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Abstract—Graph pattern matching, which aims to discover
structural patterns in graphs, is considered one of the most funda-
mental graph mining problems in many real applications. Despite
previous efforts, existing systems face two main challenges. First,
inherent symmetry existing in patterns can introduce a large
amount of redundant computation. Second, different matching
orders for a pattern have significant performance differences and
are quite hard to predict. When these factors are mixed, this
problem becomes extremely complicated. High efficient pattern
matching remains an open problem currently.

To address these challenges, we propose GraphPi, a high
performance distributed pattern matching system. GraphPi uti-
lizes a new algorithm based on 2-cycles in group theory to
generate multiple sets of asymmetric restrictions, where each
set can eliminate redundant computation completely. We further
design an accurate performance model to determine the optimal
matching order and asymmetric restriction set for efficient
pattern matching. We evaluate GraphPi on Tianhe-2A super-
computer. Results show that GraphPi outperforms the state-of-
the-art system, by up to 105× for 6 real-world graph datasets on
a single node. We also scale GraphPi to 1,024 computing nodes
(24,576 cores).

Index Terms—Graph mining, pattern matching, automor-
phisms elimination

I. INTRODUCTION

Graph data and algorithms are widely used in many fields,
such as social networks [1], bioinformatics [2], and fraud
detection [3]. With the increasing amount of graph data,
processing and analyzing graphs with high performance be-
come more and more critical. Graph analysis problems can be
mainly classified into two types: graph computation and graph
mining. Graph computation problems have been extensively
studied, and many efficient graph processing systems have
been proposed [4]–[11]. On the other hand, efficient and
scalable graph mining algorithms, which are widely used to
discover complex structural patterns in graphs, are extremely
challenging to design. As the most typical and common
graph mining problem, pattern matching is well known to
be NP-complete. With the increase of graph data scale, the
number of potential pattern instances may increase exponen-
tially, resulting in an exponential increase in searching space,
computation, and intermediate data. The state-of-the-art graph
pattern matching system [12] needs several hours or even
several days to mine a pattern with a size of 6 on an unlabeled
graph with millions of edges [13].

Recently, researchers have proposed several general-purpose
graph mining systems [14]–[17], such as Arabesque and

RStream, which provide high-level abstractions and flexible
programming models to express complex graph mining algo-
rithms. Arabesque [14] is a distributed graph mining system
that uses a filter-process programming model to simplify the
development of scalable graph mining algorithms. However, it
suffers from large startup and communication overhead and a
large amount of intermediate data. RStream [15] leverages per-
sistent storage to store intermediate data and implements rela-
tional algebra efficiently with tuple streaming and outperforms
several state-of-the-art distributed mining systems. Although
these general-purpose systems provide comprehensive support
for the development of a series of mining algorithms, they have
relatively poor performance and exponential intermediate data
for storing candidates. For example, RStream generates about
1.2TB intermediate data to count 4-motif on the MiCo graph
with 1 million edges [18].

Recently, specialized systems have been developed for
pattern matching [12], [19]–[21], approximate pattern mining
[22], [23], and frequent subgraph mining (FSM) [24], [25].
ASAP [23] is a distributed approximate pattern matching
system for estimating the count of embeddings (instances of
the input pattern). It allows users to make a trade-off between
the result accuracy and latency. Although ASAP shows out-
standing scalability, it is not applicable in some situations. For
example, ASAP fails to generate relatively accurate estimation
by sampling if there are very few embeddings in the graph,
which are common for some real graph mining applications.

Algorithms in these specialized pattern matching systems
can be described with nested loops, and AutoMine [18]
and GraphZero [12] represent relatively good performance
in such systems. Observing that even a single-thread pro-
gram outperforms general-purpose graph mining systems like
RStream in the case of triangle counting, AutoMine generates
efficient C++ code for enumerating all embeddings on a
graph. A pattern has a large number of orders in which
each vertex of a pattern is searched in these pattern matching
algorithms, which are called schedules, and the performance
of different schedules varies significantly. To address this
problem, AutoMine proposes a performance estimation model
to select a schedule with relatively high performance. Based
on AutoMine, GraphZero further generates a set of restrictions
to break symmetry in a pattern.

Despite previous efforts, there are two main limitations in
current specialized pattern matching systems. The first one is
that embeddings are repeatedly identified many times due to
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the symmetry of a pattern, which results in a large amount of
redundant computation. These embeddings, which contain the
same edges and vertices, are called automorphisms. GraphZero
partially solves this problem by using restrictions to eliminate
automorphisms, but it does not consider the influence of
different restrictions on performance. Second, the performance
of using different schedules of a pattern varies significantly,
and it is challenging for pattern matching systems to select the
optimal one, especially when patterns are large and complex.
Our results (Figure 9) show that the optimal schedule is 64.5×
faster than the schedule selected by GraphZero for a pattern
with 6 vertices. These two problems generally exist in most
of current pattern matching systems.

To address these challenges, we design GraphPi, a high-
performance distributed pattern matching system with four
novel components: 1) a 2-cycle based automorphism elim-
ination algorithm to generate multiple sets of restrictions
to effectively break the symmetry of patterns, 2) a 2-phase
computation-avoid schedule generator to eliminate inefficient
schedules, 3) an accurate performance prediction model to
determine the optimal combination of schedule and restriction
set, and 4) an optimization technique with the Inclusion-
Exclusion Principle when only counting embeddings.

For an arbitrary pattern input by users, GraphPi can au-
tomatically generate restrictions in the preprocessing stage
and apply these restrictions when running pattern matching
to eliminate all redundant computation caused by automor-
phisms. For the same pattern, there may be many different
restriction sets, and each of them is able to eliminate all re-
dundant computation. However, the performance of the pattern
matching process may differ by several times when applying
different restrictions. Since schedules and restrictions both
have significant impacts on system performance, we model the
performance of the pattern matching algorithm with different
combinations of schedules and restrictions in the preprocessing
stage, and choose the best one to run.

Moreover, if an application only counts the number of em-
beddings instead of listing them, we use Inclusion-Exclusion
Principle to count the number of embeddings efficiently. We
also leverage a fine-grained task partitioning technique and
a work-stealing algorithm to implement a distributed pattern
matching system with an OpenMP/MPI hybrid programming
model.

To summarize, we make the following contributions:
• We propose a 2-cycle based automorphism elimination

algorithm to reduce the number of automorphisms to
one for an arbitrary pattern (Section IV-A). To our best
knowledge, it is the first algorithm that generates multiple
different sets of restrictions for nested-loop-based graph
mining algorithms.

• We propose a 2-phase computation-avoid schedule gen-
erator to eliminate inefficient schedules (Section IV-B).

• By building an accurate performance model, we can
select the optimal combinations of schedules and restric-
tions from thousands of candidates to execute the pattern
matching algorithm (Section IV-C).

• In the case of counting embeddings, we further propose
a method based on the Inclusion-Exclusion Principle to
accelerate the pattern matching algorithm (Section IV-D).

Evaluation results on a large variety of real-world graph
datasets and patterns show that GraphPi outperforms the
state-of-the-art pattern matching system by several orders of
magnitude. Specifically, GraphPi is up to 105× faster than
GraphZero and 154× faster than Fractal [26] running on the
same single node. After using the Inclusion-Exclusion Princi-
ple (IEP) for counting the number of embeddings, GraphPis
performance can be further improved by up to 1110× com-
pared with that without using IEP. Currently, GraphPi can
scale up to 1,024 computing nodes (24,576 computing cores).
GraphPi is available on the website. 1

II. BACKGROUND AND MOTIVATION
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Fig. 1: An example of pattern matching. The numeric letters
denote different vertices in the input graph. The capital letters
denote different vertices in the pattern. The numeric numbers
in a square bracket denote a one-to-one correspondence (a bi-
jective function). For example, [4,5,6,7,3] denotes the function
id where id(A) = 4, id(B) = 5, etc.

