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Abstract—Optimizing application performance in today’s
hardware architecture landscape is an important, but increas-
ingly complex task, often requiring detailed performance analy-
ses. In particular, data movement and reuse play a crucial role
in optimization and are often hard to improve without detailed
program inspection. Performance visualizations can assist in the
diagnosis of performance problems, but generally rely on data
gathered through lengthy program executions. In this paper, we
present a performance visualization geared towards analyzing
data movement and reuse to inform impactful optimization
decisions, without requiring program execution. We propose an
approach that combines static dataflow analysis with parameter-
ized program simulations to analyze both global data movement
and fine-grained data access and reuse behavior, and visualize
insights in-situ on the program representation. Case studies
analyzing and optimizing real-world applications demonstrate
our tool’s effectiveness in guiding optimization decisions and
making the performance tuning process more interactive.

Index Terms—performance analysis, software performance

I. INTRODUCTION

With the end of Moore’s Law [1] and Dennard scaling [2],
performance optimization in modern high performance com-
puting applications is more important than ever. However,
the complex and multifaceted nature of a program’s perfor-
mance in modern HPC environments necessitates conducting a
careful and extensive performance analysis to make informed
decisions about performance optimization steps. Due to the
increasing transistor efficiency on chips, but the relatively con-
stant cost of transferring data, a particularly important metric
for performance analysis and optimization is the amount of
data movement, with the goal being to exploit data locality
and reuse as much as possible [3], [4].

To successfully analyze the performance of complex ap-
plications, engineers employ analysis tools such as profilers.
Further instrumenting code to read data from timers or hard-
ware counters can help gather information about fine-grained
program behavior. These methods generate a wealth of data,
which in itself can be difficult to understand without the help
of performance visualization tools that aggregate and present
it in an intuitive and understandable way. However, gathering
the raw data generally requires running the entire application,
which in many cases can take prohibitively long and slow
down the often iterative optimization process.

In this work, we provide a performance visualization tech-
nique that gathers and shows measurements based on simu-

lation and static dataflow analysis to assist engineers in ana-
lyzing and optimizing the data movement and reuse behavior
of their application, without requiring program execution. We
employ a graphical program representation that naturally ex-
poses data flow, to build intuitive in-situ visualization overlays
on the program’s dataflow graph. By mapping performance
metrics directly onto the program, the cognitive load required
for the attribution of observations to the original code, and the
time required to perform a root-cause analysis are significantly
reduced.

To reduce the need for costly, full-scale executions of an
application, we propose an approach that simulates individual,
parameterized program parts, to estimate an application’s data
access and reuse behavior. By reducing the wait time for
performance data from minutes or hours to a fraction of a
second, this approach enables a more interactive performance
optimization process.

To facilitate program analysis on multiple granularities,
we construct our visualization using a two-level approach.
A coarse view mode provides a global understanding of the
program and aims to support fast and reliable data movement
bottleneck detection. This is achieved by analyzing static
program information such as logical data movement volumes
and arithmetic operation counts, and visualizing the resulting
metrics using in-situ overlays on a graphical program repre-
sentation. This view mode facilitates the analysis of the overall
algorithmic design and data movement or communication
scheme, and enables scalability analyses with rapid feedback
through the use of symbolic analysis.

A second, fine-grained view mode allows for close-up
analysis of data locality and reuse behavior in individual
program parts. This view mode connects statically obtained
logical data movement to physical data movement, by simu-
lating a program’s data access patterns on a simple hardware
model. The view mode exposes this information alongside
visualizations of temporal and spatial data locality, physical
data layouts, and cache miss estimations.

We implement our visualization as a Visual Studio Code [5]
extension and demonstrate its use in two realistic scenarios.
By analyzing and optimizing the encoder layer for a BERT
transformer deep neural network [6], and a horizontal diffusion
weather stencil, we demonstrate analysis of both global data
movement and close-up memory layout and reuse.
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In summary, this paper makes the following contributions:
• Global data movement visualization for performance

analysis.
• Approach to data movement estimation using parameter-

ized, small-scale data access simulations.
• Visualization methods for hardware model-augmented

data locality and reuse analysis.

II. BACKGROUND

The primary goal of performance engineering is to make an
application perform more efficiently, typically by reducing its
runtime. For any reasonably large program, achieving this goal
is a complex process. An application’s performance depends
on a large number of factors, both from inside the program
source code, but also external factors, such as the hardware or
what data the program operates on.

To undertake effective optimizations, a performance engi-
neer first needs to understand the performance characteristics
of the application with a detailed analysis. Only then can
they perform educated optimization steps to improve particular
aspects of the measured performance. Given the complex
interplay between different system factors, an application’s
performance then typically has to be reassessed before further
optimizations can be performed, since even small changes
and optimizations can have large effects on the previously
measured performance.

This sequence of performance analyses followed by op-
timization steps is repeated until a program’s performance
targets are met. Given the iterative nature of this procedure,
shortening either the analysis or optimization step can create a
large speedup in the overall performance engineering process.
With this work, we focus on reducing the time spent in the
analysis step of this process.

A. Performance Analysis

Model-driven performance tuning [7] suggests a top-down
workflow during the analysis process. Engineers initially iden-
tify theoretical limits to the achievable performance, gauging
the proximity to the obtainable optimum. They further identify
input parameters, program parts (or kernels), and communi-
cation or data movement patterns that impact the system’s
performance. This information helps them focus further close-
up analyses and optimization efforts with more fine-grained
metrics.

