
Scalable Linear Time Dense Direct Solver for 3-D
Problems Without Trailing Sub-Matrix

Dependencies
Qianxiang Ma

School of Computing
Tokyo Institute of Technology

Tokyo, Japan
ma@rio.gsic.titech.ac.jp

Sameer Deshmukh
School of Computing

Tokyo Institute of Technology
Tokyo, Japan

sameer.deshmukh@rio.gsic.titech.ac.jp

Rio Yokota
Global Scientific Information and Computing Center

Tokyo Institute of Technology
Tokyo, Japan

rioyokota@gsic.titech.ac.jp

Abstract—Factorization of large dense matrices are ubiquitous
in engineering and data science applications, e.g. preconditioners
for iterative boundary integral solvers, frontal matrices in sparse
multifrontal solvers, and computing the determinant of covari-
ance matrices. HSS and H2-matrices are hierarchical low-rank
matrix formats that can reduce the complexity of factorizing such
dense matrices from O(N3) to O(N). For HSS matrices, it is
possible to remove the dependency on the trailing matrices during
Cholesky/LU factorization, which results in a highly parallel
algorithm. However, the weak admissibility of HSS causes the
rank of off-diagonal blocks to grow for 3-D problems, and the
method is no longer O(N). On the other hand, the strong
admissibility of H2-matrices allows it to handle 3-D problems in
O(N), but introduces a dependency on the trailing matrices. In
the present work, we pre-compute the fill-ins and integrate them
into the shared basis, which allows us to remove the dependency
on trailing-matrices even for H2-matrices. Comparisons with a
block low-rank factorization code LORAPO showed a maximum
speed up of 4,700x for a 3-D problem with complex geometry.

Index Terms—Dense Direct Solver, H2-Matrix, LU, ULV

I. INTRODUCTION

Factorization of dense matrices has been at the heart of
high performance computing where the high performance
LINPACK (HPL) benchmark has been used to track the
performance of the Top500 supercomputers for nearly 30
years. Even though HPL is often criticized for not being
representative of the actual workloads in HPC, there exist
many applications that require the factorization of large dense
matrices. For example, preconditioners for iterative boundary
integral solvers [1], frontal matrices in sparse multifrontal
solvers [2], [3], and computing the determinant of covariance
matrices in statistics [4]. The dense matrices that arise in these
problems have a low-rank structure that can be exploited to
perform approximate factorization in linear time. The accuracy
of the approximation is controllable by adjusting the rank
or the admissibility. The admissibility condition determines
how far to subdivide the blocks, and which ones to consider

This work was supported by JSPS KAKENHI Grant Number
JP20K20624,JP21H03447.This work is supported by ”Joint Usage/Research
Center for Interdisciplinary Large-scale Information Infrastructures” in Japan
(Project ID: jh210024-NAHI)

as dense blocks. The hierarchical semi-separable (HSS) ma-
trix [5] has weak admissibility, where only the diagonal blocks
are subdivided recursively, and off-diagonal blocks are approx-
imated with low-rank matrices. Since the numerical rank of
each block is determined by the proximity of the sub-domains
in the underlying geometry, for 3-D problems this large off-
diagonal block in HSS will contain many sub-blocks that have
large rank. This causes the rank of off-diagonal blocks to
grow with the problems size, and the method would no longer
have linear complexity. The H2-matrix [6] on the other hand
has strong admissibility, where the off-diagonal blocks can be
subdivided further so that each block can maintain a somewhat
constant rank that is independent of the problem size. For
the off-diagonal sub-blocks that have close proximity in the
geometry will be subdivided until the leaf-level is reached,
at which point it will be treated as a dense block. There are
only a constant number of such off-diagonal dense blocks per
row/column, due to the number of neighboring boxes in the
geometry being constant and independent of the problem size.
This allows the H2-matrix to achieve linear complexity even
for 3-D problems. Both, HSS and H2-matrices share the basis
among the low-rank blocks in the same block row/column.
These shared bases are also nested between the levels so that
the bases of large low-rank blocks do not need to be stored
explicitly. Variants that use independent bases for each low-
rank block also exist, e.g. HODLR (weak admissibility) [7]
and H-matrix (strong admissibility) [8]. There are also non-
hierarchical variants such as BLR (independent basis) [9] and
BLR2 (shared basis) [10]. Table I summarizes the various
types of structures categorized by their basis and admissibility,
along with the factorization complexity.

The different structures each have their pros and cons. The
non-hierarchical structures such as BLR and BLR2 are obvi-
ously much simpler to implement, but cannot achieve the near-
linear complexity that hierarchical structures enjoy. It is worth
noting that frontal matrices in multifrontal solvers have a size
of O(N

2
3) for 3-D problems, so reducing the complexity of

factorizing this part to O(N2) with BLR is enough to achieve
an overall complexity of O(N

4
3) for the multifrontal solver.

ar
X

iv
:2

20
8.

10
90

7v
1

 [
m

at
h.

N
A

]
 2

3
A

ug
 2

02
2

Dense

Factorization Permutation

Low-Rank

Factorization

Fig. 1: O(N) Dense Factorization Without Trailing Sub-
Matrix Dependencies

Sharing the basis among the block rows/columns reduces the
memory consumption, but requires the basis for the whole
block row/column to be updated every time a trailing sub-
block is updated. The ULV factorization for HSS matrices [11]
avoids this problem by factorizing only the redundant part of
the dense blocks at each level.

As shown at the top of Fig. 1, low-rank blocks can be
decomposed into the shared column basis, skeleton matrix,
and shared row basis. We can then add back the redundant
part of the basis to the shared column basis and shared
row basis to form a square matrix. These bases are used to
compute the skeleton matrix for the dense block, which are
partitioned into four parts. This allows us to decompose a
dense matrix into a sparsifed structure shown on the leftmost
side of Fig. 1. This block sparse matrix can be factorized
without trailing sub-matrix dependencies, if we leave the
skeleton matrices to be factorized at the next level. This
has huge implications with regards to both the complexity
and parallelism of the algorithm. The sparsification results in
O(N) compleixity, and the removal of dependencies allows
the diagonal blocks to be factorized in parallel. Concepts such
as right-looking and left-looking become irrelevant, since there
are no GEMM operations nor trailing sub-matrix dependencies
required in this method. Runtime systems such as StarPU [12]
and PaRSEC [13] and coloring schemes to extract parallelism
are also unnecessary since the method has no dependencies.