A. Problem Definition

A graph G is defined as (V,E) where V is the vertex set
and E ⊆ (V × V ) is the edge set. A pattern Gp = (Vp, Ep)
is isomorphic to a subgraph Gs = (Vs, Es) of the data
graph if and only if there is a bijective function (a one-to-
one correspondence) id : Vp → Vs such that ∀(ui, uj) ∈ Ep,(
id(ui), id(uj)

)
∈ Es. For the convenience of discussion, all

patterns and data graphs are assumed to be undirected and
unlabeled graphs, although all methods proposed in this paper
can be easily extended to directed and labeled graphs.

The graph pattern matching problem is to find all distinct
subgraphs (called embeddings) that are isomorphic with a
given pattern for a data graph. For better understanding, a
pattern and an embedding can be regarded as a template and
an instance, respectively. Figure 1 is an example of the pattern
matching problem. There are 8 and 5 vertices in the data graph
and the pattern respectively. We can find 4 distinct one-to-one
correspondences ([4,5,6,7,3], [5,4,7,6,3], etc.) satisfying the
definition of “isomorphic”. Therefore, there are 4 embeddings
of the pattern in the data graph.

1https://github.com/ thu-pacman/GraphPi

https://github.com/thu-pacman/GraphPi


One subgraph can be identified as embeddings for several
times. The embeddings containing the same edges and vertices
are called automorphisms. For example, although the 2 em-
beddings at the top left and top right corners in Figure 1 have
different one-to-one correspondences, they are automorphisms
due to the same edges and vertices they contain.
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Fig. 2: An example of schedules and restrictions. The schedule
used in (a) is A,C,B,D,E. The number behind a capital letter
in (b) denotes the position of this vertex in the schedule (e.g.,
“C2” means the vertex C is the second searched vertex in this
schedule). The greater-than sign (“>”) above an edge denotes
the restriction between two vertices of this edge (e.g., the “>”
above the edge between A1 and B5 denotes id(A) > id(B)).
(b) is evaluated on the Patents graph [27].

B. Schedules and Restrictions

For the graph pattern matching algorithm, a schedule
represents an order in which each vertex of a pattern is
searched. For example, an order of A,C,B,D,E is used to
find all embeddings of the pattern in the data graph used in
Figure 1. For a given pattern, there are usually a number
of candidate schedules to perform the search. By regarding
a pattern matching algorithm as a depth-first search (DFS)
algorithm, Figure 2(a) shows a part of the DFS tree for this
example. The deepest leaf nodes (depth = 5) in the DFS tree
represent embeddings. Note that the 2 embeddings in Figure
2(a) are automorphisms.

The number of automorphisms depends on the input pattern,
and it will explode with the number of vertices in the pattern.
For a 7-clique pattern (a complete graph with 7 vertices), each
embedding has 5,040 automorphisms. A large number of auto-
morphisms lead to huge redundant computation. Therefore, it
is a common goal to identify each embedding exactly once in
all pattern matching systems to avoid redundant computation.

To deal with automorphisms, a technique named restriction
is applied in the pattern matching algorithms. A restriction
is a restricted condition of relative magnitudes of two vertices
in a pattern (e.g., id(A) > id(B), where id is the one-to-
one correspondence mentioned in Section II-A). By using

the ordering of symmetry breaking technique [28] and the
concept of the neighborhood equivalence class [29], the first
embedding in Figure 2(a) can be eliminated with a restriction
of id(A) > id(B). This is because id(A) = 4 < id(B) = 5 in
the first embedding. From the perspective of the DFS tree, the
subtree with “id(B) = 5” as a root node is pruned with this
restriction. Therefore, the deepest leaf node of this embedding
does not need to be searched.

For complex patterns, multiple restrictions are required to
eliminate all redundant computation, that is, a set of restric-
tions is required. However, the method with neighborhood
equivalence class is only effective for a part of patterns.
Recently, GraphZero [12] partially solves this problem by
reducing the number of automorphisms of any pattern to 1,
but it can only generate one set of restrictions and does
not consider the performance difference of different sets of
restrictions in pattern matching. In fact, for the same pattern,
there are many different sets of restrictions that can completely
eliminate redundant computation. For instance, we can use
a restriction id(C) > id(D) instead of id(A) > id(B) to
eliminate automorphisms, and the performance of a pattern
matching algorithm applying the former is much higher than
that applying the latter with the schedule of A,C,B,D,E in
Figure 2.

C. Challenges of Pattern Matching

The performance of different combinations of schedules and
restrictions varies significantly. For a given pattern and data
graph, different schedules correspond to different searching
space, that is, different DFS trees. Although the numbers of
embeddings are the same for different schedules, the sizes of
different DFS trees differ greatly. Applying different sets of
restrictions for the same schedule can be regarded as pruning
the DFS tree at different locations, which can lead to different
optimization and performance. After combining schedules and
a set of constraints, the performance gap between different
combinations will further widen. We evaluate the perfor-
mance of different combinations shown in Figure 2(b) with
GraphZero on the Patents graph [27]. Experimental results
show that the best combination of schedules and restriction
sets is up to 23.2× faster than the worst one.

However, the number of combinations is very large, and
it is very hard to predict the execution time of the pattern
matching algorithm. There are n! different schedules for a
pattern with n vertices. After combining with different sets of
restrictions, the number of possible combinations will explode.
Since the distributions of data in different graphs are not
similar, we cannot do some preprocessing to select the optimal
schedule and restrictions of a pattern and use a combination
for one pattern in all graphs. Moreover, the sizes of DFS
trees of different combinations are unknown before running
the pattern matching algorithm. Therefore, it is necessary but
challenging to predict the performance with low overhead and
high accuracy for every combination of schedules and sets of
restrictions for efficient pattern matching.
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Fig. 3: Overview of GraphPi.

III. OVERVIEW OF GRAPHPI

In this work, we design GraphPi, a fast and scalable
graph pattern matching system. Figure 3 shows the overall
architecture of GraphPi. GraphPi mainly explores how to
select a better schedule and a set of restrictions through the
information provided by the input pattern and data graph to
accelerate the pattern matching process. GraphPi consists of
four main components: configuration generation, performance
prediction, code generation and compilation, and distributed
pattern matching.

In order to eliminate all redundant computation caused
by automorphisms, different sets of restrictions of the input
pattern are generated by a restriction generator. The schedule
generator can generate all efficient schedules for the input pat-
tern. A performance model predicts the relative performance
of all configurations, which are combinations of restriction
sets and schedules. After selecting the optimal configuration
through the performance model, GraphPi uses the pattern
matching algorithm and the code generation method proposed
by AutoMine to generate efficient C++ code with this config-
uration and compiles these programs into an executable file.
Then GraphPi runs the distributed pattern matching algorithm
with the input graph to find all embeddings. If users only want
the number of embeddings instead of listing embeddings, we
propose using the Inclusion-Exclusion Principle in the pattern
matching algorithm to further improve the performance in
GraphPi.

The APIs provided by GraphPi are simple and easy to use.
Users only need to input a pattern and a data graph in the
form of adjacency lists to run GraphPi.

IV. METHODOLOGY OF GRAPHPI

This section provides a detailed description of approaches
in GraphPi. Our goal is to reduce the count of automorphisms
to one and eliminate all redundant computation. To achieve
that, we first introduce a novel restriction generation algo-
rithm based on permutation groups. To our best knowledge,
this is the first algorithm that generates a complete set of
restrictions, which can provide more choices and optimiza-
tion opportunities for graph pattern matching algorithms. In
Subsection IV-B, we elaborate the approach how we generate
efficient schedules. In Subsection IV-C, we introduce a concept
of configuration, which is a combination of a schedule and
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Fig. 4: An example of Algorithm 1. (c) is the permutation
group formed of all the automorphisms of (a) and each
permutation is written as a product of disjoint cycles. (d) is an
example of using Algorithm 1 to eliminate all permutations in
(c) except the identity permutation.

a set of restrictions. To select the optimal configuration, we
design an accurate performance prediction model to estimate
the relative performance of the pattern matching algorithm for
each configuration. Finally, we also propose an embedding
counting method based on the Inclusion-Exclusion Principle.

