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Abstract—Similarity search is one of the most fundamental
computations that are regularly performed on ever-increasing
protein datasets. Scalability is of paramount importance for
uncovering novel phenomena that occur at very large scales. We
unleash the power of over 20,000 GPUs on the Summit system to
perform all-vs-all protein similarity search on one of the largest
publicly available datasets with 405 million proteins, in less than
3.5 hours, cutting the time-to-solution for many use cases from
weeks. The variability of protein sequence lengths, as well as
the sparsity of the space of pairwise comparisons, make this a
challenging problem in distributed memory. Due to the need to
construct and maintain a data structure holding indices to all
other sequences, this application has a huge memory footprint
that makes it hard to scale the problem sizes. We overcome
this memory limitation by innovative matrix-based blocking
techniques, without introducing additional load imbalance.

I. JUSTIFICATION FOR ACM GORDON BELL PRIZE

We unleash the power of over 20,000 GPUs to perform
many-against-many protein similarity search on one of the
largest publicly available datasets with 405 million proteins
in 3.4 hours with an unprecedented rate of 691 million
alignments per second, cutting the time-to-solution for many
use cases from weeks.

II. PERFORMANCE ATTRIBUTES

Performance Attribute Value

Category of achievement Time to solution, alignments per seconds,
cell updates per second (CUPs)

Type of method used N/A

Results reported on the
basis of

Whole application for time to solution
and alignments per second.
Kernel time for cell updates per second

Precision reported Integer

System scale 3364 nodes
(141,288 CPU cores and 20,184 GPUs)

Measurement mechanism Timers

III. OVERVIEW OF THE PROBLEM

Comparative genomics studies the evolutionary and biolog-
ical relationships between different organisms by exploiting
similarities over the genome sequences. A common task, for
example, is to find out the functional or taxonomic contents
of the samples collected from an environment often by query-
ing the collected sequences against an established reference
database. The importance of enabling and building of fast com-
putational infrastructure for comparative genomics becomes
more critical as more and more genomes are sequenced.

Our work addresses the computational challenges posed
by searching similarities between two sets of proteins in the
sequence domain. The use cases of this task in computa-
tional biology are numerous and include functional annota-
tion [1], gene localization and studying protein evolution [2].
In metagenomics the DNA sequences collected from the
environment enable the study of a diverse microbial genome
pool that is often missed by the cultivation-based methods.
Such samples contain millions of protein sequences [3] and
a major component of many biological workflows is to find
out the existing genes by aligning them against a reference
database. With the sequencing costs dropping and the tech-
nology becoming more available, the bottlenecks in metage-
nomics research are gradually shifting towards computation
and storage [4], [5].

We focus on the problem of aligning a set of sequences
against another set of sequences. This problem often occurs
within the context of identifying sequences in one set (set of
query sequences) by using another set of sequences whose
functions are already known (set of reference sequences).
Another context is to find the similar sequences in a given
set by clustering them. In this variant, a many-against-many
search is performed over a set of sequences to find the
similar sequences in the set (often followed by clustering of
sequences). This variant can also be seen as aligning the given
set against itself where the query and the reference set is the
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same. We refer to this as many-against-many protein similarity
search and focus on this search problem in our work.

Our work demonstrates that HPC is a viable fast alter-
native in enabling tree-of-life scale metagenomics research.
Harnessing the power of accelerators which are well suited
to SIMD-type parallelism that are required by the alignment
operations in the search, we develop novel parallel algorithms
and optimization techniques that are able to simultaneously
utilize all resources on the nodes and attain high performance.
The key points in our approach for addressing the described
challenges can be summarized as follows:
• The immense computational resources required by the large-

scale search operations are met by distributed utilization of
accelerators. Compute-intensive alignment operations form
the main computational bottleneck and popular tools in this
field [6]–[8] make use of SIMD parallelism on the CPUs
with vector instructions but they do not utilize accelerators
which are more suited to these types of operations.

• We take advantage of the heterogeneous architecture of the
nodes and hide the overhead of memory-bound distributed
overlap detection component of the search by performing
them on the CPUs simultaneously with the alignment oper-
ations on the accelerators.

• To avoid IO during the search–which are often the method
of choice with distributed tools in this domain when the
scale of the search starts to become infeasible–we develop
a distributed 2D Blocked Sparse SUMMA algorithm that
performs the search incrementally and hence can effectively
control the maximum amount of memory required by the
entire search. In this way, our approach only uses IO at the
beginning and at the end, which are both done in parallel
and constitutes at most 3% of the entire search time.

• By relying on custom load balancing techniques and dis-
tributed sparse matrices as the founding structures whose
parallel performance is well-studied in numerical linear
algebra, we obtain good scalability by attaining more than
75% strong-scaling and 80% weak-scaling parallel effi-
ciency.
The biggest reported protein sequence similarity search on

a supercomputer system to the best of our knowledge was
in 2021 by DIAMOND [6]. This search involved querying
281 million sequences against 39 million sequences on 520
nodes of the Cobra supercomputer at the Max Planck Society
and took 5.42 hours by performing a total of 23.0 billion
pairwise alignments in the very sensitive mode (1.2 million
alignments per second). With our search tool PASITS (Protein
Alignment via Sparse Matrices), we significantly improve this
by performing a search of 405 million sequences against 405
million sequences on 3364 compute nodes of the Summit
supercomputer at Oak Ridge Leadership Computing Facility
Our search took 3.44 hours by performing a total of 8.6 trillion
pairwise alignments at a rate of 690.6 million alignments per
second. Overall, we increase the scale of the solved problem
by an order of magnitude (15.0x) and improve the performed
alignments per second by more than two orders of magnitude
(575.5x).

