
PERFORMANCE ANALYSIS OF A QUANTUM MONTE CARLO
APPLICATION ON MULTIPLE HARDWARE ARCHITECTURES

USING THE HPX RUNTIME

Weile Wei
Louisiana State University

wwei9@lsu.edu

Arghya Chatterjee
Oak Ridge National Laboratory

chatterjeea@ornl.gov

Kevin Huck
University of Oregon

khuck@cs.uoregon.edu

Oscar Hernandez
Oak Ridge National Laboratory

oscar@ornl.gov

Hartmut Kaiser
Louisiana State University
hkaiser@cct.lsu.edu

October 21, 2020

ABSTRACT

This paper describes how we successfully used the HPX programming model to port the DCA++
application on multiple architectures that include POWER9, x86, ARM v8, and NVIDIA GPUs.
We describe the lessons we can learn from this experience as well as the benefits of enabling the
HPX in the application to improve the CPU threading part of the code, which led to an overall 21%
improvement across architectures. We also describe how we used HPX-APEX to raise the level of
abstraction to understand performance issues and to identify tasking optimization opportunities in the
code, and how these relate to CPU/GPU utilization counters, device memory allocation over time,
and CPU kernel level context switches on a given architecture.

Keywords Quantum Monte Carlo (QMC) · Dynamical Cluster Approximation (DCA) · Autonomic Performance
Environment for eXascale (APEX) · HPX runtime system

1 Introduction

As users move their applications toward accelerated node architectures of different accelerator types and next-generation
multi-core systems, they encounter significant challenges in their codes as there are few programming models available
on all of these new architectures that can interoperate well with C++ and vendor specific APIs and libraries. Our goal
is to examine how successfully we can use the HPX programming model to port codes between architectures, and
what lessons we can learn from this experience. HPX also helps raise the level of abstraction in the application’s
programming model in order to understand common performance problems across architectures. This helps to identify
common optimization opportunities to hide latency, overheads, serializations and wait times while bringing performance
improvements “off-the-shelf” to the application originally written using parallelism in C++. In this paper, we explain
which performance issues HPX can address and describe how we use it in the DCA++ application, its evaluation on
different platforms, and how we can tune it to target to multiple platforms. With rapidly changing configurations of
highly heterogeneous HPC systems, portability of code and performance of scientific applications is paramount for
their software design and development efforts and long sustainability of applications.

0This manuscript has been co-authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department
of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy
will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

ar
X

iv
:2

01
0.

07
09

8v
3 

 [
cs

.D
C

] 
 1

9 
O

ct
 2

02
0

https://orcid.org/0000-0002-3065-4959
https://orcid.org/0000-0002-7259-2944
https://orcid.org/0000-0001-7064-8417
https://orcid.org/0000-0002-5380-6951
https://orcid.org/0000-0002-8712-2806
http://energy.gov/downloads/doe-public-access-plan


A PREPRINT - OCTOBER 21, 2020

DCA++ (Dynamical Cluster Approximation) is a high-performance research software framework, providing a modern
C++ implementation to solve quantum many-body problems [1, 2, 3]. The DCA++ code currently uses three different
programming models (MPI, CUDA, and C++ Standard threads), together with numerical libraries (BLAS, LAPACK
and MAGMA), to expose the parallelization in computations.

HPX is a C++ Standard Library for Concurrency and Parallelism [4, 5, 6, 7]. It implements all of the corresponding
facilities as defined by the C++ Standard. Additionally, in HPX we implement functionalities proposed as part of the
ongoing C++ standardization process.

In this paper, we outline HPX as a potential solution to efficiently porting DCA++ across different architectures.

1.1 Contribution

The primary contributions of this work are outlined below:

(a) Ported DCA++ to various HPC architectures (POWER9, x86_64, ARM64) (see 4.2)

(b) Implemented the HPX threading model for on-node parallelization in DCA++

(c) Profiled DCA++ using performance measurement library APEX, integrated with HPX

(d) Collaborated with APEX performance observation tool team members, providing feedback and driving research

(e) Worked with DCA++ domain science application developers driving their new complex science problems with
enhanced optimizations.

