
Smart-PGSim: Using Neural Network to Accelerate
AC-OPF Power Grid Simulation

Wenqian Dong
UC Merced

California, USA
wdong5@ucmerced.edu

Zhen Xie
UC Merced

California, USA
zxie10@ucmerced.edu

Gokcen Kestor
Pacific Northwest National Laboratory

Washington, USA
gokcen.kestor@pnnl.gov

Dong Li
UC Merced

California, USA
dli35@ucmerced.edu

Abstract—In this work we address the problem of acceler-
ating complex power-grid simulation through machine learning
(ML). Specifically, we develop a framework, Smart-PGSim,
which generates multitask-learning (MTL) neural network (NN)
models to predict the initial values of variables critical to the
problem convergence. MTL models allow information sharing
when predicting multiple dependent variables while including
customized layers to predict individual variables. We show that,
to achieve the required accuracy, it is paramount to embed
domain-specific constraints derived from the specific power-grid
components in the MTL model. Smart-PGSim then employs
the predicted initial values as a high-quality initial condition
for the power-grid numerical solver (warm start), resulting in
both higher performance compared to state-of-the-art solutions
while maintaining the required accuracy. Smart-PGSim brings
2.60× speedup on average (up to 3.28×) computed over 10,000
problems, without losing solution optimality.

I. INTRODUCTION

Artificial Intelligence (AI) and Machine Learning (ML)
techniques are revolutionizing the way researchers approach
scientific and engineering problems. By employing reverse-
engineering and automatic learning methodologies it is often
possible to solve complex, unstructured problems with a
fraction of the computing power and execution time required
by traditional direct and first-principle methods. ML provides
researchers with a powerful tool to learn the structure of
physical phenomenon directly from Nature, rather than having
to explain the causal relationships through direct application of
physics law. Many research and engineering fields, from image
recognition to autonomous driving, from health to natural
language processing (NLP), have experienced a tremendous
boost in performance and efficiency over the last few years.
Many problems that seemed impossible to be solved, can now
be tackled thanks to the use of ML methodologies.

The use of ML methodologies in scientific and engineering
applications has been, somehow, limited. By using Neural
Network (NN) as a tool to learn and model complicated
(non-)linear relationships between input and output data sets,
scientists have shown preliminary success in some HPC prob-
lems (e.g., detecting neutrinos [1], climate simulations [2],
and fluid dynamic simulation [3]). With NN, scientists are
able to augment existing scientific simulations by improving
simulation accuracy and significantly reducing latency [4]–
[10]. However, although there have been successful studies
of applied ML to scientific applications, these fields have not

experienced the double- or triple-digit improvements seen in
other domains. The reason for such discrepancy is the funda-
mentally different characteristic of scientific and engineering
applications compared to domains such as image recognition
and NLP: scientific applications require a level of precision
and robustness that may not be provided by most of the current
ML methods employed in other domains.

In this work we study the implication of using ML tech-
niques to accelerate the power-grid simulations, the structure
of the ML model to be used, the relative importance of the
features selected, and, most importantly, the impact of incor-
porating physics constraints on the performance of the appli-
cation. The power-grid simulation [11] is a complex nonlinear
optimization problem for the management of power flow and is
critical to the power industry in electricity dispatch scheduling,
reliability analysis, and maintenance planning for power and
generators [12], [13]. The alternating current optimal power
flow (AC-OPF) simulation is the most fundamental and time-
consuming part of the power grid simulation. The problem
size of AC-OPF is generally large, in which the scale of the
generator node can vary from 103 to 106 [14]–[16]. Despite the
large problem size, the AC-OPF simulation requires near real-
time updates during power scheduling. In a typical scenario,
power grid operators repeatedly solve the optimal power flow
problem multiple times within every minute throughout a
day, every day of the year [17]–[19], for decades, to ensure
that the power grid system is operating reliably and safely.
The high requirement on the simulation latency and frequent
usage of the simulation make the power grid simulation a
mission-critical application under active development in the
HPC community and within the U.S. Department of Energy
(DOE) and the DOE Exascale Computing Project (ECP).

NN has been applied to solve the optimal power flow
problem in the past [20]–[24]. However, existing efforts have
focused on improving performance by entirely replacing the
simulation solver with an approximated NN model or facili-
tating existing solvers by identifying active constraints. While
these approaches provide considerable speedups, NN provides
only an approximation of the optimal solution or approximates
computation in the simulation. As a result, these approaches
may not provide the desired precision for the solution or may
provide a non-optimal solution. In the context of power-grid
simulation, the first case results in an infeasible solution (e.g.,

SC20, November 15-20, 2020, Atlanta, GA, USA
978-1-5386-8384-2/XX/$31.00 ©2020 IEEE

ar
X

iv
:2

00
8.

11
82

7v
1

 [
ee

ss
.S

P]
 2

6
A

ug
 2

02
0

not being able to provide the required power to satisfy the user
demand) while the second case may results in a large economic
loss (i.e., solving the problem at a much higher cost.)

In this paper, we introduce a new method to apply NN
to the AC-OPF simulation. Unlike the existing studies, we
employ NN to generate an initial solution and then inject it
to the AC-OPF solver. Because of the high quality of the
initial solution and guidance of other outputs generated by
the proposed NN, the simulation can run faster (or converge
faster) without losing the solution optimality.

There are several challenges to apply our method to the
AC-OPF simulation. First, deciding which variables in the AC-
OPF simulation should be used as NN output and quantifying
the sensitivity of simulation execution time and convergence
to those variables is a challenge. The AC-OPF simulation in-
volves a set of variables, including power grid information and
multiple variables critical for the computation convergence.
We cannot use all of them as NN output because that largely
increases network complexity and puts high requirements on
training efficiency and sufficiency of training samples. On the
other hand, using only the solution of the AC-OPF as NN
output, we often lose simulation robustness because of the
limited guidance for the simulation from the initial solution.
Furthermore, understanding the sensitivity of simulation time
and convergence to those variables is useful for deciding NN
topology and generating high-quality initial solutions.

Second, how to apply NN to the AC-OPF simulation without
disturbing the simulation robustness is a challenge. Due to the
non-convex and nonlinear nature of the AC-OPF problem, the
simulation process itself is at the risk of a failed convergence
with the use of iterative numerical methods. The simulation
must be robust enough to handle various power flow cases
with computation convergence. Using NN to generate an initial
solution, we must make sure that the initial solution makes
sense and does not impact the computation convergence in
the original simulation.

Third, how to impose physical constraints on NN to ensure
the validness of NN prediction. Traditionally, the NN model
is manually constructed by computer scientists as a black box
with limited or no domain knowledge and without considering
domain requirements. Although NN models can be adjusted
as a nonlinear tool box to accommodate a change of inputs
and generate some approximation, the understanding of the
model is lost. Instead of blindly trusting that the data mining
algorithm will produce a correct model, we seek for what
variables physically mean and which physical laws are driving
the interpretable evolution of the analysis paradigm.

To address the above challenges, we introduce, Smart-
PGSim, a framework that facilitates the construction of a NN
model to accelerate the AC-OPF simulation. Smart-PGSim is
based on the following design principles. First, it generates
an NN model that uses power grid components as inputs and
variables critical for the simulation convergence as the model
output. By using Smart-PGSim, we perform a sensitivity study
to understand the impact of the output accuracy on execution
time and convergence, by using precise or imprecise data for

some variables. This sensitivity study provides guidance on
choosing a correct and efficient NN topology.

Second, Smart-PGSim uses a novel multitask-learning NN
model to accelerate the AC-OPF simulation. The model
topology allows information sharing when predicting multiple
dependent variables while including customized layers for
each variable. This multi-task model improves the model
accuracy, compared with the traditional single-task model,
while simplifying the training process.

Third, Smart-PGSim allows embedding physical constraints
from the original formulation of the AC-OPF problem into
the NN model and imposes those constraints into the training
objective function or the last layer based on transformation on
equality and inequality in the constraints.

We summarize our major constitutions as follows.
• A systematic approach and a framework (Smart-PGSim)

to accelerate optimization problems in general and the
AC-OPF power grid simulation in particular;

• A set of techniques to construct NN models for robust,
accurate, and high-performance numerical solvers;

• We show that Smart-PGSim achieves 2.60× speedup
on average (with the consideration of NN cost) and up
to 3.28× over the original AC-OPF simulation method
(computed over 10,000 problems as the simulation input),
without losing the optimality of the final solution.

II. BACKGROUND

In this section, we review the problem formulation and the
primal-dual interior-point method in the AC-OPF problem.