A. 2-Cycle Based Automorphism Elimination

In GraphPi, we use the concept of permutation group [30]
to formalize our problem. Each automorphism of a pattern
can be defined as a permutation function p : Vp → Vp

such that ∀(ui, uj) ∈ Ep, (p(ui), p(uj)) ∈ Ep, where Vp

and Ep are the vertex set and edge set of a pattern. All
automorphisms of a pattern form a permutation group. For
example, Figure 4(a) is a rectangle pattern, and Figure 4(b) is
one of the automorphisms of this pattern. The permutation
of this automorphism is

(
A B C D
A D C B

)
, and it can be also

rewritten as a product of disjoint cycles (A)(B,D)(C), where
A and C are fixed (also called 1-cycle), and B and D are
exchangeable (also called 2-cycle). Without loss of generality,
any k-cycle (k > 1) can be written as a product of 2-cycles.
For example, a 4-cycle (A,B,C,D) can be decomposed into
(A,D)(A,C)(A,B), which means that we first exchange A
and D, then exchange A and C, and finally exchange A and B.
Therefore, 2-cycle exchanges are the most essential elements



in permutations. Figure 4(c) is a permutation group formed by
all automorphisms of this rectangle pattern. Since any k-cycle
(k > 1) can be decomposed into 2-cycles, any permutation in
a permutation group can be rewritten as a product of 1-cycles
and 2-cycles.

According to previous studies, we know that automorphisms
of embeddings can be eliminated when some restrictions are
applied, but the challenge is that which restrictions should be
applied. On one hand, if insufficient restrictions are applied,
redundant computation cannot be completely eliminated. On
the other hand, if too many restrictions are applied, some
embeddings will be mistakenly eliminated. In fact, the root
cause of repeated embeddings is that a pattern has mul-
tiple automorphisms. In this work, we innovatively exploit
the property of permutation group to effectively eliminate
automorphisms of a pattern. Our core idea is to break the
symmetries of permutations by applying restrictions on the
essential elements of 2-cycles.

We use a concrete example to illustrate the basic idea of our
approach. Suppose there is an embedding e1(x1, x2, x3, x4)(
id(A)=x1, id(B)=x2, etc.

)
of the rectangle pattern in

a given graph. Due to the existence of the permutation
(A)(B,D)(C) in Figure 4(c), there must be another embed-
ding e2(x1, x4, x3, x2), which is one of the automorphisms
of e1. Since id(B) = x2, id(D) = x4 for e1 and id(B) =
x4, id(B) = x2 for e2, no matter x2 > x4 or x4 > x2, one of
e1 and e2 can be definitely eliminated when applying a restric-
tion id(B) > id(D), which inspires us to apply restrictions
on 2-cycles like (B,D). From the perspective of permutation
group, the elimination of e2 can be regarded as the elimination
of the permutation (A)(B,D)(C). Therefore, to eliminate all
redundant computation caused by automorphisms, we need to
eliminate permutations with restrictions on 2-cycles until only
an identity permutation

(
i.e., (A)(B)(C)(D)

)
remains in a

permutation group.
As shown in Figure 4(d), not all 2-cycles need to be used in

one set of restrictions, and therefore the selection of different
2-cycles results in different sets of restrictions. As a restric-
tion associated with a 2-cycle can not only influence those
permutations with the same 2-cycles, it can also influence
other permutations, we find that even in a permutation with
no 2-cycles written as a product of disjoint cycles, it can be
still eliminated by restrictions applied for other permutations,
which will be discussed later.

Algorithm 1 presents our 2-cycle based automorphism elim-
ination algorithm. It takes an arbitrary pattern as input and
outputs multiple sets of restrictions, and each of them can
eliminate all redundant computation. We first generate all
the automorphisms and the corresponding permutation group
(lines 2∼3). Then, we call a recursive function generate (line
4). If there are permutations other than an identity permutation
in the group, more restrictions need to be added to eliminate
them (line 7). For each permutation in the group, if we
succeed in finding a 2-cycle in the permutation, we append
a partial order restriction between the two vertices of the 2-
cycle (lines 9∼12). Next, we use a new set of restrictions to

Algorithm 1: 2-cycle based automorphism elimination
Input: pattern: the pattern
Output: res sets: sets of restrictions

1 Function res_set_generation(pattern):
2 auts← all the automorphisms of pattern
3 pg ← the permutation group formed of auts
4 res sets← generate(pg, ∅)
5 return res sets

6 Function generate(pg, res set):
7 if pg.size > 1 then
8 sets← ∅
9 for perm ∈ pg do

10 for vertex ∈ perm do
11 if vertex = perm[perm[vertex]] then

// a 2-cycle is found

12 new set←
res set ∪ pair(vertex, p[vertex])

13 remaining pg ← ∅
14 for p ∈ pg do
15 if no conflict(p, new set) then
16 remaining pg.add(p)
17 sets← sets ∪

generate(remaining pg, new set)
18 return sets
19 else // only the identity permutation

20 if validate(res set) then
21 return res set
22 else
23 return ∅

24 Function no_conflict(perm, res set):
25 g ← an empty directed graph
26 for res ∈ res set do
27 g.add dir edge(res.first, res.second)
28 g.add dir edge(perm[res.first],

perm[res.second])
29 return g.acyclic()

eliminate permutations (lines 13∼16). In order to eliminate
the remaining permutations, we generate more restrictions by
calling the function of generate recursively (line 17). When
there is only one identity permutation in the group, we verify
the current set of restrictions by calling the validate(res set)
function (lines 19∼20). Assuming that the pattern has n
vertices, we run a pattern matching algorithm with the input
set of restrictions (i.e., res set) on an n-vertex complete graph
and rerun it without restrictions. The set of restrictions is cor-
rect if answith = answithout/automorphisms count, where
answith is the number of embeddings found during the pattern
matching process with the set of restrictions and answithout

is that without restrictions (i.e., including all automorphisms).
The function of no conflict is used to verify whether a

permutation can be eliminated by the current set of restrictions.



For each restriction in the set, we regard it as two directed
edges and add them to an initially empty directed graph
g. The permutation is not eliminated if and only if g is a
directed acyclic graph (DAG). For example, there are two
restrictions

(
id(B) > id(D) and id(A) > id(C)

)
after

Round 1 in Figure 4(d). We assume that the permutation
2 is not eliminated. After applying these two restrictions,

if the pattern matching algorithm can find an embedding
e1(x1, x2, x3, x4)

(
id(A)=x1, id(B)=x2, etc.

)
, then another

embedding e2(x4, x1, x2, x3) can also be found due to the
permutation. Since e1 meets the restrictions, there must be
x2 > x4 and x1 > x3. Similarly, there must be x1 > x3 and
x4 > x2 for e2. Then, we have two contradictory relations
x2 > x4 and x4 > x2 (corresponding to a ring in the directed
graph g). Therefore, the assumption does not hold. That is,
the permutation 2 is eliminated by these two restrictions.

In our evaluation, we will show that Algorithm 1 not only
generates multiple different sets of restrictions but also has
very low overhead. By contrast with the execution time of the
pattern matching algorithm, which may take several minutes
or even several hours, the overhead of Algorithm 1 can be
ignored.

B. 2-Phase Computation-Avoid Schedule Generation

In pattern matching, a schedule represents an order in which
each vertex of a pattern is searched. For a pattern with n
vertices, there are n! possible schedules. How to select an
efficient schedule is a key challenge in pattern matching.

