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Abstract—Sparse Matrix-Vector multiplication (SpMV) is an
essential computational kernel in many application scenarios.
Tens of sparse matrix formats and implementations have been
proposed to compress the memory storage and speed up SpMV
performance. We develop AlphaSparse, a superset of all existing
works that goes beyond the scope of human-designed format(s)
and implementation(s). AlphaSparse automatically creates novel
machine-designed formats and SpMV kernel implementations en-
tirely from the knowledge of input sparsity patterns and hard-
ware architectures. Based on our proposed Operator Graph that
expresses the path of SpMV format and kernel design, AlphaS-
parse consists of three main components: Designer, Format &
Kernel Generator, and Search Engine. It takes an arbitrary
sparse matrix as input while outputs the performant machine-
designed format and SpMV implementation. By extensively
evaluating 843 matrices from SuiteSparse Matrix Collection,
AlphaSparse achieves significant performance improvement by
3.2× on average compared to five state-of-the-art artificial
formats and 1.5× on average (up to 2.7×) over the up-to-date
implementation of traditional auto-tuning philosophy.

Index Terms—auto-tuner, sparse matrix-vector multiplication,
SpMV, GPU, code generator, sparse data structures

I. INTRODUCTION

Sparse Matrix-Vector multiplication (SpMV, y=Ax) is one of
the most computational kernels in many domains, such as cli-
mate simulation [1], computer graphics [2], molecular dynam-
ics [3], [4], data analytic [5], [6], machine/deep learning [7],
[8], to name a few. In the past decades, many efforts have been
conducted to improve SpMV performance through proposing
sparse matrix formats, leveraging various performance opti-
mization methods, and automatic performance tuning (auto-
tuning).

Dozens of sparse matrix formats have been proposed to
efficiently compress sparse matrices in memory on contempo-
rary architectures: multi-core CPUs [9], Graphics Processing
Units (GPUs) [10], Intel Xeon Phi accelerators [11], and
Field-Programmable Gate Array (FPGAs) [12]. These formats
are designed for diverse goals: reducing memory access,
improving load balance, reducing GPU thread divergence, etc.
They store only non-zero elements and ignore zeros which take
a major portion of a sparse matrix. (Refer to the work [13]
and [14] for good summaries of them). We categorize sparse
matrix formats into three groups: Root Formats, Derived
Formats, and Hybrid Formats.

Four formats are generally considered as basic formats [14]–
[16], or Root Formats, which consists of COOrdinate
(COO), Compressed Sparse Row (CSR), ELLPACK
(ELL), and DIAgonial (DIA). To handle more irregular
matrices, better memory compression, or higher performance
of sparse kernels, plenty of Derived Formats have been pro-
posed. We refer to a derived format as a format manually
designed based on only ONE root format, such as Blocked
COORdinate (BCOO) [17], derived from COO; CSR5 [18],
derived from CSR; Sliced ELLPACK (SELL), derived
from ELL, to name a few. Beyond root and derived formats,
Hybrid Formats flexibly use multiple formats for different
portions of a sparse matrix. It could be a mix among root
and derived, such as HYBrid (HYB), COCKTAIL [19], and
Compressed Sparse eXtended (CSX) [20].

Because of the diversity of sparsity patterns and close
association between input matrix features, architecture char-
acteristics, and SpMV performance, it is unrealistic to find a
one-fits-all format or optimization method. Thus, SpMV auto-
tuners such as SMAT [15], clSpMV [19], Zhao et al. [21],
have been designed to select the most appropriate format for
a given matrix from a set of candidate artificial formats.

Despite the efforts of all researches mentioned above, this
classic but stubborn kernel is still largely behind its attainable
performance from analysis, especially for highly irregular
sparse data [22]. We observe three problems in state-of-
the-art researches preventing SpMV from achieving higher
performance.

Problem 1: Limited human practices meet an ever-
growing number of sparse matrices. Generally, a matrix
format could handle only a specific matrix pattern and perform
this type of matrix well. Thus, the patterns not covered
in this format lead to low performance. According to our
experiments in SuiteSparse Matrix Collection [23], there is
an approximate 10× maximum-minimum performance gap
observed from mainstream formats ELL, HYB, ACSR [24] and
CSR-Adaptive [22]. From another point of view, SuiteS-
parse Matrix Collection has gradually collected 2893 matrices
from 91 domains. As domains and data emerge from real-
world problems, most probably, we will face unseen sparse
data and patterns in the future, which would need new formats
and kernel implementations. It is not effective, practical, or
even possible for researchers to keep designing new formats
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for any incoming matrices.
Problem 2: Challenge of irregular sparsity. Irregularity

is almost the biggest challenge in nowadays SpMV program
design. It brings a great diversity of distributions for row
lengths1 and row positions, which causes enormous difficulties
for efficient parallelism and memory access [22]. In this paper,
we define sparse matrices where the variances of its row
lengths are more than 100 as irregular matrices, according
to target matrices of recent format studies [25], [26]. Irregular
matrices occupy more than 35% of SuiteSparse Matrix Col-
lection. General sparse matrix formats cannot accommodate
irregular sparsity well due to highly redundant computing,
unbalanced load, memory access hot-spots, etc. Though some
new formats [18], [24], [27] have been proposed, particularly
for irregular sparsity, they still have limited applicability (they
only focus on 10-20 matrices in their evaluation).
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Fig. 1. (a) Search space of a traditional auto-tuner. (b) Searching methodolo-
gies of format-selection auto-tuner and AlphaSparse in origin design space.

Problem 3: Limitation of existing auto-tuners. Exist-
ing auto-tuners are modeled as coarse-grained format selec-
tors [15], [19] and are limited by human experience and
implementations. We depict a small set of artificial formats and
SpMV implementations (blue circles and squares, respectively)
in Figure 1a. Each format has one or more coupled kernel
implementations. Traditional auto-tuners essentially choose a
format-kernel combination (represented as solid blue lines),
where other potentially existing but humanly undiscovered for-
mats, kernel implementations, and the connections in-between
(shown in cases 1-3 in red) have been overlooked. Take case
1 as an example, it uses the existing row-grouped CSR
format [28] but with a new implementation by combining
thread-level reduction of CSR5 [18] and global memory re-
duction of row-grouped CSR. These omitted cases cause
an auto-tuner to miss opportunities for potential performance
improvement. To make things worse, complexity from irregu-
lar sparsity amplifies this shortcoming of format selectors.