However, the procedure illustrated in Fig. 1 only works for
HSS matrices, which has suboptimal complexity for problems
with 3-D geometry, as mentioned earlier. On the other hand,
H2-matrices can still achieve linear complexity even for 3-D
problems. However, having dense blocks in the off-diagonal
will result in fill-in during the factorization, which introduces
the dependency on the trailing sub-matrices to this otherwise
highly parallel factorization method. In the present work, we
pre-compute the fill-ins and integrate them into the shared

Low-rank structure Basis Admissibility Complexity
BLR [9] Independent Strong or weak O(N2)

BLR2 [10] Shared Strong or weak O(N1.8)
HODLR [7] Independent Weak O(N log2 N)
H-matrix [8] Independent Strong O(N log2 N)

HSS [5] Shared Weak O(N)
H2-matrix [6] Shared Strong O(N)

TABLE I: List of Different Low-rank Structures

Leaf level
basis

Transfer
matrix

Fig. 2: Index notation for hierarchical matrices

basis, in order to factorize an H2-matrix without any depen-
dency on the trailing sub-matrices. Unlike existing methods
that rely on coloring to extract parallelism from an H2-matrix
factorization, our method is inherently parallel.

We make the following contributions in the present work:
• We extend the HSS-ULV factorization to H2-matrices,

which has O(N) complexity even for 3-D problems.
• We do this while retaining the parallelism of HSS-ULV

by pre-computing the fill-ins and including them in the
shared basis.

• This is the first method that can factorize dense matrices
arising from 3-D problems in linear time without trailing
sub-matrix dependencies.

II. STRUCTURED LOW-RANK FACTORIZATION

A. Notation

We first define the common notations we use throughout
this paper in Fig. 2. A sub-block of a hierarchically sub-
divided matrix A is indexed using Alevel;row,column. The
shared column basis and row basis are indexed by Ulevel;row
and Vlevel;column, respectively. At the leaf level this notation
is used for the shared basis and at other levels it is used to
denote the transfer matrix. For example, matrix A1;0,1 can be
written in the following hierarchical low-rank form

A1;0,1 =

[
U2;0 0

0 U2;1

]
U1;0S1;0,1V1;1

[
V2;2 0

0 V2;3

]
. (1)

where S1;0,1 is the skeleton matrix shown inside the corre-
sponding large off-diagonal block in Fig. 1. We also introduce
a convenient notation for expressing the concatenation of all
low-rank blocks in a given row/column as shown on the right
in Fig. 2. This is used in the first step of the algorithm to
compute the shared bases

[US2;0 U
R
2;0], R = QR(A2;0,+) (2)

[V S2;0
>
V R2;0
>

], R = QR(A2;+,0
>), (3)

where the S and R superscripts represent the skeleton part and
redundant part of the basis, respectively. The QR() represents
a column pivoted or rank revealing QR, where the R matrix

Dense

Factorization Permutation

Low-Rank

Factorization

Fig. 3: Flow of the BLR2-ULV factorization.

is not used. This can be replaced by an interpolative decom-
position [14] if that is preferred, but the loss of orthogonality
will lead to other complications in this case. In order for the
ULV factorization to work, we need to permute the skeleton
part and redundant part to look like the shapes shown in Figs.
1 and 2. Using this split in the column and row basis, any
dense or low-rank matrix can be subdivided into ARR, ARS ,
ASR, and ASS , as shown in the upper right corner of Fig. 2.
Using these notations, the dense matrix A can be decomposed
as

A = [UR US]

[
SRR SRS

SSR SSS

][
V R

V S

]
. (4)

This is what is shown in the top-right of Fig. 3. Similarly,
a low-rank matrix A can be decomposed as

A = [UR US]

[
0 0
0 SSS

][
V R

V S

]
. (5)

The bases [UR US] and [V R V S] are shared among both the
dense and low-rank blocks in that entire row and column,
respectively. This allows us to perform a USV decomposition
of the entire matrix, which is what is shown in the leftmost
figure in Figs. 1 and 3. With these notations, we can proceed to
describe our proposed method along with some existing ones.

B. BLR2-ULV factorization

We will start out with a description of a ULV factorization
for the BLR2 structure, which a non-hierarchical version of the
HSS. In the following sections, we will add hierarchy to form
the HSS-ULV factorization, and then extend that to strong
admissibility to obtain the H2-ULV factorization that we use
in our current work.

Similar to the HSS-ULV factorization in Fig. 1 the BLR2-
ULV factorization is described in Fig. 3. We first obtain the
shared bases by performing

[US2;i U
R
2;i], R = QR(A2;i,+) (6)

[V S2;j
>
V R2;j
>

], R = QR(A2;+,j
>), (7)

for all rows of i and all columns of j. We then compute all
the S matrices of the dense diagonal blocks as[

SRR2;i,i SRS2;i,i

SSR2;i,i SSS2;i,i

]
= [UR2;i U

S
2;i]
>
A2;i,i

[
V R2;i
V S2;i

]>
, (8)

for all the diagonal blocks A2;,i,i. For the low-rank blocks
computing the S matrices is simply

SSS2;i,j = US2;i
>
A2;i,jV

S
2;j

>
, (9)

For all the off-diagonal blocks A2;,i,j , where i 6= j. This
allows us to decompose for example, the sub-matrix A1;0,0

into

A1;0,0 =

[
U2;0 0

0 U2;1

][
S2;0,0 S2;0,1

S2;1,0 S2;1,1

][
V2;0 0

0 V2;1

]
. (10)

Note that although the column basis and row basis seem
like tall skinny matrices in Figs. 1 and 3, they are actually
block diagonal matrices as shown in Eq. (10). The column
and row basis remain constant throughout the factorization.
When a Cholesky factorization is performed only on the
S matrix of the USV decomposition it is called the ULV
factorization. Actually, calling it a ULL>V factorization might
be more descriptive. Although the original ULV factorization
uses a Cholesky factorization, we may extend this to the LU
factorization as well, which is what we will show in the
following description.

The LU factorization on the S matrix is done by first
eliminating the SRR2;i,i blocks on the diagonal

L̂RR2;i,i, Û
RR
2;i,i = LU(SRR2;i,i). (11)

We use Û to distinguish the upper triangular matrix from the
column basis U . This is followed by an elimination of the
SRS2;i,i and SSR2;i,i blocks.

ÛRS2;i,i = (L̂RR2;i,i)
−1SRS2;i,i (12)

L̂SR2;i,i = SSR2;i,i(Û
RR
2;i,i)

−1. (13)

Finally, the elimination for the block is completed by comput-
ing

SSS2;i,i = SSS2;i,i − L̂SR2;i,iÛRS2;i,i. (14)

The elimination of these blocks for different i can be done
in parallel since there are no dependencies among them.
Following the factorization phase, the SSS2;i,j blocks that remain
to be factorized are clustered in the bottom-left corner, as
shown in the permutation phase in Fig. 3. For the BLR2-ULV
factorization, this entire remaining block is eliminated as a
single dense matrix, which completes the LU factorization.

