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Abstract—The exponentially growing model size drives the
continued success of deep learning, but it brings prohibitive
computation and memory cost. From the algorithm perspective,
model sparsification and quantization have been studied to alle-
viate the problem. From the architecture perspective, hardware
vendors provide Tensor cores for acceleration. However, it is
very challenging to gain practical speedups from sparse, low-
precision matrix operations on Tensor cores, because of the
strict requirements for data layout and lack of support for
efficiently manipulating the low-precision integers. We propose
Magicube, a high-performance sparse-matrix library for low-
precision integers on Tensor cores. Magicube supports SpMM
and SDDMM, two major sparse operations in deep learning with
mixed precision. Experimental results on an NVIDIA A100 GPU
show that Magicube achieves on average 1.44x (up to 2.37x)
speedup over the vendor-optimized library for sparse kernels,
and 1.43x speedup over the state-of-the-art with a comparable
accuracy for end-to-end sparse Transformer inference.

Index Terms—Sparse Matrix, Tensor Cores, GPU, Low-
Precision Integers, Quantization, Sparse Transformer

I. INTRODUCTION

Recent progress in state-of-the-art deep learning has been
driven by the increasing scale of computation, data, and
models, and this scaling trend is expected to continue [1]–[4].
Such large-scale deep learning models require large amounts
of energy and carbon emissions for training [5]–[7], and
evaluating inferences with limited computational and memory
resources is challenging. The main techniques to reduce the
memory footprint and inference latency are sparsification and
quantization of matrix operations [8], [9].

While these compression methods theoretically reduce the
number of operations, speedup each operation, and improve
memory bandwidth, it is not easy to obtain practical speedups
on accelerators. In deep learning, the sparsity of the matrix that
can be achieved while preserving the prediction accuracy of
the model is relatively small (e.g., 50-90%) [9]. Therefore,
with sparse kernels that target high sparsity (e.g., > 99%)
provided by e.g., cuSPARSE [10], it is difficult to exceed
the performance of the dense counterparts (e.g., cuBLAS). To
obtain practical speedups with accelerators, cuSPARSELt [11]
utilizes Tensor Cores sparsity [12] and achieves the double
peak performance compared to the dense counterparts in
several low-precision datatypes (e.g., fp16, int8, int4). Yet, this

TABLE I
SUPPORTED INPUT OPERAND (LOW-)PRECISION AND SPARSITY

CONSTRAINTS IN VARIOUS SPARSE-MATRIX LIBRARIES. TC: WHETHER IT
RUNS ON TENSOR CORES.

Library
Precision Sparsity

TC
fp16 int8 int4 mixed granularity DL-friendly?

cuSPARSE [10] 3 3 7 7 fine-grained � �
3 3 7 7 block - -

cuSPARSELt [11] 3 3 3 7 2:4 structured - -
Sputnik [13] 3 7 7 7 fine-grained - �

vectorSparse [14] 3 7 7 7 1-D block - -
Magicube 7 3 3 3 1-D block - -

library imposes strict constraints on the data layout (i.e., 2:4
structured sparsity) with sparsity constrained to 50%. Gale et
al. [13] proposed Sputnik, a library for sparse matrix-matrix
multiplication (SpMM) and sampled dense-dense matrix mul-
tiplication (SDDMM) in fp32 and fp16 datatypes that takes
advantage of the properties of matrices in deep learning (e.g.,
a high number of nonzeros per row) and works with a fine-
grained sparse data layout. Sputnik outperforms cuSPARSE
on fp32 deep learning workloads at moderate sparsity (e.g.,
70%) on NVIDIA V100 GPUs. Chen et al. [14] pointed out
that the existing sparse kernels cannot realize speedups over
the dense counterparts when low-precision is used due to the
lack of data reuse. Also, they showed that the SpMM kernel for
block sparse matrix multiplication in cuSPARSE requres the
block size to be larger than 8 to achieve speedup. This makes it
more challenging to keep the model accuracy. To address these
issues, they proposed vectorSparse, a library using a sparse
encoding with dense 1-D block of shape e.g., 8 × 1, 4 × 1,
that improves the data reuse in fp16 while maintaining the
flexibility in data layout.

These point results are part of a bigger question: which
combinations of low-precision datatypes and sparsity should
be supported in hardware and which others can be supported
in software. Combining sparsity and quantization has been
shown to be highly effective in deep learning [15]. Yet, both
have different tradeoffs, and hardware vendors must choose
a configuration in this costly design space for each product.
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In addition to this, due to the lack of support for efficiently
manipulating low-precision integers (e.g., int4), it is challeng-
ing to realize high-performance sparse and quantized matrix
operations on Tensor cores [16]–[18]. In our work, we define
two additional software design points for NVIDIA A100
tensor cores with our Magicube1 library: (1) small 1-D block
sparse operations with low precision integer types, (2) small
1-D block sparse operations with mixed precision. Note that,
in this work, we define the mixed precision as the two input
matrices of matrix multiplication have different precision. In
deep learning, assigning data types of different precision to
different types of quantities (e.g., weight, activation) with
different sensitivities to quantization has proven to be effective
both in terms of reducing accuracy degradation and in terms
of hardware efficiency [8]. Table I summarizes the state-of-
the-art sparse matrix libraries for various datatypes on GPUs.

We consistently outperform all existing libraries by more
than 40% for those type combinations by efficiently mar-
shalling the inputs to tensor cores and emulating low and
mixed precision integer operations algebraically. We also show
that those optimizations translate to end-to-end performance
improvements of more than 40% for transformer networks,
the most promising candidate for today’s and future large-scale
deep learning systems [4]. Our main contributions are:

• We design a sparse matrix format SR-BCRS which is
friendly to low-precision integers on Tensor cores.