AlphaSparse solves these problems by targeting one ulti-
mate goal: creating machine-designed SpMV programs that

1For sparse matrix, row length is the number of non-zeros in a row.

surpass the scope of human practices and outperform
both artificial formats and traditional auto-tuners. We
achieve this goal by directly searching in the original design
space of the SpMV program, which contains three dimensions:
1) format, the data layout in memory; 2) kernel, the way
that data is calculated; 3) parameter, the quantitative details
of the first two dimensions (illustrated in Figure 1b). Every
position of the design space represents an SpMV program.
The blue path shows the selection strategy of traditional auto-
tuners that can only take steps in parallel with any of the
three directions. In contrast, AlphaSparse proposes a new
model, named Operator Graph, which simulates the SpMV
design philosophy to exploit much larger space. An Operator
Graph is a “path” to a specific location of the design space
by connecting arbitrary numbers of operators (detailed in
Section IV). An operator, a vector in design space, represents a
design strategy of the SpMV program and can simultaneously
“move” in three dimensions. This more flexible and integrated
model enables AlphaSparse to reach designs inaccessible to
existing human works and gain more opportunities for higher
performance.

TABLE I
COMPARISON OF ALPHASPARSE TO STATE-OF-THE-ART WORKS.

Work Sparsity Irregularity Creativity2

Artificial
Format
Designs

CSR,
ELL,

COO,etc.
! % %

CSR5 [18],
Merge [27],

ACSR [24],etc.
! ! %

Traditional
Auto-tuners

SMAT [15],
clSpMV [19],

Zhao et al. [21]
! %3 %

Compiler
Technologies

TVM [29] % % %

TACO [30] ! % %

Intelligent
Auto-tuner AlphaSparse ! ! !

Table I compares AlphaSparse with mainstream related
works from angles of sparsity, irregularity, and creativity.
Compared with artificial format designs and traditional SpMV
auto-tuners, AlphaSparse shows its novelty in creativity and
irregularity. It is the first work that creates completely novel
machine-designed formats along with their SpMV implemen-
tations to pursue high performance. Some compilers seem to
be more flexible, especially TACO [30]. However, its general
IR (intermediate representation) hides details of algorithms
and hardware architectures, which covers only basic opti-
mizations for general sparse problems and misses many op-
timization opportunities. Besides, TACO still explores limited
artificial formats by leveraging the “level formats” concept for
each dimension [31], [32], same as format selectors.

However, three challenges need to be conquered to build the
intelligent AlphaSparse. The first one is a much larger search
space. Let A be the number of all known artificial formats and

2The ability to create new machine-designed SpMV formats and kernels.
3Zhao et al. partly solves the irregularity by including CSR5 format.



assume each of them provides a unique format or kernel design
strategy. By only comparing the format-kernel subset of search
space, its size of traditional auto-tuning is O(A), while O(Ap)
theoretically in AlphaSparse with an Operator Graph including
p Operators. The second is integrated modeling. Extracting
design strategies of SpMV from a large number of existing
works and expressing them in a unified IR is non-trivial. The
last challenge is projecting positions in the origin design space
to three dimensions to obtain corresponding SpMV programs.

AlphaSparse has three main components to solve these
challenges: Designer, Format & Kernel Generator, and Search
Engine, to accomplish design space’s expression, projection,
and exploration. Designer and Format & Kernel Generator
accept Operator Graphs as input and generate formats with
corresponding kernel implementations. Search Engine aims
at finding an Operator Graph with high performance. While
searching, SpMV performance corresponding to Operator
Graph can be obtained by directly running the generated
SpMV program. We implement AlphaSparse in more than
110,000 lines of C++ codes that will be released. Although
we only focus on SpMV in this paper, the methodology of
AlphaSparse can even adapt to more sparse problems by
defining new corresponding operators and backends.

Our main contributions are summarized as follows:

• We first show potential high-performance SpMV pro-
grams overlooked in existing works and the necessity and
feasibility foundations for AlphaSparse (Section II).

• We develop AlphaSparse, which is easy to use by tak-
ing Matrix Market files as input and outputting high-
performance SpMV codes generated by the machine.
AlphaSparse can be considered as a counterpart of Al-
phaFold [33], which predicts the protein structure from
the beginning, in high-performance sparse problems;
while traditional auto-tuners correspond to traditional
template-based methods in protein structure prediction.
(Section III)

• The design space is expressed by a newly proposed
graph-based modeling, called Operator Graph (Sec-
tion IV); projected by format and kernel generators
to generate compressed data representation and high-
performance implementation (Section V); and explored
by a three-level search and pruning strategies (Section VI)
in AlphaSparse.

• We evaluate AlphaSparse on 843 large matrices from
SuiteSparse Matrix Collection. AlphaSparse largely im-
proves SpMV performance by up to 22.2× (3.2× on
average) compared to five human-designed state-of-the-
art formats. We also compare AlphaSparse with an up-to-
date implementation of format selector, where AlphaS-
parse achieves up to 2.7× (1.5 × on average) perfor-
mance improvement. (Section VII)

II. MOTIVATION

The motivation of AlphaSparse comes from two observa-
tions, which separately show its necessity and feasibility.

format and kernel space

CSR-Adaptive row-grouped 
CSR

SELL

75GFLOP/s
SELL Blocking

CSR-Adaptive Reduction

95GFLOP/s
SELL Blocking

CSR-Adaptive Reduction

Row-Grouped Blocking

39GFLOP/s

61GFLOP/s

58GFLOP/s

Fig. 2. Mixed designs found by AlphaSparse on the matrix 2D 27628 bjtcai
in the space of format and kernel.

Observation 1: Artificial formats and their sparse kernel al-
gorithms are limited by human experience and narrow search
space, which misses the potential for higher performance.
Newly proposed artificial sparse matrix formats and auto-
tuners have covered increasing sparse patterns. However, hu-
man practice ignores a large number of potential formats and
kernels. As shown in Figure 2, on matrix 2D 27628 bjtcai
from SuiteSparse Matrix Collection, CSR-Adaptive [34],
row-grouped CSR [35], SELL [36] separately achieves 39
GFLOPS, 58 GFLOPS and 61 GFLOPS. By combining the
blocking strategy of row-grouped CSR with the reduction
strategy of CSR-Adaptive, the performance of the mixed
format is higher as 75 GFLOPS. Similarly, by mixing formats
and kernels from all these source formats, the performance
could be even higher as 95 GFLOPS.

COMPRESS ROW_
BLOCK

PAD

COL_BLOCK

CSR

ELLPACK

COO

Fig. 3. The steps of converting a tiny sparse matrix to CSR, COO and ELL.
Blue blocks are non-zeros, while blank ones are zeros.

