
1

Performance Modeling for Dense Linear Algebra
Elmar Peise and Paolo Bientinesi

AICES, RWTH Aachen
Schinkelstr. 2

52062 Aachen, Germany
{peise,pauldj}@aices.rwth-aachen.de

Abstract—It is well known that the behavior of dense linear
algebra algorithms is greatly influenced by factors like target
architecture, underlying libraries and even problem size; because
of this, the accurate prediction of their performance is a real
challenge. In this article, we are not interested in creating
accurate models for a given algorithm, but in correctly ranking
a set of equivalent algorithms according to their performance.
Aware of the hierarchical structure of dense linear algebra
routines, we approach the problem by developing a framework
for the automatic generation of statistical performance models
for BLAS and LAPACK libraries. This allows us to obtain
predictions through evaluating and combining such models. We
demonstrate that our approach is successful in both single- and
multi-core environments, not only in the ranking of algorithms
but also in tuning their parameters.

I. INTRODUCTION

For a large class of dense linear algebra operations, such as
the solution of least squares problems and linear systems, not
one but many algorithms exist. While mathematically they are
equivalent, their performance depends —in different ways—
on factors such as the target architecture, the underlying
libraries, and the problem size. The prediction of the best
performing algorithm in a given scenario is a challenging
task. Our goal is to rank the algorithms according to their
performance and to determine their optimal configuration
without executing them.

As a motivating example, we consider the inversion of a
lower triangular matrix (L ← L−1), for which there exist
four blocked algorithms, all equivalent in exact arithmetic, but
with different performance signatures. Each such algorithmic
variant depends on one parameter, the block-size b, which
determines the stride in which the matrix is traversed.

In Figure I.1 we plot their efficiency —the relative measure
of the machines resource utilization— when executed on one
core of an Intel Harpertown E5450; 1 the block-size is fixed to
96 and the matrix size n varies. The results show noticeable
differences in performance between algorithms: Variant 4 () is
significantly slower than the others, while, especially for large
matrices, variant 3 () is the most efficient. In Figure I.2, we
fix n = 1000 and let b vary; in all variants, the efficiency
decreases for small and large block-sizes. For variants 1 (),
2 (), and 3 () the optimal choice of b is close to 100.

This example shows that in order to reach high efficiency,
it is crucial to both single out the right algorithmic variant,

1 The algorithms were implemented in C, compiled with ICC version 12.0,
and linked to Intel’s MKL version 10.2.6. In all cases, our algorithms use
library calls to perform calculations; because of this, compiler’s optimizations
do not influence the resulting performance.

8 512 1,024 1,536 2,048
0

20

40

60

80

100

matrix size n

E
ffi

ci
en

cy
[%

]

variant 1 variant 2 variant 3 variant 4

Fig. I.1: Inversion of a lower triangular matrix: Efficiency as
a function of the problem size.

8 64 128 192 256
0

20

40

60

80

100

block-size b

E
ffi

ci
en

cy
[%

]

variant 1 variant 2 variant 3 variant 4

Fig. I.2: Inversion of a lower triangular matrix: Efficiency as
a function of the block-size.

and optimize the block-size. Due to the complexity of the
architecture and the memory access patterns, it is virtually
impossible to perform these tasks only by analyzing the
mathematics of the algorithms. Indeed, experience tells us that
the best choice heavily depends on the computational kernels
used, such as BLAS, on the processor architecture, and the
matrix size; changing any of these factors may lead to entirely
different performance behavior.

In this article, we detail a strategy based on the analysis
of the BLAS routines upon which the target algorithms are

ar
X

iv
:1

20
9.

23
64

v2
 [

cs
.M

S]
 1

0
D

ec
 2

01
2

2

built; we introduce a tool that, using measurements, creates
performance models for BLAS kernels and stores them perma-
nently in a repository. When faced with a set of algorithms, the
models are evaluated and combined to predict the algorithms’
performance. These predictions allow us not only to accurately
rank the algorithmic variants, but also to determine the optimal
algorithmic block-size.

Several different approaches to performance modeling in
dense linear algebra exist; some notable examples are given
in the following. Cuenca et al. developed a system of self-
optimizing linear algebra routines (SOLAR) [1]; every routine
is associated with performance information, which is hierarchi-
cally propagated to higher level routines in order to tune them.
Dongarra et al. proposed an approach for parallel software
such as HPL and ScaLAPACK [2]; they employ sampling and
polynomial fitting to construct models in order to extrapolate
the performance of routines for larger problems and higher
parallelism. Dackland et al. predict the performance of ScaLA-
PACK algorithms through models based on the efficiency of
BLAS and the time spent on communication [3]. Balaprakash
et al. apply mathematical optimization techniques to reduce the
number of measurements in empirical performance tuning [4].
Iakymchuk et al. model the performance of BLAS analytically
based on memory access patterns [5]; while their models
represent the program execution very accurately, constructing
them requires a high level of expertise of both routines and
architecture.

In contrast to the aforementioned approaches, we aim at
the automatic generation of accurate models for BLAS rou-
tines, which constitute the building blocks of a multitude of
algorithms in linear algebra. Our main goal is not to obtain
accurate prediction for these algorithms, but rather to correctly
rank them and tune their configuration.

This article is structured as follows. In Section II, we
discuss the performance of dense linear algebra routines. In
Section III, we introduce the Modeler, a tool that automati-
cally generates analytical performance models. Predictions and
ranking are discussed in Section IV, and in Section V we draw
conclusions.