2 Background

Quantum Monte Carlo (QMC) solver applications are common tools and mission critical across the US Department
of Energy’s (DOE) application landscape. For the purpose of this manuscript the authors choose to use one of the
leading QMC applications, developed primarily at Oak Ridge National Laboratory in collaboration with ETH Zúrich,
the Dynamical Cluster Approximation (DCA++) algorithm. In recent years DCA++ has been ported and successfully
optimized across various platforms (on both host side and accelerator based devices). A production scale scientific
problem runs on the DOE’s fastest supercomputer, Summit, at Oak Ridge Leadership Facility (OLCF) on all 4600
nodes equipped with ∼28000 NVIDIA Volta V100 GPUs attaining a peak performance of 73.5 PFLOPS with a mixed
precision implementation [8].

Although DCA++ has been higly optimized on existing hardware, this is the first effort to focus on the runtime execution
level of the application and observe how it performs on each of the already supported systems and newer DOE supported
architectures. In this work, the authors enable HPX runtime support to further optimize thread context switching and
lower synchronization cost over the usage of C++ standard threads. We further verify such claims using the APEX
performance measurement tool.

2.1 DCA++

Dynamical Cluster Approximation (DCA++) is a numerical simulation tool that is used to predict behaviors of quantum
materials, such as superconductivity, magnetism, etc. It is an iterative convergence algorithm with two primary kernels:
(a) Coarse-graining of the single-particle Green’s function to reduce the complexity of the infinite size lattice problem
to that of an effective finite size cluster problem, and, (b) Quantum Monte Carlo (QMC) based solver for the cluster
problem.

Most of the application’s performance, workload (computation), memory usage and bottlenecks come from the QMC
solver kernel [8]. Fig. 1 shows the on-node (per MPI process) computation structure of a threaded QMC simulation
using the custom-made thread pool in DCA++. We initialize several instances of independent Markov chains and
distribute across nodes (MPI ranks), each node is responsible for that Markov chain assigned 1, computed by a walker
object (producer) and an accumulator object (accumulator) that measures single- and two-particle Green’s functions.

Each object runs on an independent thread and no communication happens between these threads. We run multiple
walker threads concurrently, and after each walker finishes a Monte Carlo (MC) update (sampling from the Markov
chain), the accumulator is pulled from the head of accumulator waiting queue to compute MC measurement from the

1On systems with the ability to run multiple MPI ranks per node with one or more GPUs per rank, each process is then only
responsible for a portion of the chain assigned to that node

2



A PREPRINT - OCTOBER 21, 2020

Figure 1: Shows the computation structure of a threaded QMC kernel using the custom-made thread pool in DCA++
running on a single MPI process (rank). We run multiple walker threads concurrently, and after each walker finishes
an MC update, an idle accumulator thread is pulled from the head of accumulator waiting queue to compute MC
measurement from the walker. After the accumulator finishes its measurement, it’s pushed to the back of the queue.

walker. When each accumulator finishes its measurement, it’s pushed into the back of the queue. The queries to the
queue are managed by the synchronization primitives (mutex and conditional_variable ).

In this paper the analysis, optimization, and further performance gains will be discussed in reference only to the QMC
solver portion of the DCA++ application.

2.2 HPX

HPX is a C++ standard library for distributed and parallel programming built on top of an asynchronous many-task
runtime system (AMT). It has been described in detail in other publications [9, 10, 11, 6, 12, 13]. Such AMT runtimes
provide a means for helping programming models to fully exploit available parallelism on complex emerging HPC
architectures. The HPX runtime includes the following essential components:

• An ISO C++ standard conforming API that enables wait-free asynchronous parallel programming, including
Futures, Channels, and other primitives for asynchronous execution. The exposed API ensures syntactic and
semantic equivalence of local and remote operations, which greatly simplifies writing complex applications [14,
15].

