
ar
X

iv
:2

20
9.

01
70

9v
2

 [
cs

.O
S]

 7
 S

ep
 2

02
2

SFS: Smart OS Scheduling for Serverless Functions

Yuqi Fu
University of Virginia

yfu5@virginia.edu

Li Liu
George Mason University

lliu8@gmu.edu

Haoliang Wang
Adobe Research

hawang@adobe.com

Yue Cheng
University of Virginia

yuecheng@virginia.edu

Songqing Chen
George Mason University

sqchen@gmu.edu

Abstract—Serverless computing enables a new way of building
and scaling cloud applications by allowing developers to write
fine-grained serverless or cloud functions. The execution duration
of a cloud function is typically short—ranging from a few
milliseconds to hundreds of seconds. However, due to resource
contentions caused by public clouds’ deep consolidation, the
function execution duration may get significantly prolonged
and fail to accurately account for the function’s true resource
usage. We observe that the function duration can be highly
unpredictable with huge amplification of more than 50× for
an open-source FaaS platform (OpenLambda). Our experiments
show that the OS scheduling policy of cloud functions’ host server
can have a crucial impact on performance. The default Linux
scheduler, CFS (Completely Fair Scheduler), being oblivious to
workloads, frequently context-switches short functions, causing
a turnaround time that is much longer than their service time.

We propose SFS (Smart Function Scheduler), which works en-
tirely in the user space and carefully orchestrates existing Linux
FIFO and CFS schedulers to approximate Shortest Remaining
Time First (SRTF). SFS uses two-level scheduling that seamlessly
combines a new FILTER policy with Linux CFS, to trade off
increased duration of long functions for significant performance
improvement for short functions. We implement SFS in the Linux
user space and port it to OpenLambda. Evaluation results show
that SFS significantly improves short functions’ duration with a
small impact on relatively longer functions, compared to CFS.

I. INTRODUCTION

Serverless computing, or Function-as-a-Service (FaaS), en-

ables a new way of building and scaling applications and ser-

vices by allowing developers to break traditionally monolithic

server-based applications into finer-grained cloud functions.

Developers write function logic while the service provider

performs the notoriously tedious tasks of provisioning, scaling,

and managing the backend servers [28] that the functions run

on. Serverless computing solutions are growing in popularity

and finding their way into both commercial clouds (e.g.,

AWS Lambda [3], Azure Functions [4], and Google Cloud

Functions [7], etc.) and open-source projects (e.g., Open-

Lambda [31, 13], OpenWhisk [55]). Popular uses of serverless

computing today are event-driven and stateless applications

such as web/API serving, image processing, and batch ETL

(extract, transform, load) [1].

The execution duration of a cloud function is typically

short–ranging from a few milliseconds (ms) to a few sec-

onds [48]. Therefore, FaaS providers charge users at a fine

granularity. For example, AWS Lambda bills on a per invo-

cation basis ($0.02 per 1 million invocations) and charges the

usage of bundled CPU-memory resources by rounding up the

function’s execution duration to the nearest 1 ms with a rate

of $0.0000166667 per second for each GB of memory.

This fine-grained pricing model would be advantageous and

fair to FaaS users if the execution duration of a function

does not vary much (ideally one would expect that to be

equivalent to the turnaround time as if the function was exe-

cuted on a dedicated machine). This is particularly important

considering the short-lived and highly heterogeneous nature

of cloud functions: a majority of cloud functions have short

execution duration while the execution times of all functions

span seven orders of magnitude (from ms to hundreds of sec-

onds). However, due to resource contentions caused by public

clouds’ deep consolidation, function execution duration—the

turnaround time that measures the time when a function starts

execution till the time when the function finishes execution

and returns—gets prolonged and fails to accurately account for

the actual resource usage of a successfully finished function.

This covertly leads to overcharges to the users and potentially

making them game the system in the long run [27].

Admittedly, function execution duration amplification may

be caused by contentions from various levels of resources

including CPU cache, CPU, memory, and network. However,

our study shows that the CPU scheduling policy of host

machines, e.g., the widely-used Linux CPU scheduling policy,

Completely Fair Scheduler or CFS, can have a crucial impact

on the execution duration of cloud functions hosted therein,

therefore, a function scheduler must incorporate the unique

FaaS workload patterns.

How to mitigate this amplification for short-job-dominant

FaaS workloads is an open challenge, which, to the best of

our knowledge, has not been well investigated. On a similar

note, there are no well-defined performance SLOs (service

level objectives) for short-job-dominant FaaS applications; one

potential example SLO can be: “X% of function invocations

must be finished within a soft/hard-bounded ratio with respect

to the duration that this function would observe if running in

an ideally isolated environment”.

Our key observation in this paper is that a majority of

cloud functions in production FaaS workloads are short-lived

SC22, November 13-18, 2022, Dallas, Texas, USA
978-1-6654-5444-5/22/$31.00 ©2022 IEEE

http://arxiv.org/abs/2209.01709v2

with a wide spectrum of execution duration; the default Linux

scheduler, CFS, frequently context-switches short functions,

causing unfairly long waiting time, and therefore, longer

turnaround time than they should have.

CFS is general-purpose and workload-oblivious, attempting

to achieve CPU-task-level fairness: CPU tasks, no matter long-

running or short-lived, get proportional share of the CPU

resource under fine-grained time slices. This causes all CPU

tasks with same priority to spend “fair” amounts of time

waiting to be rescheduled. This inevitably leads to severely

imbalanced function run-time effectiveness (RTE), a new effi-

ciency metric that we define to capture the ratio of function

service time (aggregate CPU time) to end-to-end turnaround

time (sum of the aggregate CPU time and the waiting time).
This motivates us to adopt Shortest Remaining Time First

(SRTF)—a preemptive version of shortest job first (SJF)—

which always schedules jobs that will complete the quickest.

However, it is impossible to directly apply SRTF as it is an

offline algorithm. To this end, we present SFS, a user-space

function scheduler that minimizes turnaround time for short-

function-intensive FaaS workloads. SFS works entirely in

the user space, leveraging existing kernel scheduling policies

(FIFO and CFS) to approximate SRTF. For this purpose, SFS

adopts two-level scheduling: at the top level, SFS uses a new

FILTER (FIFO-like) algorithm that schedules functions in the

order they are enqueued and preempts them if they do not

finish in a dynamically changing time slice; at the bottom

level, those filtered functions from the top level continue in

Linux CFS. This way, short functions can execute in their

entirety without any context switch, or with minimum context

switches if needed, in order to finish faster. The objective is

to minimize the function execution duration and maximize the

RTE metric such that the “pay-per-use” promise is delivered

and unfair overcharges are reduced.
SFS presents a novel and practical user-space scheduling

solution that bridges the divide between custom, user-space

scheduling and kernel scheduling: existing OS scheduling

is FaaS-workload-oblivious and thus affects function perfor-

mance; SFS utilizes historical workload statistics obtained

in the user space to make informed scheduling decisions

by automatically steering underlying OS scheduling policies.

SFS strikes a balance between waiting time and request

service time. SFS is transparent to existing FaaS platforms

and requires minimum modifications for them to use SFS.

SFS is also OS-scheduler-agnostic and does not require kernel

modifications.
In summary, this paper makes the following contributions:

• Through a performance characterization study on an open-

source FaaS platform (OpenLambda), we identify efficiency

problems of existing Linux schedulers (CFS, FIFO, and RR)

on serverless function scheduling.

• We design a new scheduler, SFS, which approximates SRTF.

SFS features a novel FILTER algorithm in the user space

that dynamically steers existing OS schedulers based on

workload patterns to enable more efficient scheduling for

FaaS workloads.

• We implement SFS as a standalone, user-space scheduler

that can be easily ported with existing FaaS platforms.

• We perform extensive evaluation on standalone SFS and

an SFS-ported OpenLambda. Results show that SFS sig-

nificantly outperforms CFS: SFS improves turnaround time

of short functions by two orders of magnitude against CFS

with very small user-space overhead.

SFS targets the overall performance of a majority of func-

tions that are short-lived. Experimental results show that SFS

improves the execution duration of 83% of the functions by

49.6× on average compared to CFS; for the remaining 17% of

the functions that are relatively longer, they run 1.29× longer

on average under SFS than CFS. SFS is open sourced and

publicly available at https://github.com/ds2-lab/SFS.

II. BACKGROUND

A. FaaS Overview

Serverless computing handles virtually all system adminis-

tration tasks, making it easier for users to deploy and scale

their cloud applications and services [35]. FaaS providers

offer a flexible interface for defining cloud functions, which

allows developers to focus on core application logic using

languages such as Python, JavaScript, Java, Go, and others.

FaaS providers in turn auto-scale function executions in a

demand-driven manner, hiding tedious server configuration

and management tasks from the users.

Cloud functions are deployed and executed in virtualized

environments such as containers or virtual machines (VMs) for

isolation and safety. A typical workflow of function deploy-

ment and execution works as follows. Step 1: A user submits

the function code (via either a web interface or packaged

.zip/container image files) to the FaaS platform for function

creation. Step 2: The user executes the created function by

sending an HTTP invocation request to a FaaS scheduler.

Step 3: the FaaS scheduler forwards the invocation request to a

FaaS worker that is running on a resource-rich host machine.

Step 4: The FaaS worker creates a virtualized environment

and installs the necessary dependencies for the virtualized

environment before the function can be started. Step 5: After

all previous steps are successfully completed, the FaaS worker

sends the function request to the host OS, which in turn starts

the function execution as an OS process.

