
ar
X

iv
:2

00
8.

10
59

6v
1 

 [
cs

.D
C

] 
 2

4 
A

ug
 2

02
0

CRAC: Checkpoint-Restart Architecture for CUDA with Streams

and UVM

Twinkle Jain* and Gene Cooperman∗

Khoury College of Computer Sciences

Northeastern University

Boston, USA

{jain.t,g.cooperman}@northeastern.edu

Abstract

The share of the top 500 supercomputers with NVIDIA GPUs is now over 25% and continues
to grow. While fault tolerance is a critical issue for supercomputing, there does not currently ex-
ist an efficient, scalable solution for CUDA applications on NVIDIA GPUs. CRAC (Checkpoint-
Restart Architecture for CUDA) is a new checkpoint-restart solution for fault tolerance that
supports the full range of CUDA applications. CRAC combines: low runtime overhead (approx-
imately 1% or less); fast checkpoint-restart; support for scalable CUDA streams (for efficient
usage of all of the thousands of GPU cores); and support for the full features of Unified Virtual
Memory (eliminating the programmer’s burden of migrating memory between device and host).
CRAC achieves its flexible architecture by segregating application code (checkpointed) and its
external GPU communication via non-reentrant CUDA libraries (not checkpointed) within a
single process’s memory. This eliminates the high overhead of inter-process communication in
earlier approaches, and has fewer limitations.

1 Introduction

General-purpose GPU computing continues to become more important in supercomputers and
in large- and medium-size clusters. For example, starting from zero GPUs in 2010, the number
of clusters with NVIDIA GPUs has reached 136 out of 500 in the Nov., 2019 listing of the top
500 supercomputers [1], as seen in the next graph.

∗This work was partially supported by National Science Foundation Grant OAC-1740218 and a grant from Intel
Corporation.
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This work introduces CRAC (Checkpoint-Restart Architecture for CUDA) for transparently
checkpointing CUDA on GPUs. Transparent checkpointing for CPUs (as opposed to GPUs) has
long been important in long-running computations. Transparent checkpointing is widely available
for Linux HPC applications, including MPI. Three notable examples of transparent checkpointing
are DMTCP [2] (multi-host and MPI), BLCR [3] (single-host and MPI), and CRIU [4] (primarily
for single-host). However, that ability to transparently checkpoint computations using GPUs has
been notably lacking.

Transparent checkpointing is important in HPC for at least four reasons:

(a) long-running batch jobs that might need more time to complete than the typical 24-hour job
allocation slot;

(b) fault tolerance (especially concerning GPU soft errors);

(c) backfill policies for efficient scheduling of batch queues; and

(d) process migration in the cloud, for example to exploit spot instances in the cloud for cost-
effective computing [5], and for other just-in-time strategies.

The ability to checkpoint GPUs is even more pressing as clusters and supercomputers continue
to scale to an increased number of GPUs. This is because of the vulnerability of GPUs to soft
errors. A series of papers in the literature has highlighted the issue of fault tolerance for GPUs in
the presence of soft errors [6–9]. In particular, NVIDIA GPUs do not have the same level of error
protection of RAM as is the case for the high-end host computers used in clusters.

Finally, transparent checkpointing (as opposed to application-specific checkpointing) is especially
important in order to relieve the application developer of the burden of coding for checkpointing.
There are several anecdotes in the community of long-standing computational toolkits that “used
to” have an application-specific checkpointing module, but that specialized module gradually be-
came out-of-date as additional stateful parameters were added to a model.

Further, application-specific checkpointing typically has limitations, in that a checkpoint may be
taken only at each iteration of the outermost loop. This is done in order to avoid the complication
of restoring the stack as it existed at runtime. These limitations imply that application-specific
checkpointing is often incompatible with on-demand checkpointing, which is required in the case
of spot instances, or when a large high-priority job arrives and existing jobs must immediately be
checkpointed.
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Ironically, while the need for transparent checkpointing of GPUs has grown in the last decade,
the support for transparent checkpointing of GPUs has diminished. A series of results for transpar-
ent checkpointing of GPU [10–14] have stopped working as of CUDA 4.0. This is because CUDA 4.0
introduced, in 2011, UVA (Unified Virtual Addressing between host and GPU device). This was
later refined, with CUDA 6.0, to UVM (Unified Virtual Memory). All previous checkpointing ef-
forts relied on the ability to save and restore the CUDA library in memory. But now that the
virtual memory address space is shared between GPU device and host, any attempt to restore the
checkpointed CUDA library and associated allocated memory at their original address will create
inconsistencies between the host and GPU device address space.

Two more recent efforts at checkpointing (CRCUDA [15] and CRUM [16]) try to get around this
problem by creating separate proxy processes. CRCUDA presents a preliminary attempt whose
overhead was apparently never evaluated on real-world programs. CRCUDA’s github repo [17] has
not been active since 2015. CRUM presents a more complete solution, but it continues to have
limitations.

The problem with both CRCUDA and CRUM is that their approach centers around passing
all CUDA calls from the application process to a CUDA library resident in an independent proxy
process. This requires copying buffers between the application process and proxy process before
and after each CUDA library call. This has three inherent problems:

(a) Copying buffers creates a high runtime overhead. Modern CUDA applications may need to
launch 1,000 CUDA kernels per second and more. (CRUM reports 6% to 12% overhead [16,
(Section IV.B, figure 4(b))].)

(b) CRUM’s support for UVM is incomplete. The issue is that UVM allows for hardware-
supported page faults between host and device whenever one or the other updates the mem-
ory in a unified page. CRUM is limited to supporting applications that follow this pattern:
CUDA-call, read from UVM, modify, write to UVM, next CUDA-call. Not all applications
follow this pattern. See CUDA call [16, (Section III.B)] for details.

(c) Neither CRCUDA nor CRUM appear to have been tested in checkpointing the maximum
permitted number of concurrent CUDA streams. We speculate that the reason is that both
approaches sustained a significant overhead in making a CUDA call, since this required copy-
ing memory buffers (arguments to the CUDA call) to an independent proxy process. The
essence of using CUDA Streams is to execute multiple CUDA kernels simultaneously (in mul-
tiple streams). This parallelism implies a higher frequency of CUDA kernel calls, placing
more stress on the memory transfers to the proxy process.