A. Problem Formulation for AC-Optimal Power Flow

The AC-OPF problem aims at minimizing an objective
function by optimizing the power dispatch and transmission
decisions. The objective function calculates the cost of power
generation, subjecting to physical, operational, and technical
constraints including Kirchhoffs laws, operating limits of
generators, voltage levels, and loading limits of transmission
lines [25]. The standard AC-OPF problem is formulated as:

min
X

f(X) (1a)

s.t. G(X) = 0 (1b)
H(X) > 0 (1c)
Xmin ≤ X ≤ Xmax. (1d)

where f(X) is the cost function to be minimized, and X is an
optimization vector as the simulation solution. Eqn. 1b builds
an equality constraint, which sets up power balance incorpo-
rating variable bounds. The formulation 1c is an inequality
constraint that sets up branch flow limits. The optimization
vector X is bounded by Xmin and Xmax which introduces
the constrains on reference bus angles, voltage magnitudes,
and generator injections. The optimization vector X consists
of four variables, X = {Va;Vm;Pg;Qg}, i.e., voltage angles
Va, voltage magnitudes Vm, generator real power injections
Pg and reactive power injections Qg .

In power grid simulation, G(X) = 0 is an AC nodal power
balance equation and enables the AC-steady conditions of the
power system, which can be split into real and reactive parts:

Pi(Cg, Pg) = Pd + Pbus(Ybus, Va, Vm) (2a)
Qi(Cg, Qg) = Qd +Qbus(Ybus, Va, Vm). (2b)

In Eqn. 2, Cg is the generator connection matrix reflecting
generator locations in a power grid network. Ybus is the bus
admittance matrix including all constant impedance elements.
Pi and Qi refer to power real and reactive injection for the
power system. Pd and Qd are power loads. Pbus and Qbus are
power consumption of transmission lines.

B. Primal-dual Interior Point Solver

The primal-dual interior point method [26], [27] is an effi-
cient algorithm to solve the non-convex optimization problem
for AC-OPF. Matpower [28] is a widely used framework
for solving power flow and optimal power flow problems.
Matpower uses a solver, called MIPS, to solve those problems.

To solve the AC-OPF problem, MIPS first converts the
inequality constraint in Eqn. 1c into an equality constraint with
a vector Z, H(X) + Z = 0 where Z is a vector of positive
slack variables. MIPS further uses a barrier function ln(Z) to
bound Z. Based on that, MIPS uses a Lagrangian formulation
to formulate the AC-OPF problem as follows.

Lγ(X,Z, λ, µ) = f(X)+λᵀG(X)+µᵀ(H(X)+Z)−γ
ni∑
m=1

ln(Zm) (3)

where λ is called the equality Lagrangian multiplier, µ is
called the inequality Lagrangian multiplier, and γ is called
the perturbation parameter. During the solving process, γ is
approaching zero. If γ = 0, the solution to this Lagrangian
formulation equals to that of the original form (Eqn. 1).

Matpower uses Newton method to solve Eqn. 3, which
iteratively converges to a set of convergence criteria (partic-
ularly four terminate conditions) [28]. The Newton Method
is computationally intensive and requires constant updates of
input and output variables: the method firstly updates X and
λ, then Z based on X , and, finally, µ based on X and Z.
As we will see in the next Sections, this structure introduces
internal dependencies on the variables that our model exploits
for better performance and accuracy.

III. RELATED WORK

OPF problems can be categorized into three forms: eco-
nomic dispatch (ED) [29], Direct Current (DC-OPF) [30],
and Alternating Current (AC-OPF) problems [31]. The AC-
OPF problem is the original OPF problem, which is non-
convex and the most challenging one among the three. ED
and DC-OPF problems are the relaxed version of the AC-OPF
problem, which is obtained by removing or linearizing some
constraints in the AC-OPF problem, respectively. Traditionally,
numerical iteration algorithms are used to solve the OPF
problem [32]–[36]. However, the time complexity of these
algorithms might be significant, especially when the scale
of the transmission power system becomes large. To deal

with this limitation, researchers have explored learning-based
approaches to accelerate solving OPF problems.

Vaccaro et al. [37] use the principal component analysis
(PCA) to identify unknown relationships among OPF vari-
ables, which reduces the number of variables to be solved
for a solution. Ng et al. [24] use a statistical learning-based
approach to set up a mapping between input power require-
ment and output dispatch scheme. However, the approaches
mentioned above consider only the prediction accuracy with-
out taking into account the correlation among OPF problem
variables, which leads to a solution that can not satisfy all
of the problem constraints. Pan et al. [38] use the multilayer
perceptron (MLP) to learn the mapping between input and
decisions for DC-OPF and apply it to obtain optimized oper-
ating decisions upon arbitrary inputs. While this approach is
effective for DC-OPF, it has low generalization capacity and
cannot be applied to a non-convex problem such as AC-OPF.
Previous works [20]–[22] have leveraged machine learning to
accelerate the AC problem. Zamzam et al. [22] develop an
online method based on machine learning to obtain feasible
solutions to the AC problem by loading the optimal generator
set-points and enforcing generation limits. However, the AC
grid contains more voltage phase angles beyond magnitudes
and reactive parts of power generation. Unlike these methods,
the proposed approach includes all the inputs of the AC
problem and guarantees that the predicted solution is optimal
while providing significant performance improvement.

In this work, we use NN models to solve the AC-OPF
problem. We follow a radically different approach compared to
previous work in that we employ ML to estimate a high-quality
initial solution for the solver, greatly speeding up the entire
computation, and then leverage traditional AC-OPF solver to
guarantee precision and robustness of the solution. We show in
the next Sections that our approach can simultaneously provide
large performance improvement and high-precision solutions.

IV. OVERVIEW

This section overviews our proposed framework “Smart-
PGsim”. The Smart-PGsim framework includes two phases:
offline and online phases. Figure 1 shows the workflow of
Smart-PGSim.

The offline phase investigates the power grid simulation to
find the most crucial features to construct an efficient NN
model for online acceleration. In particular, our sensitivity
study (Section V) firstly identifies the most important features
(in other words, determining variables in MIPS as the output
of the prediction model) and quantifies the impact of the
imprecise variables (i.e., variables with some accuracy loss)
on the success rate of simulation and performance in terms
of execution time. The results in sensitivity study are used to
guide the NN topology design.

Then, Smart-PGSim constructs a multi-task learning (MTL)
model (Section VI) guided by the sensitivity study. The model
shares domain information between prediction tasks, while
uses a customized topology design for each task. Smart-PGSim
prioritizes features to distinguish main tasks and auxiliary

Numerical Solver(MIPS)

Physical Domain knowledge

Generate Training Data

Multitask

Learning Model
Sensitivity Study

Physical laws

and Constraints
Topology Design

Error

Calibration

Offline Stage Online Stage

A Warm-start point

MIPS

Final solution

Input problems
Candidate Features

Power Grid Simulation Model Training Online Prediction
Input

Output

Feature

Prioritization

Feature

Fixing

Training

Data

Fig. 1. Workflow of the proposed Smart-PGsim

tasks and applies a physics-dependent hierarchy for those
features have domain specific dependency.

Next, Smart-PGSim incorporates physical domain knowl-
edge during model training to improve prediction quality (Sec-
tion VII). The domain knowledge presents physical constraints
providing explicit and implicit error bounds. Using the domain
knowledge improves prediction accuracy, interpretability, and
defensibility of the MTL model, while simultaneously aug-
menting physical data as complementary.

After the above offline phase, the well-trained MTL model
can be used to generate a warm-start point for MIPS as online
prediction. The MIPS (or other numerical solvers) can use
these high-quality start points for quick convergence.

V. SENSITIVITY STUDY

The ability of NN to produce high-quality results is the
key to improve simulation performance (making the simulation
quickly converged). In this section, we discuss the opportunity
available in NN with the assist of a sensitivity study tool
that detects and analyzes those variables critical to simulation
convergence and execution time.

We introduce two data types, i.e., imprecise default data and
precise simulation data, to study the impact of noisy feature
to simulation quality and execution time. By doing so, we
can check the (lowest) highest performance brought by these
(im-)precise data, which demystifies the contribution of each
feature to success rate and speedup.

1) Imprecise default data: The default value at the initial
point in MIPS.

2) Precise simulation data: The exact solution collected in
the numerical solver, i.e., MIPS. We take the ground-
truth value as the precise data.

Our sensitivity study first checks the convergence criteria in
the MIPS code and collects those variables critical to the
simulation converge, namely X,λ, µ, and Z. We use these
(im-)precise data as initial points to test the importance of each
variable in two aspects, i.e., the impact on success rate and
speedup. Here, success rate refers to the ratio of those initial
solution can reach the convergence criteria to the total number
of input problems. Speedup is time acceleration, namely the
rate of actual solving time to the exact solving time in MIPS.

Then, we include eight test systems1 and generate 10, 000
samples for each system by varying input loads to analysis

1 Refer to Table II for a more detailed illustration of test systems.

the impact of using different initial points. Initializing the
four variables with precise and imprecise types, we have 24

combinations to analyze the contribution of each variable.
Table I shows the results of 16 combinations. For each
combination, we use “0” and “1” to indicate the imprecise
data and precise data respectively. To calculate the success
rate and speedup, we take a baseline, the combination where
all variables using imprecise default data.