• We introduce highly-optimized SpMM and SDDMM ker-
nels. Specifically, we propose an novel online transpose
strategy to efficiently manipulate fine-grained data and
meet the data layout requirements.

• Magicube supports mixed precision using efficient alge-
braic type emulation, in which the utilization of Tensor
cores is improved through operations stacking.

• Magicube achieves significant speedup over the latest
dense and sparse library for both microbenchmarks and a
real-world deep learning application. The model accuracy
is also verified.

We evaluate the performance of sparse kernels over 1,536
sparse matrices with different sizes and sparsity. Results on
NVIDIA A100 GPU shows that Magicube achieves on average
(geometric mean) 1.44x speedup for SpMM over cuSPARSE.
For end-to-end sparse Transformer [19] inference, Magicube
achieves 1.43x speedup over vectorSparse [14] (the state-of-
the-art sparse library with fp16 on Tensor cores) and 1.50x
speedup over PyTorch with cuDNN (the fp16 dense library),
with a comparable accuracy. The source code of Magicube is
available at https://github.com/Shigangli/Magicube

II. BACKGROUND AND RELATED WORK

A. Compression in Deep Learning

Sparsification and quantization are the common ways to
compress deep neural networks for reducing energy and per-
formance costs for training and inference [20]–[24]. Sparsifi-

1the name is inspired by the similarity of quantization to the Rubik’s cube,
and the similarity of tensor core data marshalling to playing the Rubik’s cube.

cation reduces the number of operations in workloads (e.g.,
matrix-matrix multiplication, convolution) by ignoring redun-
dant elements in the operands that contribute little to learning
and prediction [9], [25], [26]. Quantization, on the other
hand, speeds up each operation and improves the memory
bandwidth by representing the operands with low bits, such
as fp16, 8-bit, and 4-bit integers [8], [27]–[31]. Both serve to
reduce the storage requirement by compressing neural network
weights, inputs, and intermediate representations (activation
and backpropagated error).

In recent years, Transformer models [32] based on the
attention mechanism [33] are becoming mainstream in various
domain applications, such as natural language processing and
computer vision. Since the effectiveness of the pre-training
and fine tuning paradigm using large Transformer models (e.g.,
BERT [34], GPT-3 [4]) has been demonstrated, the importance
of reducing amounts of carbon emission, energy consumption
and computational and memory costs in training and inference
has been increasing [5]–[7]. To reduce the memory footprint
and inference latency, weight pruning [35]–[37] and quan-
tization [38]–[41] for giant Transformer models have been
studied. Sparsification of the attention map [19], [42]–[45] has
also been studied to reduce the computational and memory
complexity of the self-attention which is proportional to the
square of the sequence length.

B. Optimization for Sparse and Quantized Operations

Compression induces sparse and quantized operations, but
appropriate hardware and/or a series of performance optimiza-
tion is required to gain practical speedups [13], [14], [46]–
[49]. Performance optimization for sparse matrix operations in
scientific computing has been studied [50]–[55]. However, the
sparsity of matrices assumed in these domains usually exceeds
99%, whereas in deep learning, it is typically around 50-90%
to maintain the prediction accuracy of the neural network [9].
Therefore, it is more challenging to achieve practical speedups
over the dense counterpart for deep learning workloads.

AI accelerators, such as Tensor cores [16]–[18], bring
unprecedented performance for deep learning workloads with
low precision (floating- and fixed-point). But this is mainly
for dense matrix multiplications. Structured sparsity is also
natively supported on Tensor cores [12], but it has strict re-
quirements for the distribution of non-zero elements, e.g., 50%
sparsity ratio, and sparsity patterns, e.g., 1:2 or 2:4 [12], [56],
which may limit its generality and usability. Gale et al. [13]
introduce Sputnik that optimizes the performance of deep
learning workloads with more general fine-grained sparsity on
CUDA cores, and outperforms cuSPARSE with relatively low
sparsity. Chen et al. [14] propose vectorSparse to improve the
performance of structured sparsity (with less constrains) on
Tensor cores. But both Sputnik and vectorSparse target on
sparse workloads in half precision. Different from previous
work, we focus on quantized sparse matrix operations (SpMM
and SDDMM) with low-prevision integers, and present excel-
lent performance.



TABLE II
THE TOTAL PEAK TFLOPS/TOPS (TENSOR CORES + CUDA CORES)

AND THE PERCENTAGE OF TENSOR CORES IN TOTAL

GPU fp16 int8 int4

V100 126 TFLOPS (88.9%) - -
A100 390 TFLOPS (80%) 702 TOPS (88.9%) 1,248 TOPS (100%)
H100 1,120 TFLOPS (89.2%) 1,696 TOPS (94.3%) -

TABLE III
MATRIX SHAPES FOR MMA ON TENSOR CORES

Precision Supported shapes

int4/uint4 m8n8k32, m16n8k32, m16n8k64
int8/uint8 m8n8k16, m16n8k16, m16n8k32

III. TENSOR CORES OF NVIDIA GPU AND DATA LAYOUT
FOR LOW-PRECISION INTEGERS

NVIDIA GPUs consist of an array of streaming multipro-
cessors (SMs) and each SM contains small processing com-
ponents (such as CUDA cores and Tensor cores). The CUDA
(NVIDIA GPU programming model) kernel is executed with
multithreading. Threads in GPU kernels are organized by a
grid of thread blocks, and each thread block consists of warps
(each warp has 32 threads). Warps are the basic scheduling
units in CUDA.