While there are already extensive studies focusing on reduc-

ing functions’ cold startup penalty (Step 2-4 in last paragraph)

in FaaS [48, 17, 42, 41, 22, 25], in this paper, we aim to fill

the missing gap by focusing on the “last mile” efficiency of

function execution, i.e., OS scheduling, in Step 5.

B. OS Task Scheduling

Cloud functions are eventually scheduled and executed by

a host OS. Functions typically have a short execution duration

and small CPU-memory footprint, making FaaS workloads

increasingly consolidated. For example, a large bare-metal

machine with 96 CPU cores, 384 GB of memory, and multi-

TBs of NVMe SSDs can easily host tens of thousands of, if

not more, function instances [16]. This statistical multiplexing

2

https://github.com/ds2-lab/SFS

makes it feasible for a FaaS provider to execute thousands of

function processes concurrently on a single host.
Basic Scheduling Policies. First in, First out (FIFO) and

Round-Robin (RR) are among the most basic scheduling poli-

cies. They have different tradeoffs. When a FIFO task starts

running, it runs to completion1. Similar to FIFO, core-granular

scheduling [38] designates a single core to a function and

allows it to run to completion. However, also like FIFO, core-

granular scheduling may hurt response time when the system

is highly consolidated and under high utilization with a line

of queued tasks. RR can be used to optimize responsiveness.

RR runs a CPU task for a time slice and then switches to the

next queued task. However, since the execution of a CPU task

is divided into multiple slices, RR sacrifices turnaround time.
Proportional-Share Scheduling. Proportional-share schedul-

ing is a type of CPU scheduling algorithms commonly used

by today’s OSes including VM scheduling and Linux schedul-

ing. Proportional-share scheduling focuses on fairness and

attempts to guarantee that each CPU task obtains a certain

percentage of CPU time based on the task’s priority. Well-

known examples of proportional-share scheduling include lot-

tery scheduling [60], Xen’s credit scheduler [18, 15], and

Linux’s default scheduler CFS. CFS is the de facto, and

the most commonly-used open-source OS task scheduler in

productive environments including public clouds [2, 8, 10] and

companies [32, 58].
Given its popularity and prevalence, we choose Linux’s

general-purpose CFS scheduler as a baseline and briefly de-

scribe how it works. In fact, the two virtualization techniques

commonly used by today’s FaaS platforms, containers and

KVM-based VMs, both rely on CFS for OS task scheduling.

For example, Docker containers [5] are used by open source

FaaS platforms such as OpenLambda [31], OpenWhisk [55],

and OpenFaaS [11], while AWS Lambda’s Firecracker mi-

croVM [16] uses KVM for managing Lambda functions.
Linux CFS. CFS proportionally divides the physical time into

fine-grained time slices among all CPU tasks based on their

weights (priorities). CFS tracks the CPU time usage of each

task using a virtual runtime (vruntime) scheme. vruntime

records the CPU time that a CPU task has used weighted

by its priority. In a multi-core system, each physical CPU

core has its own runqueue, which is a red-black (RB) tree

ordered by vruntime. A task will first be assigned by CFS

to a runqueue; the task’s location in the runqueue RB tree

determines roughly when in the future it can execute; at each

scheduling tick (i.e., the end of a time slice), CFS picks the

next task that has the smallest vruntime from the RB tree. As

the FaaS workload is increasingly consolidated, it is common

to have thousands of concurrently running function processes

that multiplex the limited amount of CPU cores on the host

machine. Therefore, the weight of a task simply indicates a

relative CPU share, but not an absolute CPU share that a

user would expect the function to get based on the function’s

1Modern OSes must handle sophisticated situations such as I/O and priority.
A FIFO task, once started, continues to run until it voluntarily yields control
over CPU, blocks, or is preempted by a higher priority CPU task.

resource configuration. Once preempted, the task needs to wait

in the runqueue for its next turn to run. While waiting, the

task’ vruntime does not tick.

III. WHY IS CFS A POOR MATCH?

Run-time Effectiveness (RTE). CFS is a poor match for

the emerging, short-function-intensive FaaS workloads, which

values turnaround time. The fundamental mismatch comes

from CFS’ lack of workload awareness: CFS ensures a fair

proportion of CPU time to all the CPU tasks but does not

distinguish if a CPU task is long-running or short-lived. How-

ever, this application-level knowledge is critical to application

performance, especially if applications mostly consist of short

jobs, e.g., a FaaS workload [48]. Under a proportional-share

scheduler such as CFS, the fairness is defined as follows:

within a given time interval, all CPU tasks, if with the

same priority, are assigned the same amount of CPU time

to execute. We argue in this work, while it is “fair” to all

CPU tasks from the low-level OS perspective, such “fairness”

may inevitably create unfairness to the user-level applications

– in our case these contained in the FaaS workload, since the

waiting time may be disproportional to the execution time,

considering the execution time diversity of FaaS workloads.

In fact, FaaS workloads have unique characteristics that make

existing Linux’s “fair” scheduler actually unfair. Cloud func-

tions feature a long spectrum of execution duration (§IV-A).

Short functions with an execution duration of several ms to

tens of ms are more sensitive to waiting time than longer

functions that execute for, say tens of seconds. A mixture

of such short and long functions co-located in the same

server could spend roughly equal amounts of time waiting

in runqueues before those short functions finish, resulting

in disproportionally long waiting time. To quantify this affect,

we define a new efficiency metric in this paper, function Run-

Time Effectiveness (RTE) as follows:

RTE =

∑
CPU i

turnaroundtime
(1)

where CPU i means the CPU time allocated to this function

in the ith round before the function returns. Thus, effectively,

RTE reflects the ratio of the service time to the turnaround

time. An RTE of 1 is the theoretically highest that a function

could achieve, meaning that the function runs to completion

without being preempted, so higher scores are better. Further-

more, RTE also indicates if a FaaS user has been overcharged.

The closer an RTE to 1, the less overcharges that a user

had to pay. For ideally CPU-intensive functions, an RTE of

1 indicates that the user is not overcharged at all. However,

one should note that, in practice, it is not common to have

functions with pure CPU bursts; therefore, an RTE score

achieved under zero interference, though smaller than 1, would

still represent a best-case baseline for comparison purposes.

Tradeoffs. Efficiently scheduling short and long jobs is a

decades-old problem [64, 47, 24, 51, 30, 29, 36, 43]. Long

jobs’ performance will get affected under priority scheduling

that approximates SRTF. The challenge is how to balance the

3

100 102 104 106

Duration (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Fig. 1: CDF of the average function execution duration of Azure
Functions traces.

tradeoff between the performance improvement for short jobs

and performance loss for long jobs. We revisit this problem

from a new angle—minimizing severely disproportional wait-

ing time for short functions by trading off disproportionally-

increased turnaround time for long functions—in the context

of serverless function scheduling. That is, SFS aims to trade a

smaller impact on long functions for significant performance

improvement for short functions, a huge win for the short ones

and a much smaller (relative) penalty for the longer ones.

IV. MOTIVATION

A. Azure Functions Workloads

The Azure Functions workload datasets [48] are by far

the only publicly available FaaS workload traces that we

have access to. The traces were collected during a two-week

period, containing the average, minimum, maximum execution

duration breakdown per function and invocation counts per

function sampled at each one-minute interval. We analyzed the

distribution of the average execution duration of all function

invocations in the two-week period (Figure 1). We observe that

the function execution duration spans a total of seven orders

of magnitude; specifically, about 37.2%, 57.2%, and 99.9% of

the functions have an average execution duration shorter than

300 ms, 1 second, and 224 seconds, respectively.

Observation 1: While real-world FaaS workloads have a

mixture of short and long functions, a majority of them are

extremely short-lived and latency-sensitive. Optimizing the

execution duration of these short functions will provide a huge

benefit for the overall performance of FaaS platforms.

B. OpenLambda Measurement

We next measured the performance of an Azure-sampled

FaaS workload on OpenLambda. We generated the workload

based on the Azure Functions workload datasets [48]. Since

our focus is on single-server scheduling, we downscaled the

original trace by sampling the execution duration and request

inter-arrival times of 49, 712 function requests from Day 1.

More details about workload generation are described in §VII.

We configured OpenLambda to use 12 CPU cores and

Linux’s real-time (RT) schedulers, SCHED_FIFO (FIFO) and

SCHED_RR (RR), as well as Linux’s default proportional-share

scheduler, SCHED_NORMAL (CFS). We tested the workload

with two load levels, an average load of 80% over all 12 cores,

and an average of 100% load, and compared OpenLambda’s

performance against an offline oracle scheduler SRTF. SRTF

always selects the job with the smallest remaining time to

execute. SRTF is optimal as it assumes a priori knowledge of

function duration. IDEAL scheduling represents the ideal sce-

nario where there are infinite resources with zero contention.