II. PERFORMANCE

In this section, we discuss the concept of performance in
the context of dense linear algebra, and introduce the Sampler,
a performance measurement tool for linear algebra routines.

A. Performance Metrics

In the following, the term performance is used broadly to
cover a set of performance metrics that describe certain aspects
of a routine execution, such as timings, instruction counts, and
cache accesses. The metrics are either directly obtained from
hardware performance counters or are quantities computed
from them. The most fundamental performance counter —
the time stamp counter— is provided by a register that is
incremented once per CPU cycle. It is accessed through the
x86 instruction RDTSC and serves as a cycle-accurate timer;
we refer to this metric as ticks. In order to access more CPU
performance counters, we use the Performance Application

[[IMAGE DISCARDED DUE TO ‘/tikz/external/mode=list and make’]]

1 500 1,000
0

0.2

0.4

0.6

0.8

1
·106

experiment

tic
ks

1 500 1,000
0

0.2

0.4

0.6

0.8

1
·106

experiments

tic
ks

Fig. II.1: Repeated execution of dtrsm: In-cache (left) and
out-of-cache (right) operands.

Programming Interface (PAPI) [6]2. PAPI provides functions
to configure, initialize, and read up to 107 counters, but usually
only a subset of which are available in a given system.

In this article we focus on the highly accurate time metric
ticks. In additions, we use the derived metric efficiency,
representing the relative resource utilization:

efficiency =
flops

ticks · fips .
This measures how efficiently an operation that performs
flops floating point instructions3 uses the CPU’s ALUs, which
can perform up to fips floating point instructions per cycle.

B. Performance of dense linear algebra routines

At this point, we are interested in the performance of dense
linear algebra routines, such as BLAS or unblocked algo-
rithms, that act as building blocks for higher level algorithms.
Our first objective is to build performance models for such
building blocks.

For a given architecture, we regard the performance of a
routine as a function of the arguments. Apart from the buffers
for matrices and vectors, all the arguments are simple to
represent in such a function, since they are basic data types
such as characters, integers, and floating point numbers. Since
the instructions performed by the dense linear algebra routines
we consider are mostly independent of the input data, we can
reduce the information needed for these arguments to their
size and storage location in the memory hierarchy.

Regarding memory locality, we distinguish two cases: in-
cache and out-of-cache. In-cache refers to the situation where
all matrices are as close to the CPU as possible, that is, in
the lowest cache level that can accommodate them. Since
the access time is minimized, this scenario leads to the best
performance the routine can attain. Out-of-cache refers to
the opposite situation, where the matrices reside in main
memory, thus causing costly data transfers. Since the loading
and storing of data might result in memory stalls, the overall
performance is often inferior than when data resides in cache.

To study the influence of memory locality and the re-
producibility of measurements, let us consider a repeated

2PAPI version 4.2.1.0.
3A fused multiply add operation a← b+c·d is counted as a single floating

point operation, since it is one instruction and processed as such by the CPU.

3

execution of the BLAS routine dtrsm (B ← A−1B, A
triangular). The interface is

dtrsm(R
side

, L
uplo

, N
transA

, U
diag

, 512
m
, 128

n
,

0.37
alpha

, A
A
, 256

ldA
, B

B
, 512

ldB
),

corresponding to the operation B ← 0.37BA−1, where
A ∈ R128×128 is lower triangular with leading dimension
ldA = 256, and B ∈ R512×128 with ldB = 512. In
our experiment, this operation is repeatedly executed on one
core of our Harpertown, using the high-performance BLAS
implementations OpenBLAS, MKL, and ATLAS4. Notice that
the first invocation of a BLAS routine is always notably (in
our case more than one order of magnitude) slower than
the following one, due to the initialization of BLAS, which
happens at the first invocation of the library. Neglecting these
first measurement outliers, the performance measurements of
the routine executions with both in-cache and out-of-cache
arguments are shown in Figure II.1. As expected, in-cache
corresponds to higher performance across all implementations,
while the increase in execution time for out-of-cache varies
from one implementation to the other. In our study —in which
the performance of algorithms is obtained through models of
the algorithms’ components— memory locality will play a big
role.

In addition to the influence of memory locality, we observe
fluctuations in the performance measurements of about 8%.
For this reason, we do not consider the routine’s performance
to be one number but a probabilistic distribution. To express
the performance in numbers, we select certain properties of
this distribution, such as minimum, average, standard devia-
tion, and median.

C. The Sampler

To facilitate the acquisition of performance measurements,
we wrote the Sampler, a flexible lightweight performance mea-
surement tool. Written in C, the Sampler directly interfaces
with libraries such as BLAS or LAPACK. Its configuration
allows to choose between different memory locality situations.
Given routine names and arguments in the form of tuples, such
as (dtrsm,R,L,N,U, 512, 128, 0.37, A, 256, B, 512) (A and
B specify the sizes of the operands), the Sampler measures and
reports the performance of the routines; this entails collecting
multiple samples and extracting statistical information.

III. MODELING

With the measurements obtained by the Sampler, we want
now to construct analytical performance models. Here we
introduce the Modeler, a tool which interacts with the Sampler
and automatically generates performance models. These mod-
els form the base for the performance prediction and algorithm
ranking (Section IV).

4 BLAS provides us with the necessary kernels used in the calculations;
we do not attempt any optimization of such routines.

A. Preliminary Experiments

Most BLAS routines accept 10 or more arguments; LA-
PACK’s routines have easily twice as many. In building
performance models, if we blindly treated all the arguments
equally, we would originate 10+ dimensional models, which
would result in either impractical execution times or sloppy
accuracy. To avoid this curse of dimensionality, we analyze
how different arguments types affect performance, and in our
models we only account for a subset of the arguments.