L̂SS2;1:4,1:4, Û
SS
2;1:4,1:4 = LU

SSS2;0,0S

SS
2;0,1S

SS
2;0,2S

SS
2;0,3

SSS2;1,0S
SS
2;1,1S

SS
2;1,2S

SS
2;1,3

SSS2;2,0S
SS
2;2,1S

SS
2;2,2S

SS
2;2,3

SSS2;3,0S
SS
2;3,1S

SS
2;3,2S

SS
2;3,3

 .

(15)
The forward elimination and backward substitution of the
resulting

UL̂ÛV x = b (16)

can be performed in the following three steps

L̂z = U>b (17)

Ûy = z (18)

x = V>y. (19)

Factorization FactorizationPermutation

Fig. 4: Upper levels of the HSS-ULV factorization.

C. HSS-ULV factorization

The HSS structure is a multi-level version of the BLR2

structure with weak admissibility. The flow of the HSS-ULV
factorization is identical to that of the BLR2-ULV factorization
until the step in Eq. (15). As shown in Fig. 4, instead of
treating the leftover block as a dense block, the HSS-ULV
recursively applies the same procedure to the remaining part.
The column basis and row basis shown in Fig. 4 are actually
the transfer matrices U1;0 and V1;1 shown in Eq. (1). They can
be computed from

[US1;0 U
R
1;0], R = QR

([
U2;0 0

0 U2;1

]>
A1;0,1

)
(20)

[V S1;1
>
V R1;1
>

], R = QR

([
V2;2 0

0 V2;3

]
A>1;0,1

)
. (21)

Before we compute the skeleton/redundant decomposition of
the S block as in Eq. (8), we first need to merge the S blocks
in Eq. (15) as follows.

[
S1;0,0 S1;0,1

S1;1,0 S1;1,1

]
=

SSS2;0,0S

SS
2;0,1S

SS
2;0,2S

SS
2;0,3

SSS2;1,0S
SS
2;1,1S

SS
2;1,2S

SS
2;1,3

SSS2;2,0S
SS
2;2,1S

SS
2;2,2S

SS
2;2,3

SSS2;3,0S
SS
2;3,1S

SS
2;3,2S

SS
2;3,3

 (22)

Then we can decompose all the S matrices of the dense
diagonal blocks as[

SRR1;i,i SRS1;i,i

SSR1;i,i SSS1;i,i

]
= [UR1;i U

S
1;i]
>
S1;i,i

[
V R1;i
V S1;i

]>
. (23)

For the low-rank blocks we have

SSS1;i,j = US1;i
>
S1;i,jV

S
1;j

>
, (24)

Once all the S blocks at level 1 are computed, the same
procedure shown in Eqs. (11) to (15) is repeated. We have
shown the HSS matrix with a 4×4 subdivision as an example,
but the same recursive algorithm can be extended to any
number of subdivision levels and any matrix size.

D. H2-ULV factorization with dependencies

The flow of the H2-ULV factorization is shown in Fig.
5. The strong admissibility of H2-matrices gives dense off-
diagonal blocks. The example shown in Fig. 5 has a block
tri-diagonal structure, but H2-matrices can handle any pattern
of off-diagonal dense blocks. The factorization cost will be
O(N) as long as the number of dense blocks is O(N).
However, these off-diagonal dense blocks result in trailing
sub-matrix dependencies, so the factorization at each level

Factorization Permutation Factorization

Permutation

Recompression

Factorization Recompression Permutation Factorization

Fig. 5: Flow of the H2-ULV factorization with dependencies.

cannot be done in parallel like the HSS-ULV factorization.
This is one of the main reasons why HSS-ULV has been
preferred over H2-ULV despite its suboptimal performance in
3-D problems. We will describe in the next section how these
trailing sub-matrix dependencies can be removed, but here we
will first describe the one with dependencies. For H2-ULV,
the stages for constructing the USV decomposition given by
Eqs. (6) to (9), are identical to the BLR2-ULV factorization.
The A2;0,+ matrix in Eq. (6) looks like the concatenation of
all off-diagonal blocks in Fig. 2, but for H2-matrices, it is
the concatenation of all low-rank blocks. Dense blocks are
never used for the construction of the shared basis. Eq. (8) is
applied to all the dense blocks, not only the diagonal blocks.
Otherwise, the USV decomposition is identical to that of the
BLR2-ULV factorization.

The factorization stage is quite different from that of the
HSS-ULV, since the off-diagonal blocks create a trailing
sub-matrix dependency. This has two consequences, 1) the
serialization of the factorization and permutation steps, and 2)
the existence of fill-ins that result in an extra recompression
step. While the HSS-ULV shown in Fig. 1 has only a single
factorization step and permutation step per level, the H2-
ULV performs a series of factorization, recompression, and
permutation steps for each block row/column. The fill-in
blocks are shown in orange in Fig. 5. These fill-in blocks
can be eliminated by merging them back into the row/column
basis. For example for the fourth matrix from the left on the top
row of Fig. 5, there are two fill-in blocks. The recompression
of these blocks involve the following updates to the column
basis and row basis as

[US2;2 U
R
2;2], R = QR

([
US2;2S

SS
2;2,0

[
UR2;2 U

S
2;2

] [SRS2;2,0

SSS2;2,0

]])
(25)

[V S2;2
>
V R2;2
>

], R = QR

 SSS2;0,2V

S
2;2

[SSR2;0,2 S
SS
2;0,2]

[
V R2;2
V S2;2

]>
 , (26)

where US2;2S2;2,0 and S2;0,2V
S
2;2 are products of the basis and

the skeleton matrix. For this particular case, there is only one
low-rank block in this row/column, but in the general case it is
necessary to concatenate this product for all low-rank blocks in
the row/column that is being recompressed. The operations in

= +

Dense Low-rank

+

Fill-in

=

Low-rank

Shared basis
of both �ll-in
and low-rank
blocks

Factorization Permutation Factorization

Form USV
form the new
shared basis

Fig. 6: Flow of the H2-ULV factorization without dependen-
cies.

Eqs. (25) and (26) allow the fill-in to be incorporated into the
U and V bases, so that it can be eliminated from the S matrix.
All fill-in blocks are eliminated as soon as they fill-in, so the
sparsity of the skeleton matrix is retained. By comparing Fig.
1 and 5, it is clear that the H2-ULV is much more complicated
and much less parallel.