Figure 2 shows the performance and RTE results. In cal-

culating the RTE, the aggregate CPU time of a function is

measured under the IDEAL scenario while the turnaround

time of the function is measured under the workload. From

this figure, we have the following observations. (1) SRTF,

as an offline scheduling policy in favor of short jobs, is

provably optimal for turnaround time [21]; SRTF approached

the IDEAL performance, which was achieved with infinite

resources. (2) None of Linux’s three CPU schedulers was able

to offer good performance under both the 80% and 100% load

under practical FaaS workloads (Figure 2(a)); CFS performed

the best among all Linux scheduling policies, but still, there

were about 11.4% and 89.9% of the function requests that

achieved an RTE score < 0.2 (Figure 2(b)). This explains

why SRTF outperformed CFS: with the same service time,

functions were preempted more under CFS, causing longer

waiting times. (3) Under the 100% load, functions executed

more than one order of magnitude slower under CFS than

SRTF, with a 40th and 70th percentile slowdown of 16×
and 24×, respectively, again, because of the dominant waiting

time. (4) RT schedulers offered the worst performance: FIFO

performed the worst due to the “convoy effect”, where short

functions were blocked behind long functions.

Observation 2: Approximating the offline oracle SRTF by

improving the run-time effectiveness will promise a significant

performance boost for short serverless functions.

V. SFS DESIGN

Our study in §IV shows that cloud functions often suffer

high execution duration amplifications. Among all scheduling

strategies, SRTF is promising (than CFS). This motivates the

design of a new scheduler SFS to prioritize short functions.

In this section, we present the design principle and challenges

of SFS, followed by the design details.

A. Design Goals and Challenges

To prioritize short functions, a priority-based scheduler is

needed. However, as described earlier in §II-B, proportional-

share schedulers such as CFS are designed for optimizing

fairness for long-running jobs and avoiding starvation. To

achieve such goals when multiple concurrently running jobs

are consolidated on a single server, CFS squeezes the time

slice for each competing job and proportionally shares the

physical CPU time among them. This leads to a significantly

prolonged “scheduling cycle”: a job that has used up its time

slice is descheduled and must wait for a long time before it

gets rescheduled. For short jobs, this prolonged waiting time

hurts turnaround time: they could have finished much earlier

without preemption if given a long-enough time slice.

Our motivational study from Figure 2 shows that SRTF can

achieve much better performance than CFS. SRTF provides

4

102 103 104 105
Duration(ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) Execution duration distribution.

10−3 10−2 10−1 100

RTE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SRTF 100%
SRTF 80%
CFS 100%
CFS 80%
FIFO 100%

FIFO 80%
RR 100%
RR 80%
IDEAL

(b) Run-time effectiveness (RTE) distribution.

Fig. 2: Performance and RTE of an Azure-sampled workload on OpenLambda with different scheduling policies and different loads.

a theoretical lower bound in terms of turnaround time for

short-function-dominant FaaS workloads because SRTF allows

a short-enough function to be scheduled instantly and run

to completion without preemption. However, SRTF is not

practical as it assumes a priori knowledge about job duration.

Our goal is to design an online scheduler that approximates

SRTF. We achieve this goal by addressing the following

challenges. First, cloud functions are much shorter with a

typical duration ranging from tens of ms to several seconds,

and FaaS workloads exhibit transient overload. Such workload

characteristics pose a challenge in designing effective prioriti-

zation strategies, which should prioritize short functions in a

timely manner with minimal impact on longer functions.

Second, existing FaaS platforms use a client-server-based

microservice architecture, where clients issue HTTP invoca-

tion requests to execute cloud function instances hosted by

backend FaaS servers. Our design must provide a transparent

and portable function scheduler that requires no or minimum

modification of existing FaaS platforms while being OS-

scheduler-agnostic. That is, even if the FaaS platform uses

CFS or other OS-level proportional scheduling schemes, short

functions should gain higher priority than longer functions.

Thus, a second challenge is how to design an efficient and

practical function scheduler, which (1) works entirely in the

user space and does not require kernel modifications, (2) works

alongside (rather than replacing) OS schedulers and exploits

(whenever needed) OS scheduling properties such as work

conservation to provide better support for FaaS workloads,

(3) while being transparent to FaaS servers.

B. Design Overview

Typically, a FaaS platform uses a client-server architecture

as depicted in Figure 3: a directly-user-facing gateway for-

wards HTTP invocation requests from users to a backend

FaaS server that hosts requested function instances. To be

transparent and portable to existing FaaS platforms, we design

SFS by following a black-box approach. A backend FaaS

server dispatches function invocations to the underlying OS.

SFS assumes the existence of such a backend FaaS server.

SFS serves as a user-space middle layer between a FaaS

server and the OS (Figure 3), intercepting function requests

and performing function scheduling for the FaaS server.

User

Gateway
HTTP

invocation
requests

HTTP
invocation
requests

Backend server

SFS scheduler

OS

Fig. 3: Overview of a typical FaaS platform deployment.

Figure 4 illustrates the overall function scheduling flow.

SFS orchestrates Linux’s existing schedulers (FIFO and CFS)

in the user space. SFS adopts two-level scheduling that

seamlessly combines a FIFO-like scheduling policy based

on Linux FIFO at top level and a kernel-space scheduling

policy offloaded to Linux CFS at bottom level. The top-

level scheduler schedules function requests by the order in

which they are enqueued in the global queue and filters out

those longer functions that are not finished in a (dynamically

configurable) time slice. This way, the top-level scheduler

effectively serves as a FILTER2. Under SFS, a function’s

lifespan may experience one or two phases: a FILTER phase

and/or a CFS phase. A function by default starts in FILTER

mode. SFS dynamically adapts a time slice parameter S
(discussed later) using a sliding window approach and uses S
to bound a function’s execution in FILTER mode. This way,

SFS approximates SRTF. SFS is inherently work-conserving

following a single queue model: SFS workers fetch requests

whenever they are idle. To minimize context switches, SFS

guarantees that a function that is executing in FILTER mode

would be preempted only if it has used up the time slice or it

is waiting for an event (e.g., I/O).

Scheduling Flow. Next, we describe the main components and

the scheduling flow of SFS as illustrated in Figure 4:

1. A backend FaaS server, serving as a client, dispatches

function invocation requests, launches requested functions

in a virtualization environment in OS, and sends the

information of the dispatched function requests (tuples of

unique function request ID and the invocation timestamp)

to SFS’ global queue.

2. Multiple SFS workers, each responsible for scheduling

function requests on a separate CPU core, concurrently

fetch function requests from the global queue whenever

workers are free. Note a non-empty global queue indicates

2FILTER: First In but Longer jobs To Extra Runqueue.

5

Backend FaaS server

Worker 2 Worker 3 Worker N

CFS pool

…

I/O

Monitor Enqueue function requests

Statistics in

sliding window

FILTER

pool

Fetch function requests

Functions use up time slice:

Demote the unfinished to CFS pool

Overload detected: Demote

functions to CFS pool

Re-enqueue

blocked function

Generated

time slice S Function

returns

1

Generate

time slice
3

4.3

2

4.1

4.2 4.4

U
s
e
r

K
e
rn

e
l

Global

queue

<IDreq, Tinv>

…

Worker 1

Fig. 4: SFS architecture. SFS’ components are highlighted in
condensed bold font.

that all cores are busy serving requests. Each SFS worker is

responsible for intercepting the dispatched function process

by using the tuple information fetched from the queue and

scheduling the function using FILTER policy. This way,

each function by default starts execution in FILTER mode,

unless otherwise specified (§V-E). This effectively forms

a FILTER pool of multiple SFS workers. Functions that

are executing under FILTER mode naturally gain higher

priority than those under CFS mode. To realize this, SFS

changes a running function process’ OS scheduling policy

to FIFO (SCHED_FIFO), which has higher static priorities

than CFS (SCHED_NORMAL) processes [12].

3. Each SFS worker stores the following statistics information

in memory: (1) function request ID and its invocation

timestamp, which is initially recorded in the global queue

when the function request was submitted, and (2) function

execution timestamp, which is the time when the func-

tion starts execution. An SFS monitor periodically re-

calculates a global time slice parameter S based on the

collected statistics (§V-C). Next, we describe several cases

of the function execution.

4.1. The ideal case is that a short function finishes execution and

returns before using up S. This way, the SFS worker marks

its completion, removes the corresponding entry from the

global queue, fetches the next function request, and restarts

the time slice timer.

4.2. The SFS worker keeps track of the runtime of the FILTER

function, forcibly preempts it if its time slice expires, and

demotes it to CFS.

4.3. If a function is blocked by some event, e.g., an I/O event,

the worker will instantly preempt its execution and add it

back to the global queue (§V-D).

4.4. If an SFS worker detects a transient overload by observing

increasing queuing delay (above a certain threshold), it

temporarily disables FILTER and directly schedules next

requests using CFS (§V-E).

C. Dynamically Adapting Time Slices

While it may be impossible to design a perfect scheduler

that assigns a precise time slice that perfectly matches the

remaining execution duration of any job, SFS uses a simple

yet effective heuristic approach based on queuing theory to

estimate and dynamically adapt the time slice parameter S.

The time slice parameter presents an interesting tradeoff

between queuing delays and the turnaround time of the work-

load. On the one hand, an (improperly) short time slice value

would reduce global queuing delays of outstanding function

requests but unnecessarily cause a longer turnaround time due

to increased context switches. CFS falls to this end of the

spectrum. On the other hand, an (unnecessarily) long time

slice value would lead to reduced overall context switches

but increased global queuing delays, and as a result, hurts

turnaround time.

Therefore, we use queuing theory to set the time slice.