Tensor Core Unit (TCU) [16] has been added to the
NVIDIA GPUs since the Volta architecture [16], which is
designed specifically for deep learning and provides 8× peak
FLOPs (pf16) than FPU on CUDA cores. Tensor cores
on newer architectures, such as Ampere [18] and Hop-
per [57], add support for matrix-matrix multiplication with
low-precision integers (8-bit, 4-bit, and even 1-bit), which pro-
vides double, quadruple, or even higher peak performance than
fp16. As shown in Table II, Tensor cores provide almost all
the computational power of low precision integers on NVIDIA
GPUs. Therefore, we target on Tensor cores to optimize the
quantized sparse kernels for deep learning. In the following
we use intx to represent integers with x bits. To program
on Tensor cores, CUDA provides warp-level APIs with the
semantic of Matrix Multiply-Accumulate (MMA), in which
a warp of 32 threads collaboratively execute one or several
dense matrix multiplications and accumulate the outputs. From
the programming perspective, CUDA provides two APIs with
the semantic of MMA, including WMMA in (high-level) C++
and mma in (low-level) NVPTX (quasi-assembly language).
In Magicube, we use the mma APIs. Dense operations with
extremely low precision (int2 or even int1) for deep learning
have been studied in [47]–[49]. In this work, we focus on
moderate precision (e.g., int4, int8) with sparsity.

On Tensor cores, several shapes of mma are supported for
each precision. The supported shapes for int4 and int8 are
shown in Table III. See [56] for the supported shapes of other
precision. In Magicube we choose to use the smallest shapes
(highlighted in Table III) to exploit the performance with small
sparsity granularity, since smaller granularity usually achieves
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Fig. 1. Data layout of int8 mma with the shape of m8n8k16.

better accuracy results under the same sparsity ratio [14], [58].
For mma with int8 and int4, we use the shapes of m8n8k16
and m8n8k32, respectively. The data layout of mma with int8
in shape m8n8k16 is shown in Figure 1. The shape of the
output matrix C (each element is an int32) is m*n (i.e., 8*8),
and the reduction dimension is k = 16. The shape of the Left-
Hand-Side (LHS) matrix A is 8*16 and the shape of the Right-
Hand-Side (RHS) matrix B is 16*8, and each element of A
and B is an int8. As shown in Figure 1, the elements of A,
B and C are uniformly distributed among the registers of a
warp (32 threads). Note that A must be row-major and B
must be column-major. Each thread provides 4 int8 elements
to both A and B. Programmers have to decompose the whole
workload into small MMAs (e.g., m8n8k16), and match the
restrict requirement for the data layout of A, B and C. The
data layout of mma with int4 in shape m8n8k32 is similar to
int8 in shape m8n8k16, except that each element of A and B
is an int4, the reduction dimension k increases to 32, and each
thread provides 8 int4 elements to both A and B.

IV. IMPLEMENTATION AND OPTIMIZATION FOR SPARSE
MATRIX OPERATIONS IN DEEP LEARNING

A. Sparse matrix format

Sparse matrices are important workloads in both the sci-
entific computing [50]–[53], [59], [60] and deep learning [9],
[13], [14], [19], [43] domains. The Compressed Row Storage
(CRS) format is the most popular method to compress sparse
matrices because of its simplicity. The Block Compressed Row
Storage (BCRS) [61] format is further proposed to improve the
data reuse on L1 cache or registers. The column vector sparse
encoding used in vectorSparse [14] is a special case of BCRS,
in which each dense block is an 1-D block. An example of
BCRS with 1-D blocks is shown in Figure 2.

Since BCRS with 1-D dense blocks is sufficient to exploit
data reuse in the sparse deep learning workloads [14] and small
sparsity granularity is good for model accuracy [13], we also
focus on structured sparsity with 1-D dense blocks rather than
2-D dense blocks. Different from previous work, to exploit
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Fig. 2. BCRS format vs SR-BCRS format.

the performance of the sparse workloads with low-precision
integers on Tensor cores, we propose to use a Strided Row-
major BCRS (SR-BCRS) format. Now we present the details
of SR-BCRS by comparing it with BCRS format. BCRS
consists of row pointers, column indices for the dense (non-
zero) vectors, and the dense vectors stored in a consecutive
array. In contrast, the dense vectors in SR-BCRS are stored
in a stride-wise row-major manner, as shown at the bottom of
Figure 2. Zero values are padded for the last stride of a vector
row if the number of dense vectors in the row is not a multiple-
of-stride. Correspondingly, the column indices are also padded
with invalid values (*). Here the size of the stride is equal to
the reduction (i.e., k) dimension of the mma operation we use.
For example, stride = 16 for mma with int8. In this way,
the threads in a warp can consecutively load the data of the
LHS matrix to the registers and the data layout requirement
(as shown in Figure 1) is directly satisfied. Here the length of
the 1-D dense block (V ) supported in SR-BCRS is <= 8 (i.e.,
the m dimension of mma). If V = 8, the mma operation is fully
utilized; if V = 4, the utilization of mma is 50%. To support
this strided format, we need 2M (M is the number of rows
of a sparse matrix) row pointers. For each row, we need one
pointer to indicate the address of the first dense vector and
another to indicate the last dense vector in the current row of
vectors.

B. SpMM in Magicube

Sparse matrix-matrix multiplication (SpMM) is a major
sparse workload in deep learning. For example, in the forward
pass of a pruned model, the sparse weight matrix will be
multiplied by a dense activation matrix. In sparse transformers
[19], the self-attention is calculated by multiplying a sparse
attention weight matrix by a dense value matrix. These all
result in an SpMM operation. Figure 3(a) shows an example
of SpMM with structured sparsity (i.e., 1-D blocks), in which
matrix A can be recognized as a pruned weight matrix or
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Fig. 3. SpMM and its thread-block view in Magicube.

sparse attention mask with structured sparsity. Note that the
column indices of the dense vectors are used to load the
corresponding rows of the dense matrix B.

