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Abstract—Understanding fundamental kinetic processes is im-
portant for many problems, from plasma physics to gas dynamics.
A first-principles approach to these problems requires a statistical
description via the Boltzmann equation, coupled to appropriate
field equations. In this paper we present a novel version of the
discontinuous Galerkin (DG) algorithm to solve such kinetic
equations. Unlike Monte-Carlo methods, we use a continuum
scheme in which we directly discretize the 6D phase-space
using discontinuous basis functions. Our DG scheme eliminates
counting noise and aliasing errors that would otherwise con-
taminate the delicate field-particle interactions. We use modal
basis functions with reduced degrees of freedom to improve
efficiency while retaining a high formal order of convergence. Our
implementation incorporates a number of software innovations:
use of JIT compiled top-level language, automatically generated
computational kernels and a sophisticated shared-memory MPI
implementation to handle velocity space parallelization.

Index Terms—Discontinuous Galerkin, kinetic equations, com-
putational physics

I. INTRODUCTION

Understanding fundamental kinetic processes is important
in many physical problems, from the astrophysics of self-
gravitating systems, to plasma physics and gas dynamics.
Several recent satellite missions observe the detailed structure
of these systems, for example, the GAIA [4] mission that aims
to collect the position, velocity and other data on billions of
stars in our galaxy, or the Parker Solar Probe [3] mission that
is studying the detailed structure of the hot solar wind plasma
that permeates the solar system. Each of these missions aims
to measure the phase-space of the “particles,” e.g, stars in
the case of GAIA and electrons and ions in case of Parker
Solar Probe. The quality of data is unprecedented and promises
to greatly enrich our understanding. Clearly, large-scale sim-
ulation capability is needed to interpret and understand the
detailed physics revealed by these measurements.

This work was partially supported by U.S. Department of Energy con-
tract No. DE-AC02-09CH11466 for the Princeton Plasma Physics Labora-
tory (AH) and a NASA Earth and Space Science Fellowship (Grant No.
80NSSC17K0428) to JJ. Both authors have contributed equally to the research
presented here.

A near first-principles approach is to look at the statistical
description via the Boltzmann equation coupled to appropriate
field equations: Poisson equations for self-gravitating system
and Maxwell’s equations for plasmas. The challenge in solving
such systems is the inherent nonlinearity due to the coupling of
the particles and fields, and that the particle dynamics evolves
in 6D phase-space (position-velocity), requiring a very careful
treatment of all field-particle interaction terms.

The fundamental object in the Boltzmann description is
the particle distribution function f(z) that evolves in phase-
space z ≡ (x,v). The particle distribution function is defined
such that f(x,v)dvdx is the number of particles in phase-
space volume dz = dvdx at position-velocity location (x,v).
The motion of particles comes about from free-streaming
and particle acceleration and is described by the Boltzmann
equation

∂f

∂t
+∇x · (vf) +∇v · (af) = C[f ], (1)

where ∇x and ∇v are gradient operators in configuration and
velocity space respectively, and a is the acceleration. To treat
the phase-space as a whole we will often use ∇z ≡ (∇x,∇v)
and denote the phase-space flux as α ≡ (v,a). The right-
hand side of Eq. (1) represents collision terms that redistribute
the particles in velocity space, but in a manner that conserves
density, momentum and energy. Even though the streaming
of particles, ∇x · (vf), in Eq. (1) is linear, the collisions
and coupling to the fields via the acceleration, determined
by velocity moments of the distribution function, makes the
complete particle+field equations a highly nonlinear, integro-
differential, 6D system.

The high dimensionality of Eq. (1) means that for most
problems, especially in 6D, one requires the largest compu-
tational resources one can muster. In this paper we present a
novel version of the discontinuous Galerkin (DG) algorithm
to solve such kinetic equations. Unlike traditional and widely-
used Monte Carlo methods, such as the particle-in-cell (PIC)
method for plasmas, we use a continuum scheme in which
we directly discretize the 6D phase-space using discontinuous
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basis functions. A continuum scheme has the advantage that
the counting noise inherent in PIC methods is eliminated,
however, at higher computational complexity. Once the basis
set and a numerical flux function are determined, we compute
all volume and surface terms in the DG algorithm exactly,
eliminating all aliasing errors that would otherwise contam-
inate the delicate field-particle interactions. This elimination
of aliasing errors is a critical aspect of capturing the physics,
both in the linear and nonlinear regimes.

We use modal basis functions (of the Serendipity family [5])
with reduced degrees of freedom (DOF) to improve efficiency
while retaining a high formal order of convergence. Further,
use of a computer algebra system (CAS) allows us to compute
all integrals analytically, and orthonormalization of the basis
leads to very sparse update kernels minimizing FLOPs and
eliminating all tensor-tensor products and explicit quadratures.

We extend previous work [27], where the authors presented
a nodal DG algorithm to solve the Boltzmann equation in the
context of plasma physics. In the plasma physics context, the
Boltzmann equation, coupled to Maxwell’s equations, forms
the Vlasov-Maxwell system of equations, in which charged
particles evolve in self-consistent electromagnetic fields. For
the Vlasov-Maxwell system of equations, the acceleration
vector is given by a = q(E + v × B)/m, where q and m
are particle charge and mass, and E and B are electric and
magnetic fields, determined from Maxwell’s equations. The
particle contribution to the electromagnetic fields is determined
from the plasma currents that appears in Ampere’s law. The
work of [27] showed that a DG scheme can conserve the mass
and, when using central fluxes for Maxwell equations, total
energy (particle+field) exactly. Importantly though, unlike the
case of fluid problems (Euler, Navier-Stokes, or magnetohy-
drodynamics equations), there is no explicit energy equation
that is evolved. In fact, the energy (as discussed in Section II)
depends on moments of the distribution function as well as the
L2-norm of the electromagnetic field. Hence, ensuring both the
accuracy of the evolution of the energy, and that the energy is
conserved, is not trivial and care is needed to maintain energy
conservation. The modal DG scheme presented here does
not change the properties proved in [27], but it does greatly
improve the efficiency and scalability of the DG algorithm,
while maintaining all the scheme’s favorable properties.

Our algorithms are implemented in the open-source
Gkeyll [1], [2] code that incorporates a number of soft-
ware innovations: use of JIT compiled top-level language,
CAS generated computational kernels, and a sophisticated
shared-memory MPI implementation to handle velocity space
parallelization. We have obtained sub-quadratic scaling of
the computational kernels with DOFs per-cell and also good
parallel weak-scaling of the code on the Theta supercomputer.

The modal, alias-free, matrix-free, and quadrature-free DG
algorithm presented here has also been applied to the dis-
cretization of Fokker-Planck equations [22]. We note though
that, to our knowledge, this paper describes the first instance
of the application of a modal DG algorithm which is simulta-
neously alias-free, matrix-free, and quadrature-free to kinetic

equations, especially nonlinear kinetic equations. In the rest
of the paper we describe some aspects of our schemes and
innovation we have made to make high-dimensional problems
within reach, at least on large supercomputers.