In summary, this work makes three important contributions that may be summarized as (a) low
runtime overhead, (b) efficient support for UVM, and (c) efficient support for many concurrent
CUDA streams. More explicitly:

1) Low runtime overhead: Previous checkpointing support for CUDA 4.0 and later had unac-
ceptably high runtime overhead (for example, CRUM’s 6% to 12% [16]). The single-address
space approach of this work enables more efficient, direct passing of pointers to CUDA kernels
upon launch. While doing this, it retains isolation of the CUDA application program from
the helper (proxy) program that “talks” to the GPU.
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2) Efficient and complete UVM support: There are no compromises in the UVM support.
CRUM’s shadow page synchronization restricts UVM-based applications solely to a single
read-modify-write cycle between CUDA kernel launches [16, Section III-B]. Further, CRUM’s
strategy fails when two concurrent CUDA streams write to the same memory page.

3) Many concurrent CUDA streams: The new approach scales well with many concurrent
CUDA streams. The lack of previous experiments in the literature for more than two concur-
rent CUDA streams confirms the novelty of this work’s support for many concurrent streams.

Finally, CRAC is free and open-source software. The current version of CRAC is found at:
https://github.com/DMTCP-CRAC/CRAC-early-development.git. In the future, the newest ver-
sion of CRAC will be included as a plugin in the mainstream DMTCP [27], which is open source.

In the remainder of this work, Section 2 describes the approach of three previous systems
for transparent checkpointing of CUDA: CheCUDA (basic approach), and CRCUDA, and CRUM
(proxy-based approaches). It also describes the deficiencies of those systems for use in HPC.
Section 3 describes the new single address-space approach of CRAC. Section 4 presents experimental
results demonstrating the performance and generality of the new approach. Section 5 then describes
the related work. Section 6 presents the conclusion and future work.

2 Background

We highlight the history of CUDA and earlier approaches to transparently checkpoint CUDA appli-
cations. This highlights why older approaches stopped working with the introduction of CUDA-4.0,
and a conceptually new approach was required.

2.1 The Historical Evolution of CUDA

As described in the introduction, previous mechanisms for transparent checkpointing [10–14] were
made incompatible by the introduction of Unified Virtual Addressing (UVA) in CUDA 4.0. UVA
was introduced in CUDA-4.0, and was later refined into Unified Virtual Memory (UVM) in CUDA 6.0.
UVM operates in analogy with the introduction of virtual memory for UNIX. The CUDA UVM-
enabled hardware and software execute on-demand paging, so that application programmers don’t
need to explicitly swap memory segments in and out of the GPU device. CUDA streams were
introduced with CUDA-3.0 (Fermi GPUs).

2.2 A First Attempt at Checkpoint-restart: CheCUDA prior to CUDA 4.0

Here, we describe the architecture of CheCUDA [12], built upon CCUDA-2.2 in 2009, as represen-
tative of the general approach. The basic steps are: (a) to “drain the queue” of tasks (of pending
CUDA kernels) using cudaDeviceSynchronize or cuCtxSynchronize; (b) to copy persistent GPU
state associated with resources held by the CUDA library to host memory; (c) to destroy all CUDA
resources; (d) to checkpoint on the host side using BLCR [3]; and to restart by reversing these steps.
Creation of CUDA resources is recorded prior to checkpoint time, and then restored during restart
in a classic log-and-replay strategy.

A problem was encountered with CheCUDA and related approaches for checkpointing GPUs [10–
14] in 2011. This is the year when NVIDIA introduced one more CUDA resource as part of the
CUDA 4.0 library: the unified virtual address (UVA) facility. CUDA did not provide an API to
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save the state of UVA and later restore it. This was not surprising, since the UVA resource is
shared between device and host, and so it would be difficult to provide a user API to restore it.
Previous CUDA resources were resident solely on the GPU.

2.3 A Second Attempt at Checkpoint-restart: Proxy-based solutions for CUDA 4.0

and later

In 2011, CUDA 4.0 introduced UVA (Unified Virtual Addressing) [18]. CUDA 6.0 then introduced
UVM (Unified Virtual Memory) in 2013 [19], exacerbating further the difficulty of saving and
restoring UVA or UVM state. UVM on Pascal and later GPUs supports hardware page faulting of
host pages into the GPU and vice versa.

CUDA memory allocations were then a resource that could no longer be saved and restored,
since a memory allocation included a virtual memory mapping between host and device. That
mapping is managed by the NVIDIA portion of the operating system, and it was not exposed to
the CUDA programmer.

To overcome this, CRCUDA [15] and CRUM [16] took a proxy-based approach. But CRCUDA
doesn’t support UVA or UVM. CRUM supports UVM through shadow memory [16, Algorithm 1],
but at the cost of high runtime performance, and covering only standard CUDA applications
following the read-modify-cudaCall pattern.

3 The Design and Implementation of CRAC

CRAC provides the ability to save and restore the state of CUDA by first using CUDA-specific
save/restore operations, and then delegating to a traditional checkpoint-restart package. Concep-
tually, CRAC could have used any of the three most popular systems for transparent checkpointing:
BLCR [3], CRIU [4], and DMTCP [2]. However, CRIU does not support checkpointing of multiple
hosts and BLCR is no longer actively maintained. In the end, the support of DMTCP for process
virtualization and plugins [20] makes it easier to add modular support for CUDA without hav-
ing to excessively understand details of the internals of the host checkpointing package. Further,
DMTCP remains the only transparent checkpointing package to operate at petascale, as originally
demonstrated in 2016 [21], when it was used to checkpoint two petascale computations: MPI-based
HPCG (using 32,752 cores) and MPI-based NAMD (using 16,368 cores) [21].

The discussion of CRAC is next split into two parts: design and implementation.

3.1 The Design of CRAC

The problems with previous approaches to transparently checkpointing CUDA using proxies were
highlighted in the introduction and Section 2: high runtime overhead due to inter-process com-
munication; and the difficulty of supporting certain newer CUDA resources (e.g., UVA/UVM and
multiple CUDA streams) when the CUDA API did not expose a mechanism for easily saving and
restoring those resources.

The inter-process communication bottleneck between a CUDA application process and a proxy
process is an essential bottleneck of CRCUDA and CRUM. CRAC’s solution is to combine the
application and proxy into a single process, whose address space contains two independent programs,
each with their own text segment, data, heap, and runtime libraries. The application program and
a proxy program are loaded separately into the same address space, where the Linux kernel views
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them as a single process. Yet, the application and the proxy (now renamed a helper program) are
linked to two, independent runtime libc libraries and two runtime loaders (ld.so).