• A work-stealing lightweight task scheduler [5, 16] that enables finer-grained parallelization and synchroniza-
tion, exposes greatly reduced overheads related to threading, and ensures automatic load balancing across all
local compute resources (see 3).

• APEX [17], an in-situ profiling and adaptive tuning framework (see 2.3).
• In its distributed version (not utilized in the presented work), HPX also features an Active Global Address

Space (AGAS) [11, 18] that supports load balancing via object migration and enables runtime-adaptive data
placement and distributed garbage collection and an active-message networking layer that enables running
functions close to the objects they operate on [5, 19].

In the context of the presented work we use HPX because of its full conformance to the recent C++ standards[20, 21],
its reduced thread and synchronization overhead properties, and its sophisticated performance measurement and in-situ
profiling capabilities provided by APEX.

2.3 HPX-APEX Integration

APEX [17] (Autonomic Performance Environment for eXascale) is a performance measurement library for distributed,
asynchronous multitasking runtime systems such as HPX. It provides support for both lightweight measurement and
high concurrency. To support performance measurement in systems that employ user-level threading, APEX uses a
dependency chain in addition to the call stack to produce traces and task dependency graphs. APEX supports both

3



A PREPRINT - OCTOBER 21, 2020

synchronous (so-called first person) and asynchronous (third person) measurements. The synchronous module of
APEX uses an event API and event listeners. Whenever an HPX task is created, started, yielded or stopped, APEX will
respectively create, start/resume, yield, or stop timers for measurements. Dependencies between tasks are also tracked.
The asynchronous measurement involves periodic or on-demand interrogation of operating system, hardware or runtime
states (e.g. CPU utilization, resident set size, memory “high water mark”). HPX counters (e.g. idle rate, queue lengths)
are also captured on-demand on a periodic basis.

APEX has native support for performance profiling, in which all tasks scheduled by the runtime are measured and a
report is output to disk and/or the screen at the end of execution. The profile data contains the number of times each
task was executed and the total time spent executing that type of task. In order to perform detailed performance analysis
involving synchronization and/or task dependency analysis, full event traces including event identification and start/stop
times have to be captured. To that end, APEX is integrated with the Open Trace Format 2 [22] (OTF2) library – an open,
robust format for large scale parallel application event trace data. OTF2 is a robust reader/writer library and binary
format specification that is typically used for high-performance computing (HPC) trace data. In order to capture full
task dependency chains in HPX applications, all tasks are uniquely identified by their GUID (globally unique identifier)
and the GUID of their parent task. These GUIDs are captured as part of the OTF2 trace output. OTF2 data can be
visualized by the Vampir [23] trace analysis tool.

Before the DCA+HPX integration, the first person measurement in APEX was only integrated with a handful of tech-
nologies, incuding the HPX runtime and OpenMP 5.0 runtimes that support the OMPT performance tools interface [24].
The third person measurement in APEX was mostly limited to extracting data from HPX and the Linux /proc virtual
filesystem. Because most of the DCA++ computation is offloaded to GPUs using the CUDA library, APEX was
integrated with the CUDA Profiling Tools Interface (CUPTI) [25] and the NVIDIA Management Library (NVML) [26].
Synchronous CUDA API callback timers and some counters (e.g. Bytes transferred, bandwidth, vector lanes) from the
CUDA runtime and/or device API are captured synchronously, whereas the NVML counters (e.g. utilization, bandwidth,
power) are periodically captured asynchronously. Using APEX GUIDs mapped from CUDA Correlation IDs, the GPU
activity such as memory transfers and kernel executions are captured and linked to the host-side tasks that launched
them. To provide concurrent use of the GPU hardware, memory transfers between the host and GPU and kernels are
executed within logical subdivisions of the device, identified by the device, context, and stream IDs. These IDs are
associated with the OTF2 virtual “threads” of execution within the trace data, as shown in Fig. 7.