Engineers have a variety of tools at their disposal to acquire
such performance metrics. They can choose to manually
instrument their code to generate timing information, use
hardware counters [8], or run an application with detailed,
and often hardware-specific profiling tools like NVIDIA’s
nvprof [9], Intel’s VTune [10], or gprof [11]. The large
amount of performance data generated by these methods is
typically challenging to understand and needs to be carefully
sifted through to extract useful information [12].

Performance visualization tools can help simplify the pro-
cess of interpreting the wealth of generated performance data.
In particular, they present the data in a clear and aggregated

manner, often highlighting a specific aspect of a program’s
performance. This enables engineers to rapidly pinpoint what
particular performance problems can be attributed to.

III. PRODUCTIVE PERFORMANCE VISUALIZATION

To support a top-down performance analysis process, we
equip our visualization with two separate view modes, each
specialized towards a specific set of tasks in different stages
of the analysis workflow. A global view is provided to assist
in building an overview of the application and to perform an
analysis of coarse program structures, such as communication
and data movement patterns or the overall algorithmic design.
Additionally, the global view allows engineers to quickly
identify program kernels or input parameters with high per-
formance impact.

A second, local view specializes on fine-grained perfor-
mance analysis of specific, smaller program parts. The main
task of this view is to highlight more detailed performance
metrics that help inform specific tuning decisions. Both view
modes are described in detail in Sections IV and V.

To best support engineers in a productive optimization and
analysis process, and to facilitate a top-down information seek-
ing behavior, we stipulate that our performance visualization
should adhere to the following principles:

• Performance: The visualization must primarily show
factors that are important for performance optimization.

• Minimality: To avoid clutter, anything that is not strictly
necessary for the task at hand, should not be shown.

• Attribution: It must remain clear what system or pro-
gram elements specific parts of the visualization depict
and relate to.

• Continuity: Changes in the visualization should not
happen unexpectedly, and visual differences should carry
a clear meaning.

A. Highlighting Data-Movement

Based on the performance principle and the importance
of data movement optimizations in modern HPC applica-
tions [3], [4], we design our visualization centered around
data movement, which can be analyzed separately from the
computation and used to promote data locality and reuse.
To express this, we need to represent programs using a
graph-based dataflow intermediate representation, which can
be used to visualize performance metrics in-situ as overlays
or augmentations directly in and on top of the program,
simplifying the attribution of observations to the responsible
program parts. In such graphical dataflow representations,
graph nodes represent computations and data containers, while
directed edges between them represent data flowing through
the program.

There are a number of graph-based dataflow programming
languages or representations, like PROGRAPH [13], Stateful
Dataflow Multigraphs (SDFGs) [14], or LabVIEW [15], that
can be used to express this aspect of a program. For this work
we use SDFGs to extract dataflow from general programs,
because the accompanying data-centric parallel programming



Fig. 1: Screenshot of the visualization tool’s main interface.

framework (DaCe) can compile programs from both Python
and C programs [16] into this intermediate representation,
and they can directly be used for subsequent optimizations
in DaCe.

IV. GLOBAL VIEW: DATA MOVEMENT ANALYSIS

In our two-level approach to performance analysis, the
global view is first tasked with providing a global compre-
hension of the program’s performance characteristics. The
view is further responsible for exposing coarse data movement
behavior, and highlighting the performance impact of individ-
ual program parts, to assist engineers in problem detection
and diagnosis. Lastly, the global view should facilitate the
identification of input parameters which have a large impact
on performance, by providing a fast-feedback scaling analysis.

A. Global Comprehension

To give the engineer an overview of the global state of a
program’s behavior, this initial view provides mechanisms for
exploring the entire application in its graphical representation.
When interacting with elements in this representation, the
option is given to jump to the corresponding location in
the original source code representation, helping to fulfill the
attribution principle.

Maintaining an overview can be difficult for complex ap-
plications. Particularly, as programs get larger, the number
of visual elements needed to represent the application grows
together with the number of code lines in the program’s source
representation. To ensure legibility of large programs, it is
imperative that the principle of minimality is followed. Tradi-
tional code editors such as Visual Studio Code (VS Code) [5],
Atom [17], and most integrated development environments
address this by allowing for logical code regions to be folded
into a single line. The SDFGs used to extract our dataflow
graph representation are constructed in a hierarchical manner.
Individual program parts, or subgraphs, form logical regions
similar to their counterparts in other high-level languages (e.g.

loop contents and subroutines). We exploit this to allow entire
subgraphs to be folded and hidden, instead representing them
with a single graph element that summarizes their content until
they are deliberately expanded again.

To further improve legibility in large applications, more
detailed visual elements are gradually hidden as the user
zooms further out, similarly to Google Maps [18], dynamically
pulling focus towards the more coarse-grained structure of the
application. Additionally, the graphical representation contains
only information strictly necessary to analyze the functional
behavior and dataflow of an application. Any additional infor-
mation like data types, sizes, and alignment are hidden away
and appear on-demand in a separate details panel or in tooltips,
shown only when the user interacts with the corresponding
visual object. As with traditional source code, the graphical
representation can be searched to find specific elements, and
it further allows for some types of elements to be filtered out
and hidden from view.

The user can employ the type of pan-and-zoom navigation
common in mapping software to explore the graphical program
representation. To assist in navigation in accordance with the
principle of continuity, two separate overviews help maintain
situational awareness. A minimap in the top right corner of
the visualization shows the current program in its entirety,
with a box drawing the current viewport in relation to the
graph. A second, outline overview shows a hierarchical view
of the graph, enabling quick navigation to a specific graph
element by selecting it from this list. This type of overview in
combination with pan-and-zoom navigation helps in analyzing
large program graphs, and has been shown to be a very
efficient mode of exploration that is perceived as enjoyable
by users [19]. Any automatic navigation through interaction
with one of the overviews is further animated as a slowed
down motion of the viewport to maintain continuity and avoid
disorientation.