The application program that was loaded into memory is linked to a dummy CUDA library
that passes all CUDA calls to the proxy program that was loaded. The proxy program contains the
active CUDA library, and only the code of the proxy program that communicates with the GPU.
For a diagram illustrating the relationship, see Figure 1.

Checkpoint and restart then proceed more or less as described in Section 2.2 (CheCUDA prior
to CUDA 4.0). However, there is a crucial distinction. We do not save the memory of the proxy
program. Hence, we are not saving the memory of the active CUDA library that talks to the GPU.
The CUDA library includes stateful memory associated with CUDA resources such as UVA/UVM-
based memory.

On restart, we will load a completely new copy of the proxy program. The CUDA library of
the new copy of the proxy has its original state. The stateful memory of the CUDA library is put
back in its initial state. This new architecture again makes feasible the classical log-and-replay of
CheCUDA and other applications. The use of log-and-replay in CRAC is described fully later in
this section.

The literature describes two ways to implement this single address-space design: split pro-
cesses [22] (loading two programs in the same address space) and process-in-process [23] (using
Linux’s dlmopen to offer independent namespaces, Using dlmopen is superficially attractive, due
to the greater simplicity of this approach. Therefore, we analyze this case first.

Single address-space design: process-in-process Process-in-process [23] was introduced as
a mechanism to reduce the overhead in inter-process communication between two MPI ranks (pro-
cesses) that coexist on the same host. By placing the two ranks within a single process by using
dlmopen, runtime overhead was reduced. It became possible to directly pass pointers between the
two MPI ranks, instead of relying on inter-process communication techniques.

This simple approach is attractive, and it captures many of the goals of split processes, as
depicted in Figure 1. However, this approach is not conducive to our requirement of tracking
memory associated with the CUDA application program, versus the helper program. The NVIDIA
compiler (nvcc) links both the CUDA application and the helper program with several libraries —
in particular, the NVIDIA CUDA library and the runtime library. It becomes difficult to associate
each memory region according to whether it was loaded by a library for the CUDA application or
a library for the helper program.

Single address-space design: split processes Split processes [22] were introduced as a mech-
anism to separate the MPI and network libraries from the end user’s MPI application. The split-
process approach is more or less the same as described for CRAC near the beginning of Section 3.1.
There is an important distinction in that in the case of MPI, the proxy or helper program was stati-
cally linked [22, Section 3.6]. NVIDIA encourages CUDA programs to be linked dynamically. Even
when the -static flag is passed to NVIDIA’s compiler, some NVIDIA libraries remain dynamically
linked.

In this scheme, the helper program is loaded first, resulting in a new process. That process then
directly loads the CUDA application into memory. It is important to track all memory allocations
(all calls to mmap) by the lower half, so that they are not checkpointed. To accomplish this, a
program loading mechanism is used that imitates the way in which the kernel loads an application.

6



LOWER HALF
      HELPER

libcuda libcCUDA APPLICATION

libcuda libc

GNU link map (doubly linked list) of dynamic libraries

GNU link map (doubly linked list) of dynamic libraries

GPU and kernel
device drivers

UPPER HALF:

LOWER HALF:

Figure 1
Split Processes: The lower-half helper program is a tiny CUDA application that was loaded into the
“lower half” of the virtual memory address space. At the time of launch, it copied the entry points of
CUDA library calls from the lower-half libcuda to an array of libcuda entry addresses. When the main
CUDA application was launched (in the upper half), it was launched under control of DMTCP. DMTCP
arranged to create a trampoline from the upper-half libcuda to the lower-half libcuda entry point, via the
libcuda addresses found in the array created by the lower-half helper program. Now, at runtime, when the
end user’s CUDA application makes a call to the CUDA library, the trampoline causes control to be passed
to the lower-half libcuda. Later, at checkpoint time, only the memory in the upper half will be saved. At
restart time, a new lower-half CUDA program is loaded into memory, and it re-initializes the array of
libcuda addresses. It then restores the upper-half memory from the checkpoint image, and passes control
back to the CUDA application. Note that libcuda is a representative term for CUDA runtime library here.

(The kernel first loads an ELF interpreter into memory, since the ELF interpreter is structured
as a statically linked executable with text, data, and stack. The ELF interpreter then loads the
dynamically linked target executable.) The loading mechanism is modified to interpose on all
calls to mmap(). This allows our kernel loader to load each memory region (including the several
NVIDIA libraries) into a restricted portion of the address space, using the MAP FIXED parameter.
This approach also yields the illustration in Figure 1, but it provides a mechanism for associating
each memory region conceptually with an “upper-half” or “lower-half” portion of the address space.

Log-and-replay Prior to CUDA-4.0, copying the persistent state of CUDA was exemplified by
copying two allocation arenas: cudaMallocHost on the host; and cudaMalloc on the device, or
GPU. Just prior to a checkpoint, the data on host and device was copied to a special location,
and it was restored on restart. However, CUDA-4.0 and later introduced cudaMallocManaged for
managed memory, used with UVM. CRCUDA cannot support UVM at all, and CRUM supports
it imperfectly, as described in Section 2.3.

Hence, copying the full persistent state at checkpoint time has become more of a challenge
since CUDA-4.0. CheCuda and earlier approaches had destroyed any CUDA resources prior to
checkpointing, and restored them on resume and restart. This worked because the persistent
resources of the CUDA library prior to CUDA 4.0 could be logged and later restored. With the
advent of UVA/UVM in CUDA-4.0 and later, the unified virtual memory is an essential resource
that could not be recovered once destroyed. It appears from our own experiments that the UVM
resource had permanently modified the memory of the CUDA library’s state, and the restored
CUDA library was then inconsistent when called after restart.

7



Copying the persistent state would require reverse-engineering the CUDA library, which is all
but impossible, due to the closed-source nature of CUDA. But the CUDA library has internal
bookkeeping information on the contents of those three allocation arenas. Upon restart, each
allocation must be recreated at the original lower-half address that existed prior to checkpoint.

By interposing on the cudaMalloc family of CUDA calls, a log-and-replay approach is used by
CRAC to copy to the upper half and later restore the memory regions, in the same order as when
they were allocated. This takes advantage of CUDA’s internal deterministic bookkeeping for the
allocation arenas. On restart, a fresh CUDA library in the lower half would allocate the memory
regions at the same addresses as originally seen.