Observation 2: Sparse formats are converted from the
source matrix with common steps, making creating new
formats feasible from more combinations of these common
steps. This observation has been proved by other work [37],
although they underscored the conversion among existing
artificial formats. Usually, when a new artificial format is
designed, the conversion routine will also be provided from
the original matrix. We take the conversion of three root
formats as examples, shown in Figure 3. In the beginning, the
original input matrix is compressed by ignoring all zeros. By
blocking the matrix in each row, CSR format can be obtained.
Furthermore, by further padding in each block or by blocking
in each column, ELL or COO can be generated. These four
steps commonly exist in other format conversions [35], [38],
[39]. Thus, it is feasible to generate or even create a format
automatically by taking more common conversion steps.

III. OVERVIEW

AlphaSparse proposes an integrated model named Operator
Graph. Operator Graph describes and explores the origin three-
dimensional design space of format, kernel and parameter si-
multaneously with operators (shown in Figure 1). It provides a
meticulous search to handle the complexity brought by sparsity
patterns that are highly associated with SpMV performance.
An operator uniformly expresses the information of kernel
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and format design, including the configurations of their
parameters. Through transforming Operator Graphs, not only
high-performance but also new machine-designed formats and
kernels could be generated.

AlphaSparse consists of a Search Engine (Section VI), a
Designer (Section IV), and a Format & Kernel Generator
(Section V). As shown in Figure 4, the Search Engine first
enumerates Operator Graphs by generating graph structures
and corresponding parameters for their operators under a given
search strategy. The enumerated Operator Graph will be sent
to the Designer. The Designer executes these operators in order
to modify the Matrix Metadata Set, which includes all details
of the matrix state (detailed in Section V-A). At last, Format
& Kernel Generator produces the kernel and format according
to the Operator Graph and Matrix Metadata Set, with several
optimizations (detailed in Section V). For a specific structure
of Operator Graph, AlphaSparse first gets its performances
by directly running the SpMV program of each parameter
combination on a coarse-grained grid. To further achieve
a detailed search in parameter space with low overhead,
AlphaSparse uses a lightweight machine learning (ML) cost
model to interpolate parameters to a fine-grained grid. Till
the termination condition based on simulated annealing is
satisfied, the search process stops and outputs the best SpMV
codes found by it.

AlphaSparse has already provided high out-of-the-box per-
formance and is easy to use for top-level users. Users only
need to input a Matrix Market file of a sparse matrix, and
AlphaSparse will output a matrix stored in a specific format
and a kernel implementation. Essentially, apart from traditional
auto-tuners, AlphaSparse is moving forward a significant step
by acting as a substitute for algorithm researchers in devel-
oping new SpMV formats and kernels. Usually, this kind
of algorithm work not only highly depends on individual
inspiration but also costs time of either months or years.
AlphaSparse only takes hours to greatly outperform almost
all artificial designs. From this aspect, AlphaSparse is not
a traditional online performance tuner but a tool for the
SpMV algorithm research or an extremely optimized library
generator, which narrows the focus from the entire algorithm to
a particular operator(s). The generated codes can be directly
called in real-world applications. The artifact description of
this paper shows its usage.

IV. DESIGNER

The Designer maintains the Operator Graph, the key data
structure of AlphaSparse. We are the first to break existing
formats and kernel implementations [13], [14] into finer-
grained design strategies and use them to model the SpMV
program (shown in Table II). As the combination of operators,
Operator Graph opens a wider integrated space of format and
kernel designs. Compared to existing format selectors, AlphaS-
parse possesses higher flexibility for performance tuning, thus
obtaining outperforming SpMV codes in larger probabilities.

A. Operator

Given a sparse matrix, we summarize that its SpMV pro-
gram is generally developed in three steps: 1) defining a com-
pressed memory layout (i.e., format) of the matrix; 2) mapping
(distributing) it to hardware units of different parallelism
levels; 3) designing kernel implementation, mainly SpMV
reduction strategies. These stages are converting, mapping and
implementing. Each stage consists of multiple design or op-
timization strategies, called operators4. Defining operators is
non-trivial and challenging, which needs plenty of preparatory
work to abstract optimizing strategies from existing works
and validate their effectiveness in the final performance. For
prototyping purposes, AlphaSparse currently only considers
operators for GPUs. We list all the operators in AlphaSparse in
Table II. Almost all of them are derived from existing research,
as shown in the “Source” column. At the level of the overall
design of the SpMV program, AlphaSparse has covered the
whole design process by the three stages of Operator Graph.
At the level of design strategies (so-called operators), it is
not easy to get their quantitative and theoretical coverage. As
far as we know, AlphaSparse has covered almost all popular
formats with high performances.

Operators in the converting stage define compressed mem-
ory layout. ROW(COL) DIV divides the whole matrix into
striped sub-matrices in a row or column direction, which
branches in the Operator Graph. Each sub-matrix can be
treated separately in the following designs (shown on the upper
right of Figure 4) that help handle highly irregular matrices.
SORT, SORT SUB, and BIN reorder matrix rows according to
their lengths. COMPRESS ignores all zeros of a sparse matrix
for storage.

4Operators in AlphaSparse represent designs of format and kernel imple-
mentation, different from mathematical operators.



TABLE II
OPERATORS CONSIDERED IN ALPHASPARSE.

Stage Operator Source Description

Converting

ROW(COL) DIV [40], [41] Divide a matrix in rows/columns
SORT [36], [42] Sort rows in decreasing order of #non-zeros per row
SORT SUB [36], [42], [43] Sort rows in decreasing order of #non-zeros per row with in a submatrix
BIN [24], [44] Put rows into different bins according to #non-zeros per row
COMPRESS [45] Ignore all zeros of the sparse matrix

Mapping

BMTB(BMW,BMT) ROW(COL) BLOCK [39], [43], [46], [47] Split a matrix in row/column dimension, each of which mapped to a thread block/warp/thread
BMT NNZ BLOCK [18], [25], [41] Map continuous non-zeros to threads
BMTB(BMW,BMT) PAD [35], [46], [47] Zero padding to BMTB/BMW/BMT
SORT BMTB [39] Sorting rows in decreasing order of #non-zeros per row within a BMTB

Implementing

SET RESOURCES / Set runtime configurations
GMEM ATOM RED [35] Atomically add intermediate results to global memory
SHMEM OFFSET RED [22], [27], [34] Reduce intermediate results from multiple rows to shared memory, according to row offset
SHMEM TOTAL RED [22], [24] Reduce intermediate results of the same row in shared memory
WARP TOTAL RED [48], [49] Reduce all the intermediate results per warp to one row
WARP BITMAP RED [47] Reduce all the intermediate results per warp by bitmap
WARP SEG RED [18] Reduce all the intermediate results per warp by segment sum
THREAD TOTAL RED [24], [47], [50] Reduce all the intermediate results per thread to one row
THREAD BITMAP RED [18], [25] Reduce intermediate results per thread by bitmap

BMTB/BMW/BMT is abbreviation of “a block mapped to a thread block” or “warp” or “thread”.
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Fig. 5. An Example of format generation. The upper is an Operator Graph; the lower is a subset of Matrix Metadata Set.