An overview of the interface can be seen in Fig. 1, showing
the global analysis view on the graphical program representa-



tion, embedded in the popular code editor VS Code. A short
supplementary video1 demonstrates program navigation and
exploration in the global view.

B. Problem Detection and Diagnosis with Heatmaps

To facilitate efficient problem detection and diagnosis, the
global view enables reasoning about the performance of the
program as a whole. Given the importance of reducing data
movement when improving performance, it is crucial that
optimizations focus on maximizing data reuse. This can be
achieved by coalescing computations that rely on the same
data, which allows for better utilization of caches, in turn
reducing the amount of data that needs to be read from
or written to main memory. In doing so, one increases the
arithmetic intensity, i.e., the number of arithmetic operations
performed per transferred data byte.

The amount of data being accessed by or moved between
individual operations in the program is statically determined
when SDFGs are generated in a dataflow extraction proce-
dure [16]. We can use this information to augment the graphi-
cal program representation, by showing a color-coded heatmap
as an overlay directly on top of the program’s dataflow graph.
This heatmap uses a green-yellow-red color spectrum to mark
data movement edges with a color corresponding to the relative
amount of data being moved, where green represents a low
amount of data, and red represents higher volumes.

We extract information on arithmetic or operational intensity
separately by parsing the abstract syntax tree of individual
computations, counting the number of arithmetic operations.
This can be used to directly construct a heatmap, coloring
nodes based on their arithmetic operations count, or be com-
bined with data access information to color nodes based on
their arithmetic intensity.

This form of color-coded overlays shown directly on top
of the program structure has been found to be an effective
tool for communicating additional information to software
engineers [20]. We exploit this technique by applying it to the
graphical program representation, with the goal of reducing
the cognitive load required to perform attribution of individual
measurements to their corresponding program parts. Fig. 1
shows the global view of a program colored using both a
logical memory movement volume and arithmetic intensity
heatmap.

The proposed visualization is not directly tied to static
analysis. Profiling data could orthogonally be used as met-
rics, which would be crucial for bottleneck analysis of data-
dependent programs.

C. Heatmap Coloring

In real-world applications, we observe large value ranges for
performance metrics, with data movement volumes ranging
from individual bytes, to multiple megabytes or gigabytes.
These magnitude changes, even within applications, make
determining an individual value’s heatmap color with any

1Video ‘Program Navigation’ (https://youtu.be/anMPJ28dOO8)

Fig. 2: Heatmap scaling methods and their respective uses.

fixed scale impractical. Color scales consequently have to be
adaptive and account for varying value distributions.

Heatmaps are a popular tool in performance visualization
systems [21]–[24], and there are different approaches to handle
this. The Scalasca toolkit’s visualization component, Cube,
has a separate plugin with options for the user to change this
scaling behavior by switching the interpolation method used
for determining the scale between using linear or exponential
interpolation from the minimum to maximum observed val-
ues [25], [26].

We employ three further approaches not based on interpo-
lation, to serve three separate use cases. The user can dy-
namically select the fitting one, updating the heatmap display.
The first two methods work by determining a center value c
for the color scale, and then setting the scale to run in the
interval [0, 2c]. The center value c is determined by sorting
all observed data values in increasing order, and then picking
either the median or mean of all observations to form the
center of the scale. Observations above the maximum of the
scale are clamped to 2c. In a third method, we group the
observed values into histogram buckets and set the color scale
to the interval [0, n], where n is the number of distinct buckets.
A value’s color is then chosen based on the position of index
i of its corresponding histogram bucket on the scale.

Fig. 2 demonstrates the use cases for each of these scaling
methods, highlighting their behavioral differences. Centering
the scale around the mean (Fig. 2, left) is heavily influenced
by outliers, making it ideal for detecting bottlenecks by
giving them visually distinct colors from the remainder of the
distribution. Histogram-based scaling (Fig. 2, middle) distorts
the scale to give each distinct observation a different color.
This is the most useful method for clearly highlighting the
distribution of observed values, independently of the distances
between observations. Centering the scale around the median
(Fig. 2, right) fills the gap between these two methods:
by being more outlier resistant than mean-centered scaling,
outliers are less visually distinct, but by distorting the scale less
than histogram-based scaling, this method is ideal for visually
grouping values of similar magnitudes with similar colors.

The colors used to represent these scales are equally im-
portant, and some color schemes used in many visualization
systems, such as rainbow maps (also known as jet maps), are
less than desirable and can be actively confusing [27]–[29].
To combat this, a popular alternative is a green-red spectrum,
which leverages intuitive color associations of red=slow and
green=fast. This works well with sparse data sets, where
individual values are well separated. However, for data sets
where distinction between individual values is important, and
where values are closer relatively to one another, there is little
visual separation between individual data points.

https://youtu.be/anMPJ28dOO8


We address this by introducing the additional color yellow
in the center to increase this separation while keeping the clear
color ordering from fast to slow:

To further account for color blindness, this color scale can
be manually changed to fit the user’s needs.

D. Parametric Scaling Analysis

In many applications, computations and program behavior
are largely dependent on the input size of the data or other run-
time parameters. As such, many resulting arithmetic operations
or data volume counts are expressed as symbolic expressions
that depend on input data dimensions or parameters passed
to the program at runtime. The SDFG representation used in
the global view is thus inherently parametric, a fact that can
be exploited to observe how program performance is affected
by changes to input parameters, and by extension identify
which parameters have a particularly large impact on program
performance.