II. MODAL DISCONTINUOUS GALERKIN ALGORITHM

As context for the fundamental algorithmic advancement of
this paper, we briefly review the ingredients of a discontinuous
Galerkin scheme. To construct a DG discretization of a partial
differential equation (PDE) such as the kinetic equation, we
discretize our phase space domain into grid cells, Kj , multiply
the kinetic equation by test functions w, and integrate the
phase space gradient by parts to construct the discrete-weak
form, ∫

Kj

w
∂fh
∂t

dz +

∮
∂Kj

w−n · F̂ dS

−
∫
Kj

∇zw ·αhfh dz = 0. (2)

The discrete-weak form is then evaluated in each grid cell Kj

and for every test function w(z) in a chosen basis expansion,
with the discrete representation of the particle distribution
defined as

fh(z, t) =

Np∑
i=1

fi(t)wi(z), (3)

for the Np test functions which define our basis. We likewise
have a discrete representation for the phase space flux, αh,
which, for example, looks like

αh =
(
v,

q

m
[Eh + v ×Bh]

)
, (4)

for the particular Boltzmann equation for the evolution of a
collisionless plasma, i.e., the Vlasov equation. The numerical
flux function, F̂, is some suitably appropriate prescription for
the interface fluxes, such as upwind fluxes, in analogy with
traditional finite volume methods. In contrast to finite volume
methods though, the numerical flux function has its own basis
expansion, e.g., for central fluxes,

F̂ =
1

2

(
α+

h f
+
h + α−h f

−
h

)
, (5)

where the superscript −(+) denote the basis expansions of αh

and fh evaluated just inside (outside) the cell interface.
While the discrete-weak form is a mathematically complete

formulation of the DG algorithm, to translate the discrete-
weak form into code, a suitable choice of basis functions
for w(z) must be made to evaluate the integrals in the
discrete-weak form. Restricting ourselves to polynomial bases,
a conventional approach in the application of DG methods to
hyperbolic PDEs is a nodal basis, wherein the basis set is
defined by a set of polynomials whose values are known at
nodes. An example nodal basis in 1D is

fh(x, t) =

Np∑
k=1

fk(ξk, t)`k(x), (6)



where `k are the Lagrange interpolating polynomials,

`k(x) =

Np∏
j=1,j 6=k

x− ξj
ξk − ξj

, (7)

and ξk are the k nodes by which the polynomials are defined.
Because the polynomials are defined to take a value of one at
one node and zero at all other nodes, the coefficients fk are
thus known at the specific set of nodes.

Nodal bases are common in the DG literature because of the
computational advantages they provide for many applications,
most especially the simplification of many of the integrals if
one substitutes products and other nonlinear combinations of
basis functions as

αh(z, t)fh(z, t) ≈ αk(ξk, t)fk(ξk, t). (8)

Such a simplification reduces the number of operations re-
quired to evaluate the discrete-weak form and numerically
integrate the PDE of interest, but at a cost: aliasing errors
are introduced into the solution since nonlinear combinations
of the nodal basis set are not contained in the basis [24], [25].
These aliasing errors have been studied in the context of fluids
equations, such as the Euler equations, the Navier-Stokes equa-
tions, or the equations of magnetohydrodynamics, where it is
found that these aliasing errors can have a destabilizing effect
[32]. However, the computational gains from the simplification
of the integrals are large enough that significant effort has been
spent on mitigating these errors with filtering and artificial
dissipation [13], [14], [18], [44] or split-form formulations1

[15]–[17], [19], [20], [50]. Because fluid equations involve
explicit conservation relations and the aliasing errors manifest
in the smallest scales and highest wavenumbers, there is far
less concern that mitigation techniques such as filtering or
artificial dissipation will lower the quality of the solution,
at least at scales above the resolution of the simulation.
The ability to control aliasing errors while maintaining the
favorable computational complexity of a nodal scheme is of
tremendous utility for the simulation of large scale problems
in computational fluid dynamics.

Unfortunately, these aliasing errors lead to uncontrolled
numerical instabilities for kinetic equations. To determine
the source of these alias-driven numerical instabilities, we
consider the example of the Vlasov equation for the evolution
of a collisionless plasma. When employing at least piecewise
quadratic polynomials, the DG discretization involves the
evolution of the |v|2 moment of the particle distribution
function. But the 1/2m|v|2 velocity moment is the particle

1In the split-form formulation, conservative and non-conservative forms of
the equation at the continuous level are averaged to produce a different (but
mathematically equivalent), but ultimately more computationally favorable,
equation to discretize.

energy, whose evolution is given by

d

dt

∑
j

∫
Kj

1

2
m|v|2fh dz

−∑
j

∫
Kj

∇z

(
|v|2

)
·αhfh dz

=
d

dt

∑
j

∫
Kj

1

2
m|v|2fh dz

−∑
j

∫
Ωj

Jh ·Eh dx, (9)

where we have summed over all cells to eliminate the surface
term, as in [27], and substituted for the volume term the
discrete exchange of energy between the particles and the
electromagnetic fields, Jh · Eh. To obtain Eq. (9), we have
integrated over velocity space and reduced the second integral
to an integration over the configuration space cell Ωj .

In order for the substitution in Eq. (9) to be valid, the inte-
grations of the surface and volume terms must be performed
exactly, or at least to a high precision, lest the aforementioned
aliasing errors manifest themselves as the “energy content” of
the velocity moments being transported in uncontrolled and
undesirable ways. It would be nigh impossible to correct the
rearrangement of the “energy content” of the basis expansion
in a physically reasonable way, much less a stable way,
because these errors are entering at all scales and in both fields
and particles, and destroying a fundamental property of the
equation system: the exchange of energy between the plasma
and electromagnetic fields is given by Jh · Eh. If we cannot
safely apply standard techniques such as filtering to mitigate
aliasing errors, we must then eliminate these errors in their
entirety.

Eliminating aliasing errors with a nodal basis comes at
a high cost though. The use of numerical quadrature, even
anisotropic quadrature as in [27], leads to a computational
complexity O(NqNp), where Nq is the number of quadrature
points required to exactly integrate the nonlinear term(s) in the
kinetic equation. The number of quadrature points exponen-
tially increases with dimensionality, leading to an incredibly
expensive numerical method for five and six dimensional
problems.

We can gain insight into how to manage this cost, while
respecting our requirement to completely eliminate of aliasing
errors, by considering the fundamental operation of our DG
method. Substitution of the full expansions for the phase space
flux, αh, and distribution function, fh, into the volume term
in the discrete weak form gives us∫

Kj

∇zwl(z) ·αh(z, t)fh(z, t) dz = (10)

Np∑
m=1

Np∑
n=1

(∫
Kj

wm(z)wn(z)∇zwl(z) dz

)
︸ ︷︷ ︸

Clmn

·αm(t)fn(t),

where we have encompassed the spatial discretization in the
evaluation and convolution of the entries in the tensor, Clmn.
If this tensor is dense, the convolution of Clmn to evaluate
the volume integral in the discrete-weak form will have a
computational complexity of O(N3

p ), which would suffer



the same curse of dimensionality as the use of numerical
quadrature.