For this purpose, we can model a multi-core scheduler as a

multi-server queuing system—an M/G/c model according to

Kendall’s notation—using the following equation:

ρ =
λ

cµ
(2)

where λ is the arrival rate of the requests, µ is the service

rate of a single core, c is the number of cores used, and ρ
is the traffic intensity per core (i.e., per-core utilization). We

can thus use the utilization metric ρ as a measure of queuing

delay: if ρ is greater than one, meaning the arrival rate λ is

larger than the aggregate service rate cµ, the length of SFS’

global queue will grow without bound. Intuitively, adapting

the service rate µ based on the changing λ can bound ρ, thus

the overall queuing delay. However, in practice, µ is solely

determined by the workload and the capacity of the underlying

hardware. Therefore, SFS enforces a global time slice to cap

the duration for how long any function may run in FILTER

mode. SFS dynamically changes the time slice in response

to the variable request arrival rate, which is estimated using

historical IATs.

Following Equation 2, SFS keeps track of a small sliding

window of last N requests’ inter-arrival times (IATs) to

determine the time slice parameter S. For a single-core system,

SFS calculates the average IAT of last N functions, IAT , and

uses it as the feedback to dynamically tune S. With c cores,

S = IAT ∗ c. Intuitively, S is used to bound the service rate

µ of Equation 2, which in turn affects the traffic intensity

ρ; ρ further affects the queuing delay of function requests

that are executing under FILTER mode, and therefore, SFS

uses the historical IAT information to strike a balance between

queuing delay and execution time. When a global S is selected,

SFS guarantees that all functions whose execution duration is

shorter than S run to completion without being preempted.

SFS re-calculates a new S for every N function requests that

has been enqueued in order to provide dynamic adaptation to

workloads. N is configurable and we choose 100 as N in our

evaluation.

There may always be functions that are not able to fin-

6

ish before the time slice elapses. To solve this issue, SFS

uses a single-level FILTER pool concatenated with CFS to

approximate SRTF. SFS steers Linux FIFO directly from the

user space and builds the FILTER policy as a high-priority

queue for short functions. SFS transparently leverages CFS as

a black-box, lower-priority queue for longer functions. Note

that functions running in CFS share the same set of cores as

those running in FILTER mode. Starvation is mitigated since

CFS is work-conserving and can immediately schedule any

demoted functions on any available CPU core.

D. Handling I/Os

Since SFS is a user-space scheduler, it cannot transparently

handle kernel-level tasks such as context switches, interrupts,

and preemptions, etc. That is, an SFS worker could be waiting

for a blocked function that has already been preempted due to

an I/O event. This leads to sub-optimal decision-making with

regard to function timekeeping and time slice estimation. To

solve this issue, SFS workers track the kernel-level process

status of the function by periodically issuing a polling request

to the OS. When a function is in its CPU burst, its kernel-level

status is in running mode. Whenever a function changes its

kernel-level status from running to sleep, the SFS worker

detects this transition, stops its timekeeping and records the

unused time slice, reduces its priority, and schedules the next

available function from the global queue. Note that, when a

high-priority function blocks by I/O, CFS automatically sneaks

in and executes other functions that have been filtered by SFS.

This guarantees seamless work conservation. When the status

of a waiting function changes to runnable, SFS adds it back

to global queue. When this function gets rescheduled in the

FILTER pool, it will execute until it completes or it uses up

the rest of the time slice. We use 4 ms as the polling interval.

We evaluate this scheme in §VIII-B and its overhead in §IX-B.

E. Handling Overload

Real-world FaaS workloads exhibit highly bursty and un-

predictable load patterns [48, 61]. Alibaba Function Compute

workload analysis reports transient spikes of concurrent invo-

cations to the same function [61]. When an increasing number

of short functions get piled up at global queue in a very short

time (increasing arrival rate λ in Equation 2), the service rate

of SFS’ FILTER pool, cµ, cannot catch up with the workload

spike. This transient (temporary) overload leads to increased

traffic intensity, ρ, therefore, increased queuing delay and even

function request drop. Reducing the time slice of the FILTER

pool helps little in this scenario. This is because a FILTER

time slice shorter than that of CFS would cause more context

switches than CFS; as a result, the piled-up FIFO function

requests from the transient overload create backlog that cannot

be quickly consumed by FILTER workers (see Figure 12(a) as

an example). To solve this issue, SFS temporarily switches to

CFS when any SFS worker detects increasing queuing delay of

the function request that it is about to schedule using FILTER.

As long as the queuing delay lowers back to normal, SFS

workers roll back to the normal scheduling flow.

This strategy, though simple, is in fact very effective because

of the following reasons. Offloading accumulated functions to

CFS alleviates high queuing delays in the FILTER pool by

draining the backlog more quickly. Since overload is tran-

sient, regular load coming after that can then be serviced by

SFS’ default, time-slice-based FILTER pool first, thus, short

functions experience no further queuing delays and can finish

in one round before the time slice expires. Those function

requests that are offloaded during the overload to CFS are

eventually complete thanks to CFS’ work conservation. An

SFS worker detects overload if the queuing delay is at least

O × S. We set O as 3 empirically. We evaluate the efficacy

of this strategy in §VIII-B.

VI. SFS IMPLEMENTATION

We have implemented SFS as a standalone, user-space

function scheduler in Go. We have also ported SFS to an

open-source FaaS platform OpenLambda [31]. Porting SFS

to OpenLambda required a very small engineering effort: we

modified/added 29 lines of Go/Python code in OpenLambda

worker and sandbox server to interface with SFS.

Standalone SFS. We implemented the SFS global queue

structure using Go’s built-in, thread-safe channel. SFS workers

are goroutines (a lightweight user-level thread of execution

managed by the Go runtime), which are responsible for

dispatching and scheduling function processes in the FILTER

pool. Function invocation requests are pushed into the global

queue channel by an external, backend FaaS server (Figure 3-

4). SFS implements the switching from FILTER pool to CFS

pool by using Linux schedtool [14]. Function invocation

requests are executed in sandboxed processes scheduled by

either SFS workers or the CFS scheduler.

We chose to implement a global queue instead of using

a per-core-queue (i.e., multi-queue) design because a single

global queue guarantees natural work conservation with good

load balancing across all CPU cores. It is demonstrated that

a per-core-queue design has multiple downsides, e.g., severe

load imbalance, core under-utilization, and degraded perfor-

mance [44]. In our current implementation, the global queue is

implemented using a Go channel (with nanosecond enqueue/d-

equeue latency under multi-threaded environments), which is

capable of handling up to 100 CPU cores each running tasks

with a duration from ms to seconds. A single global queue,

however, might become a bottleneck if assuming hundreds of

CPU cores and microsecond-level function execution duration.

Since the server hosts deployed by a typical FaaS provider

may have up to 100 vCPUs [16], our global queue design is

an appropriate solution.

SFS workers are work-conserving: each worker is blocked

on global queue and fetches a function request whenever the

queue has entries to consume. To implement FILTER policy,

SFS workers use schedtool to change a running function

process’ OS scheduling policy from CFS (SCHED_NORMAL) to

FIFO (SCHED_FIFO). When the server is under low utilization,

a function that is dispatched by the FaaS server may execute in

CFS for a very short period of time (hundreds of microseconds,

7

OL worker

OL worker

…

HTTP sandbox servers

func

func

func

…

SFS

scheduler

<pid, Tinv>

<pid, Tinv>

<pid, Tinv>

OpenLambda

H
T

T
P

 i
n
v
o

c
a
ti
o

n
 r

e
q

u
e
s
ts

Fig. 5: Porting SFS to OpenLambda. OL: OpenLambda.

depending on the communication overhead between the FaaS

server and SFS). Under this situation, CFS performs the same

as SFS due to zero contention. A non-empty global queue

indicates that all CPU cores are busy serving function requests;

if so, newly dispatched functions are internally queued at OS-

level run queues (§II-B) as CFS jobs have inherently lower

priority than actively running FIFO jobs. SFS workers preempt

a FIFO function’s execution by using schedtool to assign

it a lower priority. SFS workers detect blocking events by

periodically (4 ms) polling the function process’ OS status

using a go process utilities library gopsutil [9].

SFS is designed to be, in principle, portable to any open

source FaaS platforms such as OpenLambda [31], Open-

Whisk [55], and OpenFaaS [11], as they all share the same

client-server architecture. To demonstrate the portability, we

have ported SFS to OpenLambda. As shown in Figure 5,

a backend OpenLambda deployment consists of two compo-

nents: (1) a cluster of OpenLambda workers that are respon-

sible for receiving function invocation requests, performing

sandbox auto-scaling, and tracking statistics, and (2) a cluster

of HTTP servers that manage function sandboxes. In our

implementation, we chose Docker containers as the function

sandbox. On-demand container provisioning (i.e., cold start)

incurs high overhead. Therefore, we disabled auto-scaling

and pre-warmed enough function containers to simulate a

stable-phase FaaS backend so as to accurately quantify the

performance of schedulers.

Porting SFS to OpenLambda. We modified OpenLambda’s

HTTP sandbox server to communicate with SFS scheduler

using UDP: whenever a sandbox server dispatches a function

request to OS, it sends to SFS a UDP message containing

function process PID and invocation timestamp.

VII. EXPERIMENTAL METHODOLOGY

Setup. We developed and tested SFS on CloudLab [23]. We

evaluated SFS and SFS-ported OpenLambda on two AWS

EC2 VMs: a small, c5a.4xlarge VM with 16 vCPUs and

64 GB memory (standalone SFS), and a large, bare-metal,

m5.metal EC2 instance with 96 vCPUs and 384 GB memory

(OpenLambda). The goal of using a large bare-metal machine

is to simulate a similar FaaS deployment environment used by

major FaaS providers such as AWS Lambda [16].

