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Abstract—Today’s fluid simulations deal with complex geome-
tries and numerical data on an extreme scale. As computation
approaches the exascale, it will no longer be possible to write
and store the full-sized data set. In situ data analysis and
scientific visualisation provide feasible solutions to the analysis of
complex large scaled CFD simulations. To bring pre- and post-
processing to the exascale we must consider modifications to data
structure and memory layout, and address latency and error
resiliency. In this respect, a particular challenge is the exascale
data processing for the sparse geometry lattice-Boltzmann code
HemeLB, intended for hemodynamic simulations.

In this paper, we assess the needs and challenges of HemeLB
users and sketch a co-design infrastructure and system architec-
ture for pre- and post-processing the simulation data.

To enable in situ data visualisation and analysis during a
running simulation, post-processing needs to work on a reduced
subset of the original data. Particular choices of data structure
and visualisation techniques need to be co-designed with the
application scientists in order to achieve efficient and interactive
data processing and analysis. In this work, we focus on the
hierarchical data structure and suitable visualisation techniques
which provide possible solutions to interactive in situ data
processing at exascale.

Architectural challenges and road-maps will be presented as
the major focus of this paper. We sketch a software architecture
which integrates pre- and post-processing techniques that can
provide in situ analysis and ultimately computational steering to
HemeLB.

I. INTRODUCTION

There is increasing evidence that the development of car-
diovascular diseases, such as aneurysms, is caused by cer-
tain blood flow patterns. As intracranial aneurysms are quite
common (1 − 5% of the entire population are affected), it is
desirable to understand their formation and which particular
aneurysms are at enhanced risk of rupture. HemeLB is an
application for simulation of blood flow in the larger arteries.
Its ultimate goal is to contribute to patient-specific treatment,

e.g., real-time risk assessment of cerebral aneurysm rupture.
To this end, HemeLB has to produce reliable predictions on the
time scale of one hour. Additionally, due to the high resolution
required in time and space, HemeLB has been designed as a
highly parallelised algorithm.

The need for a parallel implementation of a sparse fluid
solver requires sophisticated algorithms for the domain decom-
position. Ideally, such a decomposition should be optimised for
load-balancing with respect to computation, communication
and visualisation. Currently, the ParMETIS library is employed
to generate computationally load-balanced domain decompo-
sitions. Approaching the exascale with millions of processes
is expected to impede an efficient simulation initialisation.
It is an open question how scalable the current ParMETIS
implementation is.

Parallel pre-processing is, first of all, seen as initialisation
of calculation data. Load geometry or mesh data from the file
system without stressing it too much. Optimise it for a better
result. Arrange it for a fast(er) calculation. Proceeding to an
exascale regime, this certainly holds true; yet it is extended
by a new main target. Load balance becomes a crucial factor.

Most applications are aware of this fact and meet this
requirement by applying a partitioner to the pure calculation
costs. This is a good start for load balance. Yet, it does
not cover costs of other simulation parts. Visualisation, for
example, becomes even more important at exascale because
some form of interactivity is desired. Therefore a successful
pre-processing has to include all parts of the simulation to
guarantee an overall load-balance.

Currently, HemeLB implements a proper pre-processing. It
reads in the initial data, i.e. the blood vessel geometry, calls a
partitioner and redistributes the data accordingly. A quite good



load balance is established.
If, however, visualisation comes into play the situation

changes. Constraints on load and simulation sequence alter
the balance equation significantly. visualisation costs have to
be considered now. A repartitioning may be necessary. A new
approach is needed evolving the partitioner to a stand-alone
part of the simulation.

Large-scale simulations bring forth huge data sets. It is
impractical and inefficient to store all data for later evalua-
tion. Instead, in situ visualisation and feature extraction are
promising approaches to reduce the amount of data to handle.
This involves post-processing routines which extract relevant
data at runtime. Physiologically relevant data sets comprise
wall stress distributions and streak-lines for the visualisation
of the flow field. The challenge is to design new algorithms
for scalable volume rendering and line integral convolution
methods.