The mapping stage always begins after the COMPRESS
operator. Operators suffixed by BLOCK cut adjacent non-
zeros of the matrix into blocks and map them to different
levels of parallelism. The other operators in this stage further
trim the memory layout inside of blocks. Operators suffixed
by PAD add zeros to specific positions of a matrix to get
more regular indices for higher performance. SORT BMTB
reorders rows of each BMTB, which can reduce the range of
sorting and create opportunities to decrease the padding rate..

Operators in the implementing stage are more relevant to
kernel implementation. Except for SET RESOURCES, all the
operators are suffixed by RED, which are different reduction
strategies for intermediate results of BMTB, BMW, or BMT
in an SpMV kernel. GMEM ATOM RED directly and atom-
ically adds intermediate results to vector y in global memory.
Operators prefixed by SHMEM are strategies for thread-
block-level reduction in shared memory. SHMEM TOTAL
RED fits for the condition where all intermediate results in a
BMBT come from the same row. It adds up all intermediate
results of a thread block to a result. SHMEM OFFSET RED
includes CSR-like row offset indices [51] that record the posi-
tion of the first intermediate result of each row in BMBTs. It
reduces the intermediate results of each row in parallel. Three
operators prefixed by WARP represent three mainstream
strategies of warp-level reduction. WARP TOTAL RED is a
classic strategy from CSR-Stream [22]. For irregular matrices
containing both short and long rows, WARP BITMAP RED
and WARP SEG RED use bitmap [47] and segment sum [52]

to reduce results of BMW by rows. To gain more optimization
opportunities from low-level details of the hardware, operators
utilize a series of unique features of the GPU. In warp-level op-
erators, hardware-level Warp Shuffle Functions [53] are used to
achieve high performance of reduction. Operators prefixed by
THREAD are thread-level reductions in registers. THREAD
TOTOAL RED is similar to other operators suffixed by
TOTAL RED. THREAD BITMAP RED serially reduces the
results of each row, using a bitmap to mark row boundaries.

There is still a huge search space behind an operator
that contains parameters of its details (parameter space in
Figure 1b), such as sorting granularity, the parallelism of re-
duction algorithms, blocking size, etc. Some design strategies
derived from formats such as HYB, CSB [54] are also critical
to SpMV performance but have not been supported by Al-
phaSparse. AlphaSparse allows users to implement operators
by themselves.

B. Operator Graph

An Operator Graph is generated by connecting op-
erators in order. The upper part of Figure 5 shows
an elementary example. A real high-performance Op-
erator Graph could be much deeper and sometimes
include branches. This example mainly combines de-
sign philosophies of SELL-P [38] and CSR-Scalar.
COMPRESS, BMTB ROW BLOCK, BMT ROW BLOCK,
BMT PAD, THREAD TOTAL RED, GMEM ATOM RED
are from SELL-P, while COMPRESS, BMT ROW BLOCK,



THREAD TOTAL RED, GMEM ATOM RED are from
CSR-Scalar. SORT is from other formats, like JAD [55].

Dependencies exist between operators. They usually come
from operators’ semantics. Take the Operator Graph in Fig-
ure 5 as an example, BMT ROW BLOCK and BMT PAD
cannot be followed by BMTB ROW BLOCK. Because when
a data block has already been mapped to a thread, it cannot
be further split and mapped to a thread block as higher-level
parallelism in CUDA. Dependencies can also be defined by
users for search pruning (detailed in Section VI).

V. FORMAT & KERNEL GENERATOR

Given an Operator Graph, we can move to a specific position
of SpMV design space. To get the corresponding format and
kernel implementation, Format & Kernel Generator projects
this position to format, kernel, and parameter space. Unlike
traditional source code generators [56], which are based on a
static template and only focus on the kernel implementation,
Format & Kernel Generator needs to handle flexible com-
binations of format and kernel by two components: Matrix
Metadata Set and Kernel Builder.

A. Matrix Metadata Set

Matrix Metadata Set includes multi-perspective descriptions
of the current matrix state, recording how the matrix is
converted (detailed in observation 2 of Section II). It is a
huge key-value memory database whose contents are used to
generate formats and kernels. Matrix Metadata Set contains
basic matrix information (matrix size, number of columns
and rows, length of each column and row), basic non-zero
information (parent-block index, row index, column index),
and information of blocks distributed to different levels of
parallelism (block size, first non-zero index, first row index,
first sub-block index), reduction information (row index of
intermediate result, etc.), and so on. In an Operator Graph,
operators convert a matrix by modifying the Matrix Metadata
Set in order. After an Operator Graph has been iterated, Matrix
Metadata Set will include all effects of operators to the original
matrix cumulatively. A simple example of matrix metadata is
shown on the lower part of Figure 5. The red text represents
where the metadata is added or modified. Take row indices
and col indices as examples. They are added by the input
matrix, recording the row and column indices of non-zeros,
and operator BMT PAD further modifies them by adding an
index of a zero element in a specific position (1, 1).

B. Format Construction

All arrays of a format are extracted from Matrix Metadata
Set by choosing the metadata needed by the kernel (determined
by kernel fragment detained in Section V-C). In the final
format shown in Figure 5, bmtb nz offsets, bmt row offsets,
and bmtb bmt offsets record the indices of the first non-zero,
sub-block, row in each BMT or BMTB. They are generated by
operator BMT ROW BLOCK and BMTB ROW BLOCK,
defining how the matrix is distributed to each thread and thread
block. bmt sizes of bmtb is non-zero numbers of BMT in

each BMTB, generated by BMT PAD. origin rows (generated
by SORT) and bmt row offsets record the original row indices
of intermediate results from non-zero multiplications, which
are needed by reduction of GMEM ATOM RED (in vector
y).

kernel skeleton
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Fig. 6. Example of kernel generation by splicing kernel fragment. The
reduction strategies of this case are THREAD TOTAL RED and SHMEM
OFFSET RED.