III. H2-ULV WITHOUT DEPENDENCIES

Existing methods without trailing sub-matrix dependencies
such as GOFMM [15] and STRUMPACK [16] are limited to
weak admissibility e.g. HSS matrices. For 3-D problems, the
rank of the off-diagonal blocks in an HSS matrix grows as
a function of N , so the O(N) complexity of the algorithm
is lost. On the other hand, H2-matrices [17], [18] with strong
admissibility do not have this problem, and are able to achieve
O(N) even for problems with 3-D geometry. The H2-matrices
having dense off-diagonal blocks is both a blessing and a
curse, since this is what allows the low-rank off-diagonal
blocks to have O(1) ranks, while it is also the source of fill-
ins that ultimately serialize the factorization process. Previous
implementations of H2-matrix factorization such as IFMM [1]
depend on coloring schemes to extract the parallelism from an
inherently serial algorithm. In the present work, we develop
a method that has the best of both worlds, where we use
H2-matrices in order to achieve linear complexity for 3-D
problems, while also removing the dependencies on the trailing
sub-matrices during the factorization.

A. Fill-in blocks are low-rank

The nullity theorem [19] states that the LU factors of a
matrix have the same low-rank structure as the matrix before
it is factorized. This is only possible if all the fill-ins can be
compressed back to low-rank blocks. Existing O(N) dense
direct solvers such as IFMM [20] and HIF [21] are also

Permute Fill-in Permute Back
0 1

2

3

0

1

2 3 1 2 3 0 1 2 3 0 0 1 2 3

3

0

1

2

3

1

2

2

3

0

1

0

0 1 2 3

2

3

0

1

Extract Fill-in

Fig. 7: Fill-in of the first row and column during the pre-
factorization.

based on this property of the fill-ins being low-rank. In the
present work, we also exploit this property of structured
low-rank matrices to recompress the fill-in blocks to low-
rank. Furthermore, under the USV formulation, compressing
a block to low-rank is equivalent to eliminating that block for
that level, as we have shown in Section II. Therefore, none of
the blocks remain filled-in during the H2-ULV factorization.
They may temporarily fill-in, but are immediately eliminated
through recompression to low-rank blocks. However, it can
be seen by comparing Figs. 1 and 5 that the H2-ULV needs
to sequentially factorize the S matrix, whereas the HSS-ULV
can factorize each level in parallel. This is due to the fact
that the fill-in blocks still need to be recompressed to low-
rank blocks, and the recompression requires an update to
the shared basis. Since the next block row/column cannot
proceed until the shared basis is updated, this is what actually
causes the serialization. Therefore, this update to the shared
basis is what prevents us from removing the dependencies on
the trailing sub-matrices. If we can somehow form a shared
basis that contains all the fill-in blocks (and not just the low-
rank blocks), there would be no need to update this shared
basis during the factorization. This would lead to an H2-ULV
factorization without trailing sub-matrix dependencies. Unlike
the fill-reducing ordering in sparse direct solvers, the objective
here is not to reduce the fill-ins. It is rather to avoid the need
to update the shared basis, even when some of the blocks
temporarily fill-in and need to be recompressed to low-rank
so that they do not remain filled-in.

B. Pre-computing the fill-ins per block row/column

Our method consists of two separate factorization phases
– one for dense blocks in the original matrix A to compute
the fill-ins, and another for the S matrix after the shared
basis has been constructed. Both phases can be done without
dependency on trailing sub-matrices. The flow of computation
is shown in Fig. 6. We first decompose the matrix into the
dense blocks and low-rank blocks. Then, the fill-ins that occur
during the factorization of the dense blocks is computed
using the method shown in Fig. 7. In order to compute
all potential fill-in blocks in a given block row/column, we
permute that block row to the bottom and block column to the
far right. We then compute all possible fill-ins from all other
rows/columns into that block row/column. In this particular
case, the A2;0,2, A2;2,0, and A2;0,0 blocks will fill-in. We do
not accumulate the fill-in blocks into the dense blocks during
this process, but store them separately. We then permute the
block row/column back to their original position along with

the shared basis. Actually, the permutation is done only for
the sake of explaining the fill-in process in an intuitive way,
and this process can be implemented without the permutation
if one can identify which blocks will fill-in without permuting
them. This process can be executed in parallel for all block
rows/columns, since they do not depend on each other. Note
that the factorization of the diagonal blocks and the triangular
solves of the dense off-diagonal blocks are not redundantly
computed for the same block more than once during this
process. The resulting fill-in matrix is shown at the center
of Fig. 6.

C. A shared basis for both fill-in and low-rank blocks

The next step is to form a shared basis between the fill-in
and low-rank blocks for each block row/column. This shared
basis will contain all the information necessary to compress
the low-rank blocks initially, and any of the fill-in blocks that
arise during the factorization. All fill-in and low-rank matrices
for a given row/column are concatenated to form the shared
row/column bases

[US2;i U
R
2;i], R = QR([F2;i,+ A2;i,+]) (27)

[V S2;j
>
V R2;j
>

], R = QR([F2;+,j
> A2;+,j

>]), (28)

where F2;i,+ and A2;i,+ are the concatenation of all fill-
in blocks and low-rank blocks in the ith row, respectively.
Similarly, F2;+,j and A2;+,j are the concatenation of all fill-
in blocks and low-rank blocks in the jth column, respectively.
The center row in Fig. 6 corresponds to the operation in Eqs.
(27) and (28). The procedure is identical to the construction of
the shared basis for the low-rank blocks besides the inclusion
of the fill-in blocks. These bases are then used to compute the
S matrices for the dense blocks using Eq. (8) and the low-rank
blocks using Eq. (9). Once the USV decomposition is formed
for the shared basis that incorporates both the fill-in and low-
rank blocks, the factorization of the H2-ULV can proceed just
as the HSS-ULV, as shown in Fig. 6. The same procedure
shown in Eqs. (11) to (15) can be applied here as well. After
the leaf level has been processed, the matrix can be permuted
to cluster the remaining skeleton parts, which can be solved
recursively by applying the same procedure at each level.

In summary, the key ideas that make it possible to remove
the trailing sub-matrix dependency even for strong admissibil-
ity are:
• Fill-in blocks are always low-rank. This has been demon-

strated in previous studies [20], [21], and is not a unique
claim of this paper.

• The fill-in blocks can be pre-computed and shared bases
can be formed to incorporate both the fill-in and low-rank
blocks. To the extent of our knowledge, this has not been
done before.

• With this new shared basis that incorporates the fill-
in blocks, there is no need to update the shared basis
during the factorization of H2-matrices, which allows us
to remove the trailing sub-matrix dependency.