IV. CURRENT STATE OF THE ART

There are many protein similarity search tools in the litera-
ture and each of them has different search techniques that are
refined over the years. Among the more popular of these tools
are BLASTP [9], MMSeqs2 [7], LAST [10], DIAMOND [11],
and USearch [12]. In terms of parallelism, almost all of the
mentioned tools support some of parallelism with varying
degrees of efficiencies. The libraries such as DIAMOND,
LAST, and MMSeqs2 have great support for on-node paral-
lelism: they can take advantage of vector instructions, can use
multiple cores, have cache-friendly algorithms within them,
etc. Some of these tools such as DIAMOND, MMSeqs2,
or mpiBLAST [13] also run in a distributed setting. Some
of the main shortcomings of these tools’ distributed-memory
parallelization can be summarized as follows:
• In LAST and MMSeqs2, the index data structures for at least

one set of the sequences (queries or targets) are replicated
on each compute node before the search phase, which limits
the largest problems that can be solved. In DIAMOND, they
are written as partitioned chunks into disk, which severely
increases the pressure on the file system.

• The existing software do not have a global view of these
replicas/chunks and the parameters are set per replica, which
results in changing sensitivity with increased parallelism or
memory constraints. For example, the DIAMOND guide
states that “this [block size] parameter affects the algorithm
and results will not be completely identical for different
values of the block size”. By contrast, the PASTIS algo-
rithm give identical results irrespective of the amount of
parallelism utilized and the blocking size chosen.

• These search tools do not support GPUs. The GPUs harbor
a much higher level of SIMD parallelism which are perfect
fits for the pairwise alignments usually utilized in the search,
which greatly enjoy this type of parallelism.
Among the protein search tools that have distributed-

memory support, we further examine MMSeqs2 and DIA-
MOND as these two tools are the current state-of-the-art in
distributed protein similarity search.

MMSeqs2 [7] uses hybrid MPI/OpenMP for distributed-
memory parallelism and has support for SSE and AVX2
vector instruction sets. There are two modes of parallelism
provided according to whether the reference or the query
sequence set is distributed among the parallel processes. In
the first, the reference sequence set is divided into chunks
and distributed among the parallel nodes. In this mode, each
process searches all query sequences against its chunk of the
reference. In the second mode, the query set is divided into
chunks and distributed among the parallel nodes. In this mode,
each process searches its chunk of queries against all reference
sequences. In our earlier CPU-based PASTIS work, we found
our approach to be more scalable than MMSeqs2 [14] and
MMSeqs2 suffering from high IO overheads.

The distributed-memory parallelism in DIAMOND [6] is
geared more towards providing capability to run on commodity
clusters, i.e., cloud computing. In this regard, it avoids using



Fig. 1: Examples of various sparse matrices used in PASTIS.
The types of the elements in each matrix are different and a
sparse matrix can utilize different element types according to
the options provided (such as alignment type).

MPI that may not be found on such clusters and instead heavily
relies on IO operations supported by POSIX-compliant parallel
file systems. DIAMOND divides both the reference and the
query sequence sets into chunks and an element that is in the
cartesian product of these two sets of chunks is referred to as
a work package. These packages are processed in parallel by
worker processes. This workflow makes a distinction between
the parallel shared file system among nodes and the disks local
to nodes. Once the processing of a query chunk against all
reference chunks is complete, the final worker process joins
the results and writes them to an output file. These choices
may have serious performance implications for HPC systems.
Nevertheless, the focus of distributed-memory parallelism in
DIAMOND is the capability to also run on commodity clusters
and fault tolerance, rather than high performance.

V. PROTEIN SIMILARITY SEARCH PIPELINE

Our approach for the protein similarity search problem
consists of three main components: (i) discovery of candidate
pairwise sequences which may harbor a certain degree of
homology, (ii) batch alignment of the discovered candidate
sequences, and (iii) forming the protein similarity graph from
the information obtained in the alignment. In the discovery
of the candidate pairwise sequences, PASTIS has the option
to introduce substitute k-mers that are m-nearest neighbors
of a k-mer or plugging in a reduced alphabet [15], both of
which can enhance the sensitivity. It can make use of different
alignment libraries and algorithms within them and can seam-
lessly integrate common sequence alignment metrics such as
average nucleotide identity and coverage in the formation of
the similarity graph. These options enable PASTIS to reach
out different regions of the overall search space and increase
the effectiveness of the search.

The basic information storage and manipulation medium
PASTIS is sparse matrices. They are used to represent different
types of information required throughout the search. For in-
stance, k-mer information in sequences are captured in a sparse
matrix whose rows and columns respectively correspond to
sequences and k-mers and a nonzero element in this matrix
indicates the existence of a specific k-mer in a specific
sequence. Apart from being one of the most well-studied and
optimized structures in parallel linear algebra, sparse matrices
provide flexibility in the sense that any arbitrary information
can be encapsulated within these elements, such as location,
score, etc. Figure 1 illustrates some of the sparse matrices

Fig. 2: Semiring algebra allows PASTIS to express compu-
tations in similarity search through sparse operations. Here
illustrated a simple example to discover a candidate pair for
alignment.

utilized in PASTIS and it can be seen that these matrices
easily allow to store and manipulate any necessary information
required by our similarity search pipeline.

Although sparse matrices are very common and widely used
in the field of linear algebra, their utilization and importance
have recently started to gain momentum in graph computations
thanks to the GraphBLAS standardization efforts [16]. The ba-
sic motivation is to express graph computations in the language
of linear algebra and by doing so utilize decades of algorithmic
and optimization work in sparse linear algebra within the graph
computation frameworks. Different from the matrix operations
expressed in linear algebra, the operations on graphs usually
require different operators to perform computations on sparse
matrices. For example in PASTIS, the discovery of candi-
date pairwise sequences is expressed through an overloaded
sparse matrix sparse matrix “multiplication”, in which the
elements involved in this operation are custom data types and
the conventional “multiply-add” operation is overloaded with
custom operators, which are known as semirings. Semiring
algebra allows to express graph operations through operations
on sparse matrices and we utilize various semirings to enable
different types of alignments (Figure 2).