To prevent restarting the simulation process from the very
beginning, an on-the-fly results analysing and parameter mod-
ifying tool is needed. A steering client can be used to supply
the simulation with real-time requests by the user, for example
an increase of the visualisation rate, a change of the viewpoint
or the extraction of hydrodynamic observables from a user-
defined subset of the simulation volume. At the same time,
the steering client can receive status informations from the
simulation. These may contain visualisation data, consistency
and validity checks, or estimates on the remaining runtime.

In this work, we sketch the roadmap for HemeLB co-design,
preparing pre- and post processing for HemeLB simulation
towards exascale. We present the challenges of pre- and post
processing and possible solutions to the presented problems. A
co-design system architecture is investigated which provides
interactive data post-processing and computational steering.
We propose suitable visualisations and making it possible
for users to interactively explore their simulation data. We
discuss how the loop of pre-processing, simulation and post-
processing can be closed and how we are planning to extend
the computational steering client within HemeLB.

II. RELATED WORK

The Centre for Computational Science at University College
London develops, amongst other projects, scientific applica-
tions of HemeLB in the field of blood simulation. Recent
investigation of HemeLB performance ([1]) has shown that
it can scale well to at least 32 thousand cores with more
than 81 million lattice sites. In this work, not only the
core simulation but also visualisation and steering facilities
are examined. Bieferale et. al ([2]) implemented a lattice-
Boltzmann algorithm on GP-GPU. Results in this paper are
compared with the same algorithm implemented on CPUs.

A large body of literature can be found on partitioning
tools. Most of these tools try to balance only the core cal-
culation costs. Several popular choices include: ParMETIS,
PTScotch [3], Zoltan [4]. The ParMETIS algorithms are
based on the parallel multilevel k-way graph-partitioning,

adaptive repartitioning, [5]. Current HemeLB uses ParMETIS
for domain decomposition. These three tools provide similar
functionality to obtain a balanced partitioning of given data.
They are widely used and under active development.

In order to gain insight from simulation data, data post-
processing becomes an important step for the application
scientists. Several leading research groups have already started
to approach the peta- and exascale post-processing problems.
Childs presented a system paper ([6]) discussing the possible
system challenges and solutions for petascale post-processing.
The SciDAC institute for ultra-scale visualisation ([7]) focuses
on advancing the state of visualisation techniques in order to
enable extreme-scale knowledge discovery.

In the meantime, in situ processing has draw a great atten-
tion in the visualisation and simulation community. Whitlock
et. al([8]) have introduced a new library to V isIt, allowing
fully featured in situ visualisations without changing the
application too much. [9] has integrated in situ visualisation
for large-scale turbulent-combustion simulation.

Data hierarchy is an important issue when handling dis-
tributed large-scaled datasets. Popular choices of hierarchical
data structures are quadtrees and octrees. Each level on the
tree corresponds to a set of data at a certain resolution.
Effective ways of searching and traversing are key issues in
using hierarchical data structures. Pascucci and Frank [10]
introduced a new global indexing scheme, which accelerates
adaptive traversal of geometric data with binary trees, which
is also applicable to quadtrees and octrees. The usability of
hierarchical data structures also depends on the choice of
post-processing algorithms. The partitioning and the hierarchy
of data blocks should fit the requirements from the post-
processing algorithm.

Fig. 1. The lattice-Boltzmann method does not use an unstructured meshes;
instead, it uses a regular lattice structure [11]

III. MAJOR CHALLENGES OF PRE- AND POST-PROCESSING
AT EXASCALE

The advanced Scientific Computing Advisory Commit-
tee [12] predicted that the major challenges in exascale com-
puting will be:



1) Moving data around. At exascale, moving data between
simulation and pre- or post-processing would be costly.
Algorithms need to be designed to minimise the data
movements.

2) Limitation of memory bandwidth.
3) Resiliency problem. Computation with millions and bil-

lions of cores will pose a challenge to error resiliency.
4) Power consumption.
5) I/O bandwidth.
6) Latency.

When it comes to pre- and post-processing, we expect
the following challenges while developing algorithms for the
exascale:

1) Parallelism. How to distribute the data, how do apply
domain decomposition in order to achieve a optimal load
balance will be a major issue.

2) Data storage: disk or memory. At exascale, it is prefer-
able not to store all the data anymore. On-the-fly analysis
of simulation results will be desired. However, how to
cache the data in memory and what type of data is need
for further processing are questions for scientists who
design post-processing algorithms.