1) Thread blocks of SpMM: Figure 3(b) shows the imple-
mentation of SpMM in Magicube at the thread-block level.
Since we focus on quantized sparse matrix operations, here
we assume each element in A and B is int8. Suppose we have
2 warps in a thread block. Each thread block is responsible
for an output block of size BSm*BSn. Here BSm=V (i.e.,
vector length). BSm can be set to a multiple-of-V , but this
does not help to improve the data reuse since each row of
vectors may have different column indices. In each step, each
thread block calculates the partial results with the reduction
dimension BSk. Here BSk is equal to the stride size in the
SR-BCRS format, and also equal to the reduction dimension of
mma. Overall, each thread block needs nnz/BSk steps (partial
results are accumulated) to obtain the final results. Benefiting
from the SR-BCRS format, the data layout requirement of
the LHS matrix of mma is directly satisfied by consecutively
loading data in a stride. The LHS matrix is loaded in a
coalesced way from global memory to shared memory, and
the data are shared among warps.

2) Efficient online transpose for dense matrix B with int8:
Next, we discuss how to feed the data block of B to the
RHS matrix of mma. Here we use row-major storage for the
dense matrix B. However, recall that the RHS matrix of mma
must be in column-major, there is a mismatch for the layout.
Transposing B to column-major beforehand does NOT help
since the column indices of the dense vectors are not con-
secutive. Therefore, we propose an efficient online transpose
strategy for the row-major blocks of B, which contains three
major steps. First, the threads in a block collaboratively load
rows of B from global memory to padded buffers on shared
memory. An example with BSn = 64 is shown in Figure 4.
Each row of 64 int8 values is coalesced into a single 64B
memory transaction [62], boosting the efficiency of global
memory access. Note that we may set BSn = 128 to coalesce
to an 128B memory transaction [62] for higher efficiency for
large N . Second, each thread will in turn load 4 int32 items
from shared memory to local registers. The items accessed by
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Fig. 4. Conflict-free accesses for the RHS matrix of SpMM with int8 on
shared memory.
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Fig. 5. Local transpose on registers for RHS matrix of SpMM with int8.

each thread of warp0 are labelled in Figure 4. On NVIDIA
GPUs, shared memory are partitioned into banks and each
bank has a width of 32 bits. Threads in a warp accessing
different banks can be served by one cycle; otherwise threads
in a warp accessing different banks incurs bank conflicts which
degrade the performance. By padding 8 int32 items after every
64 int32 items, there is no bank conflict within each warp.
Third, each thread conducts a transpose on local registers with
a granularity of int8, as shown in Figure 5. After transposing,
each row of the register block contains 4 consecutive int8
values from a column of matrix B, which meets the data
layout requirement of mma. Note that each thread has 4 rows
in the transposed register block, which are fed into the RHS
matrices of 4 mma operations, respectively. Therefore, for two
warps within a thread blocks, there are 8 mma operations to
be executed in each step, as shown in Figure 6.
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Fig. 6. The warp-level view of the MMAs in SpMM with int8.

Overall, the online transpose strategy for matrix B features
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Fig. 7. High-performance 4-bit-wise transpose on registers for SpMM by
column indices shuffling.

coalesced global memory access, conflict-free accesses on
shared memory, and high-performance transpose on local
registers, which is very efficient as shown in Section V-B.

3) Efficient online transpose for matrix B with int4 by
indices shuffling: The online transpose strategy works well
for B matrix with int8. However, it may still lead to high
overhead for B matrix with int4. After using a similar conflict-
free shared memory access approach shown in Figure 4, each
thread stores 8*8=64 int4 values on local registers. Since there
is no data type in CUDA corresponding to 4-bit integers,
transposing these 64 int4 values on local registers results in
intensive bit-wise operations. Therefore, we propose a novel
column indices shuffling strategy to achieve efficient transpose
for int4 values, which is shown in Figure 7. ¶, we modify
the SR-BCRS format by shuffling the column indices of the
LHS sparse matrix in a block-wise way (block size = 8). The
purpose of this shuffling will be recognized in the last step. ·,
the corresponding RHS data blocks are loaded into registers
similar to that in int8. In ¸and ¹, the data on local registers are
transposed with a granularity of int8 (char). º, each row of
the transposed block is divided into two int32 values. In »and
¼, after masking, shifting and bitwise OR operations, we get
one int32 that only contains the low-4-bit values and another
int32 only containing the high-4-bit values of the previous two
int32 values. Each int32 has 8 int4 values and the number



on each int4 value indicating the ID of the corresponding
column index. Amazingly, the corresponding column indices
are recovered to the ones before shuffling, and the transpose
is also finished. The key benefit in this procedure is that the
bitwise operations work only at a granularity of int32, rather
than int4. By only using 8 bitwise operations, the transpose of
16 int4 values is finished, which significantly reduces overhead
compared with transposing directly with int4 values.

Algorithm 1 Prefetch the data block of RHS dense matrix
1: procedure PIPELINE(BSk, nnz) . BSk is the reduction

dimension of mma. . nnz is the number of nonzero
vectors in the row block.

2: __shared__ double_buffers_for_LHS_values[];
3: __shared__ LHS_col_indices[];
4: __registers__ RHS_values_prefetch[];
5: __shared__ RHS_values[];
6: steps = nnz / BSk;
7: Load_LHS_values_and_indices_to_shared(0);
8: __syncthreads();
9: Prefetch_RHS_values_to_registers(0);

10: for i=1; i < steps; i++ do
11: Store_RHS_values_on_regs_to_shared(i-1);
12: Load_LHS_values_and_indices_to_shared(i);
13: __syncthreads();
14: Prefetch_RHS_values_to_registers(i);
15: MMA_compute_tiles(i-1);
16: __syncthreads();
17: end for
18: Store_RHS_values_on_regs_to_shared(i-1);
19: __syncthreads();
20: MMA_compute_tiles(i-1);
21: end procedure