A. Software stack and parallelism

Our protein similarity search pipeline utilizes several li-
braries and orchestrates them in a distributed setting. For
distributed sparse matrices and computations on them, it
relies on CombBLAS [17] – a distributed-memory parallel
graph library that is based on arbitrary user-defined semirings
on sparse matrices and vectors. For parallel alignment, it
utilizes SeqAn C++ library [8] and ADEPT [18]. Among these
libraries, CombBLAS supports MPI/OpenMP hybrid paral-
lelism, SeqAn supports node-level shared-memory parallelism
with vectorization, and ADEPT supports node-level many-core
parallelism Apart from those PASTIS itself directly makes
use of MPI/OpenMP hybrid parallelism. The software stack
of PASTIS is illustrated in Figure 3.

An important design choice in our approach is to separate
the parallelism level used for alignment and other components.
For alignment, we deliberately prefer on-node libraries that are
able to exploit different aspects of parallelism found on the



Fig. 3: PASTIS utilizes different libraries and is able to make
efficient use of both CPU and GPU resources found on a node.

node such as threads, CPU vector instructions, or fine-grained
parallelism on GPUs. These on-node alignment libraries are
handled in PASTIS through distributed sparse matrix compu-
tations for which there already exist fast and optimized data
structures and algorithms. The key to high performance, as
we demonstrate in our work, is the good orchestration of on-
node and node-level parallelism with techniques that are able
to overcome the performance bottlenecks.

CombBLAS [17] uses a 2D decomposition for distributed
sparse matrices in which the the matrices are partitioned into
rectangular blocks. It uses a square process grid with the
requirement of number of processes to be a perfect square
number. It supports compressed sparse column and doubly-
compressed sparse column sparse matrix storage formats [19]
and contains fast and state-of-the-art algorithms for com-
plicated operations like SpGEMM, being able to run such
operations efficiently both on-node level [20] and on massive
scale [21].

ADEPT [18] is a GPU accelerated sequence alignment
library that supports both DNA and protein sequence align-
ments. It uses a combination of inter- and intra-task parallelism
approach to realize the full Smith-Waterman sequence align-
ment on GPUs. ADEPT derives its performance from efficient
use of GPU’s memory hierarchy and exploiting fast register-
to-register data transfers for inter-cell communications while
computing the dynamic programming matrix. ADEPT has
CUDA, HIP, and SYCL ports being able to utilize NVIDIA,
AMD, and Intel GPUs, respectively. ADEPT’s driver class
works as an interface between the calling application and the
GPU kernels, the driver detects all the available GPUs on a
node and distributes alignments across all the available GPUs.
A unique C++ thread handles data packing and transfers (to
and from GPU) for each GPU.

B. Performance characteristics

Computational patterns. The two basic types of computa-
tions performed in our protein similarity search pipeline are
the sparse computations and edit distance computations re-
quired in the alignment. The former is memory-bound having
low computational intensity and high memory footprint with
irregular access patterns while the latter is compute-bound
having high computational intensity and a uniform pattern
in computing the edit distance matrices, which are small
and dense. Taking into account the fact that most alignment
libraries are able to achieve high performance through SSE
and AVX vector instruction sets (as is the case in SeqAn
utilized by PASTIS) and these are not supported by IBM
PowerPC processors on Summit, we dedicate GPU resources

solely for alignment and utilize CPU resources for memory-
intensive sparse computations. Considering the mentioned
characteristics of these computations, the accelerators are more
suited for alignment than for sparse computations. For this
reason, we rely on ADEPT (see Figure 3) for alignment, which
has on-node multiple accelerator support. This library also uses
resources on the CPU but they constitute a small percentage
of the alignment.
Memory requirements. Many-against-many protein similar-
ity search requires huge amount of memory and the existing
libraries in this area have various techniques to deal with
this issue ranging from writing intermediate files to disks
to performing the search in stages. For a modest dataset
containing 20 million sequences, one usually needs to store
hundreds of billions candidate alignments and need to perform
tens of billions of alignments. The memory required by such
a relatively small-scale search can quickly exceed the amount
of memory found on a node. Moreover, one also needs
additional data structures to efficiently perform the search. For
example, the method to discover candidate alignments in our
approach uses a parallel SpGEMM, which usually needs much
more intermediate memory than the actual storage required
by the found candidates. This factor, the average amount of
intermediate results computed and stored per output element,
is called the compression factor, and even with a modest value
between 1 and 10 that are often seen in genomics datasets, it is
clear that memory management must be given special attention
in many-against-many search. Finally, the number of candidate
pairs that need to be stored and aligned grows quadratically
with the number of sequences in the search, which makes the
similarity search over huge datasets even more challenging in
terms of memory requirements.
I/O and communication. PASTIS uses parallel MPI I/O
for input and output files. The input to PASTIS is a file in
FASTA format (a very common file format in bioinformatics
to represent nucleotide and protein sequences) and the output
is the similarity graph in triplets whose entries indicate two
sequences and the similarity between them. The output file
is typically larger than the input file. The communication in
PASTIS can be categorized into two as the communication
required for the sequences and for sparse computations. The
overhead of the former is effectively hidden by performing
it in a non-blocking manner till they are required, which
is when the pairwise alignments are to be performed. The
communication (and computation) required by the most sparse
computations can also be hidden given that the nodes have
accelerator support. We investigate this issue in Section VI-C.
Compared to memory and computational issues described so
far, I/O and communication bottlenecks usually constitute less
of a problem in our approach in performing many-against-
many protein similarity search. Typically, IO takes no more
than 3% of the overall execution time in PASTIS.