This traditional log-and-replay approach described in Section 2 is compatible with split processes
only when targeting smaller CUDA applications. But this widely used log-and-replay approach
is observed to fail on more complex applications. It fails for two reasons. In order to apply
the approach faithfully and take advantage of determinism in the CUDA library, it would be
necessary to re-execute (replay) in the original ordering all calls in the family of cudaMalloc and
cudaFree. Second, this approach becomes more difficult when supporting concurrent streams, since
two threads on the host may concurrently make calls to cudaMalloc, which would require an extra
global lock on all calls to cudaMalloc in the lower-half library. The next section discusses the
memory management approach actually used by CRAC.

3.2 Implementation Issues

Having chosen the split process approach for CRAC, there were several implementation issues
arising for the case of CUDA that were not present in the case of MPI.

3.2.1 Implementation: Issue of library-allocated memory

The largest complexities of adapting split processes from MPI to CUDA arise from the differing
conventions of allocating memory. The design of MPI assumes that calls to MPI will employ
caller-allocated memory: callers to the MPI library pre-allocate buffers and pass them to MPI.

The design of CUDA assumes callee-allocated, or library-allocated memory: the CUDA library
in the lower half may allocate its own internal buffers, and then return those buffers to the calls.
A good example is cudaMalloc to allocate host memory for the application. This CUDA routine
allocates its own memory, and potentially invokes mmap to do so.

One can argue that an mmap call can be intercepted, in order to do deterministic replay.
However, we observed that a single cudaMalloc call can make many calls to mmap. Moreover, the
first cudaMalloc will create a large CUDA malloc arena through mmap. This mmap call may fall
into the middle of several other mmap calls. Subsequent cudaMalloc call might not call mmap at
all. This results in two problems. (a) It is impractical to interpose on many mmap calls in order
to identify the particular mmap calls of interest to us. (b) The active CUDA malloc buffers to be
checkpointed will generally be a small fraction of the full CUDA malloc arena that was created.

To counter this problem, we log only the host or device pointers to buffers that were created
by a call from the cudaMalloc family of APIs. This helps CRAC in improving performance by
avoiding unnecessary interceptions in the lower-half.
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3.2.2 Implementation: Issue of memory overlapping

The lower- and upper-half memory regions can appear anywhere in the process address space. In
DMTCP, one part of saving the state of a running process includes reading the /proc/PID/maps
and saving memory regions. In /proc/PID/maps, two memory regions with the same permissions
get merged after allocation. This makes it harder to decide if whole or part of a memory region
belongs to the upper half and must be checkpointed. This has not been an issue in the case of
MANA for MPI [22], where the lower half is compact since it is compiled as a statically linked
executable.

Another issue that we observed is that when the library of the lower half allocates memory
pages, it may overwrite the upper-half’s existing memory pages, and indeed, it may even unmap
some of the upper-half’s existing memory pages. This could lead to silent memory corruption.

To counter these problems, CRAC tracks all the allocations done by the upper half and also
tries to consolidate memory regions created by the upper half, as described in 3.1.

3.2.3 Implementation: Saving the “library-allocated” arena

Since CRAC can interpose on the CUDA library in the lower half, it can interpose on all calls to
mmap(). Naively, one would assume that for each of the cudaMalloc family of calls, there is a single
call to mmap(), which can be recorded and replayed. This does not work, since a cudaMalloc call
may make multiple calls to mmap(). Or a single cudaMalloc call may use mmap() to create a large
memory region that acts as an allocation arena for later calls to cudaMalloc. While this is helpful
for the CUDA library’s memory management algorithm, it is not desirable to save the entire arena
— especially, when cudaMallocs actually uses only a small portion of the allocation arena.

To counter this, CRAC does its own internal bookkeeping. Rather than saving a large allocation
arena that makes the checkpoint size larger unnecessarily, we only save the memory associated with
active mallocs. Active mallocs are those allocations that were allocated but not freed at the time of
checkpoint. Draining and refilling device memory at active mallocs is essential to make the device
state consistent across checkpoint and restart. Note that saving the memory associated with the
active mallocs is different than logging the sequence of all cudaMallocs and all cudaFrees. While
we save only the memory associated with active mallocs, we still need to replay the entire original
sequence to get the same host and device addresses as prior to checkpoint (explained in the next
section).

3.2.4 Implementation: restoring the CUDA library-allocated regions

An important implementation issue for CRAC is to restore all of CUDA’s memory allocations at
their original address during restart. CUDA has three primary allocation routines: cudaMalloc (on
the device), cudaMallocHost/cudaHostAlloc (on the host), and cudaMallocManaged (for UVM:
unified memory on device and host). CRAC logs all CUDA calls that allocate and free memory.

In the case of cudaHostAlloc, it suffices to keep track of only the active memory buffers (the
buffers that have not been freed at the time of checkpoint). At restart time, CRAC only needs
to replay cudaHostMalloc for active memory buffers, in order to again register these buffers with
the CUDA library. Note that the memory buffers are already present in the restored upper half
memory.

In the cases of cudaMallocHost (on the host), cudaMalloc (on the device) and cudaManaged-
Malloc (for unified memory), CRAC replays all associated allocations and frees at restart time.
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The memory associated with these regions is saved at checkpoint time and copied back at restart
time. In our experiments on real-world applications, we observed many calls to cudaMalloc and
cudaManagedMalloc, but few calls to free those buffers.

CRAC replays the entire log in order to guarantee that active memory allocations are restored
at the original address. CRAC relies on determinism of the CUDA library allocation. CRAC
also disables address space randomization using Linux’s personality system call. And CRAC’s
determinism also relies on using the same CUDA/GPU platform on restart. In the future, three
possible solutions can be implemented to optimize this: virtualization of library-allocated addresses;
patching applications locations containing the addresses; or a future enhancement by NVIDIA
offering a MAP FIXED flag analogous to the flag of the mmap call.

3.2.5 Implementation: Handling CUDA’s internal registration of fat binaries:

At the time of launching a CUDA application, CRAC must arrange for the CUDA library in the
lower half to register the CUDA kernels residing in the upper half as the active CUDA library
loads before the upper half. This requires that CRAC call the lower level CUDA functions in
the lower-half CUDA library: cudaRegisterFatBinary, cudaRegister<CUDA-element>, and
cudaUnregisterFatBinary (during cleanup at process exit). Here, CUDA elements are device

variable, functions, texture, surface, and etc. Finally, during restart, CRAC must re-register the
application kernels, since this is a fresh copy of the lower half. This may require additional patching
of fat-binary-handle at restart time. This added burden never occurs in the case of MANA for MPI:
As before, MANA for MPI benefits from the MPI standard, which defines an almost complete
isolation of the MPI library from the MPI application.