However, if Clmn could be made sparse, this would corre-
spond to a systematic reduction in the number of operations
required to evaluate the volume integral, and thus reduce
the number of operations to numerically integrate the kinetic
equation with our DG method. We can indeed sparsify Clmn

with the use of a modal, orthonormal polynomial basis set, as
many entries of the tensor will be zero if the basis functions
w(z) are orthonormal. In addition to the reduction in the
number of operations required to evaluate the volume integral,
the use of an orthonormal basis to sparsify Clmn allows for a
complete redesign of the algorithm to maximize performance
on modern architectures.

We now describe the principal algorithmic advancement
of this paper: an alias-free, matrix-free, and quadrature-free
DG algorithm for kinetic equations. By choosing a modal,
orthonormal polynomial basis, we can symbolically integrate
the individual terms in the tensor Clmn and explicitly evaluate
the sums which form the core of the update formulae. We
construct computational kernels using the Maxima [43] CAS
to evaluate sums such as

outl =

Np∑
m=1

Np∑
n=1

Clmn ·αnfm, (11)

with similar computational kernels for the surface integrals.
We show an example computational kernel for the volume
integral of the Vlasov equation in Figure 1 for the piecewise
linear tensor product basis in one spatial and two velocity
dimensions (1X2V).

Figure 1 shows a C++ computational kernel that can be
called for every cell Kj of a structured, Cartesian grid in phase
space, as we are passing all the information required to the
kernel to determine where we are physically in phase space,
i.e., the local cell center coordinate and grid cell size. The
output of this computational kernel, the out array, forms a
component of a system of ordinary differential equations,

dfl
dt

=

Np∑
m=1

Ulm · F̂m(t) +

Np∑
m=1

Np∑
n=1

Clmn ·αn(t)fm(t), (12)

where the operation Ulm · F̂m(t) encodes the evaluation of
the surface integrals on each surface of the cell and can also
be pre-generated using a CAS2. Given the computation of
the surface and volume integrals in every cell, this system
of ordinary differential equations can be discretized with an
appropriate ODE integrator such as a strong-stability preserv-
ing Runge-Kutta (SSP-RK) method, as is done in Gkeyll.
We note that we will likewise have computational kernels for

2In the construction of this ordinary differential equation system, the matrix

Mkl =

∫
Kj

wk(z)wl(z)dz,

must be inverted to solve for dfl/dt, but due to the choice of a modal,
orthonormal basis this matrix is the identity matrix and thus requires no
additional operations to invert.

Maxwell’s equations, or another set of field equations such as
Poisson’s equations for self-gravitating systems, which must
be evaluated at each stage of a SSP-RK method to complete
the field-particle coupling.

Notably, the computational kernel in Figure 1 has no
matrix data structure, much less the requirement to perform
quadrature since we have already analytically evaluated the
integrals which make up the entries of Clmn with a CAS and
written out the results to double precision. Further, we unroll
all loops, eliminate common expressions and collect terms to
ensure that the update uses fewer FLOPs3. Using the local
cell-center and grid spacing, we construct the phase space
expansion of the phase space flux, αh, for each dimension,
and then compute the convolution of the tensor Clmn summed
over each component of the phase space flux. Thus, not only
is the method alias-free because the integrals which form
our spatial discretization have been evaluated to machine-
precision, the method is also quadrature-free and matrix-free.
Such quadrature-free methods using orthogonal polynomials
were studied in the early days of the DG method [6], [40] and
are still applied to a variety of linear hyperbolic equations,
such as the acoustic wave equation for studies of seismic
activity, the level set equation, and Maxwell’s equations [29],
[30], [36], [42]. Even for alternative formulations of DG
which do not seek to eliminate aliasing errors by exactly
integrating the components of the discrete weak form, matrix-
free implementations are desirable to reduce the memory
footprint of the scheme [12].

To our knowledge, the construction of the modal, alias-
free, matrix-free, and quadrature-free DG algorithm, hence-
forth abbreviated as simply the modal DG algorithm, is the
first instance of such an algorithm design in the literature.
This particular algorithm design has numerous advantages,
especially for nonlinear kinetic equations such as the Vlasov
equation for collisionless plasma dynamics. The sparseness of
this modal DG algorithm leads to a reduction in the number
of operations required to evaluate the volume and surface
integrals, e.g., the computational kernel in Figure 1 has ∼ 70
multiplications, whereas the update for numerical quadrature
applied to an alias-free nodal basis has ∼ 250 multiplications.
Critically, the modal DG algorithm both reduces the number
of operations required to update the solution while respecting
our requirement that we eliminate aliasing errors for stability
and accuracy, thus providing an equally correct solution at a
fraction of the cost. In addition, the reduced memory footprint
from requiring no matrix data structure and the unfolding of
the tensor-tensor convolutions leads to additional performance
improvements as the compiler can aggressively optimize the
expressions. To more precisely evaluate performance and
determine quantitatively the computational complexity of the
modal DG algorithm we will perform a numerical experiment
in the next section.

3The problem of ensuring least FLOP counts is difficult, and we apply
most reasonably straightforward tricks we can think of. Certainly, a further
reduction is likely possible and could be explored with more sophisticated
optimization tools.



Fig. 1. The computational kernel for the volume integral for the collisionless advection in phase space of the particle distribution function in one spatial
dimension and two velocity dimensions (1X2V) for the piecewise linear tensor product basis. Note that this computational kernel takes the form of a C++
kernel that can be called repeatedly for each grid cell Kj depending on the local cell center coordinate and the local grid spacing. Here, the local cell
coordinate is the input “const double w” and the local grid spacing is the input “const double dxv”. The out array is the increment to the right hand side due
this volume integral contribution in a forward Euler time-step. To complete a forward Euler time-step for the evolution of the particle distribution function,
for a given phase space cell, we require the surface contributions for the collisionless advection.

III. COMPUTATION COMPLEXITY

Although we have evidence from the computational kernel
presented in Figure 1 that the number of operations is indeed
reduced compared to the use of numerical quadrature, we
would like to determine generally how sparse the tensors
required to update the discrete kinetic equation are. We again
take the example of the Vlasov equation, and in Figure 2 show
the results of a numerical experiment using the computational
kernels generated from a variety of basis expansion and
dimensionality combinations. We show the time to evaluate
the computational kernels in a phase space cell for just the
streaming term, αh = (v, 0) in the left plot of Figure 2, and
the evaluation of the full phase space update, streaming and
acceleration, in the right plot. From the scaling of the cost
to evaluate these computational kernels we can determine the
computational complexity of the algorithm with respect to the
number of degrees of freedom per cell, i.e., the number of
basis functions in our expansion, Np.

It is immediately apparent that even with the steepening
of the scaling as the number of degrees of freedom increases
there is at least some gain over the use of direct quadrature
to evaluate the integrals in the discrete weak form because,
at worst, the total, streaming plus acceleration, update scales
roughly as O(N2

p ). In fact, this scaling of, at worst O(N2
p ), is

exactly the scaling obtained by under-integrating the nonlinear

term in a nodal basis [24], [25]. But critically, we have
obtained this same (or better) computational complexity while
eliminating aliasing errors from our scheme, as we require for
stability and accuracy.