VI. INNOVATIONS REALIZED

We address the computational challenges posed by the
distributed protein similarity search mainly with three novel



Fig. 4: Discovery of the candidate alignments via Blocked 2D Sparse SUMMA and incremental similarity search.

techniques. The main performance bottleneck, huge memory
requirement of the search, is addressed via proposing a blocked
variant of the 2D Sparse SUMMA utilized in the distributed
formation of the overlap matrix (Section VI-A). By relying on
the observation that the overlap matrix is symmetric (similarity
graph is undirected), we propose techniques to avoid signif-
icant amount of sparse computations and two different load-
balancing schemes that exhibit different behavior based on the
blocking factors and are able to achieve good computational
load balance (Section VI-B). We then describe a technique
that hides the overhead of memory-bound sparse computations
as well as certain communication operations (Section VI-C).
We validate the proposed innovations on small-scale datasets
containing a few tens of millions sequences. All experiments
are conducted on the Summit system (see Section VIII for
specs). For all the experiments reported, we use 1 MPI task
per node and utilize all 42 cores and 6 GPUs on each node.

A. Blocked 2D Sparse SUMMA

In our approach, the candidate sequences are discovered
through a parallel SpGEMM which produces an overlap matrix
that contains pairs of sequences to be aligned. The memory
required by candidate pairs are huge and the motivation
for blocked formation of the candidate pairs rests on the
observation that only a fraction of them are actually similar.
Using the information available before and after the alignment
(common number of k-mers, nucleotide identity, coverage,
etc.), typically only less than 5% of the candidate pairs end up
in the final similarity graph. Therefore, incremental similarity
search can greatly reduce the memory used.

The algorithm for parallel SpGEMM of form C = AB used
for the computation of the overlap matrix is the 2D Sparse
SUMMA algorithm [22]. For our analyses, we assume the
matrices are square having a dimension of n for rows/columns
and the elements of the sparse matrices are distributed uni-
formly. Given p parallel processes, this algorithm proceeds in√
p stages in which certain sub-matrices of the input matrices

are broadcast and partial results for the output matrix are
computed. Assuming that the collective broadcasts use a tree

algorithm [23], its communication cost is given by

2α
√
p log

√
p+ 2βs

√
p log

√
p,

where s is the number of nonzeros in a sparse sub-matrix of
dimensions n/

√
p×n/√p, α is the message startup time and

β is the per-word transfer time.
We generalize the 2D Sparse SUMMA algorithm with

arbitrary blocking factors in order to form the output matrix
in blocks. We form the output matrix in SpGEMM in br× bc
blocks, where br and bc are respectively row and column
blocking factors. In the computation of the output block
C(r, c) required are the row stripe A(r, ∗) and the column
stripe B(∗, c). Originally, the input matrices are distributed
among p processes in a

√
p×√p grid. Therefore, to be able

to compute the output matrix in blocks, A must be split into br
row stripes and B must be split into bc column stripes. Each
of these row and column stripes must be distributed among√
p×√p process grid. The left of Figure 4 displays how the

input matrices are distributed among four processes organized
into 2× 2 grid for a 3× 4 blocking and the sub-matrices used
in the computation of C(1, 1).
Communication costs. Compared against the plain SUMMA,
the blocked variant increases the communication overhead as
the input matrices need to be broadcast multiple times. As
mentioned earlier, the memory requirement is one of the main
bottlenecks in the similarity search. In addition, as will be
described in Section VI-C, the overhead of the output block
computations can be hidden to a large degree, i.e., overheads
of both the broadcasts and local sparse computations. Nev-
ertheless, the increase in the communication cost might be
prohibitive when there are a lot of blocks and if its overhead
cannot be hidden. The overall communication cost of blocked
variant is given by

2α(br · bc)√p log√p+ βs(br + bc)
√
p log

√
p.

From similarity search perspective, the advantages and
disadvantages of blocked 2D Sparse SUMMA are as follows:

• Enables similarity search over huge datasets and reduces
the consumed memory required by many-against-many
sequence alignment.
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Fig. 5: The effect of increasing number of blocks on the
runtime of sparse and alignment components.

• Opens the path for different types of optimizations and
hence able to further reduce the overall time required
by the search significantly. Up to 30% reduction in
the overall runtime can be obtained with the techniques
described in Section VI-B and VI-C, which complement
the blocked formation.

• It increases the time required to discover candidate align-
ments due to increased communication and split sparse
computations.

Figure 5 plots the parallel runtime of various components
of the similarity search against increasing number of blocks
on a dataset containing 20 million sequences over 100 nodes
of Summit. Compared to performing the entire search at
once, i.e., when number of blocks is 1, there is an average
increase of 10-15% and 40-45% in the runtime of alignment
and multiplication, respectively, with the increase in overall
runtime being around 30%. We note that this search could not
be performed on fewer nodes using only one block, which
indicates the severity of the memory required.

B. Load balancing techniques

The overlap matrix C in the similarity search is computed
to generate the candidate sequences that will be aligned. The
rows and the columns of this sparse matrix represent the
sequences and each nonzero element of it corresponds to a
pairwise alignment that needs to be performed. The nonzero
elements contain custom information that are needed by the
alignment or filtering (such as seed locations in the sequences,
common k-mer counts, etc). When computed in parallel using
the Blocked 2D Sparse SUMMA algorithm, each block of
the overlap matrix is distributed among all p processes in the√
p×√p grid.
The overlap matrix is symmetric: the nonzeros Cij and Cji

indicate that an alignment needs to be performed between
sequences i and j. This has computational implications for
how the search is performed in our work. First, roughly half
of the elements in this matrix may not need to be computed in
the multiplication. Secondly, these also need not be aligned.
Finally, with blocked formation of this matrix, good load
balancing necessitates custom methods that take into account
all the mentioned conditions. To this end, we propose two
different schemes.

Fig. 6: Triangularity-based (left) vs. index-based load balanc-
ing (right).