By allowing the user to define and change values for
input parameters in a configuration panel, we can adapt the
heatmap visualizations on the fly by re-evaluating symbolic
expressions with the new values. This facilitates an analysis
of the program’s scaling behavior with respect to input sizes
or runtime parameters. The user can visually follow how
data movement volumes, operational intensity, or localized
bottlenecks are affected by changes to the data sizes. With
this, we allow the user to interactively determine what input
parameters are crucial factors in the program’s performance,
without requiring costly program executions.

The use of heatmaps, including parametric scaling, is further
demonstrated in a short supplementary video2.

V. LOCAL VIEW: LOCALITY AND REUSE ANALYSIS

To perform close-up analyses of data locality and reuse
behavior, we employ a small-scale simulation approach, which
approximates values for the program’s runtime behavior with
respect to data accesses and layouts. Observations of this
behavior are conventionally obtained via profiling and program
counter collection, or with costly hardware simulations. This
approach is particularly well suited for localized bottleneck
analysis, avoiding executions of the entire application. By
instead solely simulating the relevant program kernel, this
enables more interactive, fast-iterating optimizations.

Engineers can specify a region of the program where a
closer investigation is desired, and provide sample values for
input parameters that determine execution behavior, such as
data dimensions. This focuses the view on only the specified
part of the graphical representation, and adapts the visualiza-
tion to better facilitate this close-up analysis.

2Video ‘In-Situ Overlays’ (https://youtu.be/4s996YtZvKk)

Fig. 3: Parameterized outer vector product C = A ⊗ B, for
A ∈ R3, B ∈ R4, and C ∈ R3×4. The sliders set to the
loop parameters i = 1 and j = 2 highlight memory elements
accessed with those parameters (green).

A. Program Parameterization

With provided input parameters, we parameterize the pro-
gram view, augmenting graph elements that depend on input
parameters to reflect the given concrete values. Specifically,
nodes representing data containers such as arrays are now
expanded to reflect their parameterized size, showing each
individual data element, to represent individual memory lo-
cations.

Parallel loops and concurrent regions with parametric
bounds are also parameterized and have their bounds fixed.
These structures are shown as boxes with trapezoidal header
bars, where everything inside the box represents the loop or
concurrent region’s contents, and the trapezoidal header bar
shows loop parameters and their bounds. The example in Fig. 3
shows the outer product calculation of two vectors A ∈ R3

and B ∈ R4, where a parallel loop with an iteration space
given by i ∈ [0, 2] and j ∈ [0, 3] contains the calculation
C[i, j] = A[i]∗B[j] in its loop body. All data containers show
an individual tile for each element. Additionally, each param-
eter to the parallel region is accompanied by a slider with
which the engineer can set individual parameter values. This
consequently highlights all memory elements accessed inside
the parallel region for that specific parameter combination, as
demonstrated in Fig. 3 for parameters i = 1, j = 2.

B. Visualizing High-Dimensional Data

While it is intuitive to visualize one or two dimensional
data on a 2D surface such as the user’s screen, many programs
deal with data containing more than two dimensions. Shnei-
derman’s taxonomy for visualization systems [30] identified a
number of ways to deal with this, usually involving filtering or
slicing to only view specific sub-dimensions at a time. While
this makes it easier to visualize specific portions of the data
and removes visual confusions, the burden of keeping a global
picture of the remaining, hidden data is usually left to the user
or has to be visualized separately.

We propose an alternative approach, in which we aim to
visualize the entire data simultaneously using a hierarchical
view that mimics how multidimensional arrays are abstracted
in most high-level programming languages. The two innermost

https://youtu.be/4s996YtZvKk


(a) Four-dimensional container for 3D convo-
lution weights w ∈ RCout×Cin×Ky×Kx .

(b) Distribution of the number of accesses in a
3D convolution without padding, which maps 3-
channel, 9×9 inputs to 2-channel, 6×6 outputs.

(c) Showing related accesses to A and B
for accesses to C[3, 0], C[3, 1], and C[3, 2]
in an outer vector product C = A⊗B.

Fig. 4: Multi-dimensional data containers, and screenshots of access pattern visualizations in the parameterized view.

dimensions are laid out in a 2D grid, and those are nested in
alternating horizontal and vertical 1D grids for the remaining
higher dimensions. For one dimensional data containers, a
simple 1D grid is used. An example of this can be seen in
Fig. 4a, where the weight tensor w ∈ RCout×Cin×Ky×Kx for
a 3D convolution is shown. While this representation rapidly
grows in space with more added dimensions, it works well in
this parameterized setting, due to the small values expected
for each individual dimension.

C. Access Pattern Simulation

With both data sizes and parallel region parameters spec-
ified, we can derive the exact access pattern for each data
container in the graph. To do this, we exploit the fact that
programs translated to the SDFG intermediate representation
carry an annotation of exactly what data subsets are being
accessed by each computation in the form of a symbolic
expression. This expression can traditionally not be evaluated
statically without dependent symbol values such as loop it-
eration variables. In the parameterized graph, where parallel
regions have their bounds fixed, we can perform an iteration
space simulation to evaluate these symbolic expressions and
derive the exact data accesses performed by each computation
in the graph. By extension, this determines the exact access
pattern for each data container.