Fig. 8: Partitioning of the H2-matrix. Upper levels are com-
puted redundantly by multiple processes.

D. Parallel implementation on distributed memory

Previous attempts to parallelize H2-ULV required color-
ing [1] or the use of task-based runtime systems [22] in order
to extract parallelism from an inherently serial algorithm. The
algorithm is inherently serial because there are trailing sub-
matrix dependencies, where the blocks in the lower-right need
to wait for the blocks in the upper-left to finish computing
the GETRF (LU factorization), TRSM (traiangular solve),
and GEMM (matrix multiplication for the Schur comple-
ments). Our proposed method removes this dependency by
pre-computing a shared basis that does not need to be updated
during the factorization. The only dependency that remains is
the one between the levels. (By ”level”, we mean the level of
granularity in the hierarchically sub-divided matrix structure.)
We can somewhat relax this level-wise dependency as well, by
computing the upper levels redundantly on multiple processes.

The resulting partitioning scheme is shown in Fig. 8, where
the different colors represent the different partitions. In this
example, each partition has only one block row/column, but
there could be many block rows/columns in each partition.
The cross shape of the partitions comes from partitioning the
underlying geometry, where a certain block row and block
column correspond to a sub-domain in the geometry. At the
upper levels in the matrix the colors are mixed, which repre-
sents the redundant storage and computation of these blocks.

This redundancy is the key to achieving good scalability at
the upper levels, because it utilizes the processes that will be
idle otherwise, while eliminating the need to communicate the
results to each other.

Since it is always possible to split the range of processes
in half (for odd numbers roughly half), the process tree
shown in Fig. 8 is always a full binary tree, regardless of
the underlying geometry or the type of matrix. The rows and
columns of the H2-matrix also form a full binary tree, which
is usually deeper than the process tree. This means that the
lower levels of the row/column tree are grafted to the leaves
of the process tree as shown in Fig. 8. When the factorization
reaches the level where more than one process owns the
block, the two child blocks exchange their information through
an the Allgather collective with a split communicator,
which exchanges information between the pair of child blocks
that are being merged. At even higher levels in the pro-
cess tree we can also exchange the necessary information
between more processes through an Allgather collective
with a communicator that is split accordingly. Note that for
these Allgather collectives with split communicators, each
process only communicates with one other process at any
given level. We are essentially performing a tree Allgather
through a hierarchy of communicators that are split according
to the process tree. However, the size of the blocks that are
gathered become smaller as the level increases, since 3/4 of
the blocks get eliminated at each level for the upper levels of
the H2-matrix.

IV. TESTS ON A SIMPLE GEOMETRY WITH LAPLACE
POTENTIAL

We first test our algorithm on a simple geometry with
particles uniformly distributed inside a 3-D unit cube. We
assume unit charges on each particle. We use the Green’s
function solution of the Laplace equation as our kernel.

Φi =
qj

4πrij
, (29)

where rij is the Euclidean distance between the points xi
and xj , and qj is the charge. The Green’s function matrix
Gij = 1

4πrij
results in a dense but rank-structured matrix.

A. Experimental setup

We perform tests on a single node with 2xAMD EPYC 7742
CPUs, each with 64 physical cores running at 3.3 GHz. The
total available memory of the node is 1000GB, evenly split
between both CPUs. We use GCC 9.3.0 as our compiler and
openMPI 4.0.3 for the MPI processes, and link to Intel MKL
2020.1.

We compare our implementation with LORAPO [23], an
adaptive-rank BLR Cholesky factorization using the PaRSEC
PTG [24] runtime system for achieving asynchronous paral-
lelism. Although LORAPO uses mixed precision for the low
rank parts [25], we switch it off for these these tests and use
only double precision for all our experiments. We found the
most optimal way to run our code was by attaching a single

214 215 216 217 218

N

100

101

102

TI
M

E
(s

)

tol=1e-06

OUR CODE
O(N)
LORAPO
O(N2)

(a) Relative error of 10−6.

214 215 216 217 218

N

100

101

102

TI
M

E
(s

)

tol=1e-08

OUR CODE
O(N)
LORAPO
O(N2)

(b) Relative error of 10−8.

Fig. 9: Comparison of LORAPO vs. our code on a single core
for different problem sizes and relative error.

process to each physical core, whereas LORAPO is run by
spawning one process per node and attaching threads to each
physical core. We report our strong scaling experiments by
only reporting the number of cores being utilized. In all of
our results, the relative L2 error is calculated by comparing
the accuracy of the solution obtained using our method to the
one obtained using a dense LU factorization from LAPACK.

Fig. 9 shows time taken for factorization for our code vs.
LORAPO on a single core with varying problem sizes. Our
algorithm is able to scale linearly (ideal O(N) scaling is shown
by the blue dotted line) for all problem sizes. It can be seen
that although our code scales almost linearly, LORAPO has
a better time to solution for most problem cases in spite of
having a time complexity of O(N2), which is denoted by the
black dotted line.

Proof that the faster performance of LORAPO is purely
due to the algorithmic computations and not due to some
anomaly in our code can be seen in Fig. 10, where we
compare the number of floating point operations performed
for the same single core experiment shown in Fig. 9b. ULV

214 215 216 217 218

N

1010

1011

1012

PA
PI

_F
P_

OP
S

OUR CODE
O(N)
LORAPO
O(N2)

Fig. 10: Comparison of PAPI FP OPS between our code and
LORAPO for an accuracy of 10−8 and the same tile sizes as
used in Fig. 9b

based factorization requires more flops compared to a normal
factorization. Applying the U and V basis to the dense blocks
of the matrix has a cost similar to that of factorizing these
dense blocks, which results in a large extra cost for ULV. In
addition, sharing and nesting bases generally results in a larger
rank than what the individual low-rank blocks have. BLR takes
advantage of being able to independently compress each low-
rank block, so that their rank can be minimized to save flops.
In upper levels of the H2-matrix, we have reported seeing a
rank that is as high as 180, whereas BLR uses a maximum
of rank 50 at the leaf. A combination of these factors is what
leads to the greater number of flops for our method under
serial and small problem size settings.

B. Strong scalability of shared memory parallelism

Fig. 11 shows the strong scaling of our code vs. LORAPO
for a constant problem size of N = 131072 in Fig. 11a and
for N = 262144 in Fig. 11b. The accuracy for all experiments
is constant at 10−8. The advantage of the inherent parallelism
of our algorithm described in the above sections can be seen
here. Our algorithm is able to beat LORAPO when using a
large number of cores, even though LORAPO uses a runtime
system for asynchronous parallelism, and uses fewer floating-
point operations.