Triangularity-based load balancing. In the first load balanc-
ing scheme, we only compute the blocks whose intersection
with the strictly upper triangular portion of the overlap matrix
is non-empty. The blocks in this way can be categorized into
three as full, partial, and avoidable as illustrated in left matrix
in Figure 6, where full blocks are colored in green, partial
blocks in yellow, and avoidable blocks in white. The full
and the partial blocks need to be computed in the Blocked
2D Sparse SUMMA, while the avoidable blocks are neither
computed nor aligned. The elements in the full blocks all
require an alignment while the the elements in the partial
blocks may or may not require an alignment depending on
they are in the lower or upper triangular portion of the overlap
matrix. As these blocks are distributed among all processes
in the process grid, the partial blocks may lead to load
imbalance especially when their intersection with the strictly
upper triangular portion is small. For instance in the overlap
matrix in left of Figure 6, assuming a 2 × 2 process grid,
three processes will stay idle when performing alignments
in the block that is in the intersection of second row and
column. In contrast, the load balance of full blocks is better
than the partial blocks and the number of full blocks grows
quadratically with increasing number of blocks while the
number of partial blocks grow linearly.
Index-based load balancing. In the second load-balancing
scheme, we compute all the blocks and prune the blocks
in a manner to preserve the original nonzero distribution of
the overlap matrix, which is usually uniform. In the lower
triangular portion of the matrix, we keep a nonzero if its row
and column indices are both odd or both even; and in the upper
triangular portion of the matrix, we keep a nonzero if its row
index is odd and its column index is even or vice versa. This
process is illustrated at right matrix in Figure 6 for a 3 × 3
blocking. This scheme prunes roughly half of each block while
respecting the symmetricity of the matrix and ensuring each
pair of sequences will be aligned only once.
Comparison. The two proposed load-balancing schemes incur
same amount of alignment computations. The triangularity-
based load balancing scheme favors saving from sparse com-
putations at the expense of sacrificing from load balance in
the partial blocks. The load balance in full blocks of this
scheme however should be as good as the load balance in
blocks of the index-based load balancing. The index-based
load balancing aims for better load balancing at the expense
of computing each block. Another aspect these two schemes
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Fig. 7: Comparison of two load balancing schemes on 64
processes. The three points on a vertical line in the plots at the
top and bottom left illustrate the load imbalance by capturing
the minimum, average, and maximum values attained by the
parallel processes in the respective metric that is measured.

differ is how they change the structure of the blocks of the
overlap matrix. The index-based scheme preserves the uniform
structure of the blocks in the overlap matrix to a large extent,
which should lead to better memory access pattern compared
to the triangularity-based load balancing.

We compare these two load-balancing schemes on a dataset
containing 20 million sequences on 64 nodes of Summit in
Figure 7. In Figures 7a, 7b, and 7c, each vertical bar in the
plots illustrate the average, minimum, and maximum quantities
attained by the parallel processes in the respective metric. As
seen in Figure 7a, the index-based method is able to attain
better load balance than the triangularity-based method for all
tested block counts. The load balance of the triangularity-based
method tends to get better with increasing number of blocks.
This is because the ratio of the partial blocks, which are the
main cause of load imbalance in this method, decreases with
increasing number of blocks.

Although alignment time can be said to be directly pro-
portional to the number of alignments, a better metric is
the summation of the sizes of the edit distance matrices as
the sequence lengths are different from each other and the
alignment algorithm used in this work is a variant of the
Smith-Waterman algorithm [18] which computes the entire
distance matrix. The load imbalance in this metric is presented
in Figure 7b. The index-based method has again better load
balance than the triangularity-based method in this metric.
Note that the objective of both load balancing methods is
the number of aligned pairs (i.e., Figure 7a) and the index-
based method achieves very good load balance in it. This
is reflected in the load imbalance in actual time spent in
alignment in Figure 7c, where the index-based method attains

better performance.
Finally, the effect of the main advantage of the triangularity-

based method, being able to save sparse computations, can
be seen in Figure 7d. It is able to attain shorter runtime
for sparse computations as it is able to avoid a great deal
of such computations. When the effect of this method’s load
imbalance is low (i.e., when number of blocks is high), it is
able attain better total runtime than the index-based method.
As seen in Figure 7d, for block counts {5, 10, 15, 20}, the
index-based method attains better runtime while in the rest
the triangularity-based method attains better runtime due to
its ability to avoid sparse computations despite its longer
alignment time.

C. Pre-blocking

The blocked formation of the similarity graph results in
an iterative pipeline in which the graph is constructed in-
crementally (as seen in Figure 4). The components of this
pipeline are executed on CPU or GPU resources on the nodes.
The heterogeneous node architecture and the capability to
perform the compute-bound batch pairwise alignments–which
are amenable for SIMD type of parallelism–on GPUs allow
our approach to perform similarity search by utilizing all
compute and memory resources on a node. We further propose
an optimization technique, which we refer to as pre-blocking,
based on the pre-computation of the sparse blocks containing
candidate pairs. The goal of pre-blocking is to increase the
efficiency of resource utilization on a node and hence reduce
the overall search time.