The resulting access pattern can be played back using a
variable speed animation, which highlights the exact individual
elements or memory locations in each data container accessed
at that specific time-step of the simulation. Alternatively, the
time dimension can be flattened, summing up the number of
accesses for each element in each data container, and showing
the resulting distribution using a colored heatmap, where
elements with a higher number of accesses are colored red,

and lower numbers are represented in green. The exact number
of accesses can be viewed using a tooltip when hovering the
corresponding data elements. An example of the flattened time
dimension using a heatmap can be seen in Fig. 4b, where
the access pattern of a 3D convolution is shown with tooltips
superimposed.

The same information can be used to derive and visualize
data accesses related to other accesses, based on whether they
occur in the same computations. For example, in the case of an
outer product calculation C[i, j] = A[i]∗B[j], where i ∈ [0, 2]
and j ∈ [0, 3], an access to B[0] is associated to accesses
of C[i, 0] and A[i], for all i ∈ [0, 2]. The engineer can click
one or more memory locations, stacking the number of related
accesses to form a corresponding access heatmap, which helps
analyze for potential replication or loop tiling opportunities.
An example of this can be seen in Fig. 4c.

D. Data Layout and Spatial Locality

Apart from the access pattern, the second important factor
that determines how efficiently data locality is being lever-
aged, is the physical data layout. This is usually opaque to
the engineer and needs to be derived from the alignment,
offsets, and padding used by the compiler or a specific data
structure. However, this information is crucial in determining
how efficiently the cache is used to exploit spatial locality.

To expose this information to the user, we provide an
overlay that visualizes which elements are adjacent to one
another in memory, by highlighting which data elements are
pulled into the cache alongside a specified other element.
To determine this, an engineer must only provide the cache
line (cache block) size in bytes for the target architecture.
The remaining information, like individual element sizes,
alignment, offset, and padding, can all be extracted from



(a) Visualizing data layouts by high-
lighting spatial locality in the form
of cache lines.

(b) Distribution of median reuse distance per
element, with a detailed histogram break-
down (top).

(c) Estimated cache misses and physical data movement
overlay based on reuse distances and cache line sizes.

Fig. 5: Screenshots from our tool, visualizing physical data layouts, reuse distances, and estimated physical data movement.

the program’s intermediate representation. The user can then
select memory elements, and the overlay highlights any other
memory elements that fit into the same cache line, effectively
exposing the physical data layout to the user and providing a
guidance for exploiting spatial locality.

Fig. 5a shows the parameterized matrix multiplication of
two matrices A ∈ R9×10 and B ∈ R10×15, where each value
is 4 bytes in size and the cache line size is set to 64 bytes.
By selecting A[0, 0], B[0, 1], and C[8, 14], the visualization
highlights all elements pulled into cache together with these
accesses in green, revealing that A and C are stored in row-
major format, while B is stored in column-major ordering.

E. Stack Distance and Temporal Locality

The obtained exact data access patterns can further be used
to expose temporal locality. To do this, we calculate a metric
called the stack distance for each data element, which is
defined as the number of accesses to unique addresses made
since the last reference to the requested data element [31].
We use the stack distance at a cache line granularity, meaning
that for each reference to a data element, all other elements in
the same cache line are also referenced, resetting their stack
distance to zero. If an element has not been referenced yet, its
stack distance is set to infinity.

The distribution of stack distances for each individual
memory element can be visualized in-situ using a heatmap.
The engineer can choose whether the heatmap should visualize
the distribution of the minimum, maximum, or median stack
distances for each element. To analyze this data at a finer
granularity, an additional histogram with all the calculated
stack distances over time is plotted in the details panel when
an individual memory element or container is selected. Fig. 5b
shows a heatmap for median reuse distances on the input
matrices to the previously used matrix multiplication, using

a cache line size of 32 bytes. Selecting the element A[3, 6]
plots a histogram that reveals the exact distribution, and shows
that this element was accessed once without having previously
been moved to the cache, by listing one cold miss.

F. Cache Misses and Physical Data Movement

With a now complete prediction of the program’s data
access behavior, including both temporal and spatial locality,
we can construct a rough prediction on the number of cache
hits and misses [32]. This in turn can be used to refine the
abstract, logical memory movement volume shown on memory
movement edges in the global, parametric view. To count the
number of predicted cache misses, there are three types of
misses that should be considered.

a) Cold miss: A cold miss happens when a memory
address is accessed for the first time without having been
referenced before via spatial locality (i.e., in the same cache
line as a different referenced address). We count a cold miss
for every access where the stack distance is infinite.

b) Capacity miss: A capacity miss is encountered when
a memory address is accessed after it has been evicted from
the cache because of the eviction strategy after the cache
or associated cache set has become full. Assuming an LRU
or LRU-derived eviction strategy, we count a capacity miss
for every access where the stack distance is above a certain
threshold value. To model different cache sizes or degrees of
cache associativity, the user can modify this threshold on-the-
fly through the user interface. It can further be used to adjust
for the fact that the simulated data sizes are not equal to the
expected data sizes in the target environment, which would
make calculations based on the total cache size unrealistic.

c) Conflict miss: A conflict miss occurs when a memory
address is accessed after it has been evicted due to a conflict,
meaning a different element and its cache line was mapped



TABLE I: Case Study Benchmark Results

Application System

Piz Daint (Supercomputer) High-Performance Workstation Consumer Hardware

Time [ms] Speedup Time [ms] Speedup Time [ms] Speedup

BERT encoder Baseline 8254.13 1.0× 13670.66 1.0× 8959.78 1.0×
1st set of loop fusions 2273.37 3.6× 2443.13 5.6× 1427.03 6.3×
2nd set of loop fusions 1163.36 7.1× 452.54 30.2× 336.84 26.6×

Horizontal diffusion Baseline 667.54 1.0× 449.63 1.0× 358.39 1.0×
Best NPBench CPU result 31.65 21.1× 18.43 24.4× 41.33 8.7×
Hand-tuned using our tool 4.41 151.4× 3.26 138.0× 7.00 51.2×

to the same location in the cache. This type of miss can only
appear in set-associative or direct mapped caches. Because the
physical addresses of data containers depend on runtime con-
ditions and their respective sizes, counting this type of cache
miss in a small-scale, parameterized setting may introduce
significant complexity in interpreting and generalizing the
results. To combat this, we assume a fully-associative cache
and do not count conflict misses. McKinley and Temam [33],
and Beyls and D’Hollander [32] show that this gives a good
prediction for the total number of cache misses in low set-
associative or direct mapped caches, since most cache misses
can be attributed to capacity, and only a minority of misses
are due to conflicts.