Typically, an efficient pattern matching algorithm is usually
implemented using recursive functions or nested loops. For
example, Figure 5(b) is the pseudocode of the algorithm
generated by GraphPi for the House pattern with a schedule of
A→ B → C → D → E and a restriction of id(A) > id(B).
For simplicity, we temporarily ignore the statement (line 3)
related to the restriction. The algorithm searches every vertex
in the order specified by the schedule. In this work, we let a
candidate set of a vertex be a set where the vertex traverses in
a loop. A candidate set is either the neighborhood of a vertex
or the intersection of neighborhoods of several vertices in the
data graph. For example, the vertex E is connected to A and
B in Figure 5(a), so in the pseudocode, vE traverses through
the intersection of neighborhoods of vA and vB in the data
graph, that is, the candidate set of E is N(vA) ∩N(vB).

Although there are n! possible schedules for a given pat-
tern, some of them are inefficient. Though our performance
prediction module can predict the performance of the sched-
ules generated by the schedule generator, generating efficient
schedules instead of all schedules can significantly reduce the
overhead of performance prediction. Based on our observation,
the overhead of intersection operations is the main cost in pat-
tern matching. Therefore, we propose a 2-phase computation-
avoid schedule approach to generate efficient schedules. Our
approach consists of two key phases.
Phase 1 We firstly eliminate schedules which do not satisfy
that the ith searched vertex is directly connected to at least
one of the first i− 1 searched vertices in the pattern. That is,

(a) The optimal configuration
of the House pattern.

(b) The pseudocode.
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design a nested performance model correspondingly:

costi =

(
li ⇥ fi ⇥ (ci + oi + costi+1), for 1  i  n� 1

li ⇥ fi ⇥ oi, for i = n
,

where n is the number of vertices of the pattern, costi is the
total cost of the ith loop, li is the loop size, fi is the probability
that one embedding will not be filtered out by a restriction, ci

is the computation overhead of the intersection operation, and
oi is the other overhead in the loop. Since the value of costi
depends on costi+1, we need to calculate costi recursively.

The neighborhood of a vertex in the data graph can be
sorted in advance, so the time complexity of the intersection
operation is O(card1 + card2), where card1 and card2

are the cardinalities of two sets. For example, there is a
intersection operation N(vA) \ N(vB) in the second loop
in Fig. 5(b), so c2 = |N(vA)| + |N(vB)|. If a set is the
intersection of neighborhoods of x vertices in the data graph,
the expected cardinality of the set is |VG| ⇥ p1 ⇥ px�1

2 ,
where VG is the vertex set of the data graph, p1 is the
probability of any pair of vertices being neighbors

�
i.e.,

P ((a, b) 2 EG |a, b 2 VG )
�
, and p2 is the probability of any

pair of vertices in a neighborhood being connected to each
other

�
i.e., P ((a, b) 2 EG |c 2 VG, a, b 2 N(c) )

�
. For exam-

ple, if the vertex D in a pattern is connected to A, B and C,
then the candidate set of vD is N(vA)\N(vB)\N(vC), and
its expected cardinality is |VG| ⇥ p1 ⇥ p2

2. According to the
definitions of p1 and p2, we have

p1 =
|EG|
|VG|2 ,

p2 =
tri num⇥ |VG|

|EG|2 ,

where EG is the edge set and tri num is the number of
triangles in the data graph. By predicting the cardinalities of
different intersections, we can calculate the values of li and
ci.

We use fi to measure the impact of different sets of
restrictions on performance. For a pattern with n vertices,
there are n! possible relative magnitudes of ids of n vertices
in an embedding. fi is the probability that one embedding
will not be filtered out by the restriction in the ith loop. For
example, n!

2 possibilities can be filtered out by the restriction
id(A) > id(B) in Fig. 5(b), thus f1 = 1

2 . If there are
restrictions in multiple loops, each restriction needs to filter
the possibilities that remain after the previous restriction. We
set fi = 1 if there is no restriction in the ith loop.

oi represents other overhead in the ith loop, and its value
depends on the implementation of the pattern matching algo-
rithm. In our algorithm, we set oi = 1 for all loops.

Through a large number of experiments, we find a rule that
if there are at most k vertices in the pattern that any two of
them are not connected, the k vertices are usually searched
in the innermost k loops of the optimal configuration. For
example, the vertex D is not connected to E in Fig. 5(a) and
therefore k = 2 in the case of the House pattern. We can

Fig. 6: There are at most three vertices (D,E and F) in the
Cycle-6-Tri pattern that any two of them are not connected and
therefore k = 3. We can use the Inclusion-Exclusion Principle
to count the number of embeddings instead of searching vD,vE

and vF by three loops. The directed edges in (a) represent the
set of restrictions.

see that D and E are searched in the innermost two loops
in Fig. 5(b). This rule can be well explained. The k vertices
searched in the innermost k loops are not connected in the
pattern, which means that there is no intersection operation in
the innermost k loops. Since inner loops are executed more
times than outer loops, putting the intersection operation in
outer loops has relatively less computation in total. Inspired
by this rule, we preferentially select the configurations with
no intersection operation in the innermost k loops.

Algorithm 2: code

1 for vA 2 VG do
2 for vB 2 N(vA)� {vA} do
3 if id(vA)  id(vB) then break
4 tmpAB  N(vA) \N(vB)
5 for vC 2 N(vA)� {vA, vB} do
6 tmpBC  N(vB) \N(vC)
7 for vD 2 tmpBC � {vA, vB , vC} do
8 for vE 2 tmpAB � {vA, vB , vC , vD} do
9 (vA, vB , vC , vD, vE) is an embedding.

D. Counting with the Inclusion-Exclusion Principle

Since there is usually no intersection operation in the
innermost k loops of the optimal configuration, we can use the
Inclusion-Exclusion Principle (IEP) instead of enumeration by
the k loops to count the number of embeddings like Fig. 6(b).

Let Si be the candidate set of the ith vertex among the k
vertices.In order to count the number of embeddings, we need
to calculate the cardinality of the set SIEP , where

SIEP = S1 ⇥ S2 ⇥ · · ·⇥ Sk

� {(e1, e2, · · · , ek)|91  i, j  k s. t. ei = ej}

// a restriction

Fig. 5: For a given configuration like (a), GraphPi can generate
efficient code like (b) to find all embeddings. VG is the vertex
set of the input data graph. N(v) returns the neighborhood of
v in the data graph.

for an efficient schedule, the subgraph formed by the first i
searched vertices must be a connected graph. For example, if
we first search vertex C and vertex D in Figure 5(a) and the
third searched vertex is E, this schedule is inefficient regardless
of what the search order of the remaining two vertices is,
because there is no edge between E and C or E and D in
the pattern. This rule can be further explained. For the third
searched vertex E, since E is not connected to C or D, the
candidate set of E is the entire vertex set (i.e., VG). If we
use vertex A instead of E as the third searched vertex, the
candidate set of A will be the intersection of neighborhoods
of C and D (i.e., N(C) ∩ N(D)). Obviously, |VG| is much
larger than |N(C)∩N(D)| in real-world graphs, which results
in more computation in inner loops. So it is not an efficient
schedule to choose E as the third searched vertex when C and
D are the first two searched vertices.
Phase 2 Suppose there are at most k vertices in a pattern
which satisfy that any two of them are not directly connected.
We secondly eliminate the schedules which do not satisfy
that any two of the last k searched vertices are not directly
connected in the pattern. For example, the vertex D is not
connected to E in Figure 5(a) and therefore k = 2 for this
pattern. We can see that D and E are searched in the innermost
2 loops in the pseudocode. This rule can be further explained.
The last k searched vertices in a schedule are not directly
connected in the pattern, which means that the candidate sets
of the last k searched vertices are computed in the outermost
n − k loops and there are no intersection operations in the
innermost k loops. Since inner loops are executed more times
than outer loops, putting intersection operations in outer loops
achieves relatively less computation in total.

By generating all n! possible schedules and filtering inef-
ficient ones out with the above approach, we get all efficient
schedules for further analysis.