However, the improvement in the scaling is actually better
than it first appears. The scaling shown in Fig. 2 is the cost
scaling of the full update to perform a forward Euler step in
a phase space cell, i.e., in six dimensions, three spatial and
three velocity, the total update time in the right plot of Fig. 2
is the time to compute the six dimensional volume integral
plus the twelve required five dimensional surface integrals4.
This means the scaling we are quoting is irrespective of
the dimensionality of the problem, unlike in the case of the
nodal basis, where the quadrature must be performed for
every integral and there is a hidden dimensionality factor in
the scaling. In other words, in six dimensions, what at first
may only seem like a factor of Nq/Np ∼ 7 improvement
moving from a nodal to an orthonormal, modal representation
is in fact a factor of dNq/Np ∼ 40 improvement in the
scaling once one includes the dimensionality factor, up to
the constant of proportionality of the scaling. Of course, one

4Interestingly, the choice of orthonormal basis and analytically computing
all integrals leads to the rather surprising result that the 6D volume integral is
much cheaper than the surface integrals. In fact, the total cost of our algorithms
is driven entirely by the surface integration costs.



Fig. 2. Scaling, i.e., the time to evaluate the update versus the number degrees of freedom, Np, in a cell, of just the streaming term, α = (v, 0), (left) and
the total, streaming and acceleration, update (right) for the Vlasov solver. The dimensionality of the solve is denoted by the relevant marker, e.g. 1x1v: one
configuration space dimension and one velocity space dimension, and the three colors correspond to three different basis expansions: black: maximal-order,
blue: Serendipity, and red: tensor. Importantly, this is the scaling of the full update, for every dimension, i.e., the 3x3v, three configuration space and three
velocity space dimensions, data points include the six dimensional volume integral and all twelve five dimensional surface integrals. In addition, we emphasize
that the computational complexity is robust to the basis type. The cost of the method scales simply with the number of degrees of freedom within a cell, and
no additional complexity is introduced when using the full tensor product basis versus the reduced Serendipity or maximal-order bases.

must also compare the size of the constant of proportionality
multiplying both scalings to accurately compare the reduction
in the number of operations and improvement in the overall
performance, since said constant of proportionality can either
tell us the picture is much rosier, that in fact the improvement
in performance is larger than we expected, or much more
dire, that the improvement in the scaling is offset by a larger
constant of proportionality.

To determine the constant of proportionality, we perform a
more thorough numerical experiment and compare the cost
of the alias-free nodal scheme in [27] and the alias-free
modal scheme presented here for a complete collisionless
Vlasov–Maxwell simulation. Both schemes are implemented
in Gkeyll which will be discussed more extensively in Sec-
tion IV. We consider the following test: a 2X3V computation
done with both the nodal and the modal algorithms, with
a detailed timing breakdown of the most important step of
the algorithm, the Vlasov time step. The reader is referred
Table I for a summary of the following two paragraphs if
they wish to skip the details of the computer architecture and
optimizations employed. Both computations are performed in
serial on a Macbook Pro with an Intel Core i7-4850HQ
(“Crystal Well”) chip, the same architecture on which the
scaling analysis in Figure 2 was performed. The only opti-
mization in the compilation of both algorithms is “O3” and
both versions of the code are compiled with the C++ Clang
9.1 compiler.

Specific details of the computations are as follows: a 162×
163 grid, with polynomial order two, and the Serendipity basis,
112 degrees of freedom per cell. The two simulations were
run for a number of time-steps to allow us to more accurately
compute the time per step of just the Vlasov solver, as well as

the time per step of the complete simulation. The time-stepper
of choice for this numerical experiment is the three-stage, third
order, SSP-RK method [11], [45]. To make the simulations as
realistic as possible in terms of memory movement, we also
evolve a “proton” and “electron” distribution function, i.e.,
we evolve the Vlasov-Maxwell system of equations for two
plasma species.

To make the comparison as favorable as possible for the
nodal algorithm, we also employ the highly tuned Eigen
linear algebra library, Eigen 3.3.4 [21], to perform the dense
matrix-vector multiplies required to evaluate the higher order
quadrature needed to eliminate aliasing errors in the nodal
DG discretization. And we note that the nodal algorithm is
optimized to use anisotropic quadrature (just high enough to
eliminate aliasing) and uses only the surface basis functions
in the surface integral evaluations, so we are minimizing the
number of operations as much as possible to reduce the cost
of the alias-free nodal scheme.

The results are as follows: for the nodal basis, the com-
putation required 1079.63 seconds per time step, of which
1033.89 seconds were spent solving the Vlasov equation. The
remaining time is split between the computation of Maxwell’s
equations, the computation of the current from the first velocity
moment of the distribution function to couple the particles
and the fields, and the accumulation of each Runge-Kutta
stage from our three stage Runge-Kutta method. For the modal
basis, the computation required 67.43 seconds per time step, of
which 60.34 seconds were spent solving the Vlasov equation.

In the nodal case, we emphasize that we achieve a rea-
sonable CPU efficiency, and the nodal timings are not a
matter of poor implementation. We estimate the number of
multiplications in the alias-free nodal algorithm required to



Computer Architecture Compiler
MacBook Pro Intel Core i7-4850HQ Clang 9.1 C++
(High Sierra OS) (“Crystal Well”)
Optimization Flags Grid Size Polynomial Order
“O3,” 162 × 163 Serendipity quadratic,
Eigen 3.3.4 for nodal 112 degrees of freedom
Nodal Total Time Modal Total Time Total Time Reduction
1079.63 seconds

time-step 67.43 seconds
time-step ∼ 16

Nodal Vlasov Time Modal Vlasov Time Vlasov Time Reduction
1033.89 seconds

time-step 60.34 seconds
time-step ∼ 17

TABLE I
SUMMARY OF THE PARAMETERS FOR THE NUMERICAL EXPERIMENT TO
COMPARE THE FULL COST OF AN ALIAS-FREE NODAL ALGORITHM AND

AN ALIAS-FREE, QUADRATURE-FREE, AND MATRIX-FREE ORTHONORMAL,
MODAL ALGORITHM.

perform a full time-step is ∼ 3e12, three trillion, once one
considers the fact that we are evolving two distribution func-
tions with a three-stage Runge–Kutta method. One thousand
seconds to perform three trillion multiplications corresponds
to an efficiency of ∼ 3e9 flops per second (3 GFlops/s). This
estimate is within 50 percent of the measured efficiencies of
Eigen’s matrix-vector multiplication routines for Eigen 3.3.4
on a similar CPU architecture to the one employed for this
test [21], so we argue that the cost of the alias-free nodal
algorithm is due to the number of operations required and not
an inefficient implementation of the algorithm5.