The resulting distribution and number of cache misses can
be directly visualized using the same heatmap technique, or
can be used to derive a rough prediction for the amount of
physical data that needs to be moved to and from main mem-
ory. We can obtain this estimate for each data movement edge
by multiplying the number of misses in both the edge’s source
and destination nodes, with the number of bytes per cache
line. The resulting value can be used to refine the heatmap
on the data movement overlay, as shown in Fig. 5c, where
the number of estimated cache misses and data movement
volume are visualized on top of the input and weight tensors
to a 3D convolution, using a cache line size of 64 bytes and
8 byte data values. This enables informed decisions about
where local replication or changes to the data layout could
be beneficial, or where to apply techniques like loop tiling,
fusion, or reordering.

VI. CASE STUDIES

To demonstrate the use of our visualization in a realistic
scenario, we walk through the performance analysis and
optimization procedure of two real-world HPC applications.
We evaluate each application on three systems:

• The Swiss National Supercomputing Center’s Piz Daint
supercomputer, which is a cluster of 5,704 Cray X50
nodes with a 12-core Intel Xeon E5-2690 v3 CPU at 2.6
GHz and 64 GB of RAM each. We run each application
on a single Cray X50 node.

• A high-performance workstation with two 16-core Intel
Xeon Gold 6130 CPUs at 2.1 GHz and 1.5 TB of RAM.

• A consumer-grade system with a 10-core Intel i9-7900X
CPU at 4.5 GHz and 32 GB of RAM.

Fig. 6: Annotated snapshots of our global view, showing the
BERT encoder layer at different stages of optimization.

For all experiments we use Python 3.8 with DaCe version 0.13
and GCC 8.3. Each experiment is run 100 times and we report
the median runtime.

A. BERT Transformer

Machine learning is particularly data intensive, making data
movement costs harder to analyze. With this case study, we
demonstrate how a program’s global data movement scheme
can successfully be optimized with the help of information
exposed through our visualization’s global view. For this
purpose we select the encoder layer from the natural language
model BERT [6]. This type of Transformer [34] is a widely
used neural network, where even pre-trained models take
hours to tune in large-scale distributed environments. We
use a NumPy [35] implementation of this application as our
baseline, using Intel MKL [36] to accelerate linear algebra
operations. The input parameters are selected to match the
ones used in the original BERT publication [6] (BERTLARGE),
with a batch size B = 8, H = 16 attention heads, an
embedding size I = 1024, an input/output sequence length
SM = 512, an intermediate size emb = 4096, and a
projection size P = I

H = 64.
Despite the large graph generated by this program, turn-

ing on heatmap overlays immediately helps identify some
problems. The logical data movement heatmap with scaling
around the mean (shown in Fig. 6, left) reveals two distinct



Fig. 7: Screenshots of the local view, showing the number of cache misses and physical data movement for horizontal diffusion
through the optimization process.

series of edges highlighted in red. This indicates that large
amounts of data are being moved between individual graph
nodes. Clicking those nodes reveals that they represent parallel
loops over similar loop bounds, which we can combine via
loop fusion, removing the data movement between them.
This results in a new graph where these high-volume data
movement edges are not present anymore (Fig. 6, center). This
optimization already provides a significant speedup of between
3.6× and 6.3× over the baseline implementation, as shown in
Table I.

Using the arithmetic intensity overlay with median-centered
scaling, as shown in Fig. 6 (center), we can see a few
computation nodes with a relatively low arithmetic intensity
highlighted in green. By clicking these nodes, the details panel
again reveals that they represent parallel loops which can be
fused together, resulting in the much smaller program graph
on the right side of Fig. 6, where the number of computation
nodes with low arithmetic intensity is visibly reduced.

Using only information directly exposed through our visu-
alization, we get speedups of 7.1× to 30.2× depending on
the target system, as shown in Table I.

B. Horizontal Diffusion

To demonstrate the analysis capabilities of our visualiza-
tion’s close-up, local view, we walk through the tuning process
of horizontal diffusion (or hdiff ), which is a stencil compo-
sition that plays an important role in weather and climate
models [37]. We take an implementation of this application
from the high-performance NumPy [35] benchmarking suite
NPBench [38]. The program has three free parameters I , J ,
and K and operates on two inputs in field ∈ RI+4×J+4×K

and coeff ∈ RI×J×K , and an output out field ∈ RI×J×K .
We evaluate the application using the same parameter sizes
used in the NPBench paper [38], with I = J = 256 and
K = 160, which represent a typical per-node scenario in
a cluster running weather and climate simulations [37]. The
default NumPy implementation in NPBench serves as our
baseline.