Here we focus on the dependence of performance on the
BLAS arguments. Again, we use dtrsm as an example; the
arguments of BLAS routines can be classified as follows:

dtrsm(side, uplo, transA, diag
flag

, m, n
size

,

alpha, A, ldA, B, ldB).
scalar data

leading dimension

Flag arguments take one of only two values (e.g., side ∈
{L,R}); size arguments contain the dimensions of the matrix
and vector operands; scalars are floating point numbers, which
scale the operands; data are (pointers to) the buffers in which
the operands are stored; leading dimensions define the distance
in memory between two horizontally adjacent matrix entries.

Due to the following reasons, for our purposes we can
disregard all but flag and size arguments.

• Scalar arguments are usually set to 1 or −1. Neither
of these values requires any floating point operations to
perform the scaling, thus not affecting performance. Even
other values for scalar arguments have an insignificant
influence on performance, since they only affect a lower
order term of the operation count.

• As discussed in Section II-B, only the size and storage
location of vector and matrix arguments are relevant for
performance. The sizes of these operands are covered
by the size and leading dimension arguments. As for
the storage locations, we will construct separate models
for different memory locality scenarios, so that we can
entirely ignore data arguments within one model.

• In practice, the leading dimensions are either equal to
the size of a corresponding input matrix or larger. While
the difference between these two scenarios can influence
performance, we only need to consider the latter: within
our targeted algorithms, the BLAS routines are invoked
on parts of a large input matrix of constant dimension.
Hence, throughout the model generation, all leading di-
mension arguments are set to 2500.

Next, we study the influence of the flags and the size
arguments on the performance of BLAS routines.

1) Flag Arguments: All types of flag arguments encoun-
tered in BLAS appear in the signature of dtrsm: side ∈
{L,R} defines from which side B is multiplied by A−1;
uplo ∈ {L,U} states if A is lower or upper triangular;
transA ∈ {N,T} indicates whether A or its transpose AT

is to be used; when set to U, diag ∈ {N,U} declares that A
is unit triangular.

In Figure III.1, we report on a series of experiments in which

4

L
L
N
N

L
L
N
U

L
L
T
N

L
L
T
U

L
U
N
N

L
U
N
U

L
U
T
N

L
U
T
U

R
L
N
N

R
L
N
U

R
L
T
N

R
L
T
U

R
U
N
N

R
U
N
U

R
U
T
N

R
U
T
U

0

2

4

6

·106

tic
ks

OpenBLAS MKL ATLAS

side
uplo
transA
diag

Fig. III.1: dtrsm: ticks as a function of the discrete argu-
ments.

8 256 512 768 1,024

0

1

2

3

·108

n

tic
ks

OpenBLAS
MKL

ATLAS

Fig. III.2: dgemm: ticks as a function of the size arguments.

we look at the performance for all possible combinations of
the flags; the remaining arguments are fixed as follows:

dtrsm(side
side

, uplo
uplo

, transA
transA

, diag
diag

, 256
m
, 256

n
,

0.5
alpha

, A
A
, 256

ldA
, B

B
, 256

ldB
).

The only common feature across all implementations is that
diag only has a minor impact on performance. No clear
pattern arises to relate the performance of two or more argu-
ments. This may be due to different argument values leading
to the execution of distinct code branches. We conclude that
in our models, with the exception of diag, we should treat
all combinations of argument values separately.

2) Size Arguments: We consider the invocation

dtrsm(L
side

, L
uplo

, N
transA

, N
diag

, n
m
, n

n
,

0.5
alpha

, A
A
, n

ldA
, B

B
, n

ldB
),

where n varies between 8 and 1024. To avoid the influence of
small scale fluctuation, we only consider values of n that are
multiples of 8. Measurements for different BLAS libraries are
shown in Figure III.2.

8 256 512 768 1,024

−2

0

2

·106

n

tic
ks

−
p

OpenBLAS
MKL

ATLAS

Fig. III.3: dgemm: Distance between least-squares fitting and
original data (Figure III.2).

At first sight, the measurements follow a quadratic behavior,
in line with the routine’s complexity. For each of the three
BLAS implementations, we construct a quadratic polynomial p
that best approximates the measurements through least squares
fitting. In Figure III.3 we plot the difference between p and
the original measurements; it becomes apparent that in none
of the three cases, a quadratic approximation represents the
performance accurately. However, the plot shows some degree
of structure; this is especially visible for OpenBLAS (), where
there are intervals with polynomial behavior separated by
jumps or kinks. We can make out the following intervals: 8
– 550, 550 – 750 and 750 – 1024. A similar behavior can
be found in the other implementations, although the higher
fluctuations in their measurements make the jumps less visible.

This experiment teaches us that a single polynomial cannot
accurately represent the performance of a routine, even when
all the arguments are fixed, and only the size varies. As a
consequence, the Modeler will generate models in the form of
piecewise multivariate polynomials.

B. The Targeted Models

A performance model represents the performance of a rou-
tine for a fixed implementation, system, and memory locality
situation. Given a set of valid routine arguments, the model
provides estimates on the expected performance in the form
of statistical quantities, such as minimum, average, standard
deviation, and median.

Internally, our models operate as follows. In order to avoid
the curse of dimensionality, only a subset of the routine’s argu-
ments are selected; these are the model parameters. We distin-
guish between two types of parameters: flags, corresponding
to flag arguments, and integer parameters, corresponding to
size (and possibly leading dimension) arguments.