4) Prefetch for RHS matrix B: As discussed in Sec-
tion IV-B2, the data block of RHS matrix B are loaded to
shared memory for transposing. However, because the matrix
A is sparse, there is no data reuse on shared memory for
matrix B. Therefore, to mitigate the cost of memory traffic
for matrix B, we propose to use a data prefetch strategy,
which is shown in Algorithm 1. Recall that each thread block
requires nnz/BSk accumulation steps to get the final results. In
addition, there are two phases on the data path when loading
data from global memory to shared memory: a) load data from
global memory to registers, and b) store data on registers to
shared memory. Therefore, we break the load from global to
shared into two phases, and compose a pipeline. Lines 7-9
and Line 11 in the first iteration of the for loop are the cold
start of the pipeline, after which the first blocks from both A
and B are loaded into shared memory. Then, Lines 11-16 in
the for loop form the main body of the pipeline. Line 12
loads the LHS dense vectors and the corresponding column
indices into shared memory for the next iteration. Using the
column indices, the RHS data block is prefetched into registers
in Line 14, which is overlapped with the mma computation of
the current step in Line 15. Therefore, the latency of the global

memory accesses on RHS blocks is hidden. Note that thread-
block-level synchronizations are inserted into the pipeline to
achieve thread safety.

C. SDDMM in Magicube
Sampled dense-dense matrix multiplication (SDDMM) is

another major sparse workload in deep learning. The output
of SDDMM is a sparse matrix. For example, in the backward
pass of a pruned model, the calculation for the sparse weight
gradients is an SDDMM operation. In sparse Transformers, the
calculation for the sparse attention weights is also an SDDMM
operation. Figure 8(a) shows an example of SDDMM in which
the output matrix C has structured sparsity (i.e., 1-D blocks).
The column indices of the dense vectors are used to load the
corresponding columns of matrix B.
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Fig. 8. SDDMM and its thread-block view in Magicube.
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Fig. 9. The warp-level view of the MMAs in SDDMM of Magicube.

1) Thread blocks of SDDMM: Figure 8(b) shows the imple-
mentation of SDDMM in Magicube at the thread-block level.
We use row-major storage for A and column-major storage
for B. Suppose we have 2 warps in a thread block. Each
thread block is responsible for a dense output block of size
BSm*BSn. Similar to SpMM, we set BSm=V and V <= 8.
In each step, each thread block calculates the partial results
with the reduction dimension BSk. Here BSk is equal to the
reduction dimension of mma. Overall, each thread block needs
K/BSk steps (partial results are accumulated) to obtain the
final results.

The LHS block is loaded to shared memory and shared
among warps. We also use a similar strategy to Algorithm 1



to prefetch the LHS data block. Since there is no data reuse
for RHS block on shared memory and B is stored in column-
major, each thread directly loads the corresponding data into
local registers and the data layout requirement of mma is
satisfied. The warp-level view of the mma operations is shown
in Figure 9. Note that the format of the output sparse matrix C
is determined by the subsequent operators. If the subsequent
operator is SpMM, C is output into SR-BCRS format; if the
subsequent operator is softmax, C is output into BCRS format. 
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Fig. 10. Precision emulation and stacked mma.

D. Emulation for mixed precision

For SpMM, Magicube supports the cases that matrix A has
a higher precision than matrix B, for example, A is int8 and
B is int4. Quantization schemes with mixed precision [63],
[64] are well studied in the machine learning community.
Since A is already sparse, a higher precision for A may bring
higher model accuracy. Magicube also supports that both A
and B are in int16 (not natively supported on Tensor cores),
for both SpMM and SDDMM. The idea is to divide a high
precision value into several low precision values, and then
emulate the matrix multiplication mathematically. Arbitrary
precision emulation for GEMM (dense) with unsigned integers
using 1-bit mma primitives has been studied in [49], which
requires x∗y matrix multiplications in 1-bit integers, where x
and y are the number of bits for the values in LHS and RHS
matrices, respectively. To tradeoff between mixed precision
and low emulation overhead, we only consider precision
that the number of bits is a multiple of 4 or 8. Different
from previous work, we support precision emulation for both
unsigned and signed integers.

1) Emulation for unsigned integers: Here we use the matrix
multiplication A (unsigned int8) * B (unsigned int4) as an
example. Suppose a = 11101101 = 237 (in decimal) is a
scalar randomly selected from matrix A. Then, we can directly
decompose a to two unsigned int4 values, including a0 =
1101 = 13 (in decimal) for the lower 4 bits and a1 = 1110
= 14 (in decimal) for the higher 4 bits. By mathematical
emulation, the original 8-bit values a can be recovered by a

= a0+24 ∗ a1. Accordingly, the matrix A can be decomposed
in to A0 containing all the values with lower 4 bits and A1

containing all the values with higher 4 bits, as shown in
Figure 10(a). Multiplying A0 and A1 with B generates two
intermediate matrices, C0 and C1. Since the mathematical
emulation for scalar a is a linear function, the final output
matrix C can be emulated accordingly, i.e., C = C0+24∗C1, in
which + represents element-wise addition. Note that without
mixed precision emulation, matrix B has to be cast into int8,
which significantly increases the memory consumption.

Recall that the vector length V is set to <= m. When V <
m, the Tensor cores are not fully utilized. Here in precision
emulation, we find the opportunity to stack multiple partial
mma operations into one to increase the utilization of Tensor
cores. For example, when V =4, we stack two partial mma
operations into one to fully utilize Tensor core, as shown
in Figure 10(b). The intermediate results C0 and C1 are
distributed among the threads within a warp. Here we use
the warp shuffling instruction, i.e., __shfl_xor_sync, to
exchange intermediate results between threads. At last, the
intermediate results are scaled and accumulated to get the final
results according to the mathematical emulation. Benefiting
from the mma stacking strategy, the utilization of Tensor cores
can be increased during precision emulation.