To start the analysis process in the local view, we parame-
terize the program with smaller input parameters I = J = 8

and K = 5, which represents a 1
32 scaled version of the full-

sized program. These parameters can be chosen arbitrarily, but
scaling all input parameters down by a common factor ensures
that all analysis parameters maintain the same size relative to
each other. The full resulting graphical representation of the
program, which can be represented as one 3-dimensional loop
operating on two input and one output data containers, can be
seen in Fig. 7 (left). We further set the cache line size to 64
bytes to reflect our target architecture, and since the program
operates on double-precision floating point values, the value
size is 8 bytes.

By moving any one of the loop sliders, or by hovering over
or clicking on any output data element, the corresponding ac-
cess pattern on the input data containers is shown. This access
pattern shows that each loop iteration accesses a number of
elements from the in field input, as shown at the top of
Fig. 8a. If these accesses occur far apart in memory, this leads
to poor spatial reuse, since a large number of separate cache
lines would have to be accessed for one operation. Clicking
any data element with the cache line overlay enabled exposes
the data layout of the in field container. The highlighted
cache line shows that the container uses row-major ordering,
which implies that dimension J + 4, over which the accesses
are spread out, is a non-contiguous dimension, and that the
accesses are spread out in memory with poor spatial locality.
Reshaping in field from [I+4, J+4,K] to [K, I+4, J+4]
visibly improves the access pattern, with all accesses now
occurring much closer to each other in memory, as shown
in the bottom half of Fig. 8a. This optimization step further
comes with a visible reduction in the number of cache misses,
and consequently almost halves the amount of data being
requested from main memory for in field, as seen in Fig. 7.

While the accesses per loop iteration are now physically
closer together, by playing back the access pattern animation
or moving the sliders, the overlay reveals a new problem. The
innermost loop, k ∈ [0, 4], now iterates over a non-contiguous
dimension, as shown in the top of Fig. 8b. A simple re-ordering
of the loops, such that k ∈ [0, 4] becomes the outer-most
loop, addresses this problem and improves the access pattern,



(a) Accesses to in field for i = 1,
j = 5, and k = 1, before and after
reshaping.

(b) Access pattern on in field when iter-
ating through the innermost loop, before and
after reordering.

(c) Introducing padding by increasing the strides
along the second matrix dimension improves
spatial locality.

Fig. 8: Analysis of horizontal diffusion during individual steps of the tuning process.

as demonstrated in Fig. 8b (bottom). Fig. 7 shows a further
reduction of both cache misses and the number of data bytes
moved following this optimization step.

Finally, the cache line visualization shown in Fig. 8c (top)
highlights that accesses to some of the first elements in indi-
vidual rows are located on cache lines that wrap around from
the previous row. Knowing the access pattern of an individual
loop iteration in horizontal diffusion (bottom of Fig. 8a),
an iteration accessing these elements would simultaneously
require accesses to more elements located in the same row. The
elements residing in the previous row are consequently unused
and pollute the cache. By increasing the strides along the
second data dimension to a number divisible by the cache line
size, we can introduce post-padding to align each individual
data row to the cache line. As shown in the bottom half of
Fig. 8c, this improves spatial locality by pulling elements into
the cache that will be accessed in the same loop iteration.

We benchmark the optimized application and observe be-
tween a 51.2× and 151.4× improvement over the original
NumPy implementation, depending on the target system, as
shown in Table I. This speedup through optimizations based
on information obtained from our visualization, was attained
without requiring profiling or the analysis of hardware coun-
ters, and even outperforms the fastest CPU-based result
measured in NPBench [38] by between 5.7× and 7.2×,
depending on the target system.

We provide three short supplementary videos demonstrating
the analysis process for hdiff when identifying the suboptimal
memory layout3, loop order4, and improper alignment5.

VII. RELATED WORK

Several other works exist with the goal of assisting in
the performance analysis workflow by either visualizing per-
formance data, exploring data reuse with data-centric anal-
ysis, or obtaining performance insights through simulation.
Many approaches combine a subset of these techniques to

3Video ‘Visualizing Data Layouts’ (https://youtu.be/H5DVE31-CW8)
4Video ‘Visualizing Data Access Patterns’ (https://youtu.be/cSlXTjqDxrk)
5Video ‘Visualizing Spatial Locality’ (https://youtu.be/tZrpRt 6Yi4)

provide visualization-augmented, data-centric analysis, but re-
quire lengthy program executions to obtain instrumentation
data. Even simulation- and modeling-based approaches often
rely on memory traces obtained through program execution.
Existing approaches further often show performance metrics
and observations separate from the program definition, re-
quiring context switching between analysis and subsequent
optimization steps.

Our solution provides a holistic approach that attempts to
remove the need for program executions entirely, enabling a
more interactive performance optimization process. We visu-
alize memory access and reuse behavior on multiple scales,
directly in-situ on an intermediate program representation that
can be used for subsequent optimizations. An overview of the
related works can be seen in Fig. 9.

a) Performance Visualization: Many tools have been
created to expose a program’s performance characteristics
by aggregating and visualizing profiling and tracing data.
Zinsight [49] visualizes large event traces with a set of
independent views that extract event statistics and patterns.
Event traces can also be explored using JumpShot [50], VAM-
PIR [52], or Paraver [53], which offer different approaches
to navigating these large traces. JumpShot, VAMPIR, and
Paraver are all part of the larger TAU parallel performance
analysis system [62], which further includes PerfExplorer [57],
a tool to summarize parallel profiles with a set of 2D and
3D graph visualizations. In a similar manner, Projections [56]
visualizes profile data in summary graphs, detailed timeline
views, and other graphs, employing the help of overviews
to facilitate easier navigation. Projections further allows com-
paring profiles gathered from different runs side-by-side. The
use of overviews to help navigate large profiles can also be
seen in Extravis [12], which shows call relations in a circular
bundle view. Scalasca [24] and its visualization component
CUBE [55] have also been created with the goal of visualizing
profiles obtained from programs using many thousands of
processors. PerformanceHat [58] and Beck et al. [59] visualize
execution time measurements extracted from profiles directly
in the code editor, using icons, color highlights, and tooltips
in the source code. Some visualizations, such as Trevis [47]

https://youtu.be/H5DVE31-CW8
https://youtu.be/cSlXTjqDxrk
https://youtu.be/tZrpRt_6Yi4
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Fig. 9: Related work overview.