In our models, each combination of flags is treated sep-
arately. In a model with 3 flag parameters, with 2 possible
values each, this would lead to 23 = 8 separate submodels,
representing the performance dependence on the integer pa-

5

rameters.5

Each submodel is essentially a vector-valued multivariate
piecewise polynomial in the following sense. The integer
parameters span a multidimensional space, which is covered
by rectangular regions, in which the behavior is represented
by polynomials. Each polynomial is vector valued with one
value for each statistical quantity.

When the model is used to estimate the performance for
given routine arguments, the following happens: (1) the model
parameters are extracted; (2) the submodel corresponding to
the combination of flags is identified; (3) the region containing
the integer parameter point is found; (4) the polynomial cor-
responding to the region is evaluated, yielding the estimates.

C. The Modeler

In the previous section, we have described the structure
of our targeted performance models. We now introduce the
Modeler, a tool that generates these models automatically.

We skip the technicalities that arise from creating a separate
model for each combination of flags and instead focus on the
generation of piecewise polynomials to model the dependence
of performance on integer parameters. The objective of the
Modeler is to attain accuracy automatically and with as few
measurements as possible. Moreover, although within BLAS
at most three integer parameters are encountered, the Modeler
is designed for arbitrary dimension.

Polynomial Fitting through Least Squares: The approx-
imation of a set of sampling results by polynomials through
least squares fitting is a fundamental task of the modeling
process. A set of n coordinate value pairs (xi, vi) are fitted
with a polynomial p of limited order, such that

n∑
i=1

(p(xi)− vi)2

is minimized. To solve this least squares problem, we use
the function linalg.lstsq() provided by Python’s SciPy
package, which is based on singular value decomposition.

The accuracy of a polynomial approximation p is deter-
mined by the local errors ei = p(xi) − vi. While the used

least squares method minimizes
n∑

i=1

e2i , we use the maximum

relative error across all xi:

erelmax = max
1≤i≤n

|ei|
vi
.

To create the vector valued polynomial for the statistical
quantities, each quantity is separately fitted with a polynomial.
The error erelmax of one quantity is picked to represent the
accuracy of the whole polynomial. In the following, we use
the median for this purpose.

1) Model Expansion: We now introduce the first of two
modeling strategies, Model Expansion. The piecewise polyno-
mial is created according to the following steps.

• The first objective is to build a model for a small region
in a corner of the parameter space; this is accomplished
by fitting a small set of measurements.

5Since there are no more than 4 flag arguments in BLAS routines, the
number of submodels stays well within manageable bounds.

m

n

1 2

3

4

5

6

Fig. III.4: Sequence of steps in the construction of piecewise
models through Model Expansion.

• This initial region is then expanded as much as possible,
by taking new measurements, integrating them in the
model, and checking that
a) the polynomial’s approximation error is below a

given threshold, and
b) the region stays within the boundaries of the param-

eter space.
• Once a region cannot be extended further —because of

either a) or b)— new adjacent regions are generated and
expanded.

The process is repeated until the whole parameter space is
covered.

An example of Model Expansion in two dimensions is given
in Figure III.4. The rectangular domain is filled starting with
region 1 () in the bottom-left corner of the domain. This
region is expanded in both directions until its accuracy reaches
the threshold (). Two new adjacent regions 2 and 3 () are
then created —together with the associated samples— and
their expansion begins. Assuming that region 2 was expanded
as far as possible (), region 4 () is then generated. Once
the expansion for region 3 () is complete, the neighboring
regions 5 and 6 () are created. These 6 models cover the full
parameter space, therefore the process terminates.

2) Adaptive Refinement: The second strategy to generate
piecewise models is based on adaptive refinement. The idea
is to begin with a simple and regular model constructed
from a coarse grid of samples across the whole parameter
space; the quality of such a model is then evaluated. If
insufficient, the region is split and the model is refined by
locally increasing the sample grid resolution. These steps
are applied recursively to the refined regions until either the
accuracy reaches a satisfactory level across the whole domain,
or a given resolution limit is reached.

An example of Adaptive Refinement for a two dimensional
domain is shown in Figure III.5. The polynomial approxima-
tion for the initial region spanning the entire parameter space
is very inaccurate (, 1st square on the left). Therefore it is
refined, generating four new regions, and new measurements

6

accuracy:

good badthreshold

refinement refinement refinement

Fig. III.5: Sequence of steps in the construction of piecewise
models through Adaptive Refinement.

are obtained to create four polynomials (2nd square on the left).
Now, the error in the top right quadrant () is already below
the threshold (); the other quadrants are not accurate enough
and are further refined (3rd square). In the next iteration,
several regions are below the desired error threshold; the
others are refined once more (4th square). Although some of
the resulting polynomials are still above the desired level of
accuracy, they are accepted anyway, because their size does
not allow further refinement.

D. Results

Having introduced two modeling strategies, here we com-
pare the resulting models, both in terms of speed and accu-
racy. We consider again the solution of a triangular system
B ← A−1B as testbed:

dtrsm(side, uplo, transA, diag, side, m, n,
alpha, A, ldA, B, ldB).

The interface of this routine contains four flags (side through
diag), two size arguments (m and n), one scalar argument
(alpha), and operates on two matrices (A and B with cor-
responding leading dimensions ldA and ldB). Out of these
arguments, our models account for

• the flag parameters side, uplo, and transA, and
• the integer parameters m and n.
The integer parameters vary in the range [8 − 1024]

and define the parameter space; the flags are
(side,uplo,transA) = (L,L,N); the values of the
remaining arguments are: diag = N, alpha = 0.5, and
ldA = ldB = 2500. We use the in-cache configuration of
the Sampler and OpenBLAS on the Harpertown processor.