C. An Accurate Performance Prediction Model

A main challenge in the graph pattern matching algorithm
is that the performance of different schedules and a set of
restrictions varies significantly for the same pattern. In this
work, we use configuration to denote a combination of a
schedule and a set of restrictions. A pattern is used to indicate



what kind of subgraph structures to find, while a configuration
of this pattern is used to indicate how to find these subgraphs
efficiently. To achieve much higher performance, we propose
an accurate performance prediction module to determine the
optimal configuration.

As shown in Figure 5(b), the algorithm generated by
GraphPi consists of nested loops. The overhead of intersection
operations is the main overhead in this algorithm, and the
number of intersection operations is determined by both loops
and break statements. There are three factors affecting the
performance of the algorithm: the cardinality of a set where a
loop traverse (e.g., line 1), the probability of breaking a loop
because of not satisfying a restriction (e.g., line 3), and the
overhead of intersecting two sets (e.g., line 4).

Since the algorithm uses nested loops for computation, we
design a nested performance model correspondingly:

costi =

{
li × (1− fi)× (ci + costi+1), for 1 ≤ i ≤ n− 1

li × (1− fi), for i = n

where n is the number of vertices of the pattern, costi is the
total cost of the ith loop, li is the loop size (i.e., the cardinality
of a candidate set), fi is the probability that one embedding is
filtered out by a restriction, and ci is the computation overhead
of the intersection operations. Since the value of costi depends
on costi+1, we need to calculate costi recursively. Next, we
describe how we calculate each factor.
Measurement of ci and li The neighborhood of a vertex
in the data graph can be sorted in advance, so the time
complexity of the intersection operations is O(card1+card2),
where card1 and card2 are the cardinalities of the two sets
intersected. For example, there is an intersection operation
N(vA) ∩ N(vB) (line 4) in the second loop in Figure 5(b),
so c2 = |N(vA)| + |N(vB)|. li can be also represented by
the cardinality of a set

(
e.g., for the fourth loop in line 7,

l4 = |tmpAB | = |N(vA)∩N(vB)|
)
. Therefore, we can get the

values of ci and li by predicting the cardinalities of different
sets.
Estimation of Cardinalities The sets whose cardinalities
need to be predicted can be divided into two categories: the
neighborhood of a vertex and the intersection of neighbor-
hoods of several vertices. For the neighborhood of a vertex,
its expected cardinality is 2×|EG|

|VG| , where EG and VG are the
edge set and the vertex set of the data graph respectively. For
the intersection of two neighborhoods, we use the structural
information of the data graph to predict its cardinality. Suppose
x is the ith searched vertex in the pattern, and vx traverses
through N(vy)∩N(vz) in the ith loop, where x, y and z are
different vertices in the pattern. Based on the first phase in
Section IV-B, the subgraph formed by the first i− 1 searched
vertices is a connected graph. Since y and z belong to the
first i− 1 searched vertices, they are connected. So that x, y
and z must be in at least one ring of the subgraph formed
by the first i searched vertices. For example, vE traverses
through N(vA) ∩N(vB), A, B, and E form a triangle in the
pattern. Therefore, we can use the number of triangles in the

data graph to predict |vE |, which is tri cnt
2×|EG| . We assume that

the data graph is immutable so that the number of triangles
(tri cnt) can be regarded as a constant value. Even if the
graph is mutable, it is trivial to calculate tri cnt incrementally.
For rings that are not triangles, it may take too much time to
count all rings in the graph, so we uniformly use the number
of triangles for prediction. Without loss of generality, for the
intersection of n neighborhoods, the predicted cardinality of
the intersection is |VG| × p1 × pn−12 , where

p1 =
2× |EG|
|VG|2

, p2 =
tri cnt× |VG|
(2× |EG|)2

.

Semantically speaking, p1 is the probability of any pair
of vertices being neighbors

(
i.e., P ((a, b) ∈ EG |a, b ∈ VG )

)
,

and p2 is the probability of any pair of vertices in a
neighborhood being directly connected to each other

(
i.e.,

P ((a, b) ∈ EG |c ∈ VG, a, b ∈ N(c) )
)
.

Measurement of fi We use fi to measure the impact of
restrictions on performance. For a pattern with n vertices,
there are n! possible relative magnitudes of n vertices in an
embedding (e.g., when n = 5, they are [1,2,3,4,5], [1,2,3,5,4],
[1,2,4,3,5], etc). fi is the probability that one embedding will
be filtered out by the restriction in the ith loop. We first
initialize a set of S with n! possible relative magnitudes.
According to the order in which each restriction appears in
the algorithm, we use each restriction in turn to filter out the
elements in S that do not satisfy the restriction. If there are
several restrictions in different loops, each restriction needs to
filter the elements in S that are not filtered out by previous
restrictions, and then we can get each value of fi by calculating
the ratio of the elements filtered out. For example, since
id(A) = 1 < id(B) = 2 for [1,2,3,4,5], it will be filtered out
by id(A) > id(B). And n!

2 possibilities of relative magnitudes
will be filtered out by id(A) > id(B) in Figure 5(b), therefore,
f1 = 1

2 . We set fi = 0 if there is no restriction in the ith loop.
Through combining above estimated parameters, we can

generate an accurate performance prediction for each config-
uration and output a configuration with the best performance
for the pattern matching algorithm.

D. Counting with Inclusion-Exclusion Principle
There are many graph mining problems, such as Clique

Counting and Motif Counting, which only need to collect the
number of embeddings instead of listing all embeddings. This
property provides us more optimization opportunities. Accord-
ing to the second phase in Section IV-B, there are usually
no intersection operations in the innermost k loops of the
optimal configuration. Therefore, we leverage the technique
of Inclusion-Exclusion Principle (IEP) instead of enumeration
in the innermost k loops to count embeddings. As shown in
Figure 6(b), S1, S2 and S3 are the candidate sets of D, E and
F . Instead of using vD, vE and vF to traverse through S1, S2

and S3 respectively, we calculate the cardinality of SIEP in
line 11 to count the number embeddings.

Without loss of generality, let Si be the candidate set of
the ith vertex among the k vertices. To count the number of
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Fig. 6: There are at most three vertices (D,E and F) in the
Cycle-6-Tri pattern that any two of them are not connected and
therefore k = 3. We can use the Inclusion-Exclusion Principle
to count the number of embeddings instead of searching vD,vE

and vF by three loops.

Algorithm 2: code

1 cnt 0
2 for vA 2 VG do
3 for vB 2 N(vA)� {vA} do
4 if id(vA)  id(vB) then break
5 tmpAB  N(vA) \N(vB)
6 for vC 2 N(vA)� {vA, vB} do
7 if id(vB)  id(vC) then break
8 S1  tmpAB � {vA, vB , vC} // vD

9 S2  N(vA) \N(vC)� {vA, vB , vC} // vE

10 S3  N(vB) \N(vC)� {vA, vB , vC} // vF

11 SIEP  
{(e1, e2, e3)|ei 2 Si, e1 6= e2, e2 6= e3, e1 6= e3}

12 cnt cnt +
��SIEP

��

the cardinality of the set in line 11 to count the number
embeddings.

Let Si be the candidate set of the ith vertex among the k
vertices. In order to count the number of embeddings, we need
to calculate the cardinality of the set SIEP , where

SIEP = S1 ⇥ S2 ⇥ · · ·⇥ Sk

� {(e1, e2, · · · , ek)|91  i, j  k s. t. ei = ej}

We define

Ai,j = {(e1, e2, · · · , ek)|81  l  k, el 2 Sl, ei = ej} .

For the convenience of description, we only consider Ai,j

which satisfies 1  i < j  k in this section. According

to the Inclusion-Exclusion Principle, we have
��SIEP
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where U is the universal set.