and VIPACT [48], focus on extracting and exploring full
calling context trees from profile traces, while others, e.g.,
Boxfish [46], extract communication behavior and visualize
that on the network topology.

b) Data-Centric Analysis: Solutions which focus specif-
ically on data movement and reuse analysis include
MACPO [45], which obtains memory traces and uses those to
compute access behavior metrics for source-level data struc-
tures in C, C++, and FORTRAN, using cache models geared
towards execution on multi-core chips. ValueExpert [61]
constructs value flow graphs for GPU applications to help
with detecting inefficient value-related patterns and guiding
subsequent optimization decisions. MemAxes [39] facilitates
analysis by visualizing memory performance obtained from
traces, and performing a scoring of obtained performance
metrics to guide the user’s attention. ScaAnalyzer [40] and
other augmentations [41], [42] made to the HPCToolkit [43]
architecture support data-centric profiling of parallel programs,
and attribute and visualize the recorded metrics to pinpoint
scaling losses and other performance bottlenecks due to mem-
ory access behaviors.

c) Simulation-Based Approaches: Other works based
on performance simulation predict performance behavior to
avoid runtime-based analyses, but they typically require mem-
ory traces obtained through execution for their simulations.
MUSA [44] offers a multi-scale simulation approach to ana-
lyze inter-node communication and intra-node microarchitec-
ture interactions. Iakymchuck and Bientinesi [51] have con-
structed a performance model that can accurately predict cache
misses for fundamental linear algebra operations on Intel and
AMD processors, and have managed to combine individual
models to predict the performance of BLAS subroutines like
matrix factorization. Kerncraft [60] follows a similar direction
by constructing roof line and execution-cache-memory models
for loop nests in stencil codes. Choudhury and Rosen [54] cre-
ated an animated visualization that shows memory transactions
based on a memory reference trace, and uses a cache simulator
to visualize data elements according to their simulated cache
location.

VIII. DISCUSSION

The proposed visualization is designed to be flexible and
extensible. In the following, we discuss potential extensions,
advantages, and limitations in the approach.

a) Cache Model: Our tool performs a general-purpose
cache miss estimation based on the simulated access patterns.
However, this estimation is separate from the visualization
itself. Cache miss predictions for specific architectures could
be derived from the simulated access patterns using different,
more hardware-specific back-ends, such as Kerncraft [60],
while leveraging the same visual exploration and analysis
methods demonstrated in our visualization.

b) Remote Analysis: By using Visual Studio Code [5]
as the basis for the implementation of our visualization
tool, we can leverage the remote development feature in the
code editor to perform analyses and optimizations directly
on target machines, such as the compute or login nodes of
supercomputers. This further increases the interactivity of the
optimization workflow, by providing intuitive visual analyses
even for remote scenarios.

c) Program Parameterization: Since data access patterns
for regular programs do not depend on specific values of input
parameters, finding good parameters to analyze a program
in the local view is a matter of choosing what is easiest
for the user to observe data access and reuse behavior. A
good strategy is to keep these parameters small, because this
keeps simulation times short when transitioning to the local
view, and makes analysis easier by limiting the visual search
space and cognitive load required. While the exact impact of
individual optimizations may differ between the small-scale,
parameterized setting and the full-scale scenario, our case
study results demonstrate that the general insights obtained
in the small-scale setting are helpful in uncovering key per-
formance problems that transfer to the full-scale scenario.

This visualization approach could also be used to simulate
and analyze the full-sized parameters. However, this would
significantly increase simulation times, and would require
aggregating multiple data elements in one visual tile to avoid
making the visualization harder to interpret.

d) Limitations: A key limiting factor in our approach is
in the analysis of dynamic or irregular programs. For this class
of programs, exact data movement and access information
cannot usually be determined statically or through small-scale,
parameterized simulations. However, the global and local
visualization techniques employed in our tool can similarly be
used to analyze and explore traditional instrumentation data
for such applications, allowing for a comparable, though less
interactive optimization workflow.



IX. CONCLUSION

We have implemented a performance visualization tool in
Visual Studio Code that exposes critical performance charac-
teristics to the user, which are generally not directly visible
in traditional source code and require closer analysis, such as
data layout and movement, and spatial or temporal locality.
By leveraging a combination of static dataflow analysis and
small-scale simulations, our approach avoids costly profiling
or instrumentation runs that slow down the tuning process.
In combination with visualizing results in-situ, directly on
a graphical program representation, this facilitates a more
interactive and streamlined optimization process.

Two case studies on the optimization of real-world ap-
plications demonstrate the effectiveness of our visualization
in both global data movement reduction, and fine-grained
data reuse optimizations. Our tool demonstrates the ability to
inform impactful tuning decisions on multiple levels, enabling
optimization decisions that lead to a speedup of up to 7.2×
compared to the state of the art on an HPC benchmark. With
data movement optimizations increasingly becoming a crucial
part of performance tuning in HPC applications, we hope our
approach to an interactive analysis process inspires further
work on streamlined performance engineering processes.
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