1) Model Expansion: This approach accepts several con-
figuration options:

• the relative error bound ε;
• the direction of expansion d ∈ {↗,↙};
• the initial size of regions sini.
We illustrate the influence of such options on the generation

by presenting models obtained with different settings. The
plots in Figure III.6 show how differently these models cover
the parameter space and display the relative errors.

In Figure III.6a, we used the configuration:
• the error bound is ε = 10%;
• the direction of expansion is d =↗;
• new regions are initially of size sini = 64.

Smaller and less accurately modeled regions are generated
towards the left side of the parameter space. Towards the top

error:
0% 15%10%5%

8 256 512 768 1,024
8

256

512

768

1,024

m

n

(a) ε = 10%, d =↗, sini = 64

8 256 512 768 1,024
8

256

512

768

1,024

m

n

(b) ε = 10%, d =↙, sini = 64

8 256 512 768 1,024
8

256

512

768

1,024

m

n

(c) ε = 5%, d =↙, sini = 64

8 256 512 768 1,024
8

256

512

768

1,024

m

n

(d) ε = 5%, d =↙, sini = 32

Fig. III.6: Model Expansion for dtrsm.

right corner, the regions become larger and the relative error
decreases. In this part of the parameter space, we also find
several areas which are modeled by two or more overlapping
regions6.

In Figure III.6b instead, we let the Modeler expand along
the direction d =↙. We observe the following changes:

• especially towards the top right corner, the generated
regions are larger;

• these regions are of higher accuracy compared to the pre-
vious model, although the error bound was not modified;

• fewer regions overlap.
The average relative error improves from 8.26% to 7.77%,
while the number of required sampling points decreases from
5280 to 2070. We noticed that in general, it is preferable to
expand the models towards the origin (↙).

In Figure III.6c, we reduced the error bound to ε = 5%. As a
result, the average model error improves from 7.77% to 3.87%.
This comes at the cost of an increase in the number of samples:
from 2070 to 2990. As in the previous cases, the accuracy of
the models decreases as the parameter values become smaller;
the least accurate models appear for small values of m.

Finally, in Figure III.6d we decreased the size of the initial
models from s = 64 to s = 32. Interestingly, even though
the model now makes use of only 2710 samples, the average
error decreases from 3.87% to 3.80%. This is due to the fact
that the sample points are shifted, and irregularities present in
the previous models are not captured. From this we conclude
that an index of accuracy generated from used samples is not
always sufficient to capture the global quality of a model.

2) Adaptive Refinement: The generation of models is gov-
erned by two options:

6When the model is evaluated at a point covered by multiple regions, the
most accurate model is selected.

7

error:
0% 15%10%5%

8 256 512 768 1,024
8

256

512

768

1,024

m

n

(a) ε = 10%, smin = 64

8 256 512 768 1,024
8

256

512

768

1,024

m

n
(b) ε = 5%, smin = 64

8 256 512 768 1,024
8

256

512

768

1,024

m

n

(c) ε = 10%, smin = 32

8 256 512 768 1,024
8

256

512

768

1,024

m

n

(d) ε = 5%, smin = 32

Fig. III.7: Adaptive Refinement for dtrsm.

• the relative error bound ε, and
• the minimum region size smin.

The regions resulting from different values of these options
are shown in Figure III.7.

The first model in Figure III.7a was generated with an error
bound of ε = 10% and a minimum region size of s = 64.
The result shows an overall distribution of regions similar to
the model in Figure III.6d of Model Expansion: Smaller and
less accurately modeled regions are predominant for smaller
parameter values — especially for m. Regions on the finest
level are not generated on the lower edges of the parameter
space (beginning at 8), since they would be smaller than smin.
The seemingly rectangular regions are parts of larger regions
that were only partially refined.

In Figure III.7b, the error bound was decreased to ε = 5%.
For such an accuracy to be attained, several of the regions
from the previous model are further refined, especially on the
left side. The increased number of regions is covered by 3560
samples — 970 more than previously. The higher accuracy
requirement leads to a decrease in the average error from
7.17% to 2.41%.

In the next two experiments, Figures III.7c and III.7d, we
decreased the minimum region size to s = 32, maintaining
the error bound ε to 10% and 5%, respectively. This leads to
the generation of many tiny regions. The error bound of 10%
(5%) leads to an average error of 6.20% (1.45%) at the cost
of 3070 (4980) samples.

3) Comparison: Figure III.8 displays, for both modeling
strategies, how many samples are needed to generate models
of a certain accuracy. The models presented in the previous
sections are labeled according to Figures III.6 and III.7. We
are interested in models that attain a high degree of accuracy
with a small number of samples; these are the points laying

0 2,000 4,000 6,000 8,000
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

(a)
(b)

(c)(d)

(a)

(b)

(c)

(d)

#samples

av
er

ag
e

er
ro

r
[%

]

Model Expansion
Adaptive Refinement

Fig. III.8: Model Expansion vs. Adaptive Refinement.

in the bottom left border of the convex hull (envelope) of all
the points.

For relatively few samples, Model Expansion generates
more accurate models ((b) and (d)). However, one should keep
in mind that these models do not necessarily represent the fine
scale behavior of ticks very well. If one is willing to use
a larger number of samples, Adaptive Refinement generates
more accurate models ((c)). If the number of samples is not an
issue, this method has the potential to generate very accurate
models ((d)).