Algorithm 3: Caridinality Calculation
Input: k
Input: i j pairs
Input: S1,S2,· · · ,Sk

Output: intersection card:��Ai1,j1

T
Ai2,j2

T · · ·TAim,jm

�� where (il, jl)
is the lth pair in i j pairs and m is the
number of pairs.

1 g  an empty undirected graph with k vertices
2 for pair 2 i j pairs do
3 g.add edge(pair.first,pair.second)
4 components partition g into connected components
5 intersection card 1
6 for comp 2 components do
7 comp intersection universal set
8 for v 2 comp do
9 comp intersection 

comp intersection
T

Sv.id

10 intersection card 
intersection card⇥

��comp intersection
��

11 return intersection card

In order to calculate
��Ai1,j1

T
Ai2,j2

T · · ·TAim,jm

��, we
use Algorithm 3, which takes (i1, j1), (i2, j2), · · · , (im, jm)
as input and outputs the cardinality of the intersection. For
each pair (i, j) in the input pairs, we add an undirected edge
between i and j in an initially empty undirected graph g (lines
1⇠ 3). Next, we partition g into connected components (line
4). Let Si be the set corresponding to the vertex i in g. We
perform intersection operations on the sets corresponding to
each vertex in a connected component, and thus, there is an
intersection (comp intersection) for every component (lines
6⇠9). We can get the answer by multiplying the cardinalities
of the intersections (line 10). For example, in order to calculate��A1,2

T
A2,3 \ A4,5

�� when k = 6, we need to add the three
edges (1, 2), (2, 3)and(4, 5) into g. After partitioning g, there
are three connected components: [1,2,3] , [4,5] and [6]. Then
we have

��A1,2

T
A2,3\A4,5

�� =
��S1

T
S2

T
S3

��⇥
��S4

T
S5

��⇥��S6

��.

Fig. 6: There are at most three vertices (D,E,F) in (a) that
any two of them are not connected and therefore k = 3. We
use the Inclusion-Exclusion Principle to count the number of
embeddings instead of searching vD,vE and vF by three loops.

embeddings, we need to calculate the cardinality of the set
SIEP , where

SIEP = S1 × S2 × · · · × Sk

− {(e1, e2, · · · , ek)|∃1 ≤ i, j ≤ k s. t. ei = ej}

We define

Ai,j = {(e1, e2, · · · , ek)|∀1 ≤ l ≤ k, el ∈ Sl, ei = ej} .
For the convenience of description, we only consider Ai,j

which satisfies 1 ≤ i < j ≤ k in this Section. According
to the Inclusion-Exclusion Principle, we have

∣∣SIEP
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⋂

i,j

Ai,j

=
∣∣U
∣∣−
∣∣∣∣∣
⋃

i,j
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=

k∏

i=1

∣∣Si

∣∣−
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i,j
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+
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∑

i1×k+j1<i2×k+j2

∣∣Ai1,j1

⋂
Ai2,j2

∣∣− · · ·

+ (−1) k×(k−1)
2

∣∣∣∣∣
⋂

i,j

Ai,j

∣∣∣∣∣,

where U is a universal set.
To calculate

∣∣Ai1,j1

⋂
Ai2,j2

⋂ · · ·⋂Aim,jm

∣∣, we use Al-
gorithm 2, which takes (i1, j1), (i2, j2), · · · , (im, jm) as input
and outputs the cardinality of the intersection. For each (i, j)
in the input pairs, we add an undirected edge between i
and j in an initially empty undirected graph g (lines 1∼
3). Next, we partition g into connected components (line 4).
Let Si be the set corresponding to the vertex i in g. We
perform intersection operations on the sets corresponding to
each vertex in a connected component, and thus, there is an
intersection (comp intersection) for every component (lines
6∼9). We then get the answer by multiplying the cardinali-
ties of the intersections (line 10). For example, to calculate

Algorithm 2: Cardinality Calculation
Input: k
Input: i j pairs
Input: S1,S2,· · · ,Sk

Output: intersection card:∣∣Ai1,j1

⋂
Ai2,j2

⋂ · · ·⋂Aim,jm

∣∣ where (il, jl) is
the lth pair in i j pairs and m is the number
of pairs.

1 g ← an empty undirected graph with k vertices
2 for pair ∈ i j pairs do
3 g.add edge(pair.first,pair.second)
4 components← partition g into connected components
5 intersection card← 1
6 for comp ∈ components do
7 comp intersection← universal set
8 for v ∈ comp do
9 comp intersection←

comp intersection
⋂
Sv.id

10 intersection card←
intersection card×

∣∣comp intersection
∣∣

11 return intersection card

∣∣A1,2

⋂
A2,3 ∩A4,5

∣∣ when k = 6, we need to add three edges
(1, 2), (2, 3), and (4, 5) into g. After partitioning g, there are
three connected components: [1,2,3] , [4,5], and [6]. Then we
have

∣∣A1,2

⋂
A2,3∩A4,5

∣∣ =
∣∣S1

⋂
S2

⋂
S3

∣∣×
∣∣S4

⋂
S5

∣∣×
∣∣S6

∣∣.
Note that we have not considered the restrictions during

calculations with the Inclusion-Exclusion Principle. The re-
strictions in outer loops remain, but the restrictions in the
innermost k loops do not exist, which leads to overcounting
of embeddings. By calling the function of no conflict in
Algorithm 1 for every permutation, we can get the number
of permutations that cannot be eliminated by applying the
remaining restrictions. Suppose that the number of permuta-
tions is x, then the correct number of embeddings is ansIEP

x ,
where ansIEP is the result we calculate by counting with the
Inclusion-Exclusion Principle.

E. Distributed Implementation

To further improve the searching performance, we imple-
ment a distributed version of the pattern matching algorithm.
We keep the whole data graph in the main memory and
replicate it on each computing node. Although cross-node
access to graph data can be avoided to reduce the overhead
of network communication by keeping a complete copy of
the data graph on each node, the size of a data graph that
GraphPi can handle is limited by memory. To handle larger
graphs, distributed pattern matching faces the challenge of
memory-aware graph partitioning and network load balancing,
and we will solve these challenges in our future work. In the
distributed implementation of GraphPi, we mainly focus on
the workload imbalance caused by task partitioning.

GraphPi stores graphs in the compressed sparse row (CSR)
format, that is, the neighborhood of a vertex is sorted and



continuous in memory. Therefore, the intersection operation
of two sets can be efficiently implemented with the time
complexity of O(n+m), where n and m are the cardinalities
of the two sets respectively, and the intersection is naturally
sorted.

Since the vertex degrees often follow a power-law distribu-
tion in real-world graphs, GraphPi utilizes a fine-grained task
partitioning technique to deal with the workload imbalance
problem. In GraphPi, there is a master thread responsible for
partitioning and distributing tasks. The master thread executes
the outer loops and packs the values of the outer loops into
a task. Worker threads need to unpack tasks and continue
executing the remaining inner loops. For example, in the case
of the House pattern (Figure 5), suppose the master thread is
executing the outmost two loops, and the current values of vA
and vB are x and y respectively. Then the master thread sends
the task of (x, y) to a worker thread, and the worker thread
will find all embeddings that satisfy vA = x and vB = y. The
number of outer loops executed by the master thread depends
on the complexity of the pattern. For relatively simple patterns
like the Triangle pattern, the master thread can balance the
workload by executing only one loop (i.e., the outmost loop).

GraphPi uses a work-stealing algorithm to schedule compu-
tations. There is a communication thread that maintains a task
queue on each node. When the number of tasks in the task
queue is less than a threshold, the communication thread uses
asynchronous communication primitives of MPI to steal tasks
from other nodes and add them to its queue. When a worker
thread runs out of tasks, it takes one or more tasks from the
task queue of its node.