In the incremental formation of the similarity graph, the
alignments are performed on GPUs after discovering them
through sparse computations, which are performed on CPUs.
While the alignments are performed in a distributed manner, a
big portion of CPU resources is idle and the sparse computa-
tions regarding the next block or blocks can actually begin. In
this way, the candidate pairs for the next set of alignments can
be discovered in advance and made ready for alignment. Note
that this discovery is a fully-fledged distributed SpGEMM
with its collective communication operations and memory-
bound computations. Hence, the ability to hide them can prove
invaluable by resolving both of these bottlenecks at the same
time.
Thread management. PASTIS and the graph library used for
sparse computations CombBLAS heavily rely on OpenMP for
on-node parallelism. Although the alignment library ADEPT
performs alignments on GPUs, it still uses CPU resources for
pre- and post-processing. Specifically, it uses as many C++
threads as there are GPUs on a node. We dedicate as many
threads as the number of devices on a node to ADEPT and
use the rest of the threads for pre-blocking. The affinities of
the threads used by ADEPT are set according to which CPU
socket they are attached to.
Comparison. The main trade-off of the proposed pre-blocking
technique is that at the expense of slightly using more memory
(the memory required to compute and store the next block



TABLE I: The effect of pre-blocking for index- and triangularity-based load balancing methods.
time w/o pre-blocking (sec.) time w/ pre-blocking (sec.) normalized

load balancing blocks align sparse sum total align sparse sum total align sparse total efficiency (%)

index-based

10 627 582 1209 1555 722 663 740 1090 1.15 1.14 0.70 97.6
20 667 582 1249 1606 765 726 793 1123 1.15 1.25 0.70 96.4
30 705 586 1291 1659 804 767 842 1163 1.14 1.31 0.70 95.5
40 740 590 1330 1724 836 801 873 1203 1.13 1.36 0.70 95.7
50 774 596 1370 1774 871 841 919 1245 1.13 1.41 0.70 94.8

triangularity-based

10 610 465 1076 1812 674 610 864 1468 1.10 1.31 0.81 78.0
20 634 411 1045 1641 694 571 844 1320 1.09 1.39 0.80 82.2
30 658 394 1052 1602 716 574 857 1287 1.09 1.46 0.80 83.5
40 674 388 1062 1609 731 585 867 1286 1.08 1.51 0.80 84.3
50 692 362 1053 1548 749 568 844 1243 1.08 1.57 0.80 88.7

or blocks), it hides the SpGEMM overhead used in discover-
ing candidate sequence pairs. Although the similarity search
requires extensive amount of memory, the extra memory
consumption of the pre-blocking should be low as long as
the number of pre-computed blocks is small. On Summit, we
found that in most of our runs the time spent in alignment
and sparse computations have a ratio of no more than 2:1.
The number of blocks to pre-compute should depend on this
ratio and can be adjusted. In our experiments we always pre-
compute only the next block. The pre-blocking is expected to
increase the time spent in both the alignment and the sparse
computations because these components are now computed
concurrently and the computational and memory resources on
the CPU have to be shared by both. However, the overall
runtime with the pre-blocking is reduced from the summation
of these components to the maximum of them, even if that
maximum is slightly increased.

Table I presents various metrics that evaluate the effi-
ciency of the pre-blocking technique. We compare index-
and triangularity-based load balancing methods with and
without pre-blocking for five different number of blocks
{10, 20, 30, 40, 50}. We assess the time spent in alignment,
sparse multiplication, summation of these two, and the overall
execution time (in the first two big column titles). Note that
the “sum” column with the pre-blocking gives the actual
obtained time instead of the plain summation of the “align”
and “sparse” columns. Under the normalized column title,
the values obtained with pre-blocking is normalized with
respect to those obtained without pre-blocking. Finally, the last
column evaluates the efficiency of the pre-blocking technique.

As seen in Table I, although the pre-blocking scheme
increases the time spent in alignment and sparse computations,
it is able to hide the overheads of the former to a great extent
and reduce the runtime by 30% for the index-based scheme
and 20% for the triangularity-based scheme. The efficiency
of the pre-blocking in the triangularity-based load balancing
scheme is lower than that of the index-based scheme (around
80% vs. 95%), which can be explained by the fact that the load
imbalance found in that scheme adversely affects the efficiency
of pre-blocking. In summary, the pre-blocking technique can
be said to be more effective for the index-based load balancing
and in both load balancing schemes it is able to reduce the
overall runtime significantly.

VII. HOW PERFORMANCE WAS MEASURED

There are three types of reporting mechanisms used in our
work. The first type is the timers. These simply measure the
elapsed time for certain types of components such as the
time spent in alignment, sparse computations, IO, or the total
runtime, etc. The load imbalance for some of the experiments
in Section VI is taken by measuring the minimum, average,
and maximum time spent in the respective component by
all the processes. The second reported metric is alignments
performed per second. In this metric, we consider the entire
parallel runtime and record the number of total pairwise
alignments performed and divide the latter by the former.
The final metric is cell updates per second. This metric is
typically utilized within the context of measuring performance
of alignment algorithms and it indicates how many cells the
utilized algorithm updates in a second. For this metric we only
use the time spent in the alignment kernel, i.e., the forward
scoring time in the Smith-Waterman algorithm and divide the
number of updated cells by this value.

VIII. PERFORMANCE RESULTS

This section increases the scale of the experiments con-
ducted compared to the evaluations in Section VI to examine
the parallel performance of PASTIS. We conduct our eval-
uation on the IBM system Summit at OLCF. This system
consists of 4608 IBM Power System AC922 nodes and each
node is equipped with two 22-core 3.8 GHz IBM POWER9
processors and six NVIDIA Tesla V100 accelerators each of
which has 80 streaming multiprocessors. On each node there
is 512 GB of CPU memory and a total of 96 GB of HBM2
memory for accelerators. The nodes are connected with a dual-
rail InfiniBand network in a non-blocking fat tree topology.

We investigate the strong and weak scaling behavior in Sec-
tion VIII-A and VIII-B, respectively. For these experiments,
we stay below 1000 nodes with the largest number of nodes
used for strong scaling experiments being 400 and for weak
scaling 784. In the last part of this section (Section VIII-C), we
demonstrate our full-scale run using 3364 nodes of Summit.

A. Strong scaling

We assess the strong scaling performance for both the index-
based and the triangularity-based load balancing schemes. We
use a dataset containing 50 million sequences and scale our
approach on {49, 81, 100, 144, 196, 289, 400} nodes. We use
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Fig. 8: Strong scaling performance. The annotated values in the plots indicate the attained parallel efficiency (%).