C. Kernel Builder

The construction process of the SpMV kernel includes two
parts: 1) Distribution, mainly determined by the mapping
stage. It gets metadata for each block in different levels of
parallelism, which mainly includes information for task distri-
bution and reduction strategy. 2) Reduction, mainly determined
by the implementing stage. It multiplies the non-zeros of the
matrix with the vector elements and reduces their results by
row.

According to the commonality of SpMV programs, the tem-
plate of Kernel Builder includes two key components: kernel
skeleton and kernel fragment. The left of Figure 6 shows the
kernel skeleton, which is the root symbol containing multiple
nested loops. Each loop traverses blocks distributed to different
levels of parallelism(thread block, warp, thread), including a
series of slots for kernel fragments. Kernel fragments marked
as “get meta of BMX” read metadata arrays needed by other
kernel fragments of the same loop, which constitute the format.
It can be easily and automatically generated by analyzing data
dependency. For the strategy to reduce current intermediate
results, kernel fragments prefixed by “reduction in” are deter-
mined by operators in the implementing stage. Non-orthogonal
factors could appear in combinations of different reduction
strategies. To solve this issue, special kernel fragments called
Adapter need to be pre-defined, which only includes several
assignment expressions. Shown on the right of Figure 6,
intermediate results from thread-level reduction (THREAD
TOTAL RED) are further reduced in thread-block-level reduc-
tion (SHMEM OFFSET RED). The former reduction puts its
output in the register group. The latter accepts input only in
shared memory, which makes these two reduction strategies
cannot be connected directly. An Adapter is needed to copy
results from registers to shared memory in an accepted layout.

Figure 7 shows an example kernel of Operator Graph shown
in Figure 5. In this case, the whole matrix is divided into
BMTBs and BMTs in the row direction. Each thread reduces
its contents into one result. These results from threads are
further reduced in the global memory. Lines 3-6 and 11-12



Adapter of GMEM_ATOM_ADD

get meta of BMT

get meta of BMTB

THREAD_TOTAL_RED

__global__ void spmv(......){
...... 
//reverse all BMTBs
for (int BMTB_id = 0; BMTB_id < BMTB_num; 

                 BMTB_id = BMTB_id + thread_block_num){
int bmtb_nz_offset = bmtb_nz_offsets[BMTB_id];
int bmt_begin_in_bmtb = 2 * BMTB_id;
int bmt_end_in_bmtb = 2 * (BMTB_id + 1);
int bmt_size_of_bmtb = bmt_sizes_of_bmtb[BMTB_id];
        
//reverse all BMTs in each BMTB
for (int BMT_id = bmt_begin_in_bmtb; BMT_id < bmt_end_in_bmtb; 
                                                                  BMT_id = BMT_id + thread_block_size){ 

int bmt_row_offset = BMT_id;
int bmt_nz_offset = bmtb_nz_offset + bmt_size_of_bmtb * BMT_id;
            
float temp_result = 0;
//reverse all non-zeros in each BMT
for (int nz_id = bmt_nz_offset; nz_id < bmt_nz_offset + bmt_size_of_bmtb; nz_id++){
temp_result = temp_result + val_arr[nz_id] * x[col_indices[nz_id]];
}
            
int real_index = origin_rows[bmt_row_offset];
atomicAdd(&(y[real_index]), temp_result);
} } }
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Fig. 7. Example of generated kernel of Figure 5 after optimizing. Underlined
codes are optimized by Model-Driven Format Compression.

get format(metadata) arrays of BMTB and BMT. Lines 14-18
multiply non-zeros of each BMT by elements of vector x and
reduce them in one register represented by temp result. Lines
20-21 further reduce the intermediate result of each thread by
atomic addition in the global memory.

D. Optimizer

reduce_row_offset_arr=[0,64,128,192,......];
row_offset=reduce_row_offset_arr[bid]

row_offset = 64 * bidcandidate modelinput array index array output

x

b

Linear Function

Step Function

Periodic Linear Function

Fig. 8. Example of memory access optimization for a format array.

To improve kernel performance, Kernel Builder supports
a series of optimizing strategies, such as removing unnec-
essary codes, combining multiple short-data-type arrays, etc.
Since kernel optimizations have been well studied before,
we leverage several state-of-the-art techniques in our tuning
system. One prominent optimization is Model-Driven Format
Compression (derived from [57]), which is especially efficient
to memory-access optimization. It reduces the number of
memory accesses by transforming array type data (in memory)
to models and replacing memory access with calculation.

As shown in Figure 8, an operator named BMTB ROW
DIV divides the matrix into row bands every 64 lines, and
each row band is mapped to a thread block. It adds an
array, named reduce row offsets, to the format, which in-
cludes the first-row index of BMTBs for thread-block-level
reduction. row offset can be calculated directly from the index
of BMTB (row offset=64*bid), by fitting array index and
value to a linear model, which makes global memory access
(row offset=reduce row offsets[bid]) unnecessary. In manu-
ally written codes, programmers can naturally discover the
regularity of data structures and directly write the optimized

implementation. Because AlphaSparse is entirely automatic,
we need to perform this optimization explicitly to achieve
competitive performance with human-written codes. In addi-
tion to linear functions, other functions, such as step function
and periodic linear function, are also supported. Users can
also extend the hypothesis function. Unlike normal regression
problems of data analysis, any errors in the model would cause
incorrect SpMV implementation. To improve the success rate
of this optimization, a small number of errors can be tolerated
by adding if statements to separately assign values for the
specific array index that the model cannot fit.

Figure 7 includes example optimizations: Accesses of
bmtb bmt offsets, bmt row offsets are eliminated by Model-
Driven Compression; and the optimizer also eliminates the
warp-level loop for a cleaner code structure.

VI. SEARCH ENGINE

Search Engine drives AlphaSparse by enumerating Operator
Graphs and choosing the best one of them. To deal with a huge
search space (as a challenge detailed in Section I) consisting
of the parameters and structure of the Operator graph, Search
Engine provides multi-level search from coarse to fine. It
exploits the experience of coarse-grained search to accelerate
the fine-grained search by an ML model.

A. Operator Graph Search

The search strategy of the Search Engine includes three
steps (levels). In the first step, graph structures are enumerated
by randomly choosing empty operators and connecting them
at the end of the existing Operator Graph. The second step
searches node (operator) parameters in a coarse-grained grid
and gets the performance of Operator Graphs by directly
running corresponding SpMV programs. In the third step, the
test results from step two are further interpolated to a fine-
grained parameter grid by an ML model. We do not directly
do the fine-grained search because the overhead of running
SpMV programs is extremely high, even occupying almost all
the searching overhead. In comparison, the overhead of the
ML model is negligible. To further and reasonably reduce the
executions of SpMV programs, the first two steps could be
terminated early by simulated annealing. Moreover, we also
limit the search time to no more than 8 hours, as a mandatory
termination condition, according to our experience.