V. EVALUATION

A. Methodology

Platforms Our evaluation is performed on Tianhe-2A super-
computer. Each node has 2 12-core Intel Xeon E5-2692 (v2)
processors (hyper-threading disabled) and 64GB of memory.
We have implemented GraphPi with an OpenMP/MPI hybrid
programming model. On each node, we run 1 MPI process
with 24 OpenMP threads. Tianhe-2A uses a customized high-
speed interconnection network. Each node runs Kylin Linux
with Linux kernel version 3.10.0 and gcc version 4.8.5. All
programs are compiled with -O3 optimization option.
Datasets We use 6 real-world graphs as shown in Table I.
These graphs are also used in GraphZero [12]. The numbers of
vertices and edges range from 7.1 thousand to 41.7 million,
and 100.8 thousand to 1.2 billion, respectively. The largest
graph (Twitter) is only used for scalability experiments.

𝑃" 𝑃#𝑃$ 𝑃% 𝑃&𝑃'

Fig. 7: Patterns used in the evaluation.

TABLE I: Graph datasets.

Graphs #Vertices #Edges Description
Wiki-Vote [31] 7.1K 100.8K Wiki Editor Voting
MiCo [32] 96.6K 1.1M Co-authorship
Patents [27] 3.8M 16.5M US Patents
LiveJournal [13] 4.0M 34.7M Social network
Orkut [33] 3.1M 117.2M Social network
Twitter [34] 41.7M 1.2B Social network

Patterns We use six patterns as shown in Figure 7, and the
first two of them are also used in GraphZero. We use four
additional patterns since the patterns used in GraphZero are
relatively simple, and it is trivial to predict the performance
of different schedules for them.
Comparison We evaluate GraphPi’s performance against
GraphZero [12] and Fractal [26], the state-of-the-art single-
machine pattern matching systems. GraphZero is an upgraded
version of AutoMine [18], and it outperforms AutoMine by
up to 40×. Fractal is a JVM-based system, and it outperforms
several JVM-based specialized algorithms (MRSUB [35],
SEED [36] and QKCount [37]) and general-purpose systems
(Arabesque [14] and GraphFrames [38]) by orders of mag-
nitudes. Since GraphZero is not released, we reproduce all
the algorithms described in GraphZero and also compare its
performance with the results reported in their paper. In the
following experiments, we use “GraphZero” to denote the
performance of the reproduced version of GraphZero and use
“GZ Paper” to denote the performance results reported in
GraphZero’s paper. Since the definition of pattern matching
in AutoMine and GraphZero is different from other systems,
we made some minor modifications in the reproduced version
to make its results consistent with those of other systems.
When comparing with GraphZero and Fractal, GraphPi runs
on a single node and does not use the optimization with
Inclusion-Exclusion Principle (IEP). The time reported in our
evaluation does not include the graph loading time or the
program preprocessing and compiling time.

To guarantee the correctness of GraphPi, we compare
GraphPi’s results with those of Fractal and (the reproduced
version of) GraphZero. The results show that the numbers of
embeddings obtained by three systems are the same.

B. Overall Performance

We perform experiments with GraphPi, GraphZero, and
Fractal to find all embeddings of the 6 patterns on 5 real-world
graphs. Figure 8 compares the performance of GraphPi with
GraphZero and Fractal in a log scale, and the performance
results reported in GraphZero’s paper are also shown on it.
We only list the workloads that can be done within 48 hours.
On average, GraphPi outperforms GraphZero by 9.7×, 1.4×,
26.0×, 11.7×, 42.5×, and 60.3× respectively for 6 patterns
on different graphs. We get the highest speedup of 105× for
P6 on Wiki-Vote. In general, much higher speedups can be
obtained on a larger graph, but GraphZero cannot finish the
searching within 48 hours on large graphs. Since Fractal runs
out of memory on Orkut, we only list the performance of



Fig. 8: Overall performance of GraphPi, GraphZero, and Fractal. “T” means the execution time exceeds 48 hours.

Fractal on the other 4 graphs. On average, GraphPi outper-
forms Fractal by 83.6×, 64.9×, 154.3×, 35.5×, 36.5×, and
25.7× respectively for 6 patterns on different graphs. The
speedup mainly comes from the optimal configuration used
in the pattern matching algorithm automatically generated by
GraphPi. We will show more detailed results of our systems
below.

C. Breakdown Analysis

Restriction Set Generation To eliminate redundant com-
putation caused by automorphisms, a set of restrictions need
to be applied in pattern matching. There are many different
sets of restrictions for one pattern, but their performance
varies significantly. For a given schedule of a pattern, GraphPi
generates different sets of restrictions and selects the best
one based on our performance prediction model. In contrast,
GraphZero can only generate one set of restrictions, and
sometimes it may achieve sub-optimal results.

We run all schedules of P1, P2, and P4 with GraphPi
and GraphZero on Wiki-Vote and Patents. The restriction
sets selected by GraphPi and GraphZero are different in
some schedules, which leads to varied performance. For these
schedules, we compare the performance of GraphPi with
that of GraphZero. Table II shows the average speedup and
maximum speedup obtained with GraphPi over GraphZero.
GraphPi achieves up to 7.8× speedup than GraphZero for
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Fig. 9: Performance of different schedules of P3 on Wiki-Vote.

TABLE II: Speedup obtained with the better set of restrictions
selected by GraphPi.

Graph Pattern Average
Speedup

Maximum
Speedup

P1 1.94 2.52
Wiki-Vote P2 1.71 4.10

P4 1.60 2.39
P1 2.02 5.08

Patents P2 1.65 6.65
P4 2.46 7.82

the same schedule. The speedup mainly comes from a better
set of restrictions selected by GraphPi. These results also
demonstrate that generating multiple sets of restrictions for a
schedule in GraphPi provides more choices and optimization
opportunities for the pattern matching algorithm.
Schedule Generation and Selection The selection of sched-
ules also has a significant influence on the performance of
the pattern matching. We perform experiments with schedules
generated by GraphPi and GraphZero for each pattern on
Wiki-Vote and Patents. To avoid the influence of different sets
of restrictions on performance, we use the same restriction
generation algorithm proposed by GraphZero for both GraphPi
and GraphZero in this experiment. On average, GraphPi out-
performs GraphZero by 25.6× for 6 patterns on Wiki-Vote
and Patents. The speedup comes from GraphPi’s computation-
avoid schedule generator and accurate performance model.

Figure 9 shows the performance of different schedules of
P3 on Wiki-Vote, including two final schedules selected by
GraphPi (denoted by the blue star) and GraphZero (denoted
by the red triangle). The “◦” marker denotes the schedules gen-
erated by GraphPi’s 2-phase computation-avoid schedule gen-
erator, and the “×” marker denotes the schedules eliminated
by the generator. We can see that most schedules with low
performance (including the one selected by GraphZero) are
eliminated, which shows the benefit of our 2-phase schedule
generator in accurately generating efficient schedules. Among



Fig. 10: The performance of counting the number of embeddings with and without the Inclusion-Exclusion Principle (IEP).
“T” means the execution time exceeds 48 hours.

all efficient schedules (denoted by “◦”), the oracle schedule
is 8.0× faster than the slowest schedule. This is because our
performance prediction model can further select the optimal
schedule (blue star marker) from these efficient schedules,
which is only 22% slower than the oracle schedule.
Accuracy of Performance Prediction Model To further
demonstrate the accuracy of GraphPi’s performance prediction
model, we perform experiments with all schedules gener-
ated by GraphPi for each pattern on Wiki-Vote and Patents.
Figure 11 shows the performance of the schedules selected
by GraphPi and the oracle schedules. On average, schedules
selected by GraphPi are only 32% slower than the oracle
schedules. There is a performance gap between the selected
schedule and the oracle schedule of P4 on Wiki-Vote, this
is because the prediction of the number of rectangles (i.e.,
the subpattern formed by the top 4 vertices of P4) on Wiki-
Vote is not accurate enough due to the insufficient structural
information we leverage (only the numbers of vertices, edges
and triangles). To achieve more accurate prediction, we need
to use more structural information of data graphs in the
performance prediction model.
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Fig. 11: The accuracy of GraphPi’s performance prediction
model.