3) Data structure. Multi-resolution data structures provide
an opportunity to downsample data fields, thus reducing
the volume of data to be processed. How to access the
data required also poses a challenge to data structure
algorithms.

4) Scheduling. Parallelism for post-processing can be de-
fined in different ways. Whether to use a load-on-
demand approach or static distribution heavily depends
on the choice of post-processing algorithm. How to
speed up communication and optimise scheduling is of
great importance.

IV. SYSTEM ARCHITECTURE

In this section, we described the work flow and architecture
of our system. We primarily focus on the communication
and integration of processing with the simulation component.
The general work flow and system architecture is described.
Following this, description of how this architecture can be
realised within our co-design collaboration is provided.

A. Simulation

The core of HemeLB provides a lattice-Boltzmann solver
for flood simulation with sparse geometries [1]. A pre-
partitioning library ParMETIS is employed to decompose
computational domains in order to allow parallisation. This
domain decomposition is based on a load-balance approach.

B. Pre-processing

Pre-processing serves as a preparatory step for simulation,
in order to create and optimise the geometry or computational
effort for the actual simulation. In a general sense, pre-
processing of the simulation data may contain the following
steps

Fig. 2. System architecture of the co-design

1) Initialise geometry or computational mesh.
2) Load or distribute the initial mesh
3) Apply optimisation on geometry, such as mesh refine-

ment in a certain region
4) Check and evaluate load balance
5) Repartition after certain simulation time steps, which can

be conducted either at each single time step or every few
steps.

Pre-processing starts with data preparation. Initial data like
geometries or meshes has to be prepared for simulation
computation. It is typically stored on the filesystem. A parallel
file access by only a subset of all nodes helps reducing stress
for the filesystem while providing sufficient speed. On the
other hand, generation of mesh data could be done on-the-fly
if the problem extent could be described simply enough.

Geometry optimisations are now applied if necessary or
useful. Mesh refinement improves certain simulation hot spots;
or globally generates intermediate grid points thus enhancing
result precision. Other mesh quality improving techniques are
possible. In an exascale environment, automating these proce-
dures offers many advantages, including lower communication
costs, less memory consumption, smaller data set sizes, to
name a few.

The main aim of pre-processing is to balance load as evenly
as possible across the system. If this primary requirement is



not matched, overall system performance is lost. Every parallel
code deals with this burden, but for an exascale simulation
this effect is clearly worse, as hundreds of thousands of
cores possibly wait for only a couple of cores. Thus more
effort is needed to lower the imbalance. Additionally, exascale
magnifies another aspect of this load balance. Huge systems
increase in performance and so does the wish for interactivity.
Simulation steering, interactive visualisation and mesh adap-
tation become part of the simulation. A direct consequence
is more sources of workload and communication costs in the
whole simulation chain. It does not matter if these are tightly
coupled to core computations or independent. These costs of
other simulation parts, like visualisation, must be involved in
the balance equation.

Also, this interactivity brings further tasks for pre-
processing. Current simulations are governed by a one run
policy. Simulations calculate lots of time steps and put out
the result which is finally visualised. Interactivity, on the
other hand, requires an intermediate result. Thus, only a small
part of all timesteps is computed in one simulation cycle
covering pre-processing, calculation and post-processing. The
opportunity to adjust the partitioning mid-term is introduced.
This repartitioning helps to improve load balance greatly.

In practice, when it comes to pre-processing for HemeLB,
the following steps are specified:

1) Read in the geometry for blood vessel model
2) Apply partitioning on the geometry. This step only

accounts for the fluid dynamics calculation and no other
simulation parts.

3) No repartitioning will be applied. In this case, the
geometry set up as well as distribution and loading are
fixed.

HemeLB reads data from a two-level file format, where
coarse grained blocks are described solely by the volume of
fluid with each one. This data is used to perform an initial
approximate load balance. A subset of the cores then read
the detailed geometry data and distribute the data to those
cores that require it. This approach minimises stress on the
filesystem. Additionally, the number of reading cores enables
control over the balance between file I/O and distribution
communication.