FaaSBench. We have built a FaaS workload generator called

FaaSBench, which creates FaaS workloads modeled after

the Azure Functions workload [48]. FaaSBench is highly

configurable along the following dimensions: (1) FaaSBench

configures per-function behaviors by using a Fibonacci (fib)

function with two knobs: an integer knob N for controlling

the compute time, and a boolean knob IO that toggles the

I/O operation (if set true) to simulate I/O-intensive functions.

The distributions of (2) function duration and (3) requests’

inter-arrival times (IATs) are also configurable.

TABLE I: Probability distribution of func-
tion duration ranges and the corresponding
fib Ns. Note ranges are non-contiguous
and each missing range has less than 1%

probability in Azure traces (Day 1).

Probability Duration N
40.6% 0-50 ms 20-26

9.8% 50-100 ms 27-28

6.8% 100-200 ms 29

22.7% 200-400 ms 30-31

15.7% ≥ 1550 ms 34-35

Generating FaaS

Workloads. We

based the Azure

Functions traces

to generate testing

workloads. The

original Azure

traces contain the

execution duration,

memory sizes,

and invocation

timestamps of 82, 375 unique function applications spanning

a period of 14 days. To downscale, we generated the

distribution of function execution duration based on Day

1’s invocation statistics. We found that the duration roughly

follows a multimodal distribution, where about 40.6%, 22.7%,

and 15.7% of invocations fall in a duration (unit of ms) range

of (0, 50], [200, 400), and [1550,∞), respectively. We built a

table that maps the range of execution duration recorded in

Day 1 to fib’s Ns (Table I), and then used Azure function

duration distribution to generate Ns using FaaSBench. For

example, fib with an N between 20-26 finishes execution

in less than 45 ms, therefore, we programmed FaaSBench

to generate fib functions with an N between 20-26 with a

probability of 40.6%. FaaSBench can also generate different

duration distributions (results omitted due to page limit).

The released Azure trace datasets only contain the high-level

statistical breakdown information that describes the function

execution behaviors. To make sure that our study captures the

original Azure Functions workload as accurately as possible,

we took the 50th percentile execution duration as the expected

execution time for a function. This way, our benchmark rules

out outliers that do not represent the typical behaviors of the

original workload.

To configure IATs of the generated workload, we randomly

sampled 100 unique function applications, each with a total

invocation count greater than 200 on Day 1, and extracted the

IAT statistics. We then replayed the first 10, 000 invocation

requests by strictly following the extracted IAT patterns.

This is to guarantee that our generated workload preserves

similar load patterns as real-world, production workloads. In

addition to modeling existing trace’s IATs, FaaSBench can also

generate Poisson and uniform IATs. We ran each test multiple

times and results had negligible variation across runs.

Goals. Our evaluation aims to answer the following questions:

• How does SFS perform under various loads (§VIII-A)?

• How do different SFS configurations affect its performance

(§VIII-B)?

8

101 102 103 104 105

Duration(ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SFS 50%
SFS 65%
SFS 80%
SFS 90%
SFS 100%
CFS 50%
CFS 65%
CFS 80%
CFS 90%
CFS 100%

Fig. 6: Performance CDF.

10−2 10−1 100
RTE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Fig. 7: RTE CDF.

50 90 99 99.9 99.99
Percentile

10−1

100

101

102

Du
ra

tio
n(

Se
co

nd
s)

SFS 50%
CFS 50%

SFS 65%
CFS 65%

SFS 80%
CFS 80%

SFS 90%
CFS 90%

SFS 100%
CFS 100%

Fig. 8: Percentile breakdowns of function execution duration.

• How does an SFS-ported FaaS platform (OpenLambda)

perform (§IX)?

VIII. EVALUATING STANDALONE SFS

In this section, we evaluate SFS as a standalone function

scheduler using FaaSBench. The goal of evaluating standalone

SFS is to better understand the true performance characteris-

tics of task scheduling without the extra overhead introduced

by a FaaS platform.

A. SFS Efficiency under Various Loads

We first test SFS under different loads using the Azure-

sampled workload generated by FaaSBench, which follows

the duration distribution of Azure traces (Table I) with a

Poisson IAT distribution. We adjusted the IAT of the generated

workload proportionally to simulate different loads ranging

from 50% to 100% of overall CPU utilization across all CPU

cores. Figure 6 reports the CDF of the execution duration. SFS

performed almost the same as CFS under the lowest 50% load

and slightly outperformed CFS under medium loads when the

load increased from 65% to 80%. SFS’ marginal improvement

was obtained because of a higher RTE. As shown in Figure 7,

about 93% and 88% of all function requests receive an RTE

≥ 0.95 under a load of 65% and 80%, respectively, indicating

that these functions run to completion without any context

switch under SFS (with a very short queuing delay when the

request was initially submitted). CFS is workload-oblivious,

which introduces more context switches; under a load of 65%
and 80% with CFS, only 55% and 35% of all function requests

receive an RTE score ≥ 0.95, where a lower RTE translates

to prolonged waiting time.

An interesting observation is that SFS maintains almost

identical performance for 83% of the function requests across

all load levels. In other words, at least 83% of the function

requests can achieve optimal execution duration and an RTE

score of almost 1 even under a high load where all CPUs are

100% utilized.

Under CFS, the same set of functions, on the other hand,

saw dramatically increased execution duration because of

prolonged waiting time (Figure 7). This result demonstrates

SFS’ efficacy in sustaining dynamic FaaS workloads.

The performance gain of shorter functions under SFS does

not come for free: there is always a tradeoff in balancing

the scheduler efficiency for short and long jobs [64]. SFS

observed slightly higher tail latency. For the 17% relatively

long functions, SFS observed an average increase of 1.29×
in execution duration compared to CFS under the 100% load.

The 99.9th percentile latency of SFS under 80% load is only

47.1% higher than that of CFS (Figure 8). CFS, while being

a proportional-share scheduler, does suffer long tail latency

even under relatively lower load; this can be seen from the

fact that the 99.9th percentile latency of CFS increases from

3.3 seconds under the 50% load to 22.1 seconds under the

65% load; though the increase of the 99.9th percentile tail

latency under SFS is slightly higher than that under CFS.

Interestingly, SFS achieved a consistent medium (50th

percentile) latency of 0.1 second across all load levels, while

CFS’ medium latency increases as the load increases. Longer

functions could be potentially offloaded to relatively lighter-

loaded FaaS servers by the global FaaS scheduler to mitigate

the performance impact, which we plan to investigate as part

of our future work.

More importantly, even under a 100% load, SFS offers short

functions consistently competitive performance comparable to

a performance level that would have been achieved under

less stringent load situations, say 65%–90% load. This would

bring desired benefits for both parties, including mitigated

overcharges for FaaS users and higher resource utilization

(thus reduced deployment costs) for FaaS providers.

B. Sensitivity Analysis

Impact of Time Slice Configurations. Next, we conduct a

sensitivity test by varying the time slice parameters S. We

fixed S to 50, 100, 200 and compared against SFS’s dynamic

adaptation heuristic. Figure 9 shows that none of the three

statically configured S led to optimal performance. SFS’s

adaptive strategy yields better performance than a static S of

100 ms and 200 ms by adapting S based on the last 100

9

101 102 103 104 105

Duration(ms)
0.0
0.2
0.4
0.6
0.8
1.0

CD
F

SFS
SFS 50
SFS 100
SFS 200

Fig. 9: Adaptive time slice tuning vs.
statically fixed time slices.

Timeline
0

200
400
600
800

1000
1200

Ti
m

e
sli

ce
 (m

s)

20

40

60

80

IA
T

(m
s)

Fig. 10: Timeline of time slice changes vs. IATs
during the whole workload.

102 103 104

Duration(ms)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SFS + 1ms
SFS + 4ms
SFS + 8ms
I/O-oblivious SFS

Fig. 11: Handling I/O. SFS was config-
ured to use different polling intervals.

observed IAT samples. This is because a long, fixed time slice

inevitably increased queuing delay of waiting functions.

Figure 10 depicts the timeline of the adaptation. Having

a smaller, fixed S as short as 50 ms resulted in better

performance for around 30% short function requests compared

to SFS, but at the same time, it suffered from significantly

prolonged duration for the rest of 70% requests. SFS struck a

good balance of queuing delays and service time, leading to

better overall performance.

Handling I/O. To evaluate how SFS handles I/O events in

functions, we toggled the I/O knob for 75% of the function

requests, for which we added a single I/O operation at the

beginning of the function execution; the added I/O operation

took X ms, where X was randomized drawn from a range

between 10 to 100 ms. As shown in Figure 11, I/O-oblivious

SFS had worse performance, because FILTER pool wasted

time slice credit waiting for the I/O to be served, causing

them to be filtered out to CFS. In contrast, SFS was able to

detect I/O-caused waiting by using periodic status polling. We

varied the polling interval from 1 ms to 8 ms and found that

the performance was not sensitive to the polling frequency.