2) Emulation for signed integers: Deep learning models
can also be quantized into signed integers using symmetric
quantization [29], [31]. In computers, signed integers are
encoded into two’s complement. For example, an 8-bit signed
integer -19 in decimal is encoded to 11101101. We di-
rectly decompose it to two 4-bit integers (i.e., 1110 and
1101). However, to guarantee the mathematical correctness,
the higher 4 bits must be considered as a signed integer
(i.e., -2) and the lower 4 bits must be considered as an un-
signed integer (i.e., 13). Then, the mathematical emulation of
-2*16+13 will recover the two 4-bit integers to the original
8-bit integer (i.e., -19). This means that in the mixed precision
emulation for matrix multiplication (Figure 10(a)), the LHS
and RHS matrices have different types of integers (i.e., signed
and unsigned). Fortunately, mma primitives on Tensor cores
support LHS is signed and RHS is unsigned, and vice versa.
By considering the highest 4 bits as signed integer and the
others as unsigned integer, Magicube supports mixed precision
emulation for matrix multiplication with signed integers.

TABLE IV
THE PRECISION SUPPORTED IN MAGICUBE

Emulated precision Natively supported

SpMM L16-R16, L16-R8, L16-R4, L12-R4, L8-R4 L8-R8, L4-R4
SDDMM L16-R16 L8-R8, L4-R4

The supported precision in Magicube is listed in Table IV,
in which Lx-Ry means an x-bit LHS matrix multiplied by a
y-bit RHS matrix.
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V. EVALUATION

We evaluate the performance on an NVIDIA A100 GPU
(A100-SXM4-40GB GPU). The A100 GPU has 108 SMs,
and each SM has total 192KB configurable L1 cache and
shared memory, and 256KB registers. We compare the per-
formance of Magicube with both sparse libraries (cuSPARSE,
vectorSparse [14]) and dense libraries (cuBLAS, cuDNN). We
build benchmarks using the Deep Learning Matrix Collection
(DLMC) [65] sparse matrix dataset similar to [14], namely a
sparse matrix from DLMC is dilated by replacing each scalar
with 1-D vectors (V = 2, 4, 8). VectorSparse uses BCRS
format (i.e., column vector sparse encoding). Magicube uses
the SR-BCRS format presented in Figure 2. Since cuSPARSE
supports SpMM based on Blocked-ELL format, the Blocked-
ELL format with the same sparsity and problem size as BCRS
and SR-BCRS is generated according to [14]. In SpMM, the
sparse matrices are used for the LHS matrix; In SDDMM, the

sparse matrices are used for the output matrix.
We evaluate the performance with different sparsity, which

includes 0.5, 0.7, 0.8, 0.9, 0.95, and 0.98. For each sparsity, we
select 256 matrices with different sizes from DLMC, which
covers all the sparse matrices from ResNet-50 model and part
of sparse matrices from Transformer model. Overall, total
1,536 sparse matrices from DLMC are used for evaluation,
dilated with different vector length (i.e., V = 2, 4, 8).

In addition to evaluating on micro benchmarks, we also
conduct case study on real-world applications - sparse Trans-
formers.

A. Evaluating the optimization strategies in Magicube

First, we use one sparse matrix (M=256, N=512, K=2304)
from DLMC to evaluate the optimization methods proposed
for SpMM. The results are shown in Figure 11, in which
Lx-Ry means x-bit LHS matrix and y-bit RHS matrix. With
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this ablation study, we can see all the optimization meth-
ods discussed in Section IV-B (including conflict-free shared
memory access, data prefetching for RHL data block, and
column-index shuffling for 4-bit integers) are very effective.
Especially, column-index shuffling proposed for 4-bit integers
significantly improve the performance. In the case of L4-R4,
V=8 and Sparsity=0.7, the column-index shuffling strategy
further improve the performance by 1.45x after all other
optimizations are used.

As discussed in Section IV-D, Magicube supports precision
emulation. Figure 12 presents the performance of SpMM with
mixed precision. On one hand, the main trend is that the lower
precision we use, the higher performance we can achieve. But
there are several exceptions, for example, L16-R4 has lower
performance than L8-R8 when sparsity=0.98, this is because

the benefit of memory saving cannot amortize the emulation
overhead when sparsity is high. On the other hand, when the
LHS precision is the same, higher precision for RHS matrix
does not decrease the performance significantly, which shows
the efficiency of the precision emulation strategy in Magicube.

Recall that we also use data prefetch for the LHS data
block for SDDMM. But the results in Figure 13 show that
prefetching LHS data for SDDMM is not beneficial. This is
because the LHS data block in SDDMM is shared and reused
among warps. Therefore it already exhibits good performance
even without prefetching.

B. Comparison with existing dense and sparse matrix libraries
Next, we compare the performance of Magicube with other

dense and sparse libraries. Figure 14 show the performance of
SpMM. We compare Magicube with different precision with



cuBLAS (fp16, int8), vectorSparse (fp16), and cuSPARSE
(fp16, int8). The speedup shown in the figure is normalized
to cuBLAS (fp16). We can see Magicube significantly out-
performs all sparse libraries. Magicube can achieve practical
speedup over cuBLAS (fp16) with the sparsity higher than 0.7,
even with V<8. One interesting point is that cuBLAS (int8)
performs even worse than cuBLAS (fp16). In the case of V=8
and N=256, Magicube (L8-R8) outperforms cuSPARSE (int8)
by an average (geometric mean) of 1.44x (up to 2.37x), and
outperforms cuBLAS (int8, dense) by an average of 2.88x (up
to 15.26x) over all the 1,536 matrices; Magicube (L16-R8)
outperforms vectorSparse (fp16) by an average of 2.50x (up
to 5.27x) over all the 1,536 matrices.