Table I reveals that precision improvement on these ini-
tial variables does not always bring benefits to simulation
performance in terms of success rate and speedup. A high
improvement on precision might even decrease the success
rate of the simulation. For example, the baseline case I (using
all default parameters) has a success rate of 100%, while im-
proving the precision on the feature Z (e.g., the case II) alone
leads to failed convergence at most input problems. Hence,
blindly building a NN model to numerically approach those
precise values may reduce success rate and lose simulation
performance.

We further analyze the performance results in Table I and
summarize some interesting observations.

• Observation 1: Using precise X leads to a 100% success
rate (see case IX), while the features X , λ, µ and Z
jointly contribute to high speedup see case XVI).

• Observation 2: The contribution of Z to the success rate
and speedup strongly depends on whether µ use precise
data. For example, the success rate is dropped down when
involve a precise Z without a precise µ (see case XII with
respect to X).

• Observation 3: The contribution of λ to the success rate
and speedup is independent of whether the other features
use precise data or not. For example, the success rate of
initialing with a precise λ does not change with/without
a precise X or µ and Z (see case V, VIII, XIII and XVI).

• Observation 4: Features X , λ, µ and Z have implicit
dependency. Improving accuracy of one feature cannot
guarantee the overall performance improvement to the
success rate and speedup. For example, improving the
accuracy of λ, µ, or Z on a precise X can not guarantee
the improvement of success rate and speedup (comparing
case IX with cases X, XI and XIII.)

Observations 1 and 4 indicates that the analyzed features are
highly inter-dependent, which can be targeted on multi-task
prediction. We build a MTL model to enable the information

TABLE I
ABLATION STUDY ON THE INPUT SIGNALS

THE SR AND SU REPRESENT SUCCESS RATE(%) AND SPEEDUP(×) RESPECTIVELY.

X λ µ Z
bus 5 bus 9 bus 14 bus 30 bus 39 bus 57 bus 118 bus 300

Observation
SR SU SR SU SR SU SR SU SR SU SR SU SR SU SR SU

I 0 0 0 0 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 baseline
II 0 0 0 1 0 – 10 0.67 0 – 89 0.66 0 – 6 0.99 0 – 0 –
III 0 0 1 0 100 1.04 100 0.73 100 0.92 100 0.93 95 0.95 88 0.60 99 1.03 100 1.24
IV 0 0 1 1 100 1.09 100 0.96 100 0.85 3 0.22 75 1.02 99 0.72 0 – 68 1.24
V 0 1 0 0 100 0.98 100 0.99 100 1.00 30 1.06 100 1.00 100 0.98 100 0.98 98 0.99 OBS 3
VI 0 1 0 1 0 – 8 0.73 0 – 79 0.70 0 0.61 9 0.90 0 – 0 –
VII 0 1 1 0 100 0.99 0 – 80 0.61 98 0.90 100 1.09 100 0.89 100 0.93 100 1.08
VIII 0 1 1 1 100 1.05 100 1.24 100 1.32 30 0.19 100 1.39 100 1.25 100 1.59 100 1.75 OBS 3
IX 1 0 0 0 100 1.17 100 0.99 100 0.99 100 0.95 100 1.06 100 1.01 100 0.99 100 1.08 OBS 1, 4
X 1 0 0 1 0 – 0 – 0 – 0 – 0 – 11 0.94 0 – 0 – OBS 2, 4
XI 1 0 1 0 100 1.28 100 0.85 100 0.88 100 1.33 95 1.48 100 0.67 90 0.84 96 1.24 OBS 4
XII 1 0 1 1 100 1.45 100 1.03 100 0.80 95 1.26 80 1.22 100 0.65 0 – 53 0.87 OBS 2
XIII 1 1 0 0 100 1.18 100 1.00 100 0.98 100 0.94 100 1.06 100 1.00 100 0.99 100 1.07 OBS 3, 4
XIV 1 1 0 1 0 – 0 – 0 – 0 – 0 – 10 0.97 0 – 100 1.18
XV 1 1 1 0 100 1.28 100 0.79 100 0.90 100 1.09 100 1.22 100 0.93 100 0.94 100 1.32
XVI 1 1 1 1 100 5.21 100 4.58 100 3.74 100 6.15 100 6.60 100 4.58 100 7.63 100 14.6 OBS 1, 3

sharing for the inter-dependency. We decide feature priority
by dependency between features, namely, the contribution of
a feature to success rate and speedup is changed with a
variation of another feature. For example, since λ, µ and Z
have dependency on X , we should make X very accurate. We
give X the highest priority.

Observation 2 and 3 reveals features show differences on
dependency. Some features (e.g., λ) are relatively independent
while others (e.g., µ and Z) have dependency, which implies
customized design for different feature prediction should be
considered in modeling. Also, we observe that λ is an equality
factor while µ and Z contribute to inequality together in Eqn 3.
Such information from physical law validates feature depen-
dency and maybe can be used to deal with the dependency in
model training inversely.

Driven by these observations, we introduce an interactive
learning model for multi-objective modeling (discussed in Sec-
tion VI) and impose domain knowledge to strength physical
understanding for prediction quality (discussed in Section VII).

VI. AN INTERACTIVE LEARNING MODEL

In this section, we develop a MTL model to enable multitask
prediction. Based on the observation from sensitivity study, we
implement domain specific design through prioritizing features
and enforcing a physics-dependent hierarchy in the MTL
model. After that, we depict the details of MTL parameters.

A. Multitask Learning

Multitask learning is an inductive transfer learning
method [39], [40]. A MTL model is typically composed of
shared layers and task-specific layers. Unlike using multiple
separate models for each task, the MTL model enables us
to share information from common layers while customizing
specific layers for corresponding tasks. The training signals of
different tasks can be learned as inductive biases to facilitate
the learning of all tasks, which achieves a unification of the
shared information and the task-specific information.

Information-sharing in shallow layers. Observation 1
reveals that there is correlation among these four features and
we would like to leverage these relations in our model. To
incorporate this correlation, we utilize information sharing in
MTL by parameter sharing and loss sharing.
• Parameter sharing. The common layers share the same

weights and topology between tasks. By sharing param-
eters, tasks share low-level semantic information to com-
plement domain knowledge with each other. Meanwhile,
parameter sharing can alleviate the risks of overfitting due
to the noise brought by multiple tasks.

• Loss sharing. The tasks to predict X,λ, µ, Z share a
common loss function to update training gradient in the
MTL. The minimal loss of different tasks are usually in
different positions. By sharing losses, the MTL passes
information and avoids being trapped in a local optimal.

Task-specific learning in deeper layers. Besides the
features X,λ, µ, Z being correlated, observations 2 and 3
shows that specific design for different feature prediction
should be considered. In task-specific layers, we introduce
specific model topologies (estimators) for each task based on
the task demands. For example, a task requires a positive
output. We apply a rectified linear unit (ReLU), a type of
activation functions, at the last layer to bound the output
always positive.

Figure 2 shows the topology of the proposed MTL. Given
a power network topology, we use the power load (including
both the active part Pd and reactive part Qd) as model inputs
and estimate seven tasks (four variables in X). In the MTL, the
shared layers are extracting information from different tasks,
while the task-specific layers (estimators) utilize customized
designs to generate their own dedicated results.

B. Domain-Specific Design

Besides using shared layers and task-specific layers, we
introduce a domain-specific design into MTL: this design is

…… …

Shared Layers

𝑃𝑑

𝑄𝑑

Task Specific Layers

Inputs Outputs

Z estim
a

to
r

μ
estim

a
to

r…

𝑉𝑎 estimator

𝑉𝑚 estimator

𝑃𝑔 estimator

𝑄𝑔 estimator

λ estimator

𝑉𝑎

𝑃𝑔

𝑉𝑚

𝑄𝑔

λ 𝑍 μ

Auxiliary Tasks

Main Tasks

Fig. 2. Topology of the MTL.

driven by our observations on (1) the contribution difference
of the four features to success rate and speedup and (2)
the dependency between features. The domain-specific design
includes two techniques, feature prioritization and a physics-
dependent hierarchy, discussed as follows.

Feature prioritization. Observation 1 shows that precise
X guarantees the success of simulation convergence, while
precise λ, µ, and Z contribute to simulation acceleration.
We prioritize the four features by specifying the prediction
of X as the main task while the prediction of other three
features as auxiliary tasks. The auxiliary tasks are used as an
augmentation to provide additional information for the main
task. Through “eavesdropping” the main tasks, the auxiliary
tasks interact with the main task implicitly. More importantly,
learning the direct solution X in the main task gives the user
high simulation quality while estimating the Lagrangian fac-
tors (λ, µ, and Z) in the auxiliary tasks maximize performance
speedup. Technically, we apply “detach()” operation [41] for
these auxiliary tasks periodically. The detach operation blocks
the gradient back-propagation to the shared layers (which are
contribute to the main task X). In other word, we set a knob of
detach operation to alternately train the main task or the entire
model. In particular, the MTL focuses on improving main tasks
when we activate the detach operation, while facilitates the
interaction between main tasks and auxiliary tasks when the
detach operation is disabled.