4 Experimental Results

This section present the comprehensive analysis of the CRAC’s performance for real-world appli-
cations. The aim of this section is to demonstrate that CRAC has low runtime overhead and scales
well on real-world applications.

4.1 Hardware

The experiments presented in this section are performed on the PSG cluster of NVIDIA. Each
node runs CentOS 7.7 release (kernel version 3.10.0), with 4 NVIDIA Tesla V100 (compute ca-
pability 7.0), each with 32 GB of RAM. Each Haswell node is running two 16-core Intel Xeon
E5-2698 v3 (2.30 GHz) processors with a total of 256 GB of RAM.

A local, NVIDIA Quadro K600 node with 1 GB of RAM was used only in Section 4.4.5.
This section includes a special set of experiments to analyze any runtime improvement using the
FSGSBASE patch to the Linux kernel [24]. The FSGSBASE patch is under active review for
inclusion in the mainline Linux kernel [25,26]. A custom Linux kernel version 5.0.6 was built from
the official Ubuntu git repository1 on Ubuntu 18.04.3 LTS (Bionic Beaver).

1git://kernel.ubuntu.com/ubuntu/ubuntu-disco.git
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4.2 Software

Each GPU runs NVIDIA CUDA version 10.0 with driver 440.33.01. We use NVCC to compile the
application and use gcc/g++ version 7.3.0 for the linking with libc version 2.17. We use MPICH
version 3.3.2 for the MPI-based applications.

The experiments use CRAC, a DMTCP plugin [20], developed to specifically checkpoint and
restart CUDA applications using the novel split-process and user-space program loading mechanism
(Section 3.1). DMTCP [2] is an open-source tool for transparent checkpoint-restart for distributed
and multi-threaded applications. We use DMTCP version 3.0 [27] (master branch).

4.3 Terminology

We define the following terminology and formulas that will be used for the rest of the paper.

(a) Runtime overhead: we use the standard formula to calculate the runtime overhead where
ECRAC is the execution time of an application under CRAC and E

CRAC
is the native execution

time (not under CRAC).

Runtime Overhead % =
ECRAC − E

CRAC

E
CRAC

× 100 (1)

(b) CUDA calls-per-second (CPS): CUDA API calls are calculated by NVIDIA’s profiler nvprof.
We are interested only in the number of calls from upper half to lower half, for the sake of
analyzing their overhead. A simple script extracted just those calls from the upper half (i.e., to
the lower-half CUDA runtime library), and not the calls to the CUDA device library (made di-
rectly from the lower-half CUDA runtime library). There are three additional CUDA calls that
the upper half can make: cudaLaunchKernel (reported by nvprof), along with two undoc-
umented internal APIs, cudaPushCallConfiguration and cudaPopCallConfiguration.
The CUDA compiler generates all three calls for one CUDA kernel launch. So, the formula for
total CUDA calls is as follows:

Total CUDA calls = 3× count(cudaLaunchKernel)+

count(rest of CUDA runtime API)

The CUDA “calls per second” (CPS) is defined as:

CPS =
Total CUDA calls

E
CRAC

(2)

4.4 Application benchmarks

CRAC is analyzed using six CUDA applications. Four of them are standard benchmark suites
or real-world applications, and the rest are taken from the official NVIDIA CUDA reference code
suite2. These applications are chosen to cover a wide range of CUDA features, including Unified
Virtual Memory (UVM) and CUDA Streams.

Table 1 characterizes the applications used here. The table includes four columns: UVM and
Streams are checked if the application uses the respective CUDA feature. The CUDA calls per

2https://docs.nvidia.com/cuda/cuda-samples/index.html
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Application UVM Streams CPS # streams

Rodinia ✗ ✗ 38–132K —

Lulesh ✗ ✓ 2.5K 2–32

simpleStreams ✗ ✓ 10K 4–128

UnifiedMemory ✓ ✓ 4.4K 4–128
Streams

HPGMG-FV ✓ ✗ 35K —

HYPRE ✓ ✓ 600 1–10

Table 1: Application benchmarks characterization

second (CPS) are calculated using equation 2. Lastly, if the application uses CUDA streams, then
the table indicates the range of how many CUDA streams can be used with the application.

The Rodinia benchmark suite [28] provides a wide range of applications with a varying CPS.
Also, two stream-oriented codes from the NVIDIA CUDA toolkit are used: simpleStreams and Uni-
fiedMemoryStreams [29]. The two applications are chosen because: they exclusively demonstrate
the streams feature; and they can be configured easily to use the maximum number of streams on
a given GPU (128 streams in our case).

To evaluate CRAC’s performance on real-world applications, we use three benchmarks from the
DOE (Department Of Energy): Livermore Unstructured Lagrangian Explicit Shock Hydrodynam-
ics (LULESH) version 2.0 [30]; HYPRE: Scalable Linear Solvers and Multigrid Methods library
version 2.13.0 [31]; and High-Performance Geometric MultiGrid HPGMG (using the Github repos-
itory’s master branch [32]).

4.4.1 Rodinia Benchmark Suite

Rodinia [33,34] is a commonly used benchmark suite for CUDA. Version 3.1 covers a diverse range
of 23 CUDA applications using basic CUDA features, and compatible with all CUDA versions
starting from CUDA version 2.x.

We use 14 of the applications from the Rodinia benchmark suite for this work. The other
9 applications were omitted either because they were too short (completing within one second), or
because they are similar to benchmarks already included in terms of the total number of CUDA
API calls, or because the total number of CUDA API calls was too few.

Rodinia’s applications can be scaled by adjusting the input. We use the command line arguments
given in Table 2 for the respective Rodinia benchmark applications.

Runtime overhead Figure 2 shows the runtimes of Rodinia benchmarks without CRAC (na-
tive) and with CRAC. We ran 10 iterations of each benchmark and calculated the mean for the
each runtime. In almost every case, the 10 iterations had a standard deviation of approximately
0.1 seconds.