Handling Overload. We finally test the effectiveness of

SFS’s hybrid strategy to handle the transient overload. The

Azure-sampled workload exhibits transient overloads, which

can be spotted from the five queuing delay spikes shown in

Figure 12(a). Note we only measured the time a function spent

waiting in SFS’ global queue. With overload detection dis-

abled, SFS suffered significantly long queuing delays. Spiked

queuing delays took long to diminish because the normal

workload coming after the temporary load spikes caused a

longer backlog of requests. By detecting the sudden increase

of queuing delay, SFS temporarily switched to CFS. This

helped quickly consume the backlog from the global queue

so that normal load coming after the spikes can be served by

using SFS’s default FILTER pool. A direct effect is a smooth

queuing delay curve (Figure 12(a)) and considerable reduction

of turnaround times for about 50% of function requests (Fig-

ure 12(b)). More importantly, Figure 12(b) demonstrates that

CFS or FILTER policy alone (SFS with overload detection

disabled) is not sufficient to handle transient overload; SFS’s

hybrid strategy effectively combines the best of both policies

to achieve minimum turnaround time.

IX. OPENLAMBDA EVALUATION

A. End-to-End Efficiency

We used FaaSBench to generate a more comprehensive

FaaS workload, which includes three function applications:

Fibonacci sequence (fib), markdown generation (md), and

sentiment analysis (sa). As mentioned, fib calculates a

sequence of N Fibonacci numbers and is CPU-heavy. . md

reads a JSON file from the function’s local storage and

transfers it to the markdown format; md’s execution is I/O-

intensive. sa reads a file that contains a sentiment vocabulary

dictionary and then predicts the sentimentality given a target

sentence; sa is both CPU-intensive and I/O-intensive. This

workload reused the same function duration distribution and

IAT distribution of the Azure-sampled workload. OpenLambda

was deployed to use 72 cores of the EC2 bare-metal instance,

following an architecture depicted in Figure 5. We varied

the IAT to generate three load levels: 80%, 90%, and 100%.

The OpenLambda deployment introduced extra overhead at

various levels, including the OpenLambda worker servers

and the HTTP sandbox servers. These overheads diminished

the performance benefits of SFS to some extent; however,

as we will show, SFS can still provide huge performance

improvement for the majority of functions that are short.

Figure 13 and 14 report the distributions of function execu-

tion duration and RTE. The functions ran on average 14.1%
longer with OpenLambda+CFS under 80% load than Open-

Lambda+SFS under the same load. When the load increased,

OpenLambda+CFS started to see performance degradation,

while OpenLambda+SFS achieved almost identical perfor-

mance under all the three loads. As shown in Figure 15,

OpenLambda+SFS observed a 99th percentile duration of

4.75 seconds, a 1.65×, 4.04×, and 7.93× speedup compared

to OpenLambda+CFS under the load of 80%, 90%, and

100%, respectively. We also measured the number of context

switches occurred under the three loads. Figure 16 shows

the normalized context switches for each function request.

Under the 80% and 100% load, more than 99% of function

requests scheduled by CFS had more context switches than

SFS. For about 85% of requests, CFS suffered 10× more

context switches than SFS.

B. SFS Overhead

SFS incurs a small runtime overhead. There are two sources

of overhead: (1) SFS uses goroutines as scheduling workers:

10

0 2000 4000 6000 8000 10000
Request submission ID

0
5

10
15
20
25
30
35

Qu
eu

in
g

De
la

y(
s)

SFS
SFS w/o hybrid

(a) Timeline of queuing delays.

101 102 103 104 105

Duration(ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SFS
SFS w/o hybrid

(b) CDF of function duration.

Fig. 12: Effect of SFS’s overload handling mechanism. SFS w/o hybrid refers to SFS’s baseline implementation with the hybrid
FILTER+CFS mode disabled (see §V-E).

102 103 104 105

Duration(ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F OL+SFS 100%

OL+SFS 90%
OL+SFS 80%
OL+CFS 100%
OL+CFS 90%
OL+CFS 80%

Fig. 13: Performance CDF.

10−1 100

RTE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

OL+SFS 100%
OL+SFS 90%
OL+SFS 80%
OL+CFS 100%
OL+CFS 90%
OL+CFS 80%

Fig. 14: RTE CDF.

50 90 99 99.9 99.99
Percentile

103

104

105

Du
ra

tio
n(

m
s)

OL+SFS 80%
OL+SFS 90%
OL+SFS 100%
OL+CFS 80%
OL+CFS 90%
OL+CFS 100%

Fig. 15: Percentile breakdowns of function execution
duration.

0 2000 4000 6000 8000 10000
Requests

100

101

102

103

Ct
x

sw
itc

h
ra

tio

80%
90%
100%

Fig. 16: The ratio of CFS context switches to that
of SFS.

function scheduling incurs some overhead; (2) SFS workers

perform periodic polling to check the kernel status of the func-

tion process. The polling overhead is the dominant overhead.

TABLE II: SFS’ (relative) CPU overhead in
support of a 72-core OpenLambda deployment.

Interval min average medium max

1 ms 1.6% 3.8% 3.8% 6.2%

4 ms 1.3% 3.6% 4.0% 6.2%

8 ms 1.4% 3.4% 3.9% 6.6%

Table II

shows SFS’

CPU usage in

the 72-core

OpenLambda

tests. With

a polling

interval of 4 ms, SFS’ average CPU usage was 259.8% for

the Azure-sampled workload, meaning that an extra of 2.6
cores were needed in order to boost a 72-core OpenLambda

deployment, a relative overhead of only 2.6/72 = 3.6%.

About 74.4% of the total overhead was for periodic status

polling, while the rest of 25.6% was for scheduling activities.

X. DISCUSSION

In this section, we discuss the limitations and possible future

directions of SFS.

Impact of Function Cold Start. Significant function cold

start costs may offset the benefit of SFS, especially for short

functions. Optimizing the cold start cost of serverless functions

is an important and challenging problem that has drawn great

attention from the community. Commercial FaaS platforms

use sandbox and runtime caching extensively to mitigate the

impact of cold start on function performance [62, 63]. The

Azure Functions workload analysis [48] reports that even a

naive keep-alive function warmup policy can guarantee zero

11

cold start for around 50% of the function applications; with

even smarter policies [48, 25, 46], the cold start rate could be

further reduced to less than 10% for all the function requests

served on a single function host server. We foresee that most

if not all the function requests would be executed without a

cold start penalty with the recent advancement in cold start

optimization [22, 39, 50, 41, 42, 61]; this makes the OS-level

function scheduling—the “last mile” of a function request—a

practical and urgent research problem that demands effective

solutions like SFS.
Why User-Space? SFS is designed to be a standalone, user-

space function scheduler, which can be transparently plugged

into existing FaaS platforms. While a kernel implementation

of SFS would certainly work, with possibly less runtime

overhead but much higher engineering efforts, a user-space

implementation offers future-proof flexibility by retaining all

the desirable properties of existing Linux scheduling facil-

ities. With decades of research in datacenter workload co-

location [59, 56, 40, 45, 26], soon we will see co-location of

production FaaS workloads with other cloud computing work-

loads. CFS, as the battle-tested, general-purpose scheduling

solution for a wide range of workloads, would still play a key

role in balancing the CPU resource usage. SFS is designed

to co-exist with and complement an existing OS scheduler

in these scenarios. Moreover, co-location of highly diverse

workloads is likely to cause more intense CPU contention,

thus demanding future research.

XI. RELATED WORK

Scheduling Short and Long Jobs. Improving turnaround time

by approximating SRTF is a well-known approach that has

been investigated in many domains [47, 24, 51, 30, 29]. A

series of systems use request sizes as the hint to approximate

SRTF. Size-based scheduling gives preference to requests

for small files targeting web servers serving static HTTP

requests [30]. Similarly, Harchol-Balter et al. applied SRTF

to webserver request scheduling based on sizes of Linux

kernel socket buffers [29]. Inspired by these works, SFS

presents a practical priority scheduler that addresses many of

the challenges in emerging, real-world FaaS workloads.
Scheduling for Fine-grained I/O Workloads. Shenango [43],

Shinjuku [36], and ZygOS [44] use scheduling techniques such

as core re-allocation, preemption, and work-stealing. These

techniques optimize tail latency of small key-value requests

whose service time is highly predictable; Shenango and Shin-

juku assume long jobs co-located with small key-value request

serving jobs—batch applications or range queries—whose

application type is either known ahead or can be obtained

from packet inspection. In contrast, SFS does not assume a

priori knowledge about function types or execution time but

instead requires a very small amount of historical statistics for

online time slice adjustment.
Serverless Function Scheduling. Centralized, core-granular

scheduling [38] uses two-level scheduling: it uses centralized

scheduling to eliminate queue imbalance and core granular

scheduling to reduce the interference caused by proportional-

share. Core-granular scheduling assumes: (1) non-preemption,

meaning a function, once scheduled to a worker core, runs

to completion (i.e., running in FIFO), and (2) massive dis-

tributed resources, meaning the scheduler can always find

available cores to schedule a function request. SFS shares

similar goals but targets a local server scheduling environment,

where the OS scheduling plays a critical role. Another line

of work is focused on distributed or FaaS platform-level

function scheduling [52, 53, 33, 57, 65] by using function

placement optimization, low-latency I/Os, data locality, and

reinforcement learning. Serverless dataflow frameworks use

variants of cluster scheduling techniques [20, 19, 34, 49, 54]

for serverless workflow applications. These works use the

Linux scheduler for “last mile”, OS-level task scheduling and

would benefit from SFS.