Figure 15 show the performance of SDDMM. We compare
Magicube with different precision with cuBLAS (fp16, int8)
and vectorSparse (fp16). The speedup shown in the figure is
normalized to cuBLAS (fp16). Similar to SpMM, SDDMM of
Magicube begins to achieve practical speedup over cuBLAS
(fp16) with the sparsity higher than 0.7. In the case of V=8
and K=256, Magicube (L16-R16) outperforms vectorSparse
(fp16) by an average of 1.58x (up to 2.15x) over all the 1,536
matrices. Higher speedup is achieved by Magicube with lower
precision. All these results show the efficiency of quantized
sparse kernels in Magicube.

C. Case study with end-to-end sparse Transformer inference

Transformer models have been widely used in the fields
of both natural language processing [4], [34], [43], [44] and
computer vision [66]–[69], and exhibit excellent learning abil-
ity, thanks to the techniques such as multi-head attention [32].
Currently, Transformer is the typical representative of large-
scale model workloads. Transformer models commonly have
repetitive structures (i.e., the same block repeated multiple
times). The network architecture and the model size are
mainly determined by the head dimension, the number of
heads, and the number of layers. Besides, the workload of
self attention grows quadratically with the input sequence
length. By varying the parameters above, our evaluation covers
different architectures and workloads for Transformers.

We evaluate the performance of Magicube with real-world
applications, end-to-end inference with sparse Transformer
models from Long-Range Arena (LRA) [70]. The model has 4
encoder layers. Sparse Transformer has the workloads of both
SDDMM and SpMM in the operation of self attention with a
sparse attention mask:

Attention(Q,K, V ) = softmax

(
QKT �M√

dk

)
V ,

where dk is the head dimension (dk = 64), M ∈ {0, 1}L×L is
the sparse attention mask matrix in which L is the sequence
length, and � represents an element-wise product. For the
sparse attention mask matrix, we follow Chen et al. [14] to
add 8x1 vector sparsity constraints.

Figure 16 shows our implementation of a quantized self-
attention layer with sparse mask. First, we do quantization for
Q, K, V matrices (here Q, K, V are the output of projection).
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Fig. 16. Quantized self-attention layer with sparse attention mask.

Next, the sparse mask matrix determines the sparsity of the
output of QKT . Then, QKT will be a quantized SDDMM
operation. We fuse the dequantization with the SDDMM op-
eration. Therefore the output of SDDMM will be in fp16 (half
precision). Next, we conduct a softmax kernel in fp16 and fuse
quantization with the softmax kernel, and therefore the output
of softmax is a sparse matrix with int8. Finally we multiply
the int8 sparse attention weight with dense matrix V (int8),
which is a SpMM operation. Here we fuse dequantization with
SpMM, and the output is a dense matrix in fp16, which will
be further input to the following MLP layer.

Figure 17 presents the latency results for end-to-end infer-
ence of sparse Transformers with different sparsity, sequence
length, number of heads, batchsize, and precision. We keep
the number of encoder layers to 4 since the total workload is
proportional to the number of layers, and keep head dimension
to 64 which is commonly used in Transformer models. For
Magicube, xb-yb means quantizing the output of softmax to
x-bit integers and quantizing Q, K, V to y-bit integers. We
compare our implementation with the fp16 dense counterpart
(PyTorch 1.9 with cuDNN version 8005) and vectorSparse
(fp16). We run each setup for 256 iterations, and the green
bars on the histogram indicates the 95% confidence interval.
For end-to-end inference with sparsity=90%, seq_len=4,096,
and num_heads=4, Magicube achieves 1.43x-1.63x speedup
over vectorSparse (the state-of-the-art sparse library with fp16
on Tensor cores), and achieves 1.50x-1.70x over PyTorch
with cuDNN (dense). After increasing the sequence length to
8,192, the fp16 dense counterpart runs out of memory when
batchsize=8, since the memory cost of self attention grows
quadratically with the sequence length. When sparsity=90%,
seq_len=8,192, and num_heads=4, Magicube achieves 1.62x-
1.92x speedup over vectorSparse, which indicates that Mag-
icube enables higher speedups for longer sequences. By in-
creasing num_heads from 4 to 8, the runtime for all schemes
increases by about 2x. By increasing sparsity from 90% to
95%, the sparse libraries (vectorSparse and Magicube) further
reduce the latency compared to the dense counterpart.
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Fig. 17. Latency of end-to-end inference of sparse Transformer with different sparsity, sequence length, number of heads, batchsize, and precision.

TABLE V
THE TEST ACCURACY RESULTS OF SPARSE TRANSFORMER

dense sparsity=0.9 sparsity=0.95

PyTorch with cuDNN
(fp32)

PyTorch with cuDNN
(fp16)

vectorSparse
(fp16)

Magicube
(16b-8b)

Magicube
(8b-8b)

Magicube
(8b-4b)

vectorSparse
(fp16)

Magicube
(16b-8b)

Magicube
(8b-8b)

Magicube
(8b-4b)

57.36% 57.50% 57.14% 57.32% 57.11% 56.79% 56.21% 55.79% 55.62% 55.73%

Table V presents the test accuracy results for text clas-
sification using sparse Transformer with num_heads=4 and
seq_len=4,096. Since LRA’s repository uses an outdated ver-
sion of FLAX and we cannot make it run, we reimplemented it
in PyTorch. We train the model with dense and sparse attention
masks using the same hyperparameters, and finetune it for
quantization. Compared with the PyTorch with cuDNN (dense)
and sparse (sparsity=90%) models with fp16, the sparse (spar-
sity=90%) model with quantization (16-bit softmax output and
8-bit Q, K, V) achieves a comparable accuracy. By reducing
the precision of softmax output to 8 bits, the accuracy drops
slightly, which indicates that a higher precision of softmax
helps to maintain the accuracy. After further increasing the
sparsity to 95%, the accuracy of sparse models drops within
acceptable ranges.