Given these findings for the performance of the modal and
nodal algorithms, it is then worth discussing how this im-
provement in the timings using the modal algorithm compares
with our expectations. From the scaling of the modal basis,
we would anticipate the gain in efficiency in five dimensions
would be around a factor of twenty, a factor of four from
the reduction in the scaling from O(NqNp) to O(N2

p ), and
an additional factor of five from the latter scaling containing
all of the five dimensional volume integrals and the ten four
dimensional surface integrals. We can see that the gain in just
the Vlasov solver is ∼ 17, while the gain in the overall time
per step is ∼ 16, not quite as much as we would naively
expect, but still a sizable increase in the speed of the Vlasov
solver. The reduction in the overall time is due to the fact
that, while the time to solve Maxwell’s equations and compute
the currents to couple the Vlasov equation and Maxwell’s
equations is reduced, these other two costs, in addition to the
cost to accumulate each Runge-Kutta stage, are not sped-up
as dramatically as the time to solve the Vlasov equation is.

Before we conclude this section, the cost of the alias-free
nodal scheme is worth additional discussion, most especially
whether the alias-free nodal scheme can be optimized to be

5Note that this estimate for the efficiency of the nodal scheme, as well as the
measured efficiency of Eigen 3.3.4’s matrix-vector multiplication routines, are
for a serial computation on one core. Although the theoretical peak efficiency
of an Intel Core i7-4850HQ is ∼ 150 GFlops/s, we are not leveraging the
four cores and eight hardware threads for the purposes of this cost analysis.
As we will show in Section IV, both the nodal and modal algorithms achieve
good parallel scaling since these methods require only local communication,
and we could thus scale the time per step down and measured floating point
efficiency up performing this cost analysis test in parallel.

competitive with the alias-free modal scheme. The simplest
means of further optimization of the nodal algorithm would be
vectorize the matrix-vector multiplications over grid elements
to produce matrix-matrix products. Such an algorithmic rear-
rangement could lead to a factor of two to four improvement
given Eigen benchmarks for matrix-matrix products via more
explicitly vectorizable code. However, with our findings of
the significant speed-up from the nodal scheme to the modal
scheme, even an aggressive optimization of the nodal scheme
derived and implemented in [27] would still not be competitive
with the modal scheme derived and implemented here.

It is worth further commenting on the sizable amount of
research on efficiency improvements to nodal implementations
of DG algorithms beyond just an implementation which is
amenable to more aggressive vectorization and fast matrix-
matrix products. There exist algorithmic improvements which
require the use of tensor product bases, which increases the
number of degrees of freedom per cell, but can significantly
reduce the number of flops required to perform the quadrature
based update using the combination of sum-factorization and
a fast Kronecker product6 [12], [37], [38]. While these tech-
niques have not yet been applied to higher dimensional kinetic
equations, the improvement from O((p + 1)2d) operations
per cell for the tensor product basis (Np = (p + 1)d) to
O(d(p + 1)d+1) would be a sizable scaling improvement for
five and six dimensional problems. However, while it is not
necessary to have the same number of quadrature points as
basis functions in each direction to exploit the tensor product
structure with the combination of sum-factorization and a fast
Kronecker product, the optimal scaling quoted still requires
this connection between the number of quadrature points and
number of basis functions. Thus, to eliminate aliasing errors,
as we require for stable discretization of kinetic equations, the
extension to these techniques for when the number of quadra-
ture points is larger than the number of basis functions, and
the extra interpolation required, would be a critical component
to applying these optimizations to a nodal DG discretization
of the kinetic equation.

Such an extension was utilized in [12] to examine the
efficiency of sum factorization and fast Kronecker products
for over-integration of DG discretizations of compressible and
incompressible Navier-Stokes. While we can only speculate
about the resulting algorithm cost of these techniques for an
alias-free nodal scheme, we can note the efficiency of our
alias-free modal scheme in comparison to the reported effi-
ciency of the compressible Navier-Stokes in [12]. [12] define
the efficiency of their compressible Navier-Stokes solver as

Eop =
# DOFs

# cores · twall
, (13)

i.e., how many degrees of freedom can be updated per second
per core. Note that this efficiency is defined per scalar value,

6With tensor product bases and a tensor product quadrature, instead of
interpolating a given basis function onto all Nq = (p+1)d quadrature points
in the tensor basis, one can factorize the sums to perform the interpolations
and evaluations along the quadrature in a given direction, reducing the number
of quadrature evaluations from O((p+ 1)d) to O(d(p+ 1)).



so although the Navier-Stokes’ equations are a vector set of
equations, this definition is still amenable to comparisons to
a measured efficiency for a scalar partial differential equation
such as the Boltzmann (or Vlasov) equation of interest here.
In addition, this efficiency is measured on the complete
operator to evaluate the spatial discretization, and thus does
not include multiplicative factors from evaluating the spatial
discretizations in a multi-stage time-stepping routine, e.g., an
explicit Runge-Kutta updater. In other words, this efficiency
comparison is for the cost to take a forward Euler time-
step with a DG spatial discretization. Two caveats to the
comparison are that the solver in [12] includes a diffusion
operator for the viscosity of the fluid, which is a nontrivial
component of the cost, and of course that the Navier-Stokes
solver in [12] is only three dimensional.

For the case of the necessary over-integration to resolve
quadratic nonlinearities, Nq = (3p+ 1)/2, in each dimension,
[12] finds that they can update 107 DOFs per second per core
with a p = 2 tensor product basis in three dimensions. We
can obtain an efficiency from the computational complexity
experiment performed in Figure 2 and we find we can update
∼ 1.67 × 107 DOFs per second per core with the p = 2
Serendipity basis in five dimensions (2X3V). Although this
comparison is not one-to-one due to the fundamental dif-
ferences in the spatial discretizations being compared, [12]
includes the cost of a DG discretization of a diffusion operator
and we are discretizing a higher dimensional partial differential
equation7, the comparison is nonetheless illustrative that the
modal scheme derived and implemented here is competitive
with other implementations of DG methods. And critically, in
addition to being competitive cost-wise, we emphasize again
that our DG scheme is alias-free, as we require for stable
discretizations of kinetic equations. Having demonstrated the
performance of our modal DG algorithm, we turn now to ad-
ditional implementation details within the Gkeyll simulation
framework.

IV. GKEYLL IMPLEMENTATION AND PARALLEL SCALING

The modal kinetic solvers are implemented in Gkeyll,
a modern computational software designed to solve a broad
variety of plasma problems. Though the focus here is “full”
kinetic equations, e.g. the Boltzmann equation or the Vlasov
equation, Gkeyll also contains solvers for reduced kinetic
equations such as gyrokinetics [23], [41], as well as for multi-
moment multifluid equations [10], [49].
Gkeyll uses a number of software innovations which we

describe briefly here for completeness. In the context of this
paper, the key features of Gkeyll are a low-level infrastruc-
ture to build new solvers and a high-level “App” system that

7Though we note that Gkeyllincludes an alias-free modal implementation
of a Fokker–Planck operator for collisions in a plasma and involves a DG
discretization of a diffusion operator—see [22] for further details. We find
that the inclusion of this discrete Fokker–Planck operator roughly doubles
the cost of the spatial discretization, and thus the measured efficiency of the
complete alias-free DG discretization of the Vlasov–Maxwell–Fokker–Planck
system of equations would be ∼ 8×106 DOFs per second per core with p=2
Serendipity elements in five dimensions (2X3V).

allows putting together solvers to perform a particular class of
simulation. The low-level computational kernels that update a
single cell (via volume and surface DG updates), and compute
moments and other quantities needed in the update sequences,
are in C++ and auto-generated using the Maxima [43] CAS.
As discussed in the previous section, the use of a CAS allows
us to compute most of the integrals needed in the update
analytically, eliminating all quadrature and unrolling all inner
loops to eliminate matrices.