The figure also shows that 9 out of 14 benchmarks namely, BFS, DWT2D, Heartwall, Hotspot,
LUD, Leukocyte, Particlefilter, SRAD, and Streamcluster, ran in less than 7 seconds. With these
benchmarks, the runtime overhead varied between 1% and 14%. There are two reasons for a
higher overhead: first, with short-running applications, DMTCP’s startup time becomes significant;
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Application Command-line argument(s)

BFS graph1MW 6.txt

CFD fvcorr.domn.193K

DWT2D rgb.bmp -d 1024x1024 -f -5 -l 100000

Gaussian -s 8192 -q

Heartwall test.avi 104

Hotspot temp 512 power 512 output.out

Hotspot3D 512 8 1000 power 512x8 temp 512x8 output.out

Kmeans kdd cup -l 1000

LUD -s 2048 -v

Leukocyte testfile.avi 500

Myocyte 500 1 0

NW 40960 10

Particlefinder -x 128 -y 128 -z 10 -np 100000

SRAD 2048 2048 0 127 0 127 0.5 1000

Streamcluster 10 20 256 65536 65536 1000 none output.txt 1

LULESH -s 150

Table 2: Command-line arguments for Rodinia Benchmarks
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second, with short-running tasks, the small standard deviation of 0.1 seconds becomes significant
compared to the running time, and statistically leads to a higher overhead.

On the other hand, the remaining Rodinia benchmarks run for more than 10 seconds, and
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Figure 4: Experiments with simpleStreams from the NVIDIA CUDA code sample

we observe there a 0–2% overhead. Interestingly, Hotspot3D, and Kmeans even have a negative
overhead. We suspect that this is a result of caching. Finally, CFD and Gaussian have less than
1% overhead, while LUD and NW have less than 2% overhead.

Checkpoint overhead For checkpoint and restart, we disabled DMTCP’s default gzip com-
pression and triggered checkpoint at random times during an entire run of an application. Figure 3
shows that the checkpoint-restart time is fairly small for CRAC and completes within one second
for almost all cases. Checkpoint time is usually smaller than restart time, but there are two outliers
(Streamcluster and Heartwall) for which restart takes more time than the checkpoint time. Further
investigation showed that these two benchmarks specifically do many CUDA mallocs and CUDA
frees. We log CUDA mallocs and frees to make the CUDA library’s state consistent, and later
replay those APIs on restart. We log the API when a user application calls the CUDA APIs that
need to be logged. So, at checkpoint time, no extra work is needed, but at restart, those allocation
and free calls were replayed. Note that even then the restart time is still less than 1 second.

4.4.2 Stream-oriented Benchmarks

simpleStreams SimpleStreams is one of the two code samples we took from NVIDIA’s official
CUDA code samples. We quote from the code’s documentation that simpleStream illustrates
the usage of CUDA streams for overlapping kernel execution with device/host memcpy (memory
copy). The kernel is used to initialize an array to a specific value, after which the array is copied
to the host (CPU) memory. To increase performance, multiple kernel/memcopy pairs are launched
asynchronously, with each pair in its own stream. Kernels are serialized. Thus, if n pairs are
launched, a streamed approach can reduce the memcopy cost to (1/n)th of a single copy of the
entire data set.
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Figure 5: Runtimes of (a) Stream-oriented Benchmarks; (b) Real-world Benchmarks (with and
without CRAC); and (c) Checkpoint and Restart times with CRAC with checkpoint image size.

Configuration and runtime overhead We re-configured the number of streams from 4 (de-
fault) to 128. For a NVIDIA V100 GPU with its compute capability of 7.0, 128 is the maximum
concurrent kernel limit [35]. The application fails if the stream count is increased beyond the max
limit. nreps is the number of times each experiment is repeated. For better accuracy, we changed
it from its default value of 10 to 1000. niterations is the number of iterations for the loop inside
the kernel. We have varied this niterations variable with values 5, 10, 100, and 500. We use the
default Blocking Sync Event synchronization method. The benchmark reports the time to execute
one CUDA kernel with streams and without streams (i.e., non-streamed).

Figure 4a shows how the overall runtime of simpleStreams varies with the number of iteration
increments. CRAC still maintains less than 1% overhead in each case. Figure 4b (plot on the right)
shows the impact of CUDA streams. As niterations increases (see previous paragraph) the time
to run the CUDA kernel increases. Figure 4b shows that the streamed version becomes significantly
faster, compared to the non-streamed version, as niterations increases. Yet CRAC continues to
perform with low overhead even for the faster streamed version. For the same reasons, CUDA
streams is widely used over regular non-streamed kernel launches. Note that CRAC incurs no
overhead; neither in non-streamed CUDA kernel execution time nor in the one with streams. This
shows that even after increasing the concurrency level to the max (128 streams), CRAC handles it
well as compared to previous solutions. Figure 5a shows the runtime with the same configuration
(128 streams, 1000 repetitions, and 500 iterations).

UnifiedMemoryStreams(UMS) UnifiedMemoryStreams (UMS) is taken from NVIDIA’s code
samples and illustrates the usage of streams with Unified Memory. UnifiedMemoryStreams imple-
ments a simple task consumer using threads and streams with all data in Unified Memory, and
tasks consumed by both host and device. The application randomizes task sizes for a total of
40 tasks with 4 streams. Based on the task size, the application decides at run time whether the
task should be run on the host or the device. Note that both the device and host are using same
unified memory. Configuration and runtime overhead: We configured the application to use
128 streams with a total of 1280 tasks. Since we needed to run the experiments 10 times for the
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average runtime, we set the seed to a random number 12701 to get consistent task allocations.
We measured the execution time by elapsed wall-clock time. Figure 5a shows the average runtime
without and with CRAC. We observed an overhead of 1.5%.

LULESH Version 2.0 GPU model of LULESH is specifically implemented for NVIDIA’s GPUs.
LULESH is a scientific real-world application developed by Lawrence Livermore National Labora-
tory [30] that solves the Shock Hydronomics Challenge Problem. LULESH provides two options,
one with an unstructured grid and the other with a structured grid. In our case, we use a structured
grid with 150 edge elements, which makes the problem size 150× 150× 150, and which uses nearly
2 GB of memory.

Runtime overhead: LULESH calls 210K CUDA calls in 80 seconds of its execution time that
means around 2.5K CUDA calls per second. We saw that with maximum streams in simpleStreams
and UnifiedMemoryStreams, CRAC still incurs low-overhead. With the real-world application that
makes 65K cudaLaunchKernel calls. Figure 5a shows that LULESH’s performance is still the same
with CRAC, with an overhead slightly less than 2%.
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Figure 6: (left) Runtimes of Rodinia Benchmarks without and with CRAC on both unpatched and
patched (FSGSBASE) Linux;

(right, top) Runtime overhead of CRAC on both unpatched and
patched (FSGSBASE) Linux;

(right, bottom) and percentage difference observed with CRAC’s runtime overhead with
patched Linux as compared to unpatched Linux (lower is better).