VI. DISCUSSION

a) Generality to other AI accelerators: Although Mag-
icube is designed on NVIDIA GPUs with Tensor cores, the
key insights of Magicube can be easily adapted to other AI
accelerators. For example, AMD MI250X GPU [71] provides
383.0 TOP/s peak performance for int8 through the technology
of Matrix Core. To program on Matrix cores, AMD provides
wavefront-level instructions with the semantic of Matrix Fused
Multiply-Add (MFMA). Similar to mma on NVIDIA GPUs,
MFMA instructions (e.g., V_MFMA_I32_16X16X16I8) also
have specific requirements for the data layout. The techniques

of Magicube, such as the SR-BCRS format, online transpose,
and data prefetching, can also be utilized on such accelerators.

b) Work with distributed deep learning systems: Efficient
large-scale deep learning on distributed systems is commonly
realized by a combination of data, operator, and pipeline par-
allelism [72]–[75]. Magicube can be used in these distributed
deep learning systems as the backend compute library to
accelerate each (sub-)operator and alleviate the computation
bottleneck. How to maintain the convergence quality while
introducing sparsity and quantization is our future work.

c) More applications: In this work, We focus on large-
scale models based on Transformer, in which the sparse
workload is introduced by the sparse attention mask. Our
scheme may also benefit other sparse workloads in deep
learning. For example, training with model pruning results in
SpMM in the forward pass and SDDMM in the backward
pass. Furthermore, our empirical observation shows that the
curvature matrices in second-order optimization [76], [77] may
also be approximated through sparsity.

VII. CONCLUSION

In this paper, we propose Magicube, a high-performance
sparse-matrix library with low-precision (8-bit, 4-bit) integers
on Tensor cores for SpMM and SDDMM to accelerate sparse
and quantized matrix operations in deep learning. For com-
pressing the quantities with low-precision integers, we design
a Strided Row-major BCRS (SR-BCRS) format. Through
the performance evaluation with over 1,536 sparse matrices



with different sizes and sparisy (50-98%) from DLMC [65]
dataset on an NVIDIA A100 GPU, we demonstrate that
Magicube achieves on average 1.44x (up to 2.37x) speedup
for SpMM over cuSPARSE. We also demonstrate that for
end-to-end inference of a Transformer [32] model with a
sparse (90%) attention map, Magicube achieves 1.43x speedup
over vectorSparse [14] (the state-of-the-art sparse library with
fp16) and 1.50x speedup over PyTorch with cuDNN (the
fp16 dense library), with a comparable accuracy. The only
constraint our sparse kernels impose on the data layout is
that each nonzero block is 1-D blocks of shape e.g., 8 × 1,
4×1, 2×1. Under this constraint, Magicube successfully gains
practical speedups from both the sparsity and quantization in
deep learning workloads. We foresee this work will motivate
future research on sparsification and quantization methods for
deep learning models that lead to more effective utilization of
modern accelerators.
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“Vivit: A video vision transformer,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 6836–6846.

[70] Y. Tay, M. Dehghani, S. Abnar, Y. Shen, D. Bahri, P. Pham, J. Rao,
L. Yang, S. Ruder, and D. Metzler, “Long range arena: A benchmark
for efficient transformers,” arXiv preprint arXiv:2011.04006, 2020.

[71] AMD, “AMD Instinct MI200 Instruction Set Architecture Reference
Guide,” 2022.

[72] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary,
V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro,
A. Phanishayee, and M. Zaharia, “Efficient large-scale language
model training on GPU clusters,” SC, 2021. [Online]. Available:
https://arxiv.org/abs/2104.04473

[73] S. Li and T. Hoefler, “Chimera: efficiently training large-scale neural net-
works with bidirectional pipelines,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2021, pp. 1–14.

[74] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” arXiv preprint arXiv:1909.08053, 2019.

[75] L. Zheng, Z. Li, H. Zhang, Y. Zhuang, Z. Chen, Y. Huang, Y. Wang,
Y. Xu, D. Zhuo, J. E. Gonzalez et al., “Alpa: Automating inter-and
intra-operator parallelism for distributed deep learning,” arXiv preprint
arXiv:2201.12023, 2022.

[76] J. G. Pauloski, Q. Huang, L. Huang, S. Venkataraman, K. Chard,
I. Foster, and Z. Zhang, “Kaisa: an adaptive second-order optimizer
framework for deep neural networks,” in Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, 2021, pp. 1–14.

[77] K. Osawa, Y. Tsuji, Y. Ueno, A. Naruse, R. Yokota, and S. Matsuoka,
“Large-scale distributed second-order optimization using kronecker-
factored approximate curvature for deep convolutional neural networks,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 12 359–12 367.

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://github.com/google-research/google-research/tree/master/sgk
https://github.com/google-research/google-research/tree/master/sgk
https://arxiv.org/abs/2104.04473

	I Introduction
	II Background and Related Work
	II-A Compression in Deep Learning
	II-B Optimization for Sparse and Quantized Operations

	III Tensor cores of NVIDIA GPU and data layout for low-precision integers
	IV Implementation and optimization for sparse matrix operations in deep learning
	IV-A Sparse matrix format
	IV-B SpMM in Magicube
	IV-B1 Thread blocks of SpMM
	IV-B2 Efficient online transpose for dense matrix B with int8
	IV-B3 Efficient online transpose for matrix B with int4 by indices shuffling
	IV-B4 Prefetch for RHS matrix B

	IV-C SDDMM in Magicube
	IV-C1 Thread blocks of SDDMM

	IV-D Emulation for mixed precision
	IV-D1 Emulation for unsigned integers
	IV-D2 Emulation for signed integers


	V Evaluation
	V-A Evaluating the optimization strategies in Magicube
	V-B Comparison with existing dense and sparse matrix libraries
	V-C Case study with end-to-end sparse Transformer inference

	VI Discussion
	VII Conclusion
	References