According to our practice, XGBoost [58] performs very well
in interpolation, which is also confirmed to be practical by
TVM [29]. It achieves a mean absolute deviation of 5%, which
is even less than the performance volatility of GPU. Because
of the memory hierarchy of the architectures, we speculate
that the cost model of memory-bound programs includes
linear decision boundaries, which fits a tree-type model. The
third step significantly reduces the overhead of the parameter
search. Assume there is an Operator Graph with q parameters.
Reducing the search step size by half would increase search
space by 2q times, finally increasing the search time from
several hours to several weeks. XGBoost can achieve the same
effect by incurring relatively negligible overhead.



B. Pruning

Although AlphaSparse provides a three-level search to ac-
celerate the searching process, the overhead from the first
two steps is still expensive because of the huge search space
of AlphaSparse. So, in addition to coarse-grained parameter
search and simulated annealing, more pruning strategies are
needed.
Pruning the search of the parameter. Parameters indicate
quantifiable details of an operator. The biggest challenge is
the array type parameter. For example, ROW DIV includes an
array type parameter containing the positions where the matrix
is divided in the row direction. Assuming the input matrix has
105 rows, the search space size of just this single parameter
is 105!, which is impossible to grasp. One or more parameter
discretization strategies are included in each operator to handle
array type parameters. Parameter discretization strategies can
reduce the parameter space, especially spaces of array-type
parameters. In this case, a parameter discretization strategy
named DIV IN ROW LEN MUTATION can be used to di-
vide the matrix where row length mutates. It converts the array
type parameter to just several integer parameters describing the
degree of such mutation, which can be easily enumerated.
Pruning the search of the graph structure. Pruning strate-
gies for graph structure are added when we find operators are
unnecessary for specific matrix sparsity patterns. For example,
matrices with short rows do not need to try operators for long
row reduction. Users can add their pruning strategies. AlphaS-
parse provides a ban list for pruned operators, according to
already existing operators of graph and sparsity patterns of
input matrices.

VII. EVALUATION

Our evaluation shows that AlphaSparse provides the high-
est overall performance among the most advanced artificial
formats and the up-to-date implementation of traditional auto-
tuning.

A. Experimental Setup

Platform. The experiments are conducted on NVIDIA A100
and RTX 2080. The former is based on Ampere architecture,
with 6912 CUDA cores, 40GB HBM2 memory (1.5TB/s),
and 19.49 TFLOPS peak performance. The latter is based on
Turing architecture, with 2944 CUDA cores, 8GB GDDR6
memory (448GB/s), 10.07 TFLOPS peak performance. We use
single-precision for floating-point values in experiments.
Testset. The experiment includes 843 matrices (most of them
are irregular) from SuiteSparse Matrix Collection [23] whose
features satisfy the three conditions: 1) row number is larger
than 9K, 2) number of non-zeros is between 50K and 60M,
3) no empty rows 5. We ignore matrices with extremely large
sizes because they are difficult to grasp. Small matrices are
also ignored because they are not suitable for GPU.

5Our prototype has not included operators to handle empty rows.

B. Baselines

The baselines are classified into three kinds according to the
degree of coupling with SpMV. Artificial format represents
the special library achieved by hand. Format selector repre-
sents the traditional auto-tuning framework. Tensor algebra
compiler represents the more general compiler that considers
SpMV as one of many objects.
Artificial format. To compare with artificial formats,
we choose several popular state-of-the-art formats with
high performance and irregularity-specific design as fol-
lows: 1) ACSR [24], implemented by us because so far
we have not found its high-quality implementation. 2)
CSR-Adaptive [22], from ViennaCL 1.7.1 [59], [60]. 3)
CSR5 [18]6, 4) Merge-based CSR(Merge) [27]7. 5)
HYB, from cuSPARSE 9.2.
Format selector. It is unrealistic to fairly compare AlphaS-
parse with the traditional auto-tuning philosophy based on
format selection. The most state-of-the-art auto-tuners, Zhao
et al. [21], SMAT(ER) [61] and clSpMV, have historical
limitations: 1) They contain only out-of-date formats, which
sometimes cannot handle irregularity and cannot take advan-
tage of new GPU features. 2) They have not been actively
maintained for a long time. 8 For a reasonable comparison, we
implement a Perfect Format Selector (PFS) as a representative
to the up-to-date auto-tuner as the baseline.

As a performance-first auto-tuner, PFS does not rely on
probabilistic models for format selection. To achieve the
highest accuracy(100%), PFS can certainly select the best
formats by directly running SpMV of all candidate formats.
For an up-to-date implementation, PFS consists of five afore-
mentioned state-of-the-art formats: ACSR, CSR-Adaptive,
CSR5, Merge, HYB [62]; three root formats from the widely-
used cuSPARSE library: ELL (from v9.2), COO, CSR (from
v11.6); and two derived formats: SELL, row-grouped
CSR, for a comprehensive comparison.
Tensor algebra compiler. Compiler focuses more on code-
level optimizations instead of algorithm-level designs. For a
more sufficient comparison, we add TACO [30]9 as a baseline
of the tensor algebra compiler.

C. Performance Comparison with Artificial Formats

Figure 9a shows the overall performance of AlphaSparse
and state-of-the-art formats in 843 matrices. The x-axes are
matrix size and we use floating point operations per sec-
ond(GFLOPS) to represent performance as the y-axes. Al-
phaSparse achieves the highest performance among all arti-
ficial formats. On A100, AlphaSparse achieves an average
3.2× speedup and the maximum 22.2× speedup (in matrix

6https://github.com/weifengliu-ssslab/Benchmark SpMV using CSR5
7https://github.com/dumerrill/merge-spmv
8clSpMV has not been maintained for seven years, and we could not

deploy it on our platform due to the error appearing. We believe AlphaSparse
can outperform clSpMV because AlphaSparse gains better performance than
ACSR which outperforms clSpMV.

9https://github.com/tensor-compiler/tacowe use CUDA code fully automat-
ically generated by it.

https://github.com/weifengliu-ssslab/Benchmark_SpMV_using_CSR5
https://github.com/dumerrill/merge-spmv
https://github.com/tensor-compiler/taco 
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Fig. 9. SpMV overall performance of matrices with different sizes. (a) All test results on RTX 2080 and A100, while the red dashed lines show a trend of
achieved highest performances. (b) Parts of the AlphaSparse results on RTX 2080. The region colored by red includes cases providing higher performance in
specific matrix size, while the other is colored by blue.