A physics-dependent hierarchy. Observations 2 and 3 re-
veal the dependence between Z and µ and the independence of
λ, respectively. We find these observations are consistent with
the computation order in the solving process. In particular, the
simulation process takes the order of (1) computing X and λ;
(2) computing Z based on X; and (3) computing µ based on
X and Z. This is consistent with the existing work [42], [43].

To fully exploit the benefit of information sharing, we
enforce a physics-dependent hierarchy in MTL. As shown in
Figure 2, we first infer the main task X(Va, Vm, Pg , Qg) and
an independent auxiliary task λ. Then, we predict task Z based
on X . After that, we estimate µ based on the predicted Z.

C. Details on Multitask Learning Model

In this section, we present details about the topology pa-
rameters, the loss function and the pre-processing method of
the MTL model. We use a power grid system of 300 buses
as an example, but the MTL modeling method is general for
any other power grid systems. Figure 2 generally depicts the
model topology.

The shared layers take the power load Pd and Qd at each
bus as input, totaling 600 inputs. There are five fully-connected
layers as the shared layers. We set the numbers of neurons in
the five layers as 600, 720, 840, 960, and 1080 respectively.
The five fully-connected layers extract shared features and feed
them to seven specific estimators (four in X and λ, µ, Z),
each of which is a fully-connected network customized for
a task. We use ReLU as the activation function to increase
the model nonlinearity. We use a variant of L1 loss [44], the
Charbonnier loss, as our loss function. This is a supervised
loss function calculating the difference between each of the
predicted output variables v and the corresponding ground-
truth value vgt collected in the MIPS solver. Our loss function
is defined as follows.

L =
1

|V|
∑
v∈V

Wv

√
(v − vgt)2 + ε2 (4)

where V is a set consisting of Va, Vm, Pg , Qg , Z, λ and µ;
Wv is a weight for a task v and ε is a small constant for
numerical stability. We set ε as 1e− 9 in our study.

VII. PHYSICS-INFORMED LEARNING

The solution in power grid simulation must respect several
physical constraints, such as power generation, line flow, and
bus voltage constraints. Incorporating these constraints into
the MTL model not only improves model accuracy but also
increases the model interpretability.

In general, the constraints are classified into hard and soft
constraints. The hard constraint includes some strict bounds
on the variable ranges in applications; The soft constraint
includes domain knowledge to improve model accuracy, such
as physical principles, conservation laws, and others gained
from theoretical or computational studies. We introduce four
objective functions to incorporate domain knowledge and im-
pose those constraints by minimizing the objective functions.

A. Embedding AC Nodal Power Balance Equations

The power grid simulation includes a power flow equality
constraint shown in Eqn. 2 to make the simulation of the power
grid system stable and make the simulated solution feasible.
We integrate the AC nodal power balance equations (Eqn. 2)
into the objective function fAC to guide model training.

fAC = |Pd + Pbus(Ybus, Va, Vm)− Pi(Cg, Pg)|+
|Qd +Qbus(Ybus, Va, Vm)−Qi(Cg, Qg)|

(5)

The above objective function bridges model inputs (Pd, Qd),
outputs (X , λ, µ, Z) and the physics information (Cg, Ybus)
of power networks to yield quantitatively better physical
connection. In particular, the generator connection matrix Cg

Input Problems

Numerical Solver (MIPS)

Training Data Multitask Learning Model

Input Data

A Warm-start Point

MIPS

Finial Results
In

p
u

t

O
u
tp

u
t

Offline Phase Online Phase

Train
Topology Design

Sensitivity

Study

Precise

data

Rough

Data

Power Grid

Simulation

Domain

Knowledge

Potential

Features

Power Loads:
Pd, Qd

fMTL

Solution:
Va, Vm, Pg, Qg

Power

Gereration
MIPS Solver

Domain Infos: Cg, Ybus

-

min(||fAC||)
Initiation

Power-

Grid
Simulation

Fig. 3. Embedding AC physical laws in MTL training

and the bus admittance matrix Ybus are critical information
determined by the physical network of power system. Eqn. 2
shows the AC power system keeps stable only if the power
generation equals to the power load. In the objective function
fAC , we calculate the differences between power load and
generation and minimize the difference approaching to zero.

Figure 3 shows how the objective function fAC works
in MTL training. In the power grid simulation, we utilize
domain information Cg and Ybus, which provide power-grid
bus topology and resistance information respectively. Power
loads (Pd and Qd) are the input fed to the MTL to produce
solutions Va, Vm, Pg, Qg . We integrate the AC power balance
law (Eqn. 5) to calibrate the training loss in fMTL. In particu-
lar, we calculate the power generation based on the prediction
solution X and domain information Cg and Ybus, and subtract
power generation from the power loads. We then calculate the
difference between the power loads and power generation, and
try to minimize the difference within the objective function
fAC . The only block with training parameters is the fMTL

and all blocks are differentiable.
The above training process is driven by the predicted data

and facilitates the prediction inversely. Such a data-driven
architecture fAC mitigates the risk of obtaining infeasible
solutions, such as those predicted solution misled by the noise
of training data and violating the basic AC power balance
law. Embedding the objective function fAC has two signif-
icant benefits. First, since the information of model inputs
is limited to predict its outputs, we incorporate non-trivial
data-augmentation as a complementary to increase prediction
accuracy. Second, we can efficiently perform transfer learning
with fewer training data even if the typology of power network
is modified, e.g., a transmission line in the power-grid bus
is suddenly broken. With this, we can improve our MTL
prediction and facilitate the solution robustness.

B. Guarding Inequality Constraints

The AC-OPF formulation includes two inequality con-
straints: one is explicit, quantitatively bounding X by Xmin <
X < Xmax (Eqn. 1d), and the other is implicit, limiting
branch flow by H(X) > 0 (Eqn.1c). For the implicit inequal-
ity, we impose physics information Cg and Ybus to calculate
the branch flow state H(X) and check if the H(X) violates
the bounds. We utilize exponential functions to punish the
overflow error in these inequality constraints and force the
prediction to be bounded by the expected, normalized range.
Eqn. 6 shows how we use the exponential functions. In the
equation, we build an objective function fieq to incorporate

the inequality equations as a penalty loss.

fieq = e−H(X) + e(X−Xmax

) + e(Xmin

−X) (6)

Where X is a predicted feature in MTL. Once the predicted X
violates the inequality constraints, for example, H(Xk) < 0,
the overflow error will be visibly shown up in the objective
function fieq and calibrated through backpropagation in the
training phase. Hence, the main task X is restricted in a
quantitative way to improve simulation quality.

Guarding inequality constraints in our model mitigates the
overflow error in inequality constraints while facilitates the
feasibility of model prediction.

C. Optimization of Cost Function

The ultimate goal of the AC-OPF is to minimize the cost
function f(X) (Eqn. 1a). We explore the physics information
in f(X) to construct an objective function ff(X) and minimize
the loss between the predicted cost and ground truth cost.

ff(X) = |f(X)− f0| (7)

where f0 is the ground-truth value of the cost collected by the
numerical solver, MIPS. Feature X is our model prediction.
In f(X), we utilize the characteristics of energy consumption
on generators to calculate the predicted cost f(X). Then, the
objective function ff(X) calibrates the predicted cost f(X)
with the ground-truth cost f0 to reach the optimal solution.

D. Implying Lagrangian Conservation

In Eqn. 3, the AC-OPF problem can be solved as the equal-
ity constraints G(x) = 0 and slacked inequality constraints
H(x) + Z = 0 approach zero. Here, we apply two ways to
imply the Lagrangian formulation into MTL training. First,
we reconstruct the inequality and equality constraints as soft
constraints, which is imposed in the loss function to guide the
training. Then, we refer the variable bounds Z > 0 and µ > 0
as hard constraints and apply an activation function to strictly
bound model prediction. We construct an objective function
fLag to guide the training subject to the soft constraints.

fLag = |λᵀG(X)|+ |µᵀ(H(X) + Z)| (8)

We incorporate the hard constraints during the training
phrase by projecting predictions onto a region induced by the
constraints. In particular, we first pre-process the raw data of
ground truth into the normalized range [0, 1]. Then, we apply
a “sigmoid” activation function at the last layer to bound the
output range of Z and µ to be positive and into the same range
[0, 1]. The above techniques provide hard upper and lower
bounds on prediction and guarantee its feasibility.