D. Counting Embeddings with IEP

We also do optimization with the Inclusion-Exclusion Prin-
ciple (IEP) in GraphPi instead of enumeration to count the

number of embeddings. We evaluate the performance of
GraphPi when enabling IEP or not for each pattern. We use the
same configuration selected by GraphPi’s performance model
in experiments, that is, we avoid the influence of schedules and
sets of restrictions on performance. As shown in Figure 10,
counting with IEP outperforms that without IEP by 4.3×,
457.8×, 320.5×, 265.5×, 11.1×, and 10.1× respectively for 6
patterns on different graphs on average. We obtain the highest
speedup of 1110.5× for P2 on LiveJournal.
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Fig. 12: Scalability of GraphPi.

E. Scalability of Distributed Version

In this subsection, we evaluate the scalability of GraphPi
system with up to 1,024 nodes (24,576 processor cores)
on Tianhe-2A supercomputer. Figure 12 shows the speedup
obtained with the increasing number of nodes on Orkut and
Twitter. GraphPi obtains a near-linear speedup with 128 nodes
when running P1, P4, P5, and P6 on Orkut. P2 and P3 do not
scale very well on Orkut because their execution times are
very short (10.9 seconds and 8.1 seconds respectively). For
the experiment on Twitter, since the execution times of other
patterns with 128 nodes exceed 24 hours, we only evaluate
P2 and P3 on 128∼1024 nodes. GraphPi does not get linear
speedups for P2 and P3 on Twitter due to load imbalance. In
the future, we plan to implement much fine-grained subtask
partitioning in GraphPi to solve this problem.



TABLE III: The overhead of preprocessing and code genera-
tion in GraphPi for each pattern.

Pattern Overhead (second)
P1 0.008
P2 0.07
P3 0.04
P4 0.07
P5 1.88
P6 2.53

F. Overhead of Preprocessing and Code Generation

The time reported in previous experiments does not include
the preprocessing (i.e., configuration generation and perfor-
mance prediction) and code generation time. In this subsection,
we evaluate the overhead of preprocessing and code generation
in GraphPi. As can be seen from the preprocessing algorithm,
the overhead is only related to the structure of a pattern but
not to the input data graph. Table III shows the overhead of
preprocessing and code generation ranging from 8 millisec-
onds to 2.53 seconds. Compared with the execution time of
the pattern matching that may take several minutes or even
several hours, the overhead can be ignored.

VI. RELATED WORK

General-Purpose Graph Mining Systems Arabesque [14] is
the first distributed graph mining system that provides a high-
level abstraction and a flexible programming model. It main-
tains some intermediate data of subgraphs and generates all
pattern instances by appending edges to candidate subgraphs
and filtering the newly generated candidates using the user-
defined filter and process functions. G-thinker [16] provides
an intuitive graph-exploration API for implementing various
graph mining algorithms and an efficient runtime engine.

G-Miner [17] models the processing of a graph mining job
as an independent task and streamlines task processing with a
novel design. RStream [15] is a single-machine system which
implements relational algebra efficiently with tuple streaming.
To support scalable graph mining, RStream uses out-of-core
processing to leverage disk support to store intermediate data.
Graph Pattern Matching Systems Although general-purpose
graph mining systems provide flexible programming models to
express complex graph mining algorithms, their performance
is relatively poor. Specialized pattern matching systems have
been proposed [19]–[21], [29], [39], [40]. Automine [18]
is built upon a set-based representation and uses compila-
tion techniques to generate efficient pattern matching code.
However, due to the inherent symmetry in the structural
patterns, Automines algorithm causes substantial computation
redundancy. Based on Automine, GraphZero [12] provides
an algorithm based on group theory to break the inherent
symmetry in patterns and eliminate redundant computation.
Peregrine [41] is another DFS-based system which provides a
pattern-based programming model and a workflow similar to

GraphZero. Peregrine also has a schedule generation module.
However, the schedule generated by Peregrine is only based
on the pattern, without considering the distribution of data in
different data graphs.
Approximate Subgraph Counting Some computation en-
gines and systems have been designed to estimate an approx-
imate number of embeddings [2], [42], [43]. ASAP [23] is
the state-of-the-art one among them. ASAP is a distributed
approximate computation engine for graph pattern matching.
Based on the neighborhood sampling algorithm, ASAP sam-
ples embeddings from the stream of the edge set of a graph
to do an approximate estimation. Although these approximate
systems have good scalability, they cannot list all embeddings.

VII. CONCLUSION

In this work, we propose GraphPi, a high-performance
distributed pattern matching system. We design a 2-cycle based
automorphism elimination algorithm and an accurate perfor-
mance model to eliminate redundancy in pattern matching.
When counting embeddings, we further propose using the
Inclusion-Exclusion Principle to achieve significant improve-
ment in performance. Results show that GraphPi outperforms
the state-of-the-art pattern matching system by up to two
orders of magnitude on a single node and can scale to 1,024
nodes.

REFERENCES

[1] W. Fan, X. Wang, and Y. Wu, “Diversified top-k graph pattern matching,”
Proceedings of the VLDB Endowment, vol. 6, no. 13, pp. 1510–1521,
2013.

[2] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp,
“Biomolecular network motif counting and discovery by color coding,”
Bioinformatics, vol. 24, no. 13, pp. i241–i249, 2008.

[3] S. Choudhury, L. Holder, G. Chin, K. Agarwal, and J. Feo, “A selectivity
based approach to continuous pattern detection in streaming graphs,”
arXiv preprint arXiv:1503.00849, 2015.

[4] X. Zhu, W. Han, and W. Chen, “Gridgraph: Large-scale graph processing
on a single machine using 2-level hierarchical partitioning,” in 2015
USENIX Annual Technical Conference USENIX ATC ’15), 2015, pp.
375–386.

[5] X. Zhu, W. Chen, W. Zheng, and X. Ma, “Gemini: A computation-
centric distributed graph processing system,” in 12th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI ’16),
2016, pp. 301–316.

[6] R. Chen, J. Shi, Y. Chen, B. Zang, H. Guan, and H. Chen, “Powerlyra:
Differentiated graph computation and partitioning on skewed graphs,”
ACM Transactions on Parallel Computing (TOPC), vol. 5, no. 3, pp.
1–39, 2019.

[7] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” in
Presented as part of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’12), 2012, pp. 17–30.

[8] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “Graphx: Graph processing in a distributed dataflow
framework,” in 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’14), 2014, pp. 599–613.

[9] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe, and
A. S. Szalay, “Flashgraph: Processing billion-node graphs on an array
of commodity ssds,” in 13th USENIX Conference on File and Storage
Technologies (FAST ’15), 2015, pp. 45–58.

[10] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric
graph processing using streaming partitions,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles, 2013,
pp. 472–488.



[11] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel, “Chaos:
Scale-out graph processing from secondary storage,” in Proceedings of
the 25th Symposium on Operating Systems Principles, 2015, pp. 410–
424.

[12] D. Mawhirter, S. Reinehr, C. Holmes, T. Liu, and B. Wu, “Graphzero:
Breaking symmetry for efficient graph mining,” arXiv preprint
arXiv:1911.12877, 2019.

[13] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group
formation in large social networks: membership, growth, and evolution,”
in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2006, pp. 44–54.

[14] C. H. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki, and
A. Aboulnaga, “Arabesque: a system for distributed graph mining,” in
Proceedings of the 25th Symposium on Operating Systems Principles,
2015, pp. 425–440.

[15] K. Wang, Z. Zuo, J. Thorpe, T. Q. Nguyen, and G. H. Xu, “Rstream:
Marrying relational algebra with streaming for efficient graph mining on
a single machine,” in 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’18), 2018, pp. 763–782.

[16] D. Yan, H. Chen, J. Cheng, M. T. Özsu, Q. Zhang, and J. Lui,
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