In the experiments performed in the rest of the paper, we
used Adaptive Refinement with configuration (c): ε = 10%
error bound and smin = 32 minimum regions size. This con-
figuration is a good compromise between the model accuracy
and the number of samples.

IV. PREDICTION, RANKING AND OPTIMIZATION

We are finally ready to tackle our main goal: ranking
linear algebra algorithms by performance models. In order
to predict the performance of an algorithm, we start by
analyzing its sequence of subroutine invocations. We use the
models automatically generated by the Modeler to estimate
the performance of such invocations. These estimates are then
accumulated, resulting in the prediction of the algorithm’s
performance. The probabilistic nature of the performance
model allows us to give detailed information on the expected
ranges of the algorithm’s performance.

A. Triangular Inverse L← L−1

We consider four blocked algorithms for the inversion of
a triangular matrix. All these algorithms partition L into 6
submatrices as

L =

 L00 0 0
L10 L11 0
L20 L21 L22

 .

The central matrix L11 is of size b×b (the block-size); the size
of the matrix L00 is initially 0×0, and as the algorithm unfolds,
it increases in steps of size b, until L00 spans the whole matrix
L; the size of L22 decreases accordingly; similarly, the sizes
of the offdiagonal matrices are entirely determined by those
of L00. At each step of this matrix traversal, a sequence of
update statements is performed on the submatrices, such that

8

variant 1 variant 2 variant 3 variant 4 measurements prediction: median average min/max

8 256 512 768 1,024
0

0.2

0.4

0.6

0.8

n

eff
ici

en
cy

(a) Out-of-cache

8 256 512 768 1,024
0

0.2

0.4

0.6

0.8

n

eff
ici

en
cy

(b) In-cache

512 640 768 896 1,024
0.4

0.5

0.6

0.7

0.8

n

eff
ici

en
cy

(c) Zoom and statistical prediction

Fig. IV.1: trinv: Performance predictions vs. observations.

L00 contains a fully computed portion of L−1. Once L00 spans
all of L, L−1 has been computed in place.

The four algorithmic variants presented here differ in their
update statements:

Variant 1
L10 ← L10L00

L10 ← −L−1
11 L10

L11 ← L−1
11

Variant 2
L21 ← L−1

22 L21

L21 ← −L21L
−1
11

L11 ← L−1
11

Variant 3
L21 ← −L21L

−1
11

L20 ← L21L10 + L20

L10 ← L−1
11 L10

L11 ← L−1
11

Variant 4
L21 ← −L−1

22 L21

L20 ← −L21L10 + L20

L10 ← L10L00

L11 ← L−1
11

They are built on top of the BLAS routines dgemm, dtrsm,
and dtrmm; the last statement in each algorithm is a re-
cursive call to an unblocked version of the same algorithm.
They have the following signatures: trinvi(n, L, ldL,
blocksize). We consider their performance with the argu-
ments

trinvi(n
n
, L

L
, n

ldL
, 96

blocksize
),

varying the matrix size n ∈ {8, 16, . . . , 1024}. We consider
the performance metric efficiency, which is computed from
ticks as follows:

efficiency =
1
6n

3 + 1
2n

2 + 1
3n

2 · ticks .

For our performance prediction, we use performance models
for dtrsm, dtrmm, dgemm, and the unblocked versions of
the blocked algorithms7. The models are generated by the
Modeler, with the configuration selected in Section III-D3. For
each algorithm execution, we consider the list of subroutine
invocations, consisting of calls to these routines. For instance,
the execution of variant 1 on a matrix of size 250 with block-
size 100 produces the following invocations:
dtrmm(R, L, N, N, 100, 0, 1, L00, 250, L10, 250)

dtrsm(L, L, N, N, 100, 0, -1, L11, 250, L10, 250)

7Since the unblocked versions are only invoked on small matrices, their
models are limited to values of n below 256.

trinv1(100, L11, 250, 1)

dtrmm(R, L, N, N, 100, 100, 1, L00, 250, L10, 250)

dtrsm(L, L, N, N, 100, 100, -1, L11, 250, L10, 250)

trinv1(100, L11, 250, 1)

dtrmm(R, L, N, N, 50, 200, 1, L00, 250, L10, 250)

dtrsm(L, L, N, N, 50, 200, -1, L11, 250, L10, 250)

trinv1(50, L11, 250, 1).

Each invocation corresponds to the evaluation of the corre-
sponding performance model; the results are then accumulated,
thus generating a performance prediction.

1) Matrix size: Figure IV.1 contains the predictions for
the four algorithm, with varying matrix size. The left and
middle panels refer to in-cache (IV.1b) and out-of-cache
(IV.1a) scenarios, respectively. Since the memory locality of an
actual execution is somewhere in between these two scenarios,
neither of the predictions matches the measurements perfectly:
in-cache overestimates the efficiency of the algorithms, while
out-of cache underestimates it. At this moment we do not yet
attempt the construction of models matching the exact memory
locality scenario of each algorithm; therefore in the following
we use the upper bound on efficiency resulting from the in-
cache models. This prediction ranks exactly all variants for all
problem sizes.

The previous discussion referred to predictions for the
median of the performance. In Figure IV.1c we instead look
at average, minimum, and maximum efficiency; in order to
visualize the interesting features, we only present the top right
portion of the graph (n ≥ 512 and 0.5 ≤ efficiency ≤ 0.8).
The ranges between minimum and maximum () cover
almost all the observations of the corresponding algorithms,
giving a good idea of the expected results; their height is due
to the presence of outliers.

