and TBB. It is designed to be extensible to support
additional backends to target other architectures. PISTON
has enhanced the Thrust OpenMP backend, developed a
new prototype backend for OpenCL, and, most significantly,
designed and implemented data parallel algorithms for a
suite of visualization and analysis operators using these data-
parallel primitives.

One such algorithm developed in PISTON is the iso-
surface operator for structured grids using marching cubes
[LC87], [DZ07]. A naive data-parallel algorithm for this
operator could be constructed by simply classifying each
input cell as to whether it generates geometry using the
transform primitive with a functor that examines the values
at each vertex, stream compacting those cells that do gen-
erate geometry (“valid” cells), generating an equal number
of output vertices for each valid cell (some of which are
“phantom” vertices, generated in order to avoid branching
in the kernels and to ensure each parallel thread outputs
beginning at a predetermined offset in the output vector),
and doing a final stream compaction to eliminate phantom
geometry. However, this algorithm is inefficient due to the
large amount of global memory movement and unnecessary
generation and removal of phantom geometry. As illustrated
in Figure 5, our optimization of this algorithm improves
efficiency by generating a “reverse mapping” from output
vertex index to input cell index (using transform, scan,
and binary search data-parallel primitives), allowing it to
“lazily” apply operations only to cells that will generate
output. It allows the use of a gather operation rather than a
stream compaction, and computes the correct offset into the
final global output vertex vector, eliminating the need for
phantom geometry and the extra stream compaction. The
exact same operator code was compiled with the CUDA
backend and run on an NVIDIA GPU, and compiled with
the OpenMP backend and run on a multi-core Intel Xeon

CPU, obtaining good parallel scaling on both. Using the
same basic algorithmic design, cut surface and threshold
operators have also been implemented.

PISTON has been integrated into VTK and into a Par-
aView plug-in. VTK filters have been implemented that en-
capsulate PISTON algorithms, and utility filters interconvert
between the standard VTK data format (stored on the CPU)
and the PISTON data format (Thrust device vectors, which
may exist on the GPU). Results of PISTON algorithms
may either be rendered directly on the GPU using the
OpenGL/CUDA interop feature, or passed back to standard
VTK renderers on the CPU using the PISTON utility fil-
ters. The VTK domain partitioning and image compositing
infrastructure can be used to run in a distributed memory
environment (with PISTON operators being applied locally
on each node to its domain).

Ongoing research has been focused on expanding the
domain of PISTON both in terms of application areas and
hardware. The PISTON data model has been extended to
support curvilinear coordinates. An extension of the march-
ing cubes algorithm for structured grid isosurfaces supports
the marching tetrahedra algorithm for an unstructured grid
that has been decomposed into tetrahedra. Prototype ras-
terizing and ray-casting render operators allow the gener-
ation of images on systems without OpenGL. A wrapper
is being developed for some Thrust operators to allow
them to be called in a distributed memory environment.
PISTON is being utilized in-situ with the VPIC (Vector
Particle in Cell) simulation code, and a companion project,
PINION, is developing portable data-parallel operators for
physics computations (such as gradients, advection, and
Lagrangians) in materials and hydrodynamics simulations.
Various applications of PISTON are pictured in Figure 7.
More details about these ongoing projects should appear in
future publications.

III. CONCLUSION

While each of these frameworks has its own specific areas
of focus, taken together, they are attempting to solve some of
the fundamental challenges facing visualization and analysis
in the era of massive parallelism and big data. The results
of these research efforts, along with their depolyment in
well-supported, commonly used open-source libraries such
as VTK and ParaView, should better position the scientific
community to be able to make use of the data produced by
ever-larger-scale simulations in this new era.
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1 namespace piston {

2
3 template <typename VertexType>

4 class compute_normal

5 {

6 public:
7 typedef typename thrust::counting_iterator<int> CountingIterator;

8 typedef typename thrust::device_vector<float3> NormalsType;

9 typedef typename NormalsType::iterator NormalsIterator;

10
11 int nVerts;

12 VertexType vertices;

13 NormalsType normals;

14
15 compute_normal(VertexType vertices, int nVerts) :

16 vertices(vertices), nVerts(nVerts) {};

17
18 void operator()()
19 {

20 normals.resize(nVerts/3);

21 thrust::transform(CountingIterator(0), CountingIterator(0)+nVerts/3,

22 normals.begin(), normal(vertices));

23 }

24
25 struct normal : public thrust::unary_function<int, float3>

26 {

27 VertexType vertices;

28
29 normal(VertexType vertices) : vertices(vertices) {};

30
31 __host__ __device__

32 float3 operator() (int id) const
33 {

34 float3 v0 = vertices[id*3+0];

35 float3 v1 = vertices[id*3+1];

36 float3 v2 = vertices[id*3+2];

37
38 float3 e0 = v1 - v0;

39 float3 e1 = v2 - v0;

40
41 return cross(e0, e1);

42 }

43 };

44
45 NormalsIterator normals_begin() { return normals.begin(); }

46 NormalsIterator normals_end() { return normals.end(); }

47 };

48 }

49
50 compute_normal<thrust::device_vector<float3>::iterator>* cn = new
51 compute_normal<thrust::device_vector<float3>::iterator>(v.begin(),v.size());

52 (*cn)();

53 normals.assign(cn->normals_begin(), cn->normals_end());

Listing 3. Sample PISTON code for an operator to compute normals



Figure 5. Illustration of the PISTON data-parallel isosurface algorithm
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Figure 6. Clockwise, from top left: Isosurface generated in EAVL Lab; contour with subsequent vertex welding, coarsening, and subdivision produced
using Dax; information entropy analysis of astrophysics data computed using DIY; Morse-Smale complex of combusion data computed using DIY



Figure 7. Clockwise, from top left: Isosurface of ocean temperature data set generated by PISTON; isosurface of an AMR data set from an asteroid
simulation creating using PISTON’s marching tetrahedra algorithm; isosurface generated on four nodes, each running PISTON, using VTK’s domain
decomposition and image composition; isosurface generated using the PISTON plug-in in ParaView; isotherms on a globe generated using PISTON’s
curvilinear coordinates