Incorporating fAC and fieq improves the feasibility and
robustness of the simulation solution X; Incorporating ff (X)
improves the accuracy of X; Incorporating fLag can optimize
auxiliary tasks λ, µ and Z. Hence, we arithmetically compose
these objective functions into the loss function L(Eqn. 4).

Ltotal = L+ Leqn + Lieq + Llag + Lf(X) (9)

TABLE II
CONFIGURATIONS IN IEEE BUS SYSTEMS.

Problem size 14-bus 30-bus 57-bus 118-bus 300-bus
Buses 14 30 57 118 300
Generators 5 6 7 54 69
Branches 20 41 80 185 411
#λ 29 61 115 237 601
#µ(Z) 48 166 142 452 876

The Ltotal efficiently combines supervised learning (with
ground-truth labels) and unsupervised learning (without
ground-truth labels) to guide the MTL training. By doing so,
we maintain the prediction accuracy while increase the model
feasibility and interpretability.

VIII. EVALUATION

We evaluate our framework by examining its impacts on
performance and simulation quality of power grid simulation.
Platform. We conduct all experiments on an NVIDIA DGX-
1 cluster with 16 nodes, and each node is equipped with two
Intel Xeon E5-2698 v4 CPUs (40 cores running at 2.20GHz)
and 8 NVIDIA TESLA V100 (Volta) GPUs. We use CUDA
10.1/cuDNN 7.0 [45] to run NNs on NVIDIA GPUs. We use
Pytorch for model training and inference.
Matpower. Matpower 6.0 is an open-source Matlab power sys-
tem simulation package [28], which is used widely in research
and education for AC- and DC- power flow simulations. The
default OPF solver, i.e., Matlab Interior Point Solver (MIPS),
is a high-performance primal-dual interior-point solver.
Load Sampling. We sample the loads within [(1−t)×Pdi, (1+
t)×Pdi] uniformly at random, where Pdi is the default power
load at the i-th bus, and t is the variation percentage, i.e., 10%
in this paper, consistent with state-of-the-art [20], [22], [38].
Input Datasets. To comprehensively evaluate the perfor-
mance, we use five power networks in Table II as test systems.
We generate 10,000 input problems for each test system, in
which 8,000 of them are for training and 2,000 for validation.
These samples are fed into Matpower to produce the optimal
solutions as the supervision ground truth signal. Uniform
sampling is applied to avoid over-fitting issues common in
generic DNN approaches [46].

A. Smart-PGSim Performance Evaluation

In our approach, we use Smart-PGSim to generate a high-
quality initial condition for the MIPS solver, thereby dras-
tically reducing the overall time-to-solution. We introduce
the following performance metric to calculate the achieved
speedups by Smart-PGSim:

SU =
TMIPS

TMTL + T ′MIPS + TMIPS × (1− SR)
(10)

where TMIPS represents the solving time when using the tra-
ditional approach with MIPS, TMTL represents the inference
time of the MTL model, and T ′MIPS represents the conver-
gence time in MIPS initializing with the output of Smart-
PGSim. TMIPS×(1−SR) calculates the restart execution time
with the default initial point in MIPS if the simulation fails.

14-bus
30-bus

57-bus
118-bus

300-bus

(a) execution time comparison

0

5

10

15

E
xc

ut
io

n
T

im
e

(*
10

2
/s

)

MIPS
Smart-PGsim

14-bus
30-bus

57-bus
118-bus

300-bus

(b) iteration number comparison

0

5

10

15

20

A
vg

. I
te

ra
tio

n
N

um

MIPS
Smart-PGsim

B
et

te
r

B
et

te
r

B
et

te
r

14-bus
30-bus

57-bus
118-bus

300-bus

(c) success rate comparison

0%

20%

40%

60%

80%

100%

120%

S
uc

ce
ss

 R
at

e

MIPS
Smart-PGsim

2.24x
2.53x2.48x 3.28x

2.50x

16.3%
20.1%21.8% 22.0%

29.5%

Fig. 4. Comparison of three aspects between MIPS and Smart-PGSim.

14-bus 30-bus 57-bus 118-bus 300-bus
0%

20%

40%

60%

80%

100%

N
or

m
al

iz
ed

 R
un

tim
e

Pre-processing Newton Update MTL Execu Time Restart from stratch

Smart-PGsim
Smart-PGsim Smart-PGsim

Smart-PGsim
Smart-PGsim

MIPS MIPS MIPS MIPS MIPS

Fig. 5. Execution time breakdown

SR represents the overall success rate, SR = Nsuc/Ntotal,
where Nsuc represents the number of problems successfully
solved by MTL and Ntotal represents the total number of input
problems. Whenever the initial condition provided by Smart-
PGSim does not lead to the simulation converge successfully,
we fall back to the traditional MIPS solver to guarantee the
final convergence. Hence our method always provides 100%
guarantee on simulation convergence, though it might come at
an additional cost of re-executing overhead in the workflow.

Figure 4(a) compares the execution time of the traditional
numerical simulation performed with MIPS and that of our
framework in terms of the SU metric described above. Each
test system is run on 2, 000 input problems. Performance mea-
surements of Smart-PGSim comprise the end-to-end runtime,
including the time to produce the warm-start points in MTL,
the convergence time in MIPS with the warm-start points, and
the restart execution time in MIPS if the simulation fails.
In the Figure 4(a), we also label the speedup at the top of
Smart-PGSim bar. The Smart-PGSim speedups over MIPS
observed in the plot are considerable, ranging from nearly a
2.24× speedup up to over a 3.28× speedup. Furthermore, the
performance benefit of Smart-PGSim is more evident as the
size of power networks increases, which indicates a notable
potential in accelerating large-scale power grid systems. It
is important to note that using Smart-PGSim as warm-start
for MIPS generates the same solution as produced by MIPS
directly. Figure 4(b) presents the average iteration number of
MIPS and Smart-PGSim across different test systems, in which
we only consider the iteration acceleration produced by Smart-
PGSim. We measured the average iteration number during the
convergence process until the terminate criteria are reached.
The iterative process is the most computationally intensive part
of the power grid simulation. We also label the ratio of the

0.
00

0.
25

0.
50

0.
75

1.
00

0.00

0.25

0.50

0.75

1.00
N

or
m

al
iz

ed
 G

ro
un

d-
T

ru
th

X.Va

0.
00

0.
25

0.
50

0.
75

1.
00

X.Vm

0.
00

0.
25

0.
50

0.
75

1.
00

X.Pg

0.
00

0.
25

0.
50

0.
75

1.
00

Normalized MTL prediction

X.Qg

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

z

Fig. 6. Prediction accuracy of each feature used in the proposed MTL model.

Smart-PGSim iteration number to the MIPS iteration number
on Smart-PGSim bar. The results in Figure 4(b) show that
Smart-PGSim dramatically reduces the number of iterations
required to converge, taking only 16.3% to 29.5% iterations
of previous conduction (MIPS). The accelerated convergence
drives the overall performance improvement of Smart-PGSim.

B. Performance Breakdown

To further explore the performance improvement provided
by Smart-PGSim, Figure 5 shows the runtime breakdown of
MIPS and Smart-PGSim, normalized to the overall runtime
where the problems run with MIPS. The pre-processing refers
the execution time of problem construction and data preparing
for power grid simulation, in which MIPS and Smart-PGSim
show almost the same processing time. The Newton update
represent the execution time spent in Newton iteration. Smart-
PGSim have extra overheads about the inference time of
the MTL model for generating warm-start solution and the
restart time with failure cases. Note that we restart the failed
cases with the default setting in the numerical solver MIPS
to guarantee the final convergence. As Figure 5 depicts,
Smart-PGSim is effective at reducing the time spent on the
convergence, i.e., Newton Update. Smart-PGSim demonstrates
significant performance improvement for the tested input prob-
lems despite the extra overhead introduced by the MTL model.

C. Prediction Accuracy

Figure 4(c) compares MIPS and Smart-PGSim in terms
of the success rate, in the case in which we do not restart
Smart-PGSim after a failed execution. As we discuss above,
Smart-PGSim guarantees 100% success rate in practice by
re-executing those computations that do not provide high-
enough accuracy, while still considerably outperforming MIPS
execution. The success rate is how many input problems can
converge successfully in the simulation. Figure 4(c) reveals
that Smart-PGSim leads to a high percentage of success rate
in all case. Smart-PGSim provides 100% success rate on 14-
bus, 57-bus, 118-bus while maintains a relatively high success
rate as 97% and 92% on 30-bus, 300-bus respectively.