The average () is closer to the measured algorithm
performance than the previously used median. Nevertheless,
relying on the average predictions, is dangerous, since they
are obtained for models generated with an error bound on the
median and are influenced by outliers.

Altogether, we predicted performance for varying matrix
sizes with highly satisfactory results.

2) Block-size: We now turn our attention to our second
point of interest: tuning the block-size to yield the best

9

8 64 128 192 256
0

0.2

0.4

0.6

0.8

1

n

eff
ici

en
cy

variant 1 variant 2 variant 3 variant 4
measurements median average min/max

Fig. IV.2: Block-size optimization for trinv.

efficiency. For this purpose, we fix the matrix size to n = 1000
and vary the block-size:

trinvi(1000
n

, L
L
, 1000

ldL
, blocksize

blocksize
).

The resulting predictions (Figure IV.2) capture very well the
behavior for the most efficient block-sizes (between 48 and
128). For instance, Variant 3 () —the fastest— attains its top
performance with a block-size of 64 according to both the
measurements and our prediction.

The quality of our prediction decreases for very large and
very small block-sizes. For our goal —determining the fastest
algorithm configuration— the low accuracy in regions with
low performance is not an issue. The decreasing accuracy
in the maximum and average performance for variant 4 (),
resulting from measurement outliers in the model generation,
shows that these quantities are less well suited for predictions.
The median on the other hand is very reliable.

3) Sandy Bridge: We now move to a newer CPU architec-
ture: Intel’s Sandy Bridge-EP E5-2670 running at 2.60GHz.
On this system, we use the OpenBLAS library, for which we
generate a new set of performance models. The predictions for
trinv obtained from these models are shown in Figure IV.3.
As for the Harpertown, the least efficient variant is #4 ();
however, on this system the fastest variant is #1 (). Besides,
while on this processor the predictions for some variants are
not as accurate as on the Harpertown, the ranking is still
carried out correctly.

4) Shared memory parallelism: Our modeling strategy ap-
plies well to shared memory architectures too. In this next
experiment, we utilize all the 8 cores of the Sandy Bridge
processor. We achieve parallelism by linking the routines
for matrix inversions with the multithreaded version of the
OpenBLAS library. The performance predictions are obtained
from performance models generated from measurements of the
multithreaded BLAS routines.

The resulting predictions along with measurements of
trinv’s performance are shown in Figure IV.4. The pre-

512 768 1,024
0.4

0.45

0.5

0.55

n

eff
ici

en
cy

variant 1 variant 2 variant 3 variant 4
measurements median average min/max

Fig. IV.3: trinv: Predictions and observations on Sandy
Bridge.

8 256 512 768 1,024
0

5 · 10−2

0.1

0.15

n

eff
ici

en
cy

variant 1 variant 2 variant 3 variant 4
measurements median average min/max

Fig. IV.4: trinv: Predictions and observations on 8 cores.

dictions match the experiments very closely and allow us to
rank the algorithmic variants correctly for all problem sizes.
Moreover, the multithreaded variants exhibit two interesting
features: At about n = 650, variants 3 () and 4 () crossover,
and in contrast to the sequential case, variants 1 () and 2 ()
are faster than variant 3 (). Both these features also appear
in our predictions.

B. Sylvester Equation: Solving LX +XU = C for X

We now study of a more complicated operation: the solution
of the Sylvester equation. This operation, encountered in
control theory, is generally of the form AX + XB = C,
where A ∈ Rm×m, B ∈ Rn×n, and C ∈ Rm×n are given,
and X ∈ Rm×n is to be computed. We consider a special
case, where A and B are lower and upper triangular matrices,
respectively: LX +XU = C.

10

8 256 512 768 1,024
0

0.1

0.2

0.3

0.4

n

eff
ici

en
cy

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

Fig. IV.5: sylv: Predictions (—) vs. observations (•,×).

With CL1CK [7], [8], a tool for the automatic generation
of blocked algorithms, we generated code for 16 algorithmic
variants. Each of them takes as input the three matrices L,
U , and X; X initially contains the input matrix C and is
overwritten with the solution to the equation.

The exemplary update statements for variants 1 and 16
are given below. There, Ω(L,U,Xij) denotes a recursive
invocation to the Sylvester equations solver for the smaller
matrix Xij . The signature of this solver is sylvi(m, n,
L, ldL, U, ldU, X, ldX, blocksize) with i ∈
{1, . . . , 16}.

Variant 1
X01 ← X01 −X00U01

X10 ← X10 − L10X00

X01 ← Ω(L00, U11, X01)

X10 ← Ω(L11, U00, X10)

X11 ← X11 −X10U01

X11 ← X11 − L10X01

X11 ← Ω(L11, U11, X11)

Variant 16
X11 ← Ω(L11, U11, X11)

X12 ← X12 −X11U12

X21 ← X21 − L21X11

X12 ← Ω(L11, U22, X12)

X21 ← Ω(L22, U11, X21)

X22 ← X22 −X21U12

X22 ← X22 − L21X12

These blocked algorithms differ from those for trinvi in
in a number of ways.

• They operate on three matrices, overwriting one of them
with the output.

• The input matrices are of different sizes, and not all of
them are square: L ∈ Rm×m, U ∈ Rn×n, and X ∈ Rm×n.
Moreover, the matrices are traversed along the diagonal as
far as possible and then along the remaining dimension.