The high-level App system is written in a JIT compiled
language, LuaJIT. Lua is a small, light-weight language that
one compiles into the framework. However, despite its sim-
plicity, LuaJIT is a subtle and powerful language with a
prototype based object system and coroutines that provides
great flexibility in composing complex simulations. Further,
the LuaJIT compiler produces extremely optimized code, often
performing at the level of, or better than, hand-written C,
giving the best of both the worlds: flexibility of a high-level
language as well as speed of a compiled language. We note
that Gkeyll is less than 8% (about 36K LOC) hand-written
LuaJIT. The rest is autogenerated C++ via the Maxima CAS.
This structure greatly reduces maintenance issues, as one only
needs to ensure that the CAS code is bug-free, rather than
coding up all loops, tensor-tensor products, and quadratures
by hand, especially for complex functionality such as the full
coupling between the kinetic equation, Maxwell’s equations,
and a collision operator.

The Gkeyll App system greatly simplifies user interaction
with the code. The flexibility of the scripting layer allows the
user great control over the simulation cycle. In fact, every
aspect of the simulation can be controlled by the user without
writing any compiled code, or even the need for a compiler
suite. Users can however compile compute-intensive code by
hand and load it into Gkeyll using the LuaJIT FFI. In
addition, the App system streamlines not just the running of a
simulation, but also the manipulation of the data. While post-
processing can be done through a suite of tools called the
postgkyl package (see Gkeyll website [1], [2] for details),
computationally intensive analysis techniques can also be run
through Gkeyll through the App system.

Input/output is performed with the Adaptable I/O System
(ADIOS) [39] called from LuaJIT. Using ADIOS, we can both
write out data such as velocity moments for analysis with the
postgkyl package, and also checkpoint/restart simulations
for production simulations. To checkpoint/restart a kinetic
simulation, we require the particle distribution function for
each of the evolved species and the electromagnetic fields
at the last time step. The particle distribution functions may
be quite large, especially for six dimensional simulations
where a modest calculation, (Nx, Ny, Nz, Nvx , Nvy , Nvz ) =
(64, 64, 64, 16, 16, 16) with polynomial order one, Np = 64,
and two species, is 1 TB of data. But the particle distribution
function is not just necessary for checkpointing/restarting, it
also contains a wealth of data. Thus, it is the combination
of ADIOS and the App system that allows users to read-in
output distribution functions, no matter their size, potentially



in parallel, and perform computationally intensive but valuable
diagnostics such as the field-particle correlation for analyzing
the exchange of energy between the plasma and electromag-
netic fields [26], [33]–[35].

An additional software innovation is the two layers of
parallel decomposition used by Gkeyll. This multi-layer
decomposition is necessary because there are three grids
involved in a kinetic simulation: the phase-space grid, the
configuration-space grid, and the velocity-space grid. The field
solvers work on the configuration-space grid, while the kinetic
equation evolves on the phase-space grid. The coupling via
moments comes from velocity integrals of the distribution
function that lives on the phase-space grid. These grids and
various communication patterns needed to move data between
them leads to a complex use of MPI.

The first level of parallel domain decomposition is in
configuration space. Since the DG algorithm only requires
one layer of ghost cells to compute the surface integrals
along each direction, communication is minimized during
the update of the Boltzmann-Maxwell system of equations.
The second level of parallel domain decomposition comes
from a shared memory decomposition of the velocity grid.
For this we use MPI shared-memory primitives to divide the
work in updating a region of velocity space owned by sub-
set of the total number of cores. A further subset of cores
on each of these subsets takes part in the IO and parallel
communication.We use MPI_Datatype objects extensively
to avoid unnecessary copying of data into/out of buffers. We
summarize the Gkeyll program workflow in Figure 4.

The advantage of this two-level decomposition is that there
is no need to all-reduce the moment data in velocity space.
Further, the use of MPI shared-memory primitives eliminates
the thread latency common to thread-based parallelism models
such as OpenMP. In other words, our parallelism model
removes the cost of creating and destroying threads, while
still improving the algorithm’s scaling on a single node and
reducing the amount of memory consumed per node by
eliminating the need for ghost layers amongst the intra-node
work. In fact, due to the high dimensionality of the problem
(say 5D/6D) even a single layer of ghost-cells need significant
memory (as they are 4D/5D) and hence communication time.
The use of shared-memory on a node significantly reduces
memory consumption (sometimes by 2× or 3×).

We note though that in our current shared memory
paradigm, we still must select which, and how many, MPI
processes will participate in inter-node communication and
I/O. We currently have rank 0 of each collection of shared
processes on a node control inter-node communication and
I/O, and hence are not guaranteed to saturate the interconnects
and maximize bandwidth. Nonetheless, this shared memory
implementation, in addition to other MPI features such as
MPI_Datatype further reduces memory consumption, im-
proves our parallel performance, and allows Gkeyll to scale
on larger clusters.

To quantitatively demonstrate the parallel performance of
our pure MPI domain decomposition of the modal DG al-

gorithm, we show in Figure 3 the weak and strong scal-
ing of a six dimensional kinetic simulation on the Knight’s
Landing (KNL) architecture on the Theta supercomputer at
the Argonne Leadership Computing Facility. In addition, we
compare the parallel performance of the modal DG algorithm
to the scaling of the nodal DG algorithm on a comparably high
dimensional problem on Stampede 1 at the Texas Advanced
Computing Center. Note that the parallel performance is tested
with the full simulation cycle: Vlasov equation for multiple
(two) species, coupled to Maxwell’s equations, and using a
third order strong-stability preserving Runge-Kutta method,
for more than one hundred time-steps to gather good per-
time-step statistics. However, we do not include the cost of
I/O using the ADIOS library in this scaling study8.

The initial weak scaling problem for the modal DG al-
gorithm on one node uses (Nx, Ny, Nz, Nvx , Nvy , Nvz ) =
(8, 8, 8, 16, 16, 16) with polynomial order one, Np = 64. The
problem size is increased by the same amount by doubling
the configuration space resolution Nx, Ny and Nz , e.g, from
(Nx, Ny, Nz) = (8, 8, 8) to (Nx, Ny, Nz) = (16, 16, 16)
when increasing the number of nodes from one to eight, up
to (Nx, Ny, Nz, Nvx

, Nvy , Nvz ) = (128, 128, 128, 16, 16, 16)
on 4096 nodes. For the nodal DG algorithm, due to its
increased expense, we consider a four dimensional, one spa-
tial dimension and three velocity dimensions (1X3V), sim-
ulation scaling from (Nx, Nvx , Nvy , Nvz ) = (64, 8, 8, 8) to
(Nx, Nvx , Nvy , Nvz ) = (1024, 16, 16, 16) with polynomial
order four, Np = 136, from one node to 128 nodes. Note that
we are only plotting the performance of the nodal scheme on
one node, 8 nodes, and 64 nodes for ease of comparison to
the modal scheme. For the strong scaling problem, we begin
with a (Nx, Ny, Nz, Nvx , Nvy , Nvz ) = (32, 32, 32, 8, 8, 8),
polynomial order one, Np = 64, for the modal DG algorithm,
and a (Nx, Nvx , Nvy , Nvz ) = (256, 16, 16, 16), polynomial
order four, Np = 136, on eight nodes. The problem size is then
kept fixed and the number of nodes increased, up to 4096 for
the modal strong scaling results, and 128 for the nodal strong
scaling results.