Figure 6 presents the prediction accuracy of each feature
used in Smart-PGSim. We compare the accuracy of warm-
start points predicted by Smart-PGSim with the exact solution
in MIPS (Ground-truth). The prediction and ground-truth are
normalized to the range [0,1]. The x-axis is the predicted value

14-bus 30-bus 57-bus 118-bus 300-bus

(a) speedup comparison

0x

1x

2x

3x

4x

S
pe

ed
up

 o
ve

r
M

IP
S

Sep models MTL Smart-PGsim

B
et

te
r

B
et

te
r

14-bus 30-bus 57-bus 118-bus 300-bus

(b) success rate comparison

0%

20%

40%

60%

80%

100%

S
uc

ce
ss

 R
at

e

Sep models MTL Smart-PGsim

Fig. 7. Performance comparison

14-bus 30-bus 57-bus 118-bus 300-bus
10-6

10-4

10-2

100

R
el

at
iv

e
E

rr
or

 (
Lo

g
S

ca
le

) Sep models MTL Smart-PGsim

Fig. 8. Accuracy comparison.

of Smart-PGSim and the y-axis is the ground-truth value. If
the prediction of Smart-PGSim is perfect, all points should be
lie on the y = x line. There is negligible accuracy lost in the
prediction of X.V a, X.V m, X.Pg, X.Qg, µ and z. For λ,
there is a larger variation in the predicted values representing
over-prediction and under-prediction. Such variation in λ is
acceptable because λ is the equality constraints factor in
Eqn. 3, which will not affect the final convergence if the
equality constraints are satisfied.

D. Efficiency of Multitask Learning and Physical Constraints

In this section, we analyze the effectiveness of multitask
learning and imposing physics constraints. First, we develop a
model of multiple separate NNs without information sharing.
For peer comparison, we use the same number of layers and
neurons as MTL model in the multiple separated networks.
Then, to show the efficiency of physical constraints, we
remove physics constraints in MTL model as a comparison.

Figure 7(a) shows the speedup comparison with the multiple
separated NNs, MTL model and Smart-PGSim. Here, “MTL”
refers to the multitask learning model without physical con-
straints whereas “Smart-PGSim” refers the multitask learning
model with physical constraints. Note that all speedup are mea-
sured with our performance metric SU in Eqn. 10. Figure 7
shows that the performance of the speedup SU and the success
rate SR are significantly improved by the multitask learning
and incorporation of the physical constraints. MTL provides
notable speedup and success rate improvement over the mul-
tiple separated models, average speedup of 1.36× and 22.5%
success rate improvement. In particular, the multiple separated
NNs show inefficiency on the test system 30-bus with a 0.96×
speedup, in which the 52.0% success rate produce a soaring
overhead on restart. Adding the physical constraints further
improve the speedup and success rate by 40% and 18.3% over
MTL. In summary, our proposed framework Smart-PGSim, a

11632 64 128
1

16
32

64

128
S

pe
ed

up
14-bus

11632 64 128

30-bus

11632 64 128
(a) strong scaling across many GPUs

57-bus

11632 64 128

118-bus

11632 64 128

300-bus

11632 64 128
3.2

50.9
101.8

203.6

407.2

P
er

f.
in

 T
P

lo
p/

s

14-bus

11632 64 128

30-bus

11632 64 128
(b) weak scaling across many GPUs

57-bus

11632 64 128

118-bus

11632 64 128

300-bus

Fig. 9. Scaling across many GPUs

multitask model with physical constraints offers the highest
average speedup and solution feasibility.

Moreover, Figure 8 presents box-plots2 to show the results
of the prediction accuracy in different models. We use relative
error RE = |Vpredict − Vgt|/Vgt to measure the prediction
accuracy. Vpredict refers the prediction values of MTL and
Vgt refers the exact solution in MIPS (i.e., ground-truth). The
lower relative error means the prediction is more accurate
and closer to the groud-truth. We draw two observations from
Figure 8: (1) The prediction provided by Smart-PGSim has the
lowest average error with all five test systems; (2) Most of the
predictions in Smart-PGSim is under the error line of 10−2,
which shows Smart-PGSim consistently produces prediction
within 1% relative error. These two observations reveal that
Smart-PGSim can provide more consistent acceleration than
multiple separate models and MTL, which is crucial for
dealing with widely diversified input problems in real-time.

E. Scalability Analysis on Multi-Node Systems

As we stated earlier, the AC-OPF problem is solved many
times per day by power operators throughout the life of
the power grid. Additionally, the real-life problem is fur-
ther complicated by the uncertainty involved by equipment
security, the reliability of alternative power sources (solar,
eolic, and hydro power), and the stability of power generators
and power transmission lines. Considering all those factors
together is generally referred to solving Security-Constrained
ACOPF (SC-ACOPF) [48], [49] and it originates very large
and complex uncertain scenario trees that need to be analyzed
to maintain the robustness of the global solution, i.e, an
optimal solution that survives under all uncertain scenarios.
From a computational perspective, these scenarios are largely
independent (although some similarities can be exploited to
reduce computational requirements) and result in a compu-
tational problem that is largely embarrassingly parallel and,
thus, inherently scalable on parallel computers (e.g., assigning
a batch of scenarios to each compute node, and then assigning
a set of scenarios from the batch to each GPU).

2In the box-plots, the boxes are bounded by 25-th and 75-th percentiles of
the variables; The central marks of the boxes indicate the median [47].

TABLE III
PREDICTION PERFORMANCE COMPARISON.

Zamzam’s [22]
Test system – 39-bus 57-bus 118-bus –

SF – 15.38× 9.49× 7.97× –
Lcost – 0.326% 0.457% 0.821% –

Smart-PGSim
Test system 14-bus 30-bus 57-bus 118-bus 300-bus

SF 21.17× 40.19× 21.72× 36.15× 105.64×
Lcost 0.007% 0.074% 0.040% 0.003% 0.008%

While the focus of this work is mainly on accelerating each
AC-OPF instance of a larger SC-ACOPF problem by providing
high-quality initial conditions for the numerical solver, one can
easily imagine that speedup similar to the ones reported in
Section VIII-A can be expected for the SC-ACOPF problem.
To verify such assertion, we conducted experiments on a 16-
node compute cluster, where each node is an NVIDIA DGX-
1 equipped with eight NVIDIA V100 GPUs (128 GPUs in
total). We study both strong scalability and weak scalability.
Strong scaling is measured with a fixed number of scenarios,
while weak scaling linearly increases the number of scenarios
with respect to the number of processors. Smart-PGSim is
expected to generate an initial solution for each scenario. In
these experiments, we use data parallelism for scaling out the
Smart-PGSim workload, in which each GPU has an identical
copy of the entire network and each computes results for a
separate set (the local batch) of input scenarios. We focus
on scaling Smart-PGSim, which emulates the use case where
there are needs to generate initial solutions for a large number
of scenarios for the SC-ACOPF problem.

Figure 9(a) shows strong scaling behavior for each of the
five test systems with a fixed problem size (10k scenarios)
from 1 to 128 GPUs. The black dotted lines in the plots
represent ideal scaling for data parallelism. As expected,
increasing the number of GPUs naturally leads to a higher
speedup and shows an almost linear tendency. However, the
speedup is not linear.

Such a non-linear speedup is caused by our work distri-
bution strategy: While our distribution algorithm has been
designed to equally distribute scenarios between GPUs, com-
munication effects can skew this balance. Specifically, when
running in a node with 8 GPUs, we first copy the MTL model
and data to the first GPU device and then copy it to the other
GPUs leveraging GPUDirect and NVLINK, which generates
some load imbalance that translates into efficiency loss.

Figure 9(b) shows similar results for the weak scaling
experiments, where the number of scenarios increases from
10k to 1,280k when increasing the number of GPUs from
1 to 128 (10k scenarios per GPU). The scalability shown
in the plots for weak scaling is better, compared to that for
strong scaling. This is because the weak scaling uses larger
problems which amortizes the load imbalance problem, but we
still notice similar issues as the strong scaling experiments.

Overall, Smart-PGSim scales up to 128 GPUs: for the test
system of “300-bus” (the largest system we evaluated), we
achieve a peak performance of 604.7 TFLOPS and a sustained

0 20 40 60
iterations

10
-6

10
-4

10
-2

10
0

10
2

10
4

si
ze

(a) step size

0 20 40 60
iterations

10
-1

4
10

-1
0

10
-6

10
-2

10
2

lo
ss

(b) feasibility condition

0 20 40 60
iterations

10
-1

4
10

-1
0

10
-6

10
-2

10
2

lo
ss

(c) gradient condition

0 20 40 60
iterations

10
-1

0
10

-6
10

-2
10

2
lo

ss

(d) complementarity condition

0 20 40 60
iterations

10
-9

10
-7

10
-5

10
-3

10
-1

lo
ss

(e) cost condition

Fig. 10. The asymptotic convergence of the tracking loss along the iterations

performance of 326.1 TFLOPS, reaching 43% of the peak
performance of Volta V100 (double precision).