User-defined Scheduling. Syrup [37] and ghOSt [32] allow

developers to implement application-specific scheduling poli-

cies directly in the user space. Syrup uses the eBPF [6] maps

data structure to support user-kernel communication, while

ghOST uses message queues and transactions for user-kernel

communication. A user-defined policy may, however, observe

significant user-kernel communication cost if the application

needs frequent user-level scheduling adjustment; this is the

case for serverless scheduling, where the time slice needs to

be frequently and dynamically tuned by the scheduler.

XII. CONCLUSION

Serverless computing is gaining increasing popularity, as it

promises fine-grained resource management, accounting, and

billing at the milliseconds level. However, in practice, FaaS

workloads are highly heterogeneous and latency-sensitive, and

have shown great volatility in execution durations. In this

work, we have shown, via the design and implementation of a

user-space scheduler SFS and empirical evaluation, that SFS,

by approximating SRTF scheduling, can significantly reduce

the execution duration of short functions. SFS approximates

SRTF with a dynamic and adaptive time slice in a first-level,

global queue to combine the best worlds of FIFO and RR,

while defaulting to the underlying OS-level scheduler in the

second-level queue. SFS is transparent and can be easily

ported to existing FaaS platforms. as we have demonstrated

through an open-source FaaS platform OpenLambda. We hope

that SFS will inspire new OS-level scheduling policies attuned

to FaaS applications and open doors to new, FaaS-oriented

SLO rules.

SFS and SFS-ported OpenLambda are available at:

https://github.com/ds2-lab/SFS.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their

valuable comments and suggestions that improved the paper.

This work is sponsored in part under an NSF CAREER Award

CNS-2045680, CCF-1919075, CCF-1919113, OAC-2106446,

CMMI-2134689, CNS-2007153, an Adobe Research gift, and

an AWS CloudBank grant.

12

https://github.com/ds2-lab/SFS

REFERENCES

[1] 2018 Serverless Community Survey: huge growth

in serverless usage. https://serverless.com/blog/2018-

serverless-community-survey-huge-growth-usage/.

[2] Amazon Web Services. https://aws.amazon.com/.

[3] AWS Lambda. https://aws.amazon.com/lambda/.

[4] Azure Functions. https://azure.microsoft.com/en-us/

services/functions/.

[5] Docker. https://www.docker.com/.

[6] eBPF Project. https://ebpf.io/.

[7] Google Cloud Functions. https://cloud.google.com/

functions/.

[8] Google Cloud Platform. https://cloud.google.com/.

[9] gopsutil. https://github.com/shirou/gopsutil.

[10] Microsoft Azure Cloud. https://azure.microsoft.com/en-

us/.

[11] OpenFaaS. https://www.openfaas.com/.

[12] sched(7) — Linux manual page. https://man7.org/linux/

man-pages/man7/sched.7.html.

[13] The OpemLambda Project. https://open-lambda.org/.

[14] Ubuntu Mannuals: schedtool. https://wiki.xenproject.org/

wiki/Credit Scheduler.

[15] Xen Credit Scheduler. http://manpages.ubuntu.com/

manpages/trusty/man8/schedtool.8.html.

[16] Alexandru Agache, Marc Brooker, Alexandra Iordache,

Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and

Diana-Maria Popa. Firecracker: Lightweight virtualiza-

tion for serverless applications. In 17th USENIX Sympo-

sium on Networked Systems Design and Implementation

(NSDI 20), pages 419–434, Santa Clara, CA, February

2020. USENIX Association.

[17] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel

Stein, Klaus Satzke, Andre Beck, Paarijaat Aditya, and

Volker Hilt. SAND: Towards high-performance server-

less computing. In 2018 USENIX Annual Technical

Conference (USENIX ATC 18), pages 923–935, Boston,

MA, 2018. USENIX Association.

[18] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,

Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and

Andrew Warfield. Xen and the art of virtualization.

SIGOPS Oper. Syst. Rev., 37(5):164–177, October 2003.

[19] Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar,

Panruo Wu, and Yue Cheng. Wukong: A scalable

and locality-enhanced framework for serverless parallel

computing. In Proceedings of the 11th ACM Symposium

on Cloud Computing, SoCC ’20, page 1–15, New York,

NY, USA, 2020. Association for Computing Machinery.

[20] Benjamin Carver, Jingyuan Zhang, Ao Wang, and Yue

Cheng. In search of a fast and efficient serverless

dag engine. In 4th International Parallel Data Systems

Workshop (PDSW 2019), 2019.

[21] Edward G Coffman Jr and Leonard Kleinrock. Com-

puter scheduling methods and their countermeasures. In

Proceedings of the April 30–May 2, 1968, spring joint

computer conference, pages 11–21, 1968.

[22] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu

Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen. Cat-

alyzer: Sub-millisecond startup for serverless computing

with initialization-less booting. In Proceedings of the

Twenty-Fifth International Conference on Architectural

Support for Programming Languages and Operating

Systems, ASPLOS ’20, page 467–481, New York, NY,

USA, 2020. Association for Computing Machinery.

[23] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,

Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,

Mike Hibler, David Johnson, Kirk Webb, Aditya Akella,

Kuangching Wang, Glenn Ricart, Larry Landweber, Chip

Elliott, Michael Zink, Emmanuel Cecchet, Snigdhaswin

Kar, and Prabodh Mishra. The design and operation

of CloudLab. In Proceedings of the USENIX Annual

Technical Conference (ATC), pages 1–14, July 2019.

[24] D. H. J. Epema. An analysis of decay-usage scheduling

in multiprocessors. In Proceedings of the 1995 ACM

SIGMETRICS Joint International Conference on Mea-

surement and Modeling of Computer Systems, SIGMET-

RICS ’95/PERFORMANCE ’95, page 74–85, New York,

NY, USA, 1995. Association for Computing Machinery.

[25] Alexander Fuerst and Prateek Sharma. Faascache:

Keeping serverless computing alive with greedy-dual

caching. In Proceedings of the 26th ACM International

Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS 2021, page

386–400, New York, NY, USA, 2021. Association for

Computing Machinery.

[26] Panagiotis Garefalakis, Konstantinos Karanasos, Peter

Pietzuch, Arun Suresh, and Sriram Rao. Medea: Schedul-

ing of long running applications in shared production

clusters. In Proceedings of the Thirteenth EuroSys

Conference, EuroSys ’18, pages 4:1–4:13, New York,

NY, USA, 2018. ACM.

[27] Samuel Ginzburg and Michael J Freedman. Server-

less isn’t server-less: Measuring and exploiting resource

variability on cloud faas platforms. In Proceedings of

the 2020 Sixth International Workshop on Serverless

Computing, pages 43–48, 2020.

[28] Jim Gray. Why do computers stop and what can be done

about it?, 1985.

[29] Mor Harchol-Balter, Nikhil Bansal, Bianca Schroeder,

and Mukesh Agrawal. Implementation of srpt scheduling

in web servers. 04 2001.

[30] Mor Harchol-Balter, Bianca Schroeder, Nikhil Bansal,

and Mukesh Agrawal. Size-based scheduling to im-

prove web performance. ACM Trans. Comput. Syst.,

21(2):207–233, May 2003.

[31] Scott Hendrickson, Stephen Sturdevant, Tyler Har-

ter, Venkateshwaran Venkataramani, Andrea C. Arpaci-

Dusseau, and Remzi H. Arpaci-Dusseau. Serverless com-

putation with openlambda. In 8th USENIX Workshop on

Hot Topics in Cloud Computing (HotCloud 16), Denver,

CO, June 2016. USENIX Association.

[32] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule,

13

https://serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/
https://serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/
https://aws.amazon.com/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://www.docker.com/
https://ebpf.io/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/
https://github.com/shirou/gopsutil
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://www.openfaas.com/
https://man7.org/linux/man-pages/man7/sched.7.html
https://man7.org/linux/man-pages/man7/sched.7.html
https://open-lambda.org/
https://wiki.xenproject.org/wiki/Credit_Scheduler
https://wiki.xenproject.org/wiki/Credit_Scheduler
http://manpages.ubuntu.com/manpages/trusty/man8/schedtool.8.html
http://manpages.ubuntu.com/manpages/trusty/man8/schedtool.8.html

Ofir Weisse, Barret Rhoden, Josh Don, Luigi Rizzo, Oleg

Rombakh, Paul Turner, and Christos Kozyrakis. Ghost:

Fast & flexible user-space delegation of linux scheduling.

In Proceedings of the ACM SIGOPS 28th Symposium on

Operating Systems Principles, SOSP ’21, page 588–604,

New York, NY, USA, 2021. Association for Computing

Machinery.

[33] Zhipeng Jia and Emmett Witchel. Nightcore: Efficient

and scalable serverless computing for latency-sensitive,

interactive microservices. In Proceedings of the 26th

ACM International Conference on Architectural Support

for Programming Languages and Operating Systems,

ASPLOS 2021, page 152–166, New York, NY, USA,

2021. Association for Computing Machinery.

[34] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Sto-

ica, and Benjamin Recht. Occupy the cloud: Distributed

computing for the 99In Proceedings of the 2017 Sympo-

sium on Cloud Computing, SoCC ’17, pages 445–451,

New York, NY, USA, 2017. ACM.

[35] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti,

Chia-Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal

Shankar, Joao Menezes Carreira, Karl Krauth, Neeraja

Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion Sto-

ica, and David A. Patterson. Cloud programming simpli-

fied: A berkeley view on serverless computing. Technical

Report UCB/EECS-2019-3, EECS Department, Univer-

sity of California, Berkeley, Feb 2019.