The reason behind poor scaling of LORAPO in Fig. 11a
can be seen from the trace of the computation taken for 64
cores on a problem size of N = 131072 with a leaf size of
1024. The red tasks in the trace are overhead introduced by
the run time system PaRSEC , and the green tasks are actual
useful computation, i.e. the time actually spent in executing
the tasks. The chief reason behind the poor strong scaling
is that the sizes of the tasks are too tiny to overcome the
overhead of PaRSEC. The sizes of the red tasks are almost
similar to the sizes of the useful computation. As a result
of the dependencies introduced by the Cholesky factorization
algorithm, new tasks do not become available fast enough,
thus leading to poor performance.

21 23 25 27

CORES

100

101

102

TI
M

E
(s

)

N=131072
OUR CODE
LORAPO

(a) N=131072

21 23 25 27

CORES

101

102

TI
M

E
(s

)

N=262144
OUR CODE
LORAPO

(b) N=262144

Fig. 11: Strong scaling experiments for various problem sizes
on a single node utilizing upto 128 cores. The dotted black
line shows perfect scaling.

27 28 29 210 211 212

LEAF SIZE

101

102

TI
M

E(
s)

N=131072
OUR CODE
LORAPO

Fig. 12: Impact of change the leaf size for LORAPO and our
code for the same problem size (N = 131072 and available
resources (32 cores).

8.5s 9.0s 9.5s 10.0s 10.5s 11.0s 11.5s 12.0s
Thread	0,	MPI	Rank	0
Thread	1,	MPI	Rank	0
Thread	2,	MPI	Rank	0
Thread	3,	MPI	Rank	0
Thread	4,	MPI	Rank	0
Thread	5,	MPI	Rank	0
Thread	6,	MPI	Rank	0
Thread	7,	MPI	Rank	0
Thread	8,	MPI	Rank	0
Thread	9,	MPI	Rank	0
Thread	10,	MPI	Rank	0
Thread	11,	MPI	Rank	0
Thread	12,	MPI	Rank	0
Thread	13,	MPI	Rank	0
Thread	14,	MPI	Rank	0
Thread	15,	MPI	Rank	0
Thread	16,	MPI	Rank	0
Thread	17,	MPI	Rank	0
Thread	18,	MPI	Rank	0
Thread	19,	MPI	Rank	0
Thread	20,	MPI	Rank	0
Thread	21,	MPI	Rank	0
Thread	22,	MPI	Rank	0
Thread	23,	MPI	Rank	0
Thread	24,	MPI	Rank	0
Thread	25,	MPI	Rank	0
Thread	26,	MPI	Rank	0
Thread	27,	MPI	Rank	0
Thread	28,	MPI	Rank	0
Thread	29,	MPI	Rank	0
Thread	30,	MPI	Rank	0
Thread	31,	MPI	Rank	0
Thread	32,	MPI	Rank	0
Thread	33,	MPI	Rank	0
Thread	34,	MPI	Rank	0
Thread	35,	MPI	Rank	0
Thread	36,	MPI	Rank	0
Thread	37,	MPI	Rank	0
Thread	38,	MPI	Rank	0
Thread	39,	MPI	Rank	0
Thread	40,	MPI	Rank	0
Thread	41,	MPI	Rank	0
Thread	42,	MPI	Rank	0
Thread	43,	MPI	Rank	0
Thread	44,	MPI	Rank	0
Thread	45,	MPI	Rank	0
Thread	46,	MPI	Rank	0
Thread	47,	MPI	Rank	0
Thread	48,	MPI	Rank	0
Thread	49,	MPI	Rank	0
Thread	50,	MPI	Rank	0
Thread	51,	MPI	Rank	0
Thread	52,	MPI	Rank	0
Thread	53,	MPI	Rank	0
Thread	54,	MPI	Rank	0
Thread	55,	MPI	Rank	0
Thread	56,	MPI	Rank	0
Thread	57,	MPI	Rank	0
Thread	58,	MPI	Rank	0
Thread	59,	MPI	Rank	0
Thread	60,	MPI	Rank	0
Thread	61,	MPI	Rank	0
Thread	62,	MPI	Rank	0
Thread	63,	MPI	Rank	0
Thread	64,	MPI	Rank	0
Thread	65,	MPI	Rank	0
Thread	66,	MPI	Rank	0

Fig. 13: Trace visualization of LORAPO for a problem size
of 131072 using 64 physical cores. The first two threads are
reserved by PaRSEC for monitoring, task submission and
communication purposes leading to a total of 66 threads
showing in the trace. The red tasks are run time system
overhead and the green tasks are useful computation.

C. Variation of the leaf size

The leaf size for LORAPO is the size of each block in
the block low rank matrix. For our code it is the number of
particles present in the leaf node of the tree. Varying these
parameters, while keepin the number of cores constant at 32
and the problem size constant at N = 131072 leads to changes
in the time to solution as shown in Fig. 12. It can be seen that
LORAPO reaches an optimal execution time as the leaf size is
increased until 2048, whereas our code is most optimal when
the leaf size is 256.

Our algorithm uses a tree structure for representing the
H2-matrix, and increasing the leaf size decreases the height
of the tree, which increases the amount of computation that
has to be performed for the factorization. The increased
leaf size also increases the amount of work performed per
process and reduces the available parallelism, thus leading
to an increase in run time as the leaf size is increased. The
impact of leaf size is exactly the reverse for LORAPO due to
considerations of optimal computation for the block low rank
matrix structure, adaptive rank capability of the factorization,
run-time system overhead and available parallelism. The run
time increases slightly as LORAPO approaches tile size 4096
due to reduction of available parallelism.

V. TESTS ON COMPLEX GEOMETRY WITH YUKAWA
POTENTIAL

We now conduct experiments using an actual boundary
element application in implicit solvent bio-molecular electro-
statics. This is different from classical molecular dynamics
where the water molecules are computed explicitly, adding
millions more degrees of freedom to the simulation. In implicit
solvent methods, the molecules and the solvent are treated as

Fig. 14: Boundary element mesh on a single hemoglobin.

continuous dielectric media with different dielectric constants.
This jump in the dielectric constant across the surface of the
molecule is accounted for by placing a boundary element mesh
over the surface. An example of the boundary element mesh
we use in the current computations is shown in Fig. 14. For
even larger problem sizes, we use a crowded environment of
many hemoglobin as shown in Fig. 15. We use a collocation
boundary element method, which essentially turns this mesh
into a cloud of points. We use a 3-D k-means clustering to
partition those cloud of points to form the leaf blocks of the
H2-matrix. The flexibility of k-means clustering allows us to
enforce the number of clusters to always be a power of two.
We found that this works much better than space-filling curves
for partitioning points on the surface of a complex geometry.