TSOPF RS b300 c2) over all artificial formats. In partic-
ular, it achieves average 2.3×, 5.7×, 2.0×, 2.0× and 3.9×
speedup over ACSR, CSR-Adaptive, CSR5, Merge and
HYB, respectively. AlphaSparse outperforms Merge, ACSR,
CSR-Adaptive and CSR5 in all 843 matrices, while it out-
performs HYB in 841 matrices (because AlphaSparse has not
included the matrix decomposition strategy of HYB). On RTX
2080, AlphaSparse achieves an average 2.0× speedup and the
maximum 8.3× speedup (in matrix TSOPF RS b2052 c1).
In particular, it achieves average 2.0×, 2.3×, 2.0×, 1.7× and
2.4× speedup over ACSR, CSR-Adaptive, CSR5, Merge
and HYB, respectively.
Merge and CSR5 provide the highest overall performance

among all artificial formats, because they benefit from thread-
level load balance by allocating a balanced number of non-
zeros or rows to each thread. The overall performance of
CSR-Adaptive is the lowest. It performs well in relatively
small matrices by achieving higher parallelism. However, it
suffers from giving up the reduction in registers, making it
perform the worst on remaining matrices. ACSR and HYB are
based on matrix decomposition, providing mild performance.

In Figure 9a, maximum performances of AlphaSparse in
each matrix size make up a trend of flat-tail shape, represented
by red dashed lines. As a memory-bound program, the SpMV
performance can be raised by the increasing occupy of mem-
ory bandwidth when the matrix size is not too large. When the
memory bandwidth is sufficiently used, the performance will
not further increase [63]. In our evaluation, only AlphaSparse
approaches this trend.

To show how input matrices affect performances, we take
samples of RTX 2080 test results and divide them into two
parts in Figure 9b. We choose this range of results because
it shows clear upper and lower borders and makes us easy
to split in the middle of them. Although these two parts of
cases correspond to the same matrix sizes, the performance of
the upper part (red) is up to 5.0× (average 1.4×) higher than
the lower. According to our further observation, we suspect
that the two matrix features cause this performance gap. One
is average row length(nnzn ), which in the upper part is 1.9×
higher than the lower. We speculate that a higher average
row length improves performance by increasing the ratio of
calculation to memory access and decreasing the proportion
of reduction operations (which require synchronization) in
the SpMV program. The other is row variance(degree of

regularity,
∑

(row len−nnz
n )2

n ), which in the upper part is 20×
lower than the lower. Lower regularity can usually achieve
higher reduction performance, better load balance, and less
computation waste.
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Fig. 10. The frequency distribution of AlphaSparse’s speedup over PFS on
A100.
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Fig. 11. Speedups of AlphaSparse over PFS corresponding to (a) matrix sizes
and (b) variances of row lengths on A100.

D. Performance Comparison with Format Selector

Figure 10 illustrates the frequency distribution of AlphaS-
parse’s speedup over PFS on A100. In 99.3% cases, the
performance of AlphaSparse is higher. In the remaining 0.7%
matrices, AlphaSparse performs worse because some design
strategies of formats in PFS are not included in AlphaSparse
(detailed in Section VII-H). Most (40.8%) cases achieve the
speedup between 1.2× and 1.4×.

Figure 11 further demonstrates speedups of AlphaSparse
over PFS along with matrix sizes and row variances(to show
the influences of the irregular sparsity). Figure 11a shows
impressive speedups can be achieved in cases where the
matrix fits into the 40 MB L2 cache of the A100, and
large matrices (≥ 107 non-zeros) provide lower speedups. In
Figure 11b, the red line shows the boundary of the regularity
and irregularity (102 as mentioned). The peak of speedup
is 2.7×, appearing in the middle degree of matrix size and
irregularity, which shows the fine-grained trade-off provided
by Operator Graph is suitable for moderate sparsity patterns.
On the contrary, designs of most artificial formats are based
on human observations of specific extreme sparsity patterns
from matrices such as Webbase, mip1, FullChip, as shown



in their papers. They ignore matrices with moderate sparsity
patterns. Moreover, we find irregular matrices benefit more
from AlphaSparse: the average speedup is 1.4× for regular
sparsity, while for irregular sparsity, the average speedup goes
up to 1.6×.

(a) (b)

Fig. 12. Speedups of AlphaSparse over TACO corresponding to (a) matrix
sizes and (b) variances of row lengths on A100.
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Fig. 13. Numbers of searching iterations along with row variances on A100.

TABLE III
SEARCH TIME AND PERFORMANCES WITH AND WITHOUT PRUNING ON

A100

Matrix Search Time (hour) Performance (GFLOPS)
no pruning pruning no pruning pruning

pdb1HYS

8.0

3.1 273.4 303.2
windtunnel evap3d 2.3 286.1 343.3

consph 1.9 339.8 356.0
Ga41As41H72 3.4 193.6 242.1
Si41Ge41H72 4.8 175.1 236.9
ASIC 680k 0.9 121.8 169.6

mip1 4.9 227.0 226.0
Rucci1 1.9 218.9 223.7
boyd2 2.4 61.3 80.2
rajat31 5.1 189.2 226.0
transient 3.0 127.7 153.0

ins2 3.4 101.9 152.8
bone010 3.3 193.2 235.4
Average 8.0 3.2 198.6 231.0

E. Performance Comparison with TACO

AlphaSparse greatly outperforms TACO. On A100, Al-
phaSparse achieves an 18.1× average speedup and the maxi-
mum 950.8× speedup over TACO. As shown in Figure 12a,
speedups are insensitive to matrix sizes, unlike PFS. Fig-
ure 12b shows the peak of speedup appearing in highly
irregular matrices. Two reasons cause its relatively lower
performance. The first reason is that TACO is not tailored
for SpMV. Its three key features, index compression, loop
optimization, and automatic parallelism, only target general
sparse problems. None of them can handle problems brought
by SpMV, especially the irregularity. The second reason is that
TACO lacks the utilization of GPU features, which even lacks
competitiveness with human-designed programs.

F. Searching Overhead

Since the first two search steps occupy almost all the
searching overhead (as mentioned in Section VI), we use

the number of iterations in the first two steps to represent
the performance of search strategies. Figure 13 shows search
iterations along with degrees of matrix irregularity (so-called
row variances). The regression line of test results illustrates a
positive correlation between the search overhead and matrix
irregularity: regular matrices need 3.5× fewer iterations than
highly irregular matrices. These prove that our pruning rules
significantly reduce search overhead by ignoring operators for
the irregularity when the input matrix is regular.