TABLE II: Sequence communication wait (cwait) and IO time
percentage in overall runtime.

index-based triangularity-based

#nodes cwait% IO% cwait% IO%

49 0.14 0.68 0.14 1.37
81 0.17 0.70 0.17 1.39

100 0.18 0.78 0.19 1.39
144 0.21 0.87 0.22 1.45
196 0.23 0.97 0.25 1.54
289 0.23 1.48 0.27 1.62
400 0.27 1.98 0.31 2.77

1 MPI task per node and use all the cores and accelerators
on each node. We use a blocking factor of 8 × 8 in forming
the similarity graph with pre-blocking enabled. The number
of performed alignments for this dataset is 86.5 billion and
the entire overlap matrix (i.e., with all blocks) contains 1.99
trillion elements in the index-based scheme and 1.12 trillion
elements in the triangularity-based scheme.

Figure 8a illustrates the strong scaling of PASTIS by
plotting the parallel runtime. The dashed line in the figure
indicates the ideal case. Scaling from 49 nodes to 400 nodes,
the index-based load balancing scheme attains a 66% parallel
efficiency and the triangularity-based load balancing scheme
attains a 76% parallel efficiency. The better efficiency of the
latter can be attributed to its avoidance of significant amount
of sparse computations, despite having worse load balance.

In Figures 8b and 8c we plot the speedup rates of dif-
ferent components. For both of the schemes, it is seen that
the computationally intensive component “align” (which is
performed on accelerators) exhibits better scalability: 78% and
87% parallel efficiency for the index-based and triangularity-
based schemes, respectively, on 400 nodes. The efficiency of
sparse operations is around 60% for both schemes. With the
proposed algorithmic innovations, we are able to overcome the
overhead of the sparse computations–whose runtime consti-
tutes a significant portion of the overall runtime (Figure 7d)–
to a large extent and lose only 11%-12% efficiency due to
them. We note that there are sparse computations that cannot
be avoided via pre-blocking. Although the IO scalability is
somewhat erratic, this component constitutes a very minor
portion of the overall runtime to be a bottleneck.

Table II presents the overall percentage of IO time and wait
time for sequence communication to complete. PASTIS does

not need the sequences until the alignments begin and it uses
nonblocking communication for them by starting their transfer
right after reading the input sequences. The waiting time for
these communication operations is negligible. IO also does not
constitute a bottleneck, largely due to efficient MPI IO. The
sum of the percentages of these two components is usually
less than 3% of the overall runtime.

B. Weak scaling

We examine the weak scaling behavior of our similarity
search pipeline for the index-based load balancing scheme.
We vary the number of sequences as we increase the number
of nodes {25, 49, 100, 196, 400, 784}. The number of align-
ments scales quadratically with the number of sequences. This
can also be said to be valid for a majority of the sparse
computations as flops in the complexity of the sparse matrix
multiplication is proportional to the number of output elements
(assuming the compression factor stays the same). Hence, we
use a factor of

√
x for the number of sequences when we

increase the number of processes by a factor of x. As a result,
we start with 20 million sequences at 25 nodes and use 28,
40, 56, 80, and 112 million sequences for 49, 100, 196, 400,
and 784 nodes, respectively. Figure 9 and Table III present the
obtained results.

The alignment component exhibits better weak scaling
efficiency as seen in Figure 9. Overall, all components except
IO can said to be exhibiting good weak scaling behavior. As
mentioned before, IO constitutes a very small portion of the
parallel runtime and this issue does not seem to be affecting
the overall weak scaling efficiency, which stays above 80%.

C. Similarity search at scale

In this section we perform a many-against-many similarity
search on a dataset containing 405 million protein sequences.
This dataset was created by clustering and assembling 1.59
billion protein sequence fragments in more than two thousand
metagenomic and metatranscriptomic datasets [24]. We use a
subset of the non-redundant variant in which the subfragments
that can be aligned to a longer sequence with 99% of their
residues and a sequence identity of 95% are eliminated1.

1https://metaclust.mmseqs.org/current release/

https://metaclust.mmseqs.org/current_release/


20 32 64 128 256 512 800
number of nodes

0.2

0.4

0.6

0.8

1.0

ef
fic

ie
nc

y

weak scaling efficiency

total
align
SpGEMM
sparse (all)
IO
ideal

Fig. 9: Weak scaling of
different components.

#nodes #seqs. #aligns.

25 20M 13.5B
49 28M 26.7B

100 40M 55.1B
196 56M 108.9B
400 80M 225.4B
784 112M 452.4B

TABLE III: Number
of

sequences
and alignments.

Table IV presents the parameters used in the experiment and
the program, and gives details about the obtained results.

Our production run used 3364 nodes (73% of the whole
Summit system) and completed the entire search in 3.44
hours. In total, it discovered 95.9 trillion candidate pairwise
alignments, of which it performed 8.6 trillion, and 1.1 trillion
of these passed the ANI and coverage thresholds ending up
in the final result of the search. It sustained a rate of 690.6
million alignments per second and achieved a peak rate of
176.3 TCUPs.

We used 1 MPI task per node and at each node 42 cores
and 6 GPUs. We used a total of 400 blocks with a blocking
factor of 20 × 20 for the Blocked 2D Sparse SUMMA. For
the performance-related parameters that are described in this
work, we enabled pre-blocking and utilized triangularity-based
load balancing scheme due to its better performance in larger
block counts. A further breakdown of the overall execution
time is presented at the bottom of Table IV.