Up to a modest number of processors, the parallel perfor-
mance between the nodal and modal scheme are compara-
ble. This parallel performance is expected for standard DG
algorithms, as we require only local data, i.e., one layer of
ghost/halo cells, to perform the surface integrals and update
the solution. However, we can scale the modal DG algorithm to
a larger percentage of the machine due to both the large array
of MPI functionality such as MPI-3 shared memory primitives
and MPI_Datatype, and the matrix-free implementation
of the computational kernels, which reduces the memory
footprint of the modal DG algorithm. While the nodal DG al-
gorithm does not have the same spectrum of implemented MPI

8For the largest simulations in the weak scaling study, the particle distri-
bution function is > 4 TB large. While writing out 8 TB of data, 4 TB per
distribution function, every one thousand or ten thousand time-steps is an
acceptable cost, potentially adding 10-20 percent to the total runtime, writing
out this much data has a noticeable impact on the per-time-step performance
for this short of a simulation.



Fig. 3. Weak (left) and strong (right) scaling results for both the modal (black) and nodal (red) DG algorithms in Gkeyll. To facilitate the scaling performance
comparison, we have independently normalized the modal and nodal scalings to their time per step cost on one node for the weak scaling study and eight nodes
for the strong scaling study. The modal scaling is performed on Theta at the Argonne Leadership Computing Facility and the nodal scaling is performed on
Stampede 1 at the Texas Advanced Computing Center. The scaling of the two algorithms are comparable up to 64 nodes due to the favorable communication
pattern of DG algorithms. Importantly though, the modal algorithm has a reduced memory footprint due to the matrix-free implementation of the sparse
tensor-tensor multiplies and leverages a larger array of MPI functionality such as MPI-3 shared memory primitives, thus allowing the modal algorithm to
more full exploit the many-core parallelism of architectures such as the Knight’s Landing Chips on Theta and scale to a larger percentage of the machine.

Fig. 4. Gkeyll program workflow. We note that we use the Maxima
computer algebra system to pre-generate the computational kernels, and then
wrap the desired functionality in LuaJIT, including what kernels we wish
to call based on the desired dimensionality and polynomial order, MPI, and
ADIOS for I/O. The App system provides an interface for the user via an
additional layer of abstraction for ease of scripting.

features, we expect the modal DG algorithm would still exceed
the nodal DG algorithm parallel performance because of this
reduced memory footprint, as the nodal DG algorithm would
require the sharing of modestly large matrix data structures
that encode the necessary high-order quadrature to eliminate
aliasing errors. Thus, the sharing of these dense data structures
would not be guaranteed to improve parallel performance
because caching and efficient memory movement is still a
significant challenge with the alias-free nodal algorithm.

The shared memory implementation of the modal DG algo-
rithm has additional strengths. We note that even though we
are not using a thread-based model for parallel programming
on a node, we can still take advantage of all 256 “threads”
on the KNL chip by specifying at runtime that we are using
256 shared MPI processes These options provide significant
benefit for our DG algorithm, as the use of all 256 “threads”
not only allows us to divide the work amongst a larger number
of processes, using multiple “threads” per core exposes a much
greater degree of instruction level parallelism, reducing the
cycles per instruction and leading to greater floating point
efficiency. Instruction level parallelism is particularly useful
for our application, as the instructions of our unrolled sparse
tensor-tensor products such as the computational kernel shown
in Figure 1, while sparse relative to the nodal algorithm, are
still dense instruction sets. Thus, while we have reduced the
memory footprint significantly with our modal DG implemen-
tation compared to the nodal DG implementation, we still must
take care to avoid wasting clock cycles fetching instructions
to complete the sparse tensor-tensor products by maximizing
instruction level parallelism.

In fact, instruction level parallelism is the reason our weak
scaling is more favorable than our strong scaling, as our weak
scaling maintains enough work per node to extract a larger
efficiency using 256 shared MPI processes; whereas, the fixed
problem size is not enough work on a decomposition using
the full machine. Thus, there is degradation of performance
within the node in the strong scaling case, even though
communication is minimized by our DG algorithm. In the
weak scaling study, we find at worst 25 percent of the per-time-
step cost is spent in halo/ghost cell exchange for a problem
a factor of four thousand times larger (a factor of sixteen



increased resolution in each configuration space dimension),
while we find the ratio of communication time to computation
time per time step for the strong scaling time to be larger.
We expect the simulation in the strong scaling study to be a
factor of five hundred times faster per time step, but instead
only find a factor of sixty times speed-up. At each factor of
eight increase in the number of nodes, we gain only a factor
of four speed up, so the communication time to computation
time ratio is compounding by an additional fifty percent in
each increment of the node count. The on-node performance
degradation from less instruction-level parallelism, combined
with a larger amount of data transfer as the ratio of ghost
cells/interior cells increases, leads to upwards of 80 percent of
the per-time-step cost spent communicating halo/ghost cells on
the 4096 node strong scaling simulation, though the run time
is still reduced by a factor of sixty from the eight node strong
scaling simulation.

Due to the memory requirements of solving a six dimen-
sional PDE, we are limited on the base problem size we can
choose for strong scaling. In fact, the memory requirements
for solving a six dimensional PDE ultimately make weak
scaling of principal interest, as access to a larger amount of
memory on distributed memory clusters is what allows for the
calculation of interesting kinetic systems. We note though that
we are actively pursuing improvements to the demonstrated
scalings by more optimized data transfers using multiple
MPI processes per node in communication and MPI neigh-
borhood collectives, such as MPI_Ineighbor_alltoall,
and by overlapping communication and computations. These
improvements should lead to near-ideal weak scaling and
significantly less performance degradation in strong scaling
studies. Nevertheless, the modal DG algorithm, using a large
suite of MPI functionality including the MPI-3 shared-memory
primitives and MPI_Datatype, has good scaling up to
the machine size (4096 KNL nodes and >1 million MPI
processes).

V. EXAMPLE SIMULATIONS

We now briefly show the results of an example simulation
run with the modal DG algorithm presented in this paper. We
repeat the calculation of previous publications which used the
modal DG algorithm in Gkeyll [28], [46]. This particular
simulation demonstrates the utility of a continuum kinetic
approach, as the high fidelity representation of the particle
distribution function provides critical insights for our under-
standing of the dynamics of this kinetic system, in this case a
collisionless plasma. In fact, the authors of [28] demonstrated
in comparing the results of [46] to a particle-based method
found that the noise inherent to the PIC algorithm can pollute
the results of the simulations. Additionally, while similar
simulations were performed with the nodal algorithm in [27]
using Gkeyll in [8], [9], the modal algorithm employed here
and in [28], [46] obtains results an order of magnitude faster.