This initial data distribution is a first start, but does not
claim to be ideal. The geometry information now present is
then passed to the partitioner, ParMETIS, which computes
an optimised partition and HemeLB redistributes the data
accordingly. This domain decomposition is then fixed for the
duration of the simulation.

C. Post-processing

The process of analysing simulation results when sim-
ulation is finished is called post-processing. This process
requires the computed raw data to be transformed to suitable
representations by passing all or parts of the data through
a post-processing pipeline, which typically consists of data
extraction, filtering, mapping and visualisation stages.

Interactive exploration and visualisation methods have
proven to be successful in analysing large-scale simulation
results. This is a compute-intensive process making the re-
quirement for efficient interactive exploration, such as the
ability to move freely through the data, hard to meet.

Virtual Reality is a helpful tool in visualisation extreme-
scale CFD data. Gerndt et. al [13] have presented a framework
which provides parallel CFD post-processing in virtual envi-
ronments (VR). Improved depth perception and free navigation
in VR allow the scientist to explore their data in a more natural
and informative way. Therefore, we also plan to include the
use of virtual environment in our post processing.

1) In situ processing with HemeLB: Unlike most of tradi-
tional off-line data post-processing, in situ processing has be-
come important in large scale simulation. It enables monitoring
and analysis of the on-going simulation state. Understanding
the science behind exascale blood simulation, requires the
extraction of meaningful data from dataset of hundreds of
terabytes and more [14]. With the ever increasing size of the
simulation, the cost of moving the results from simulation to
visualisation machine also dramatically increases. Kwan [15]
pointed out it is preferable to not move the data at all, or to
keep the moved data to minimum.

Applying the simulation and visualisation processes in par-
allel in an in situ manner allows the sharing of data, hence
avoiding unnecessary data movement and output. Furthermore,
in situ processing makes it possible for the scientist to analyse
their on-going simulation, providing insight for further mod-
ifications of the simulation, which can then be immediately
applied.

Within HemeLB, the in situ visualisation process proceeds
as follows:

1) A simulation test is started on a cluster.
2) A steering client is connected to the simulation master

node.
3) The client sends visualisation parameters (view point,

fields to display, etc.) to the simulation
4) The simulation master propagates this to the visualisa-

tion component
5) The visualisation component requests the necessary data

from the simulation and constructs the image
6) The image is returned the simulation master node and

thence to the client.

2) Interactive visualisation:
A comparison of visualisation algorithms at exascale: As

mentioned before, volume rendering, line integrals (including
streamlines, pathlines, and streak-lines), particle tracing and
line integral convolution (LIC) are the most desired visualisa-
tion for HemeLB data. We compare the possible limitations
and challenges while applying these techniques at extreme-
scale.

Table I summarises the pros and cons of each mentioned
visualisation.



Visualisation technique Volume rendering Line integral Particle tracing LIC
Communication cost low high high medium
Load balance can be optimised good
Ease of parallelisation easy hard hard moderate

TABLE I
PROS AND CONS OF THE VISUALISATION TECHNIQUES

Fig. 3. Post-processing pipeline with user iteration [16]

Figure 4(a) shows an example of a volume rendered
HemeLB dataset. One advantage of doing volume rendering
is that one can distribute the computation on different nodes
and carry out the computation in a parallel manner, which is
not applicable with many other algorithms.

Line integrals, especially stream-lines and path-lines are
useful tools for tracing and analysing flow fields. Figure 4(b)
shows an example of the path-line tubes while visualising
blood flows in an aneurysm dataset. This type of visualisation
provides the user with an intuitive visual description of how
the blood is flowing, revealing not only orientation informa-
tion, but also features such as vortices.

3) Closing the loop: The ultimate goal of our co-design
work is to close the loop by enabling computational steering
(see figure 2). Post-processing and visualisation of the sim-
ulation results provides the user with possibilities to make a
decision on how simulation can be changed or modified. Not
only simulation parameters, geometries, mesh definition can
be further modified, data decomposition and distribution can
also be taken into consideration.

Conventional post-processing serves as a stand alone anal-
ysis tool for the simulation. With further functionality of
computational steering, feedback will be given and put back
into the simulation setup, allowing for a better convergence
and more steady simulation. Until this point, we have closed
the loop in our system, and connected pre- and post-processing
with simulation in an interactive manner.