• At each iteration, the algorithms perform three recursive
calls to Ω. These operate not only on the X11 ∈
Rblocksize×blocksize but also on the matrix panels X01,
X10, X12, and X21. For the latter, our C implementation
invokes the blocked algorithms recursively; only the small
matrices X11 trigger their unblocked versions.

In our tests, we consider the case

sylvi(n
m
, n

n
, L

L
, n

ldL
, U

U
, n

ldU
, X

X
, n

ldX
, 96

blocksize
).

All matrices are of size n× n, n ∈ {8, 16, . . . , 1024} and we
use 96 as block-size. Figures IV.5 compares our predictions
for these algorithms with corresponding measurements of their
implementations, where

efficiency =
n3 + n2

2ticks .
We observe significantly different performances across algo-
rithms: At n = 1024 variant 1 () is more than 20 times
faster than variant 13 (). Indeed, twelve of the variants
attain a performance below 2%, while the other four reach
values around 20%. In such a scenario, it is first crucial to tell
apart the two groups, and then to correctly rank the four top
variants. Although our individual predictions are not especially
accurate, they fulfill the objective perfectly, separating the
groups, and ordering variants 1 (), 2 (), 5 (), and
6 () as the top most efficient algorithms.

V. CONCLUSION

In this article, we presented an approach to analyze and
model the performance of dense linear algebra routines. Our
goal was to rank a given collection of blocked algorithms
according to their performance and to optimize their configu-
ration, without executing them. Towards this goal, we created
a performance modeling tool, the Modeler, that automatic
generates models for BLAS and LAPACK routines. We intro-
duced two strategies to originate piecewise polynomial models,
to favor either speed or accuracy. Upon creation, the set of
models is stored in an easily accessible repository, for easy
access and evaluation. In order to predict the performance of
a blocked algorithm, the performance models of its building
blocks are then evaluated and combined.

We showed that the approach is applicable to operations
with numerous algorithm variants both on single- and multi-
core systems; experiments confirmed that our predictions are
able to both correctly tell apart the variants according to their
performance, and to identify the optimal algorithmic block-
size.

REFERENCES

[1] J. Cuenca, D. Giménez, and J. González, “Architecture of an
automatically tuned linear algebra library,” Parallel Comput., vol. 30,
no. 2, pp. 187–210, Feb. 2004. [Online]. Available: http://dx.doi.org/10.
1016/j.parco.2003.11.002

[2] J. Dongarra and P. Luszczek, “Reducing the time to tune parallel dense
linear algebra routines with partial execution and performance modelling,”
University of Tennessee Computer Science Technical Report, Tech. Rep.,
2010.

[3] K. Dackland and B. Kågström, “An hierarchical approach for
performance analysis of scalapack-based routines using the distributed
linear algebra machine,” in Applied Parallel Computing Industrial
Computation and Optimization, ser. Lecture Notes in Computer Science,
J. Waśniewski, J. Dongarra, K. Madsen, and D. Olesen, Eds. Springer
Berlin Heidelberg, 1996, vol. 1184, pp. 186–195. [Online]. Available:
http://dx.doi.org/10.1007/3-540-62095-8_20

[4] P. Balaprakash, S. M. Wild, and P. D. Hovland, “An experimental study
of global and local search algorithms in empirical performance tuning,”
in Proceedings of the 10th International Meeting on High-Performance
Computing for Computational Science (VECPAR 2012), July 2012, avail-
able at http://www.mcs.anl.gov/~wild/papers/2012/PBSWPH12.pdf.

[5] R. Iakymchuk and P. Bientinesi, “Modeling performance through
memory-stalls,” ACM SIGMETRICS Performance Evaluation Review,
vol. 40, no. 2, 2012, to appear.

http://dx.doi.org/10.1016/j.parco.2003.11.002
http://dx.doi.org/10.1016/j.parco.2003.11.002
http://dx.doi.org/10.1007/3-540-62095-8_20
http://www.mcs.anl.gov/~wild/papers/2012/PBSWPH12.pdf

11

[6] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A portable interface
to hardware performance counters,” in In Proceedings of the Department
of Defense HPCMP Users Group Conference, 1999, pp. 7–10.

[7] D. Fabregat-Traver and P. Bientinesi, “Automatic generation of loop-
invariants for matrix operations,” in Computational Science and its
Applications, International Conference. Los Alamitos, CA, USA: IEEE
Computer Society, 2011, pp. 82–92.

[8] ——, “Knowledge-based automatic generation of partitioned matrix
expressions,” in Computer Algebra in Scientific Computing, ser. Lec-
ture Notes in Computer Science, V. Gerdt, W. Koepf, E. Mayr, and
E. Vorozhtsov, Eds., vol. 6885. Springer Berlin / Heidelberg, 2011,
pp. 144–157.

	I Introduction
	II Performance
	II-A Performance Metrics
	II-B Performance of dense linear algebra routines
	II-C The Sampler

	III Modeling
	III-A Preliminary Experiments
	III-A1 Flag Arguments
	III-A2 Size Arguments

	III-B The Targeted Models
	III-C The Modeler
	III-C1 Model Expansion
	III-C2 Adaptive Refinement

	III-D Results
	III-D1 Model Expansion
	III-D2 Adaptive Refinement
	III-D3 Comparison

	IV Prediction, Ranking and Optimization
	IV-A Triangular Inverse L <- inv(L)
	IV-A1 Matrix size
	IV-A2 Block-size
	IV-A3 Sandy Bridge
	IV-A4 Shared memory parallelism

	IV-B Sylvester Equation: Solving L X + X U = C for X

	V Conclusion
	References