We attempted to run both DIAMOND and MMSeqs2 on
sizable datasets containing 50, 100, and 200 million sequences
to perform many-against-many search. Both of these two
search tools rely on SSE and AVX vector instructions for
fast alignments. These instruction sets do not exist on the
processors of the Summit system. For this reason, we tried
using Cori system at NERSC, which is a CPU-based system
with Intel processors and support for these types of vector
instructions. For MMSeqs2, we started with small number of
nodes, i.e., 64 nodes for the 50 million sequence subset but
it was not able to complete this run in 6 hours. We also tried
50 million and 100 million sequence subsets on 256 nodes
but again they were not able to complete in 12 hours. We
used a sensitivity value of 5.7 for MMSeqs2 in these tests.
For DIAMOND, we tried 100 million sequence subset on 150
nodes and 200 million sequence subset on 400 nodes with
both failing with errors. We tried both very sensitive and ultra
sensitive modes for DIAMOND. We were able to complete the
50 million sequence subset for DIAMOND on 4 nodes in the
default mode (fast mode). This run completed in 22 minutes
sustaining around 60k alignments per second. This value was
much lower than what the authors obtained when running on
higher sensitivity modes and larger number of nodes. For this
reason, we compare our run results with those of DIAMOND

TABLE IV: Parameters, results, and statistics of our large-
scale production run.

Experiment parameters

System Summit at OLCF
Number of nodes 3364
Process grid (2D) 58× 58
Cores per process 42
GPUs per process 6
Compiler (CPU) GNU gcc 9.1.0
Compiler (GPU) CUDA nvcc 11.0.3
MPI Spectrum MPI 10.4

Program parameters

Number of input sequences 404,999,880
k-mer length 6
Gap open penalty 11
Gap extension penalty 2
Common k-mer threshold 2
ANI threshold 0.30
Coverage threshold 0.70
Blocking factor 20× 20
Load balancing Triangularity-based
Pre-blocking Enabled

Results

Discovered candidates 95,855,955,765,012
Performed alignments 8,552,623,259,518 (8.9%)
Similar pairs (output elements) 1,048,288,620,764 (12.3%)
Search space 1.6e17
Alignment space 5.2e-5
Output (file size) 27 TB
Runtime 3.44 hours
Alignments per second 690,609,577
Cell updates per second 176.3 TCUPs

Breakdown & other

Time
Align 2.62 hours
SpGEMM 2.06 hours
Sparse (all) 2.22 hours
Pre-blocking 2.62 hours
IO 12.0 minutes
Communication wait 0.2 minutes

Imbalance (%)
Alignment 7.1
Sparse 3.1

Sequence by kmer matrix
Dimensions 404,988,624 × 244,140,625
Elements 48,824,292,733

which are reported very recently on an another supercomputer
system Cobra at the Max Planck Society [6].

We compare the performance results of our run with that
of reported by DIAMOND [6]. As reported in their work,
DIAMOND completed a search of 281 million query se-
quences against a reference database of 39 million sequences
on 520 nodes, taking 5.42 hours and performing 23.0 billion
alignments in the very sensitive mode and taking 17.77 hours
and performing 23.1 billion alignments in the ultra sensitive
mode. Considering the former, this translates into 1.2 million
sequences per second in a many-against-many search space of
281 × 39 × 1012 sequences. Our run attained 690.6 million
sequences per second in a search space of 405 × 405 × 1012

sequences. Our experiment conducted the search in a space
that is 15.0x bigger by increasing the rate of alignments per
second by two orders of magnitude, i.e., 575.5x.

As for the total number of alignments performed, if we
scale the reported DIAMOND run to the scale of search
space our experiment was performed, this becomes equal to
a projected value of 345.7 billion alignments. Our approach
can said to perform more sensitive search with alignments per



search space being 5.2e-5 compared to DIAMOND’s 2.1e-6,
amounting to a factor of 24.8x difference. Time to solution
for DIAMOND with an assumption of linear scaling to 2025
nodes results in a projected time to solution of 12.53 hours
compared to 3.44 hours of our experiment, which shows our
search is 3.6x faster despite performing an order of magnitude
more alignments.

IX. IMPLICATIONS

Many-against-many protein sequence search is a form of
sparse and irregular all-vs-all comparisons. The sparsity is
data dependent, hence it is known only during runtime
which pairwise comparisons will be worth performing. Con-
sequently, it puts a significant stress on the network intercon-
nect. Naively performing this task would amount to a giant
MPI_AlltoAllv call, also known as the personalized all-
to-all broadcast. PASTIS significantly reduces this pressure
on the interconnect network by regularizing the computation.
It does by casting the problem in terms of sparse matrix
operations. This technique could also be applied to other
irregular applications, as it has been successfully done so for
problems in graph and combinatorial problems [17].

The in-node computation involves sparse matrix-matrix
multiplications and a large set of pairwise alignments per
node. While the latter maps well to the wide vector units
of GPUs, NVIDIA’s introduction of Dynamic Programming
(DPX) instructions with its newly announced Hopper archi-
tecture promises up to 40x speedup for the most expensive
part of protein sequence search. PASTIS running on such
architectures with DPX instructions would be significantly
faster, but also bound by communication costs at scale as the
computation speeds up drastically. Hence, future supercomput-
ers that employ accelerators such as Hopper need to provision
for higher bisection and network injection bandwidth.

Since PASTIS uses semiring in SpGEMM, and all the
high-performance GPU implementations of SpGEMM being
hard-coded for floating-point arithmetic, we performed those
steps on the CPU. Thanks to decades of research on high-
performance SpGEMM implementations on the CPU, this
did not become a performance bottleneck. However, with
the aforementioned changes coming to accelerators, sparse
matrix operations on other algebras would be a huge welcome.
NVIDIA’s cuSPARSE library took a big step towards this di-
rection with its latest release where they provide an optimized
implementation that performs the multiplication of a sparse
matrix and a dense matrix with custom operators. We suggest
this ability to extend to other functions in the sparse matrix
libraries provided by GPU vendors.
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avoiding and memory-constrained sparse matrix-matrix multiplication
at extreme scale,” in 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2021, pp. 90–100.
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