The potential we use here is the Yukawa potential, also
known as the screened Coulomb potential, which takes the
following form.

Φi =
qiqj

4πε0rij
exp(−αmrij), (30)

where rij is the Euclidean distance between the points xi
and xj , and qi, qj are the charges at those points, α is a
scaling constant, m is the mass of the particle, and ε0 is the
permittivity.

A. Experimental setup

The distributed memory tests are performed on the ABCI
machine at AIST, with a total of 1088 compute nodes. Each
node is configured with 2xIntel Xeon Gold 6148 CPUs, each
with 20 physical cores running at 2.2 GHz each. The total
available memory per node is 384GB, which is evenly split

Fig. 15: A crowded environment of 64 hemoglobin.

between the two CPUs. We use GCC 11.2.0 compiler with
Intel MPI 2021.5 and link to Intel MKL 2022.0.

B. Strong scalability of the distributed memory parallelism

The results of our strong scalability tests on up to 10,240
cores are shown in Fig. 16. The coverage of data points
is limited for various reasons, where our code ran out of
memory for some cases, while LORAPO crashed for others.
The N = 119, 264 case has a size similar to the previous
experiments on the simple geometry, and on 160 cores our
code is already faster. This agrees with our results in the
previous section. When the problem size is increased to
N = 954, 112, the difference between our code and LORAPO
becomes much larger. This is due to the difference between
the linear complexity of our code vs. the quadratic complexity
of LORAPO. N is increased roughly an order of magnitude
between these two experiments, so the factorization time of
our code increases and order of magnitude, while the time
of LORAPO increases two orders of magnitude. One can see
that our code scales better than LORAPO as well, where the
multi-node scalability of LORAPO is rather poor, while our
code continues to scale well up to 10,240 cores. If we compare
the factorization time for the N = 954, 112 case on 10,240
cores between LORAPO and our code, we see that our code
is approximately 4,700 times faster.

VI. CONCLUSION

We have developed an algorithm that removes the trailing
sub-matrix dependencies from H2-ULV factorization. This
results in an algorithm that can factorize a dense matrix in
O(N) time that is highly parallel. Existing work such as
GOFMM and STRUMPACK use the ULV factorization to

64 512 4096
Cores

10 1

100

101

102

103

104

Ti
m

e
(s

)

OUR CODE N=119264
OUR CODE N=954112
LORAPO N=119264
LORAPO N=954112
IDEAL SCALE

Fig. 16: Strong scaling experiments on multiple nodes for
different problem sizes of the hemoglobin boundary element
problem using our code and LORAPO.

remove the trailing sub-matrix dependencies, but are limited
to the HSS structure with weak admissibility. When HSS
matrices are applied to problems with 3-D geometry, the rank
of the off-diagonal blocks grows as a function of N , which
leads to suboptimal complexity. Our method is based on the
H2-matrix with strong admissibility, which can handle 3-D
problems in O(N) time. One disadvantage of H2-matrices
is the fill-ins, which do not exist in HSS matrices. There
are existing methods that recompress these fill-ins so that
the resulting LU factors have the same low-rank structure.
However, this recompression results in an update to the shared
basis, and introduces a dependency for trailing sub-matrices.
Previous methods to factorize H2-matrices were not able to
remove this dependency on trailing sub-matrices.

The present work is able to remove this dependency on
trailing sub-matrices by pre-computing all the fill-ins and
including them in the shared basis before forming the USV
decomposition. This results in a scalable dense direct solver
that can handle 3-D problems in linear time without trailing
sub-matrix dependencies. We compared our results with a
block low-rank solver LORAPO, which does have trailing
sub-matrix dependencies, but uses PaRSEC to alleviate the
dependency issue. Our experiments on a single node showed
that our method does much more operations compared to
LORAPO when the problem size is small, but our method has
O(N) complexity, whereas LORAPO has O(N2) complexity.
Therefore, our method becomes faster as the problem size
grows. Experiments on multiple nodes using up to 10,240
cores showed that our method indeed becomes much faster
than LORAPO in this regime, especially for larger problem
sizes. For the problem size of close to a million and on 10,240
cores, our method showed a speed up of 4,700 fold over
LORAPO.

REFERENCES

[1] T. Takahashi, C. Chen, and E. Darve, “Parallelization of the Inverse
Fast Multipole Method with an Application to Boundary Element
Method,” Computer Physics Communications, vol. 247, p. 106975,
Feb. 2020. [Online]. Available: https://linkinghub.elsevier.com/retrieve/
pii/S0010465519303194

[2] Y. Liu, P. Ghysels, L. Claus, and X. S. Li, “Sparse Approximate
Multifrontal Factorization with Butterfly Compression for High
Frequency Wave Equations,” SIAM Journal on Scientific Computing,
vol. 43, no. 5, pp. S367–S391, 2021, arXiv: 2007.00202. [Online].
Available: http://arxiv.org/abs/2007.00202

[3] P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary, “Performance
and Scalability of the Block Low-Rank Multifrontal Factorization on
Multicore Architectures,” ACM Transactions on Mathematical Software,
vol. 45, no. 1, pp. 1–26, Mar. 2019, number: 1. [Online]. Available:
https://dl.acm.org/doi/10.1145/3242094

[4] A. Litvinenko, Y. Sun, M. G. Genton, and D. E. Keyes, “Likelihood
Approximation with Hierarchical Matrices for Large Spatial Datasets,”
Computational Statistics and Data Analysis, vol. 137, pp. 115–132,
2019.

[5] S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals, “A Fast
Solver for HSS Representations via Sparse Matrices etc.” SIAM Journal
on Matrix Analysis and Applications, vol. 29, no. 1, pp. 67–81, May
2006, number: 1.

[6] W. Hackbusch, B. Khoromskij, and S. A. Sauter, “On $Hˆ2$-Matrices,”
in Lectures on Applied Mathematics, H. Bungartz, R. Hoppe, and
C. Zenger, Eds. Springer Berlin Heidelberg, 2000.

[7] S. Ambikasaran, “Fast Algorithms for Dense Numerical Linear Algebra
and Applications,” PhD Thesis, Stanford University, 2013.

[8] W. Hackbusch, “A Sparse Matrix Arithmetic Based on H-Matrices, Part
I: Introduction to H-Matrices,” Computing, vol. 62, pp. 89–108, 1999.

[9] P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, and
C. Weisbecker, “Improving Multifrontal Methods by Means of Block
Low-Rank Representations,” SIAM Journal on Scientific Computing,
vol. 37, no. 3, pp. A1451–A1474, 2015, number: 3.