(a) Example of volume rendering on a small
aneurysm data set

(b) Example of streamline visualisation on a small
aneurysm data set

Fig. 4. Examples of visualisation techniques

D. Challenges in implementation

When implementing visualisation algorithms in a parallel
manner, special attention should be given to data distributions.
Algorithms which need a lot of neighbourhood searching, such
as path-lines, are challenging to implement in a distributed
memory environment. The frequent search between cells re-
sults in a huge amount of communication between different
cluster nodes, which is slow and energy demanding. On the
other hand, techniques which can be implemented on a sub-
mesh independent of the neighbouring ones are better suited to
such an environment. Volume rendering, for instance, can be
performed on each subdomain without any data exchange with
the neighbours. Therefore, communication between different
cluster nodes is avoided.

V. MULTI-RESOLUTION DATA STRUCTURE AND
STREAMING

Moving a large amount of data causes huge latency. More-
over, the overwhelming amount of data waiting to be post-
processed makes our data exploration non-interactive. Multi-



resolution data structures offer a solution to reduce the amount
of data sent to post-processing, and therefore minimising the
total run time.

Multi-resolution data structures are often combined with
context and detail approaches. A lower resolution data is
normally used for context geometry and a higher one with
more details. This approach allows the user to load a subset
of the whole data in an initial step, inspect this subset,
and apply further refinement on certain regions. Applying
visualisation on the loaded subset of the whole data enables
an immediate and preliminary graphical representation. One
may argue that the context representation of the data set is
not sufficient for a detailed analysis, however, it is commonly
true that simplified and approximated results can be sufficient
for deciding whether to terminate, or to modify parameters for
the next iteration step or to wait for the final result.

The integration of multi-resolution data structures into
HemeLB would enable the further types of in situ post-
processing. At exascale, it will be a major challenge to provide
visualisation and analysis interactively. Multi-resolution data
analysis will be our only way to largely reduce the data size, to
provide insight and to navigate through the whole data set. In
order to use multi-resolution data structures, simulation data
must be stored or cached in a hierarchical manner. Previous
research on data hierarchy points to quadtrees and octrees.
Each level on the tree corresponds to a set of data at a certain
resolution. To access the data at certain level, one needs to
explore the effectiveness of the corresponding tree structures.
Effective ways of searching and traversal will be explored
when using hierarchical data structures.

It is worth mentioning that the actual data hierarchy should
be exploited in coordination with the post-processing algo-
rithms. The partitioning and the data hierarchy must allow
the post-processing with a fast data searching and allocation.
Moreover, region of interest approaches can also be combined
with multi-resolution data structure. First, the user can defined
a region to be post-processed. Then, analysis and visualisation
can be carried out on a refinable area.

VI. CONCLUSION

The discussions presented in this paper serve as a roadmap
for designing pre- and post-processing for the HemeLB code
at exascale. In this paper we have presented the architectural
challenges at exascale pre- and post-processing. We sketched
a closed-loop-system for the co-design of HemeLB and pre-
and post-processing systems or libraries. In situ processing
and computational steering will be two major directions when
working at exascale. Copying data between the simulation
cluster and a dedicated smaller scale visualisation cluster be-
comes impossible. Hierarchical data structures as well as paral-
lel visualisation algorithms are discussed within the HemeLB
framework. Parallelism must be pursued with great care at
every opportunity and diverse algorithms must be considered
simultaneously. For numerical simulations at exascale the
combination of techniques such as in situ processing, com-
putational steering, hybrid parallelisation and multi-resolution

data structures are crucial to perform an interactive exploration
of these simulations.

VII. FUTURE WORK

We plan to extend the steering functionalities within the
current HemeLB architecture. The proposed visualisation al-
gorithms should be integrated as an in situ post-processing
module into the HemeLB code in the near future. To enable a
closed simulation loop from pre-processing over the simulation
with a concurrent post-processing to a user-interface for simu-
lation steering, we plan to integrate well-defined interfaces to
all these parts. To evaluate if these extensions to the HemeLB
solver can improve the complete simulation workflow, we will
carry out tests and benchmarks on currently available large-
scale cluster systems.
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