Table III shows how pruning strategies affect search time
and performances of AlphaSparse. We record test results
before10 and after pruning in 13 popular matrices evaluated
from published researches. Pruning strategies reduce search
time by 2.5× on average. Because pruning strategies include
high-quality human experience, they eliminate unnecessary
enumerations and make the Search Engine focus on areas of
the design space that are highly likely to find high-performance
formats in limited search time. Pruning strategies also improve
performance by 1.2× on average. Compared with existing
offline auto-tuners, such as PATUS (8 hours) [64], SDSL
(≥33 hours) [65], Halide (2 hours-2 days) [66], PARTANS
(2.5 hours-32 days) [67], the search time of AlphaSparse is
competitive.
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Fig. 14. An example of matrix scfxm1− 2r on A100. (a) a snapshot of
its Operator Graph, (b) the performance comparison with artificial formats
and (c) performance improvements achieved by two key optimizations of
AlphaSparse.

G. Creative Capability of AlphaSparse

Creating new machine-designed formats is the main driver
of performance improvement. From our statistics, in 73.1%
of test cases, AlphaSparse outperforms all counterparts by
creating machine-designed formats which are not covered by
its source formats (as referenced in Table II). In 16.5% of
cases providing new formats, the branches appear in Operator
Graphs, which means AlphaSparse designs different formats

10We remove the simulated annealing and other pre-defined pruning strate-
gies (shown in Section VI-B) in the baseline of no pruning.



and corresponding kernel implementations for different parts
of original matrices.

Figure 14a shows an example Operator Graph of an new
format generated by AlphaSparse for matrix scfxm1− 2r. It
mainly includes the thread-block-level blocking strategy from
SELL, the thread-level blocking strategy from row-grouped
CSR, and the reduction strategy from CSR-Adaptive. Fi-
nally, as shown in Figure 14b, it achieves 2.7× speedup (which
is the highest) over PFS and state-of-the-art artificial formats.
Appropriate trade-offs between different design strategies
achieve high performance. Compared with the source formats,
for this matrix, the machine-designed format avoids high
padding rate of SELL, inefficient global memory reduction
of row-grouped CSR, ignorance of thread-level reduction
in CSR-Adaptive, and benefits from regular row block
indices of SELL, low padding rate of row-grouped CSR,
efficient shared memory reduction of CSR-Adaptive. In
terms of its state-of-the-art counterparts, expensive strategies,
such as binning of ACSR and blocking for load balancing of
CSR5 and Merge-based CSR, are unnecessary because the
matrix is not too irregular. Moreover, HYB includes a large,
inefficient COO component in this matrix, which makes it also
worse than the machine-designed format. Figure 14c shows a
32% performance improvement is brought by Model-Driven
Format Compression, and pruning strategies bring a further
78% performance improvement.

H. Limitation

In AlphaSparse, the lack of operators is the main reason
causing slightly lower performance on specific matrices. A
representative case is matrix GL7d19. Its best artificial format
is HYB, which performs even better than machine-designed
formats from AlphaSparse. In this matrix, the lengths of almost
all rows are relatively balanced, except for a few rows that are
several times longer. The matrix decomposition strategy of
HYB is very suitable for this sparsity pattern, but the current
AlphaSparse has not included this strategy.

In addition to HYB-like decomposition, two popular cate-
gories of operator have not been included: operators for local
densities [68]–[70], diagonal patterns [2], [20]. They separate
the regular parts of the matrix and handle them exclusively
to achieve high performance. However, they only cover a
small number of matrices. Our prototype implementation has
not considered them, but they will be considered for more
complete support in the future.

Currently, the proof-of-concept AlphaSparse only supports
CUDA. However, it can be extended to other platforms by
implementing new tailored operators. Users only need to
define how the operator modifies metadata and occasionally
need to define kernel fragments.

VIII. RELATED WORKS

Auto-tuners. Auto-tuners have proven to be a successful per-
formance tuning approach, represented by ATLAS [71], FFTW
[72], SPIRAL [73], and OSKI [74], for the increasingly diverse
and complicated computer architecture designs. For sparse

linear algebra, SMAT [15], clSpMV [19], TileSpMV [75]
Naser Sedaghati et al. [76] and CSX [20] select the best
artificial format and SpMV implementation for the given
matrix; while IA-SpGEMM [77] selects the best formats for
SpGEMM. TVM [29] and Ansor [78] are auto-tuner for dense
tensor calculation by automatically generating code structure
and selecting the best corresponding parameters. COGENT
[79] provides high performance tensor contractions on GPU.
CASpMV [80] include auto-tuner for matrix partition on the
Sunway. Some general auto-tuners, ATF [81], OpenTuner [82],
CLTune [83], Optuna [84], mNM [85], Muthu et al. [86],
Tiwari et al. [87], Rigel [88] and SMAC3 [89], have been
designed to ease the designing effort of an auto-tuner and
target in a broader scope. AlphaSparse is not limited by
selecting among artificial formats, kernel implementations,
parameters, and it is able to create SpMV code and break
through the limits of human design.
Artificial format and kernel design. To improve the per-
formance of SpMV, a dozens of formats [13], [14] have
been proposed. State-of-the-art formats are derived from
several base formats. ALIGNED_COO [90], SCOO [91],
BRO-COO [92], BCOO [25] are derived from COO.
ICSR [48], CSR-Adaptive [34], ACSR [24], CSR5 [18],
LightSpMV [49] are derived from CSR. ELL-R [93],
AdELL [47], JAD [55] are derived from ELL. HYB [51],
HDC [94] and HEC [95] are hybrid formats. These artificial
formats are designed by human according to their observa-
tions, AlphaSparse can automatically creates formats without
human intervene.
Code generation. TVM [29] is a template-based machine code
generator for dense tensor calculation. TACO [30] can handle
high-order sparse tensor calculation by compressing the index
of each dimension. LL [96] is a DSL to define matrix format
and its SpMV kernel. AlphaSparse provides a graph-based
expression for generating of both format and kernel.

IX. CONCLUSION AND FUTURE WORK

We present AlphaSparse, a fully automatic SpMV code
designer, that generates outperforming format and kernel di-
rectly from an input sparse matrix. It unifies the modeling of
format and kernel implementation and achieves an impressive
speedup of up to 22.2× over state-of-the-art human-designed
formats on the NVIDIA GPU. We will examine advanced
search strategies from existing research [29], [37], [97], and
add efficient format conversion routines in the future.
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