[10] C. Ashcraft, A. Buttari, and T. Mary, “Block Low-Rank Matrices
with Shared Bases: Potential and Limitations of the BLR$ˆ2$
Format,” SIAM Journal on Matrix Analysis and Applications,
vol. 42, no. 2, pp. 990–1010, Jan. 2021. [Online]. Available:
https://epubs.siam.org/doi/10.1137/20M1386451

[11] S. Chandrasekaran, M. Gu, and T. Pals, “A Fast ULV Decomposition
Solver for Hierarchically Semiseparable Representations,” SIAM Journal
on Matrix Analysis and Applications, vol. 28, no. 3, pp. 603–622, 2006.

[12] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU: a
Unified Platform for Task Scheduling on Heterogeneous Multicore Ar-
chitectures,” Concurrency and Computation: Practice and Experience,
vol. 23, pp. 187–198, 2011.

[13] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and
J. Dongarra, “DAGuE: A generic distributed DAG engine for High
Performance Computing,” Parallel Computing, vol. 38, no. 1-2, pp.
37–51, Jan. 2012. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S0167819111001347

[14] P. G. Martinsson, V. Rokhlin, and M. Tygert, “A Randomized Algo-
rithm for the Decomposition of Matrices,” Applied and Computational
Harmonic Analysis, vol. 30, pp. 47–68, 2011.

[15] C. D. Yu, S. Reiz, and G. Biros, “Distributed-Memory Hierarchical
Compression of Dense SPD Matrices,” in Proceedings of the 2018
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, 2018.

[16] F.-H. Rouet, X. S. Li, P. Ghysels, and A. Napov, “A distributed-
memory package for dense Hierarchically Semi-Separable matrix
computations using randomization,” arXiv:1503.05464 [cs], Jun. 2015,
arXiv: 1503.05464. [Online]. Available: http://arxiv.org/abs/1503.05464

[17] M. Ma and D. Jiao, “Direct Solution of General H2 -Matrices With
Controlled Accuracy and Concurrent Change of Cluster Bases for
Electromagnetic Analysis,” IEEE Transactions on Microwave Theory
and Techniques, vol. 67, no. 6, pp. 2114–2127, Jun. 2019, conference
Name: IEEE Transactions on Microwave Theory and Techniques.

[18] S. Borm, M. Lopez-Fernandez, and S. Sauter, “Variable Order,
Directional $\mathcal{H}ˆ2$-Matrices for Helmholtz Problems with
Complex Frequency,” arXiv:1903.02803 [math], Mar. 2019, arXiv:
1903.02803. [Online]. Available: http://arxiv.org/abs/1903.02803

[19] R. Vandebril and M. V. Barel, “A Note on the Nullity Theorem,” Journal
of Computational and Applied Mathematics, vol. 189, pp. 179–190,
2006.

[20] S. Ambikasaran and E. Darve, “The Inverse Fast Multipole Method,”
arXiv:1407.1572v1, 2014.

[21] K. L. Ho and L. Ying, “Hierarchical Interpolative Factorization for
Elliptic Operators: Differential Equations,” Communications on Pure
and Applied Mathematics, vol. 69, no. 8, pp. 1415–1451, 2016, number:
8.

[22] L. Cambier and E. Darve, “A task-based distributed parallel
sparsified nested dissection algorithm,” in Proceedings of the Platform
for Advanced Scientific Computing Conference. Geneva Switzerland:
ACM, Jul. 2021, pp. 1–11, cambierTaskBasedDistributed2021. [Online].
Available: https://dl.acm.org/doi/10.1145/3468267.3470619

[23] Qinglei Cao, Y. Pei, K. Akbudak, A. Mikhalev, G. Bosilca, H. Ltaief,
D. Keyes, and J. Dongarra, “Extreme-Scale Task-Based Cholesky
Factorization Toward Climate and Weather Prediction Applications,”
in Proceedings of the Platform for Advanced Scientific Computing
Conference, ser. PASC ’20. New York, NY, USA: Association
for Computing Machinery, Jun. 2020, pp. 1–11. [Online]. Available:
https://doi.org/10.1145/3394277.3401846

[24] Q. Cao, Y. Pei, K. Akbudak, G. Bosilca, H. Ltaief, D. Keyes,
and J. Dongarra, “Leveraging PaRSEC Runtime Support to Tackle
Challenging 3D Data-Sparse Matrix Problems,” in 2021 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
Portland, OR, USA: IEEE, May 2021, pp. 79–89. [Online]. Available:
https://ieeexplore.ieee.org/document/9460493/

[25] S. Abdulah, Q. Cao, Y. Pei, G. Bosilca, J. Dongarra, M. M.
Genton, D. Keyes, H. Ltaief, and Y. Sun, “Accelerating Geostatistical
Modeling and Prediction With Mixed-Precision Computations: A
High-Productivity Approach with PaRSEC,” IEEE Transactions on
Parallel and Distributed Systems, pp. 1–1, 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/9442267/

https://linkinghub.elsevier.com/retrieve/pii/S0010465519303194
https://linkinghub.elsevier.com/retrieve/pii/S0010465519303194
http://arxiv.org/abs/2007.00202
https://dl.acm.org/doi/10.1145/3242094
https://epubs.siam.org/doi/10.1137/20M1386451
https://linkinghub.elsevier.com/retrieve/pii/S0167819111001347
https://linkinghub.elsevier.com/retrieve/pii/S0167819111001347
http://arxiv.org/abs/1503.05464
http://arxiv.org/abs/1903.02803
https://dl.acm.org/doi/10.1145/3468267.3470619
https://doi.org/10.1145/3394277.3401846
https://ieeexplore.ieee.org/document/9460493/
https://ieeexplore.ieee.org/document/9442267/

	I Introduction
	II Structured Low-Rank Factorization
	II-A Notation
	II-B BLR2-ULV factorization
	II-C HSS-ULV factorization
	II-D H2-ULV factorization blackwith dependencies

	III H2-ULV without dependencies
	III-A blackFill-in blocks are low-rank
	III-B blackPre-computing the fill-ins per block row/column
	III-C blackA shared basis for both fill-in and low-rank blocks
	III-D blackParallel implementation on distributed memory

	IV Tests on a simple geometry with Laplace potential
	IV-A Experimental setup
	IV-B Strong scalability of shared memory parallelism
	IV-C Variation of the leaf size

	V Tests on complex geometry with Yukawa potential
	V-A Experimental setup
	V-B Strong scalability of the distributed memory parallelism

	VI Conclusion
	References