3 Implementation

In this section, we outline our implementation of the high-level threading abstraction layer in DCA++, which supports
standard C++ threading and HPX threading implementations2. The design of HPX integration in DCA++ is presented
in Fig. 2. Our implementation is non-intrusive to DCA++ code as it does not break the API of the custom-made thread
pool and we have not modified original DCA++ workflow. It also allows the application developer to switch between
hpx:: thread and std :: thread via compilation configuration. If user prefers HPX threading option, one needs to turn on
DCA_WITH_HPX flag and provide the path of HPX library to the application’s CMake configuration.

Figure 2: Custom-made thread pool in DCA++ now supports both std :: thread (default) and hpx:: thread (new feature).
Threading options can be toggled at compilation.

2https://github.com/STEllAR-GROUP/DCA/releases/tag/hpx_thread

4

https://github.com/STEllAR-GROUP/DCA/releases/tag/hpx_thread


A PREPRINT - OCTOBER 21, 2020

To parallelize computation tasks, DCA version 1.1.03 implemented a multi-threading strategy using POSIX threads
which could cause large overheads when thousands of threads continuously spawned and joined. DCA version
2.04 lowered the overhead with the custom-made thread pool strategy [8] by maintaining constant number of C++
std :: thread objects during the execution. However, the implementation of the custom-made thread pool strategy was
designed to spread worker threads to simultaneous multithreading (SMT) or virtual cores. Depending on the architecture
of the processor, SMT might be a bottleneck if any of the SMT threads are competing for the shared physical core [27].

We manage to preserve the same API of the ThreadPool implementation in both versions primarily due to the fact
that HPX is fully C++ standard conforming. All synchronization primitives of the standard C++ library are still valid
in the context of HPX. For the C++ std :: thread version of the thread pool shown in Listing 1, we wrapped all C++
standard synchronization primitives (i.e. condition_variable , lock_guard, future ) into a thread_traits class. For the
HPX-enabled DCA++ shown in Listing 2, we construct a similar thread_traits class in a separate header file and
replace all the C++ standard synchronization primitives with equivalent HPX synchronization primitives.

Listing 1: std :: thread version of the thread pool.
namespace dca { namespace p a r a l l e l {
s t r u c t t h r e a d _ t r a i t s {

t empla te <typename T>
us ing f u t u r e _ t y p e = s t d : : f u t u r e <T>;
us ing mutex_ type = s t d : : mutex ;
us ing c o n d i t i o n _ v a r i a b l e _ t y p e = s t d : : c o n d i t i o n _ v a r i a b l e ;
us ing s c o p e d _ l o c k = s t d : : l ock_gua rd <mutex_type > ;
us ing u n i q u e _ l o c k = s t d : : u n i q u e _ l o c k <mutex_type > ;

} ;

c l a s s ThreadPoo l { . . . } ;
}}

Listing 2: hpx:: thread version of the thread pool. Note that for the synchronization primitives implemented in
class thread_traits , this version differs from the std :: thread version only by the used C++ namespace hpx.
namespace dca { namespace p a r a l l e l {
s t r u c t t h r e a d _ t r a i t s {

t empla te <typename T>
us ing f u t u r e _ t y p e = hpx : : f u t u r e <T>;
us ing mutex_ type = hpx : : mutex ;
us ing c o n d i t i o n _ v a r i a b l e _ t y p e = hpx : : c o n d i t i o n _ v a r i a b l e ;
us ing s c o p e d _ l o c k = s t d : : l ock_gua rd <mutex_type > ;
us ing u n i q u e _ l o c k = s t d : : u n i q u e _ l o c k <mutex_type > ;

} ;

c l a s s ThreadPoo l { . . . } ;
}}

For task-scheduling in the custom-made thread pool implemented in class ThreadPool, the C++ std :: thread version
of the thread pool [8] maintains an array of std :: thread objects and array of queues of work items represented by
std :: packaged_task objects in a simple round-robin fashion; HPX threading version dispatches tasks asynchronously
through hpx::async and manages tasks with its runtime scheduler that has various robust task scheduling methods [28].