Checkpoint overhead Figure 5c shows that the checkpoint overhead is very low as compared
to the overall runtime of each stream-oriented application. CRAC needs to recreate streams and
make the CUDA library’s state consistent. So, the time is slightly more than the checkpoint time.
However, both checkpoint and restart finish within one second in each stream-oriented application.
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4.4.3 Real-world applications (HPGMG-FV and HYPRE)

HPGMG is a high-performance geometric multigrid application. It is one of the benchmarks used
for ranking speeds of the top supercomputers [36]. We use HPGMG-FV (Finite Volume) for our
experiments. HPGMG-FV can be scaled further with MPI over multiple nodes. However, it suffices
for our purposes to run HPGMG-FV over a single MPI rank. This already provides a real-world
scale since this configuration of HPGMG-FV make 2 million CUDA calls per minute (35,000 CUDA
calls per second). This scale is already representative of real-world high-performance applications.

HYPRE is a linear system solver library that makes only 600 CUDA calls per second. However,
HYPRE creates large UVM regions, and employs long-running kernels. One MPI-rank can create
UVM regions of up to 1 GB, and the host and the device both work simultaneously on UVM
regions via CUDA streams and textures. Therefore, HYPRE incurs a higher memory footprint
than HPGMG-FV. The following table shows the command-line arguments needed to run these
two real-world applications.

Application Command-line arguments

HPGMG-FV 7 8

HYPRE ij -solver 1 -rlx 18 -ns 2 -CF 0 -hmis -interptype 6
-Pmx 4 -keepT 1 -tol 1.e-8 -agg nl 1
-n 250 250 250 250

Runtime overhead: Figure 5b shows native and CRAC runtimes for both HPGMG-FV and
HYPRE. Figure 5b shows an average of 10 native and 10 runs with CRAC. CRAC manages to run
both the application with barely less than 2% with HPGMG and 3% with HYPRE.

Checkpoint overhead: Figure 5c shows that with HPGMG, CRAC need to replay a lot of
CUDA APIs as compared to its memory footprint. Therefore, CRAC takes nearly 1.75 seconds to
restart HPGMG. On the other hand, HYPRE’s checkpoint size is of 2.3GB but it takes less time
to restart. With all the results we have seen so far, one can conclude that the runtime overhead
with CRAC is very low and checkpoint overhead is not much. However, the restart time can be
larger, depending on how many CUDA calls CRAC need to replay to make newer CUDA library’s
state consistent.

4.4.4 Comparison of CRAC to Proxy-based approaches: The cost of IPC

As described at the beginning of Section 3.1, the starting point in the new approach of CRAC
was the observation that the existing proxy-based approaches to checkpointing CUDA (e.g., by
CRCUDA and CRUM) rely on expensive inter-process communication (IPC) between CUDA ap-
plication and the proxy. In real-world experiments, the authors of CRUM measured the runtime
overhead on real-world benchmarks at from 6% to 12%.

Here we present a synthetic IPC benchmark (CMA/IPC in Table 3) and compare with native
CUDA and CRAC. CMA is Cross-Memory Attach (i.e., the Linux syscalls process vm readv and
process vm readv). It is based on BLAS [37] (Basic Linear Algebra Subprograms), and uses the
NVIDIA cuBLAS library. The cuBLAS library resides in the lower half and is directly called from
the upper half. In the case of CMA/IPC, the buffers are copied via CMA from the application
to a proxy process (which executes the cuBLAS routine), and the result is copied back to the
application.

17



We ran three types of programs: cublasSdot (inner product), cublasSgemv (matrix-vector prod-
uct), and cublasSgemm (matrix-matrix product). The dimension was chosen so that the matrix (or
vector, for cublasSdot) had data size 1 MB, 10 MB, or 100 MB. The programs called the respective
cuBLAS routines 10,000 times, as part of a timing loop. Times in milliseconds are reported for a
single iteration.

CUDA Call Data Native CRAC(ms) CMA/IPC(ms)
size (ms) (% overhead) (% overhead)

cublasSdot 1MB 0.026 0.027 (3.9) 0.21 (698)

cublasSdot 10MB 0.049 0.050 (3.3) 2.56 (5142)

cublasSdot 100MB 0.282 0.284 (0.5) 50.4 (17766)

cublasSgemv 1MB 0.012 0.012 (1.9) 0.082(577)

cublasSgemv 10MB 0.036 0.037 (0.7) 1.25 (3329)

cublasSgemv 100MB 0.142 0.142(-0.1) 25.5 (17812)

cublasSgemm 1MB 0.202 0.207 (2.4) 0.49 (142)

cublasSgemm 10MB 1.806 1.816 (0.6) 9.03 (400)

cublasSgemm 100MB 32.373 32.107 (-0.8) 100.34 (209)

Table 3: Comparison of CRAC to an IPC-based approach (e.g., as in CRCUDA and CRUM)

Note that the CRAC overhead has generally about 1% overhead. The CRAC overhead can rise
to 3.9% for a dot product of vectors of 1 MB size. We attribute this to cache effects.

In comparison, the overhead using CMA [38] (Cross Memory Attach) for IPC varies from 142%
to 17,812%. The overhead is huge, as expected. To be fair, CRCUDA and CRUM were intended to
run on real-world programs in which buffers could be less than 1 MB and where the computation
is not dominated by very frequent CUDA calls. (For cublasSdot, there are 1/(0.026 ms) = 38,000
calls per second.)

4.4.5 Runtime overhead improvement using Linux’s upcoming FSGSBASE patch

A small experiment was also performed to see if there was significant benefit to using the upcoming
FSGSBASE patch to the Linux kernel [24]. In the current Linux, switching to a new thread (or
to the lower-half program in our case) requires a kernel call to set the corresponding x86-64 “fs”
register for that thread. A kernel call may require a millisecond. If done frequently, this can be
expensive. At least in the case of MPI applications, it was previously observed in [22] that the
expense of the kernel calls was significant when calling lower-half routines.

Hence, we wished to see if CRAC’s already small runtime overhead could be further reduced by
using the FSGSBASE patch to directly set the “fs” register, instead of setting “fs” through kernel
calls. As we shall see below, the added advantage of using the FSGSBASE patch is small, and
often nearly zero.

To test this question, we analyze whether CRAC’s runtime overhead can be further reduced
using the FSGSBASE patch. CRAC needs to get and set the “fs” register when it makes a call
from the upper half to the lower half. (This is analogous to the use of the “fs” register in context
switches among threads in Linux.) Setting the “fs” register is expensive due to the kernel call.