[36] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,

Adam Belay, David Mazières, and Christos Kozyrakis.

Shinjuku: Preemptive scheduling for microsecond-scale

tail latency. In 16th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 19), pages

345–360, Boston, MA, February 2019. USENIX Asso-

ciation.

[37] Kostis Kaffes, Jack Tigar Humphries, David Mazières,

and Christos Kozyrakis. Syrup: User-defined scheduling

across the stack. In Proceedings of the ACM SIGOPS

28th Symposium on Operating Systems Principles, SOSP

’21, page 605–620, New York, NY, USA, 2021. Associ-

ation for Computing Machinery.

[38] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos

Kozyrakis. Centralized core-granular scheduling for

serverless functions. In Proceedings of the ACM Sym-

posium on Cloud Computing, SoCC ’19, page 158–164,

New York, NY, USA, 2019. Association for Computing

Machinery.

[39] Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng,

Chuhao Xu, Deze Zeng, Zhuo Song, Tao Ma, Yong Yang,

Chao Li, and Minyi Guo. Help rather than recycle:

Alleviating cold startup in serverless computing through

Inter-Function container sharing. In 2022 USENIX An-

nual Technical Conference (USENIX ATC 22), pages 69–

84, Carlsbad, CA, July 2022. USENIX Association.

[40] Qixiao Liu and Zhibin Yu. The elasticity and plasticity in

semi-containerized co-locating cloud workload: A view

from alibaba trace. In Proceedings of the ACM Sym-

posium on Cloud Computing, SoCC ’18, page 347–360,

New York, NY, USA, 2018. Association for Computing

Machinery.

[41] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna

Edupuganti, Naren Nayak, and Vadim Sukhomlinov. Ag-

ile cold starts for scalable serverless. In 11th USENIX

Workshop on Hot Topics in Cloud Computing (HotCloud

19), Renton, WA, July 2019. USENIX Association.

[42] Edward Oakes, Leon Yang, Dennis Zhou, Kevin

Houck, Tyler Harter, Andrea Arpaci-Dusseau, and Remzi

Arpaci-Dusseau. SOCK: Rapid task provisioning with

serverless-optimized containers. In 2018 USENIX Annual

Technical Conference (USENIX ATC 18), pages 57–70,

Boston, MA, 2018. USENIX Association.

[43] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam

Belay, and Hari Balakrishnan. Shenango: Achieving high

CPU efficiency for latency-sensitive datacenter work-

loads. In 16th USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI 19), pages 361–

378, Boston, MA, February 2019. USENIX Association.

[44] George Prekas, Marios Kogias, and Edouard Bugnion.

Zygos: Achieving low tail latency for microsecond-scale

networked tasks. In Proceedings of the 26th Symposium

on Operating Systems Principles, pages 325–341, 2017.

[45] Charles Reiss, Alexey Tumanov, Gregory R. Ganger,

Randy H. Katz, and Michael A. Kozuch. Heterogeneity

and dynamicity of clouds at scale: Google trace analysis.

In Proceedings of the Third ACM Symposium on Cloud

Computing, SoCC ’12, New York, NY, USA, 2012.

Association for Computing Machinery.

[46] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari.

Icebreaker: Warming serverless functions better with het-

erogeneity. In Proceedings of the 27th ACM International

Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’22, page

753–767, New York, NY, USA, 2022. Association for

Computing Machinery.

[47] Bianca Schroeder and Mor Harchol-Balter. Web servers

under overload: How scheduling can help. ACM Trans.

Internet Technol., 6(1):20–52, February 2006.

[48] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Go-

har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-

reano, Colby Tresness, Mark Russinovich, and Ricardo

Bianchini. Serverless in the wild: Characterizing and op-

timizing the serverless workload at a large cloud provider.

In 2020 USENIX Annual Technical Conference (USENIX

ATC 20), pages 205–218. USENIX Association, July

2020.

[49] Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan

Pu, Benjamin Recht, Ion Stoica, Jonathan Ragan-Kelley,

Eric Jonas, and Shivaram Venkataraman. Serverless

linear algebra. In Proceedings of the 11th ACM Sym-

posium on Cloud Computing, SoCC ’20, page 281–295,

New York, NY, USA, 2020. Association for Computing

Machinery.

[50] Wonseok Shin, Wook-Hee Kim, and Changwoo Min.

14

Fireworks: A fast, efficient, and safe serverless frame-

work using vm-level post-jit snapshot. In Proceedings

of the Seventeenth European Conference on Computer

Systems, EuroSys ’22, page 663–677, New York, NY,

USA, 2022. Association for Computing Machinery.

[51] Armando P. Stettner. The Design and Implementation of

the 4.3BSD UNIX Operating System. Addison-Wesley

Longman Publishing Co., Inc., USA, 1988.

[52] Amoghavarsha Suresh, Gagan Somashekar, Anandh

Varadarajan, Veerendra Ramesh Kakarla, Hima Upad-

hyay, and Anshul Gandhi. Ensure: Efficient schedul-

ing and autonomous resource management in serverless

environments. In 2020 IEEE International Conference

on Autonomic Computing and Self-Organizing Systems

(ACSOS), pages 1–10, 2020.

[53] Amoghvarsha Suresh and Anshul Gandhi. Fnsched: An

efficient scheduler for serverless functions. In Proceed-

ings of the 5th International Workshop on Serverless

Computing, WOSC ’19, page 19–24, New York, NY,

USA, 2019. Association for Computing Machinery.

[54] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner,

and Siddharth Lanka. Sequoia: Enabling quality-of-

service in serverless computing. In Proceedings of the

11th ACM Symposium on Cloud Computing, SoCC ’20,

page 311–327, New York, NY, USA, 2020. Association

for Computing Machinery.

[55] Markus Thömmes. Squeezing the milliseconds: How to

make serverless platforms blazing fast! https://goo.gl/

zvqtBP.

[56] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E.

Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-

Balter, and John Wilkes. Borg: The next generation.

In Proceedings of the Fifteenth European Conference on

Computer Systems, EuroSys ’20, New York, NY, USA,

2020. Association for Computing Machinery.

[57] Gustavo Totoy, Edwin F Boza, and Cristina L Abad. An

extensible scheduler for the openlambda faas platform.

Min-Move’18, 2018.

[58] Paul Turner, Bharata B Rao, and Nikhil Rao. Cpu

bandwidth control for cfs. In Proceedings of the Linux

Symposium, pages 245–254, 2010.

[59] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,

David Oppenheimer, Eric Tune, and John Wilkes. Large-

scale cluster management at google with borg. In Pro-

ceedings of the Tenth European Conference on Computer

Systems, EuroSys ’15, pages 18:1–18:17, New York, NY,

USA, 2015. ACM.

[60] Carl A. Waldspurger and William E. Weihl. Lottery

scheduling: Flexible proportional-share resource manage-

ment. In Proceedings of the 1st USENIX Conference

on Operating Systems Design and Implementation, OSDI

’94, page 1–es, USA, 1994. USENIX Association.

[61] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang,

Haoran Yang, Huiba Li, Rui Du, and Yue Cheng. Faas-

net: Scalable and fast provisioning of custom serverless

container runtimes at alibaba cloud function compute. In
2021 USENIX Annual Technical Conference (USENIX

ATC 21), pages 443–457. USENIX Association, July

2021.

[62] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar,

Lukas Rupprecht, Dimitrios Skourtis, Vasily Tarasov,

Feng Yan, and Yue Cheng. InfiniCache: Exploiting

ephemeral serverless functions to build a Cost-Effective

memory cache. In 18th USENIX Conference on File and

Storage Technologies (FAST 20), pages 267–281, Santa

Clara, CA, February 2020. USENIX Association.

[63] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas

Ristenpart, and Michael Swift. Peeking behind the

curtains of serverless platforms. In 2018 USENIX Annual

Technical Conference (USENIX ATC 18), pages 133–146,

Boston, MA, 2018. USENIX Association.

[64] Adam Wierman and Bert Zwart. Is tail-optimal schedul-

ing possible? Oper. Res., 60(5):1249–1257, sep 2012.

[65] Hanfei Yu, Athirai A. Irissappane, Hao Wang, and Wes J.

Lloyd. Faasrank: Learning to schedule functions in

serverless platforms. In 2021 IEEE International Con-

ference on Autonomic Computing and Self-Organizing

Systems (ACSOS), pages 31–40, 2021.

15

https://goo.gl/zvqtBP
https://goo.gl/zvqtBP

	I Introduction
	II Background
	II-A FaaS Overview
	II-B OS Task Scheduling

	III Why is CFS a Poor Match?
	IV Motivation
	IV-A Azure Functions Workloads
	IV-B OpenLambda Measurement

	V SFS Design
	V-A Design Goals and Challenges
	V-B Design Overview
	V-C Dynamically Adapting Time Slices
	V-D Handling I/Os
	V-E Handling Overload

	VI SFS Implementation
	VII Experimental Methodology
	VIII Evaluating Standalone SFS
	VIII-A SFS Efficiency under Various Loads
	VIII-B Sensitivity Analysis

	IX OpenLambda Evaluation
	IX-A End-to-End Efficiency
	IX-B SFS Overhead

	X Discussion
	XI Related Work
	XII Conclusion