F. Comparison with Prior Work

Previous work [20], [22] use ML to directly replace the
exact solver to achieve a high speedup. For a fair compar-
ison with the state-of-the-art method, i.e., Zamzam et al.’s
model [22] that leverages DNN for prediction, we assume that
the prediction of Smart-PGSim is the final solution, effectively
replacing the entire solving computation.In Table III, we
compare performance and optimality loss to what has been
used in Zamzam’s model. Cost deviation measures simulation
quality. We donate a speedup factor (SF) to measure the com-
putational improvements: SF = 1

n

∑n
i=1 (TMTL

i /TMIPS
i),

where TMTL
i refers the execution time of the MTL and

TMIPS
i represents the execution time of the numerical solver

(MIPS) for each input problem i. We measure the loss using
the average fractional difference between the predicted cost
C ′ and the true cost C: Lcost = 100%

n

∑n
i=1 |1− C ′i/Ci|.

The results presented in Table III show that our framework
outperforms the state-of-the-art even in the case in which
we directly use Smart-PGSim output as final solution of
the computation. Smart-PGSim achieves an average 44.97×
speedup which provides 310.7% improvement comparing the
average speedup of Zamzam’s model (10.95×). Moreover,
Smart-PGSim decreases the cost loss 12.16× by average
comparing with Zamzam’s model. Although Smart-PGSim
show significant improvement over the state-of-the-art, we
remark that the solutions produced by both models might
not satisfy the strict requirements of power-grid simulations,
hence our approach further refines Smart-PGSim output in the
traditional solver MIPS at the back end and achieving high-
quality solutions, although with reducing the speedup.

IX. DISCUSSIONS

In this section, we discuss the generality of our techniques
and analyze solving processes with and without convergence.

A. Generality of Proposed Approach

The three major techniques, including sensitivity study (Sec-
tion V), multi-tasking learning (Section VI), and incorporating
domain knowledge (Section VII), can be broadly applied
to many scientific HPC applications, and are not limited
to the optimization problem in power grid simulations. In

this section, we highlight some potential application of our
techniques to other scientific applications.

Fluid dynamic simulation aims to study the flow of fluid
materials. Smart-fluidnet model [3] is a convolutional NN
model to accelerate fluid simulation. We can build a multitask
learning model by predicting the output velocity filed ~u as
a main task and pressure field p as an auxiliary task since p
impacts the fluid movement (~u). Moreover, we can incorporate
the incompressibility condition, 5 · ~u = 0, as a physical
constraint regularized as a soft constraint Lloss = 5 · ~u.

Molecular Dynamics (MD) simulation. The DPMD
model [50] is an NN model to accelerate MD simulation. This
model can be enhanced by using the techniques presented in
this work by developing a multi-task model where the main
task predicts the potential energy and an auxiliary task predicts
the symmetry-preserving descriptor. Also, the potential energy
should be positive, which can be enforced as a hard constraint.

Cosmology modeling. CosmoFlow [6] is an NN model
to predict three cosmological parameters that can be directly
implemented as multi-task learning. The Cosmic Microwave
Background [51] can be enforced as a hard constraint to bound
the projection range of modeling.

B. Analysis of Diverging Cases

The solving process for the AC-OPF problem can fail to
converge. Figure 10 shows the inconvergence process given
a bad initial solution and compares it with the convergence
process given a good initial solution. Figure 10 shows the
variance of step size and four convergence conditions across
iterations. The step size |∆x| refers to the length of the
updating step during the simulation; The four conditions are
used to determine if the simulation is converged in each
iteration.

Figure 10 shows that, for the case with bad initial solu-
tion, the step size rapidly increases. Accordingly, the four
convergence conditions remain relatively stable without being
able to converge. For the case with good initial solution,
the step size and three conditions (feasibility, gradient and
complementary) decrease quickly. We notice that the cost
condition goes through great variance in both cases, which
makes it difficult to correlate to convergence.

The step size is critical to determine the direction to explore
to find the optimal solution. If the initial solution is bad,
the solving process aims to use a larger step size to find a

promising direction. However, using a large step size could
lead a failure of convergence (Figure 10.a).

As our results show, it is difficult to guess whether the
numerical solver will converge based on the first iterations:
both good and bad initial conditions behave similarly during
the initial iterations of the power grid simulation and there is
no clear indication that some computation will later fail. Given
this complexity, we resort to re-initialize and re-execute the
numerical solver from the beginning without employing the
initial conditions generated by the MTL model. Overall, as
our results demonstrate, even considering restart time, Smart-
PGSim still significantly outperforms state-of-the-art solutions.

X. CONCLUSIONS

Using NN to approximate and/or accelerate high perfor-
mance computing applications has shown promising results.
However, how to effectively apply a NN to those applications
is still an open question. The approximations introduced by
the NN models need to be carefully analyzed, so that the
simulation quality in the application is not lost and even
improved; at the same time, the execution time of the appli-
cation should be reduced after applying NN. In this paper,
we apply a NN to accelerate a specific power grid simu-
lation problem, AC-OPF. As a simulation to solve complex
nonlinear optimization problems based on iterative numerical
methods, AC-OPF raises challenges on simulation robustness
(i.e., ensuring the optimality of the simulation solution for
various input problems) and respecting the physical constraints
imposed by the power flow. We introduce a framework, Smart-
PGSim, that facilitates the construction of a NN model by
studying the impact of the output accuracy on simulation
convergence and execution time and automatically imposing
the physical constraints. Using a novel multitask-learning NN
model generated by Smart-PGSim, we produce high-quality
initial solutions for 10,000 input problems. Based on those
solutions, the AC-OPF simulation reduces simulation time
by an average of 2.60× (up to 3.28×) without losing the
optimality of the solution.

XI. ACKNOWLEDGEMENT

This research is supported by the U.S. Department of
Energy (DOE) Advanced Scientific Computing Research
(ASCR), U.S. National Science Foundation (CNS-1617967,
CCF-1553645 and CCF-1718194), award 74756, Co-design
of Reconfigurable Accelerators for Sparse, Irregular Compu-
tations Underlying Machine Learning and Graph Analysis,
award 66150, CENATE - Center for Advanced Architecture
Evaluation, Chameleon cloud and XSEDE resource.

REFERENCES

[1] Alexander Radovic. Neutrino Identification with a Convolutional Neural
Network in the NOvA Detectors. In International Conference on High
Energy Physics, 2016.

[2] Evan Racah, Christopher Beckham, Tegan Maharaj, Samira Kahou,
Mr. Prabhat, and Chris Pal. ExtremeWeather: A Large-scale Climate
Dataset for Semi-supervised Detection, Localization, and Understanding
of Extreme Weather Events. In NIPS, 2017.

[3] Wenqian Dong, Jie Liu, Zhen Xie, and Dong Li. Adaptive neural
network-based approximation to accelerate eulerian fluid simulation.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–22, 2019.

[4] L Savoldi Richard, R Bonifetto, Stefano Carli, A Froio, A Foussat, and
R Zanino. Artificial neural network (ann) modeling of the pulsed heat
load during iter cs magnet operation. Cryogenics, 63:231–240, 2014.

[5] P B. Wigley, P J. Everitt, Anton Hengel, John Bastian, M A. Sooriya-
bandara, Gordon McDonald, Kyle Hardman, C D. Quinlivan, Manju
Perumbil, Carlos claiton Noschang kuhn, I R. Petersen, Andre Luiten,
J Hope, N Robins, and Michael Hush. Fast machine-learning online
optimization of ultra-cold-atom experiments. Widley, 6, 07 2015.

[6] Amrita Mathuriya, Deborah Bard, Peter Mendygral, Lawrence Mead-
ows, James Arnemann, Lei Shao, Siyu He, Tuomas Kärnä, Diana Moise,
Simon J Pennycook, et al. Cosmoflow: Using deep learning to learn
the universe at scale. In SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 819–
829. IEEE, 2018.

[7] Prasanna Balaprakash, Romain Egele, Misha Salim, Stefan Wild, Venka-
tram Vishwanath, Fangfang Xia, Tom Brettin, and Rick Stevens. Scal-
able reinforcement-learning-based neural architecture search for cancer
deep learning research. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
pages 1–33, 2019.

[8] Liu Yang, Sean Treichler, Thorsten Kurth, Keno Fischer, David
Barajas-Solano, Josh Romero, Valentin Churavy, Alexandre Tartakovsky,
Michael Houston, Mr Prabhat, et al. Highly-ccalable, physics-informed
gans for learning solutions of stochastic pdes. In 2019 IEEE/ACM Third
Workshop on Deep Learning on Supercomputers (DLS), pages 1–11.
IEEE, 2019.

[9] Zhengchun Liu, Tekin Bicer, Rajkumar Kettimuthu, Doga Gursoy,
Francesco De Carlo, and Ian Foster. Tomogan: Low-dose x-ray
tomography with generative adversarial networks. arXiv preprint
arXiv:1902.07582, 2019.