The setup is an electron-proton plasma in two spatial dimen-
sions, two velocity dimensions (2X2V), with the electron pop-
ulation initially divided amongst two counter-streaming beams.

These counter-streaming beams serve as a source of free-
energy for a zoo of plasma instabilities, including two-stream,
filamentation, and hybrid two-stream-filamentation modes [7].
In the limits explored in [46], the authors found that as the
beam velocity became both more nonrelativistic and colder,
such that the beam’s initial energy was dominantly kinetic
energy, a large spectrum of hybrid two-stream-filamentation,
or oblique, modes all had comparable growth rates. With
multiple unstable modes all growing and vying for dominance,
the nonlinear saturation of these instabilities led to a highly
dynamic phase space. This highly dynamic phase space had
a significant impact on the late-time evolution of the plasma,
with collisionless damping of the saturated modes depleting
the generated electromagnetic energy of the unstable modes,
and leading to overall energy conversion from kinetic to
electromagnetic to thermal due to the instability dynamics.

We show in Figure 5 the electron distribution function at
three different times, the initial condition, the time of nonlinear
saturation when the electromagnetic energy peaks, and the
end of the simulation, with two different slices of phase
space, y − vy (top) and vx − vy (bottom). These distribution
function slices demonstrate the phase space structure that
can be represented with a continuum kinetic method such as
the modal DG algorithm presented here. We emphasize that
this phase space structure is an important component of the
dynamics, and said phase space structure was leveraged in [46]
to determine why the macroscopic energetics, the partition
between electromagnetic and electron energy, differed from
previous simulations of these types of instabilities [31]. In this
regard, the fact that particle noise can affect the simulation
dynamics by reducing the effective phase space resolution
of the simulation and polluting the late time evolution, as
demonstrated by [28] when comparing to the results of [46]
using a PIC method, leads us to highlight the utility of the
modal DG algorithm presented in this paper. Not only is the
modal DG algorithm presented here an order of magnitude
faster than the previous nodal algorithm described in [27],
while maintaining the same level of accuracy and eliminating
aliasing errors, a continuum kinetic method provides additional
fundamental insights into the evolution of kinetic systems
such as collisionless plasmas by both allowing us to directly
diagnose the physics using the distribution function dynamics
and eliminating the counting noise which can plague particle-
based methods such as the PIC algorithm.

VI. CONCLUSION

In this paper we have presented, to our knowledge, the
first alias-free, matrix-free and quadrature-free scheme for
continuum simulation of kinetic problems. Kinetic problems
are characterised by delicate field-particle energy exchange
that requires great care to ensure that aliasing errors do not
modify the physics contained in the system. Further, as kinetic
systems evolve in high dimension phase-space (5D/6D) it is
important to ensure that the computational cost is minimized,
while still retaining accuracy and convergence order. Our
modal DG scheme achieves this by computing all needed



Fig. 5. Evolution of an unstable plasma system driven by counter-streaming beams of electrons. We show cuts of the electrons in y− vy (top) and vx − vy
(bottom), at three different times, the initial condition, the beginning of nonlinear saturation, and the end of the simulation. These distribution function slices
demonstrate both the velocity space structure generated by the kinetic instabilities present, as well as the utility of a continuum kinetic method in representing
this velocity space structure. See [28], [46] for details.

volume and surface integrals analytically using a computer
algebra system and generating the computational kernels au-
tomatically. These kernels leverage the sparsity of the tensor-
tensor convolutions with a modal, orthonormal basis, unroll
all loops and eliminate the need for matrices, and consolidate
common expressions with common factors “pulled out”. This
leads to dramatic reduction in FLOPs and data movement,
significantly speeding up computing time compared to a nodal
DG code even when the latter uses highly optimized linear
algebra libraries. Critically, despite the analytical elimination
of aliasing, we still obtain sub-quadratic scaling of cost with
degrees-of-freedom per cell.

Our scheme is implemented in the flexible, open-source
computational plasma physics framework, Gkeyll. This
framework allows flexible construction of simulations using a
powerful “App” system. Gkeyll is mostly written in LuaJIT,
a JIT compiled language, with key computational kernels
written in C++, pre-generated by the Maxima computer alge-
bra system. A hybrid MPI-shared-MPI domain decomposition
allows us to reduce communication within nodes and ensures
almost linear scaling on a single node, while retaining excel-
lent scaling properties across nodes. We have demonstrated
this on the Theta supercomputer all the way up to the full
machine (> 1 million MPI processes).

Our present algorithmic work is focused on two areas:
adding a multi-moment model coupling to the kinetics that will
lead to a unique hybrid moment-kinetic simulation capability
(most hybrid PIC codes assume massless, isothermal elec-
trons), and a novel recovery based DG scheme that will further
increase accuracy [47], [48], reducing resolution requirements.

The recovery based approach is very promising as it may allow
achieving, for example, 4th order convergence with just p = 1
DG basis functions where traditional DG schemes obtain
p+ 1 order convergence for p-th order basis. Such increase in
accuracy can allow use of coarser meshes, further dramatically
reducing the computation cost for 5D/6D problems. And
with the use of the Maxima CAS to analytically evaluate
the recovery polynomials and auto-generate the computational
kernels, the added complexity of the recovery-based approach
in higher dimensions can be significantly mitigated. Combined
with the flexibility of the Gkeyll code these innovations will
enable larger problems of interest in a broad array of fields.
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resolving capability of high-order discontinuous Galerkin approaches to
implicit LES / under-resolved DNS of Euler turbulence. J. Comp. Phys.,
330:615–623, 2017.

[45] C.-W. Shu. A survey of strong stability preserving high order time
discretizations. Collected lectures on the preservation of stability under
discretization, 109:51–65, 2002.

[46] V. Skoutnev, A. Hakim, J. Juno, and J. M. TenBarge. Temperature-
dependent saturation of weibel-type instabilities in counter-streaming
plasmas. Astrophys. J. Lett., 872(2):L28, feb 2019.

[47] B van Leer and M Lo. A discontinuous Galerkin method for diffusion
based on recovery. In 18th AIAA Comput. Fluid Dyn. Conf., number
AIAA 2007-4083, Miami, FL, 2007. American Institute of Aeronautics.



[48] Bram van Leer and Shohei Nomura. Discontinuous Galerkin for Diffu-
sion. In 17th AIAA Comput. Fluid Dyn. Conf., number AIAA 2005-5109,
Toronto, Ontario, Canada, 2005. American Institute of Aeronautics.

[49] Liang Wang, Ammar H. Hakim, Jonathan Ng, Chuanfei Dong, and Kai
Germaschewski. Exact and locally implicit source term solvers for
multifluid-maxwell systems. J. Comp. Phys., 415:109510, 2020.

[50] Andrew R. Winters, Rodrigo C. Moura, Gianmarco Mengaldo, Gregor J.
Gassner, Stefanie Walch, Joaquim Peiró, and Spencer J. Sherwin. A
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