The experiments of Figure 6 were run on a local node: an older NVIDIA Quadro K600 GPU.
It was not possible to install a patched Linux kernel on the public, production nodes used for the
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experiments in the other figures. This also explains why the same Rodinia benchmarks mostly ran
for at least 10 seconds in this experiment.

Figure 6 presents two columns of graphs. On the left, the original 14 Rodinia benchmarks are
plotted. Each benchmark shows the native runtime and the CRAC runtimes, both with and without
the FSGSBASE patch. The runtimes with FSGSBASE were taken using the FSGSBASE/v9 kernel
patches [24].

The two graphs on the right in Figure 6 present the same data, but they express the data as
percentage differences, to more clearly contrast two cases: the runtime overhead of CRAC (with and
without FSGSBASE); and the change in runtime overhead of CRAC when using the FSGSBASE
patch. Lower is better in both cases.

5 Related Work

Much of the work targeting transparent checkpointing of CUDA was already covered in Section 2,
as part of the motivation for a fresh approach in CRAC. See Section 2 for more details.

To summarize, several techniques [10–14] were explored prior to CUDA 4.0 (in 2011 and earlier).
Later, unified memory between device and host was introduced to CUDA in two increments: Unified
Virtual Addressing (UVA) in CUDA 4.0; and Unified Virtual Memory (UVM [39]) in CUDA 6.0.
This unified memory was incompatible with existing checkpointing approaches.

Since then, two newer checkpointing approaches appeared: CRCUDA [15] and CRUM [22]. The
limitations of these two approaches were already described: high runtime overhead, incomplete
UVM support, and untested scaling of concurrent streams. (See the second page of Section 1 for
details.)

It remains to describe four techniques from the literature that are related to the implementation
of CRAC: proxies in CRUM; proxies in the wider literature; split processes; and process-in-process.

Use of proxy processes in CRUM The previous work of CRUM in checkpointing CUDA has
unacceptable high overhead of 6% and could go up to 12%. This occurs at two extremes.

Case I: Many short-lived kernels. This incurred overhead because of the need to frequently
marshal and unmarshal the parameters for communication between the application and the
proxy process when invoking CudaLaunchKernel. For example, HPGMG-FV has a high
frequency of CUDA calls.

Case II: Kernel and host access many UVM memory pages frequently. This requiring frequent
calls to mprotect and userfault fd (a recent Linux utility serving the same purpose as segfault
handlers). This interacted particularly badly with NVIDIA UVM.

Proxy processes Proxy processes are a well-known concept that is widely used in systems. In
an early example, Zandy et al. [40] demonstrated the use of a “shadow” process for checkpointing
currently running application processes that were not originally linked with a checkpointing library.
This allows the application process to continue to access its kernel resources, such as open files, via
RPC calls with the shadow process. Kharbutli et al. [41] use a proxy process for isolation of heap
accesses by a process and for containment of attacks to the heap. CheCL [42] has employed proxy
processes already in 2010, for the closely related OpenCL language [43] for GPUs. CRCUDA [15]
and CRUM also employ proxy processes.
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Split processes Split processes were described in Figure 1 in Section 3.1. MPI for MANA [22] had
adopted the idea of split processes in the context of checkpoint-restart for MPI. Upon checkpoint,
only the upper half memory is saved. On restart, a small bootstrap program in the lower half
restores the upper half memory, and the upper half then replays any persistent state associated
with a physical device. In the case of MANA, that physical device would be the network, and/or
sockets communicating with a central MPI coordinator. In the case of the current work (CRAC),
the physical device is the GPU.

There are several antecedents to the idea of combining two programs in a single process. Here
we note McKernel and shadow device drivers, both devised for the Linux kernel.

McKernel [44] runs a “lightweight” kernel along with a full-fledged Linux kernel. The HPC
application runs on the lightweight kernel, which implements time-critical system calls. The rest of
the functionality is offloaded to a proxy process running on the Linux kernel. The proxy process is
mapped in the address space of the main application, similar to MANA’s concept of a lower half,
to minimize the overhead of “call forwarding” (argument marshalling/un-marshalling).

Swift et al. [45] developed the idea of a “shadow device driver”. The lower half corresponds to
the actual device driver, and the upper half corresponds to a shadow device driver that mirrors
(or “logs”) all transactions to the lower half. If the lower-half device driver crashes, then it is
re-initialized and a long-and-replay approach is used to re-initialize it.

Process-in-process: an approach related to split processes Process-in-process [23] is re-
lated to split process in that that both approaches load multiple programs into a single address
space. However, the goal of process-in-process was intra-node communication optimization, and
not checkpoint-restart. Given two MPI ranks (processes) co-located on a single computer node, the
two ranks were loaded into a single address space, to make copying of messages between the two
MPI ranks more efficient.

Unlike split processes, process-in-process loads all MPI ranks co-located on the same node as
separate threads within a single process, but in different logical “namespaces”, in the sense of the
dlmopen namespaces in Linux.

6 Conclusion and Future Work

Transparent checkpointing of CUDA with low runtime overhead has been demonstrated. This is
important, since most earlier checkpointing approaches (prior to CUDA 4.0) are incompatible with
the versions of CUDA introduced in version 4.0 and beyond. There do exist two other recent solu-
tions that are compatible with CUDA versions 4.0 and later. But both have limited functionality,
and more importantly, their runtime overhead is very high (e.g., 6% to 12% on complex, real-world
applications). This is an unacceptable waste of resources for the expensive GPUs used in mid-level
computing and supercomputing.

The current solution demonstrates low runtime overhead (about 1%), and additionally, that
low overhead is maintained for two important, advanced CUDA features. The two features are:
(a) support for the maximum capability of parallel GPU streams; and (b) full support for CUDA’s
UVM. The parallel GPU-stream support includes near-native runtime performance. CUDA streams
are gaining importance, for example, in multi-threaded programs on many-core CPUs, in which each
thread employs a separate CUDA stream. The Full support for UVM is important in simplifying
software development in CUDA.
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Some extensions of this work have also been demonstrated, which have the side benefit of
providing a roadmap toward future extensions. For example, the real-world applications used in
this paper not only use the CUDA runtime library, but also other CUDA libraries such as cuBLAS
and cuSolver. Hence, the current work can easily be extended to support other CUDA libraries and
additional GPU APIs. Further, a proof of principle was demonstrated for checkpointing of hybrid
MPI+CUDA on a single node. In future work, this proof of principle for transparent checkpointing
of MPI+CUDA will be extended to full support for MPI on multiple nodes.
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