[10] Zhengchun Liu, Tekin Bicer, Rajkumar Kettimuthu, and Ian Foster. Deep
learning accelerated light source experiments. In 2019 IEEE/ACM Third
Workshop on Deep Learning on Supercomputers (DLS), pages 20–28.
IEEE, 2019.

[11] Cong Liu, Jianhui Wang, and Jiaxin Ning. Optimal power flow (opf) in
large-scale power grid simulation. In FERC Conference, pages 23–24.
Citeseer, 2010.

[12] Steven J Fernandez, Mallikarjun Shankar, James J Nutaro, Yilu Liu,
Aleksandar D Dimitrovski, Olufemi A Omitaomu, Christopher S Groer,
Kyle L Spafford, and Ranga R Vatsavai. Real-time simulation of power
grid disruption, July 25 2013. US Patent App. 13/747,779.

[13] Tsung-Hao Chen and Charlie Chung-Ping Chen. Efficient large-scale
power grid analysis based on preconditioned krylov-subspace iterative
methods. In Proceedings of the 38th annual Design Automation
Conference, pages 559–562, 2001.

[14] Y Huang, T Kashiwagi, and S Morozumi. A parallel opf approach for
large-scale power systems. IEEE, 2002.

[15] Yi Guo, David J Hill, and Youyi Wang. Nonlinear decentralized control
of large-scale power systems. Automatica, 36(9):1275–1289, 2000.

[16] James A Momoh and JZ Zhu. Improved interior point method for
opf problems. IEEE Transactions on Power Systems, 14(3):1114–1120,
1999.

[17] Savu C Savulescu. Real-time stability in power systems: techniques for
early detection of the risk of blackout. Springer, 2014.

[18] Cosmin G Petra, Olaf Schenk, and Mihai Anitescu. Real-time stochastic
optimization of complex energy systems on high-performance comput-
ers. Computing in Science & Engineering, 16(5):32–42, 2014.

[19] Ghulam Mohi Ud Din and Angelos K Marnerides. Short term power
load forecasting using deep neural networks. In 2017 International
Conference on Computing, Networking and Communications (ICNC),
pages 594–598. IEEE, 2017.

[20] Neel Guha, Zhecheng Wang, Matt Wytock, and Arun Majumdar.
Machine learning for ac optimal power flow. arXiv preprint
arXiv:1910.08842, 2019.

[21] Kyri Baker. Learning warm-start points for ac optimal power flow. arXiv
preprint arXiv:1905.08860, 2019.

[22] Ahmed Zamzam and Kyri Baker. Learning optimal solutions for
extremely fast ac optimal power flow. arXiv preprint arXiv:1910.01213,
2019.

[23] Deepjyoti Deka and Sidhant Misra. Learning for dc-opf: Classifying
active sets using neural nets. arXiv preprint arXiv:1902.05607, 2019.

[24] Yeesian Ng, Sidhant Misra, Line A Roald, and Scott Backhaus. Sta-
tistical learning for dc optimal power flow. In 2018 Power Systems
Computation Conference (PSCC), pages 1–7. IEEE, 2018.

[25] David E. Johnson, Johnny R. Johnson, John L. Hilburn, and Peter D.
Scott. Electric Circuit Analysis (3rd Ed.). Prentice-Hall, Inc., USA,
1997.

[26] Sanjay Mehrotra. On the implementation of a primal-dual interior point
method. SIAM Journal on optimization, 2(4):575–601, 1992.

[27] Hongye Wang. On the computation and application of multi-period
security-constrained optimal power flow for real-time electricity market
operations. Cornell University, 2007.

[28] Ray D Zimmerman and Carlos E Murillo-Sánchez. Matpower 6.0 users
manual. PSERC: Tempe, AZ, USA, 2016.

[29] Jason M Cohen and Douglas B Page. System and method for economic
dispatching of electrical power, April 15 1997. US Patent 5,621,654.

[30] B. Stott, J. Jardim, and O. Alsac. Dc power flow revisited. IEEE
Transactions on Power Systems, 24(3):1290–1300, Aug 2009.

[31] R. D. Christie, B. F. Wollenberg, and I. Wangensteen. Transmission
management in the deregulated environment. Proceedings of the IEEE,
88(2):170–195, Feb 2000.

[32] A. A. Sousa, G. L. Torres, and C. A. Caizares. Robust optimal power
flow solution using trust region and interior-point methods. IEEE
Transactions on Power Systems, 26(2):487–499, May 2011.

[33] Steven H. Low. Convex relaxation of optimal power flowpart ii:
Exactness. IEEE Transactions on Control of Network Systems, 1:177–
189, 2014.

[34] R. A. Jabr. Radial distribution load flow using conic programming.
IEEE Transactions on Power Systems, 21(3):1458–1459, Aug 2006.

[35] N. Chiang, C. G. Petra, and V. M. Zavala. Structured nonconvex
optimization of large-scale energy systems using pips-nlp. In 2014
Power Systems Computation Conference, pages 1–7, Aug 2014.

[36] Miles Lubin, JA Julian Hall, Cosmin G Petra, and Mihai Anitescu. Par-
allel distributed-memory simplex for large-scale stochastic lp problems.
Computational Optimization and Applications, 55(3):571–596, 2013.

[37] Alfredo Vaccaro and Claudio Canizares. A knowledge-based framework
for power flow and optimal power flow analyses. IEEE Transactions on
Smart Grid, PP:1–1, 04 2016.

[38] Xiang Pan, Tianyu Zhao, and Minghua Chen. Deepopf: A deep neural
network approach for security-constrained dc optimal power flow. arXiv
preprint arXiv:1910.14448, 2019.

[39] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.
[40] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of

research on machine learning applications and trends: algorithms,
methods, and techniques, pages 242–264. IGI Global, 2010.

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems,
pages 8024–8035, 2019.

[42] Baljinnyam Sereeter, Cornelis Vuik, and Cees Witteveen. On a compar-
ison of newton–raphson solvers for power flow problems. Journal of
Computational and Applied Mathematics, 360:157–169, 2019.

[43] Baljinnyam Sereeter, Werner van Westering, Cornelis Vuik, and Cees
Witteveen. Linear power flow method improved with numerical analysis
techniques applied to a very large network. Energies, 12(21):4078, 2019.

[44] Katarzyna Janocha and Wojciech Marian Czarnecki. On loss func-
tions for deep neural networks in classification. arXiv preprint
arXiv:1702.05659, 2017.

[45] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,
John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient
primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[46] Alex Gittens and Michael W Mahoney. Revisiting the nyström method
for improved large-scale machine learning. The Journal of Machine
Learning Research, 17(1):3977–4041, 2016.

[47] Robert Dawson. How significant is a boxplot outlier? Journal of
Statistics Education, 19(2), 2011.

[48] Naiyuan Chiang and Andreas Grothey. Solving security constrained
optimal power flow problems by a structure exploiting interior point
method. Optimization and Engineering, 16(1):49–71, 2015.

[49] M. Schanen, F. Gilbert, C. G. Petra, and M. Anitescu. Toward
multiperiod ac-based contingency constrained optimal power flow at

large scale. In 2018 Power Systems Computation Conference (PSCC),
pages 1–7, 2018.

[50] Denghui Lu, Han Wang, Mohan Chen, Jiduan Liu, Lin Lin, Roberto
Car, Weile Jia, Linfeng Zhang, et al. 86 pflops deep potential molecular
dynamics simulation of 100 million atoms with ab initio accuracy. arXiv
preprint arXiv:2004.11658, 2020.

[51] Peter AR Ade, N Aghanim, M Arnaud, Mark Ashdown, J Aumont,
C Baccigalupi, AJ Banday, RB Barreiro, JG Bartlett, N Bartolo, et al.
Planck 2015 results-xiii. cosmological parameters. Astronomy & Astro-
physics, 594:A13, 2016.

	I Introduction
	II Background
	II-A Problem Formulation for AC-Optimal Power Flow
	II-B Primal-dual Interior Point Solver

	III Related Work
	IV Overview
	V Sensitivity Study
	VI An interactive learning model
	VI-A Multitask Learning
	VI-B Domain-Specific Design
	VI-C Details on Multitask Learning Model

	VII Physics-Informed Learning
	VII-A Embedding AC Nodal Power Balance Equations
	VII-B Guarding Inequality Constraints
	VII-C Optimization of Cost Function
	VII-D Implying Lagrangian Conservation

	VIII Evaluation
	VIII-A Smart-PGSim Performance Evaluation
	VIII-B Performance Breakdown
	VIII-C Prediction Accuracy
	VIII-D Efficiency of Multitask Learning and Physical Constraints
	VIII-E Scalability Analysis on Multi-Node Systems
	VIII-F Comparison with Prior Work

	IX Discussions
	IX-A Generality of Proposed Approach
	IX-B Analysis of Diverging Cases

	X Conclusions
	XI Acknowledgement
	References