For thread affinity, the C++ std :: thread version of the thread pool manually sets thread affinity and uses the (SMT)
feature to achieve speedup [8]; the hpx:: thread version on the other hand handles these scheduling efforts automatically
through its runtime system. HPX by default recognizes existing SMT and sets only one hyper-thread per physical
processing unit. The runtime schedules user-level lightweight threads on top of operating system threads, which avoids
expensive context switches at kernel-level [16].

HPX-threads are implemented as user-level threads. These are cooperatively (non-preemptively) scheduled in user
mode by the HPX-thread manager on top of one OS thread per hardware thread (processing unit). By default, the OS
threads have their affinities defined such that they run on one processing unit only. The HPX-threads can be scheduled

3https://github.com/CompFUSE/DCA/releases/tag/paper.2019.old_code
4https://github.com/CompFUSE/DCA/releases/tag/paper.2019.new_code

5

https://github.com/CompFUSE/DCA/releases/tag/paper.2019.old_code
https://github.com/CompFUSE/DCA/releases/tag/paper.2019.new_code


A PREPRINT - OCTOBER 21, 2020

without a kernel transition, which provides a performance boost. Additionally, the full use of the OS’s time quantum
per OS-thread is achieved even if an HPX-thread blocks for any reason. In that case, other HPX-threads are scheduled
to run immediately. The scheduler is cooperative in the sense that it will not preempt a running HPX-thread until it
finishes execution or cooperatively yields its execution. This is particularly important, since it avoids context switches
and cache thrashing due to randomization introduced by preemption. The default thread scheduler is implemented
as a ‘First Come First Served’ scheduler, where each OS-thread works from its own queue of HPX-threads. Other
scheduling policies, e.g. supporting thread priorities, are available as well. If one of the cores runs out of work, it starts
‘stealing’ queued tasks from neighboring cores, thus enabling load-balancing across all cores [5, 16].

4 Results

4.1 Systems overview

For our evaluation, we have used Oak Ridge Leadership Computing Facility’s (OLCF) Summit supercomputer and the
Wombat system; and, National Energy Research Scientific Computing Center’s (NERSC) Cori Supercomputer (for this
work we used the new CoriGPU partition). Each system was selected due to its host architecture diversity (shown in
Table. 1) for comparing the performance of DCA++ using the HPX runtime and visualizing the results collected using
APEX and visualized by Vampir.

Summit. [29] is a 4600 node, 200 PFLOPS IBM AC922 system 5. Each node consists of 2 IBM POWER9 CPUs with
512 GB DDR4 RAM and 6 NVIDIA V100 GPUs with total of 96 GB high bandwidth memory (divided into 2 sockets),
all connected together with NVIDIA’s high-speed NVLink.

Table 1: Systems Comparison

Configuration Summit Wombat CoriGPU
GPU NVIDIA Volta (6 per node) NVIDIA Volta (2 per node) NVIDIA Volta (8 per node)

CPU
IBM POWER9™ (2 Sockets
/ 21 Cores per socket)

Cavium ThunderX2 (2 Sock-
ets / 28 Cores per socket)

Intel Xeon Gold 6148 (2 sock-
ets / 20 cores per socket)

CPU-GPU inter-
connect

NVIDIA NVLINK2 (50
GB/s)

PCIe Gen3 (16 GB/s) PCIe Gen3 (16 GB/s)

Wombat. [31] is a 64-bit ARM cluster with 16 compute nodes, four of which have two NVIDIA V100 GPUs attached.
Each compute node has two 28-core Cavium ThunderX2 processors (Cavium is now Marvell), 256 GB RAM (16 DDR4
DIMM’s) and a 480 GB SSD for node-local storage. Nodes are connected with EDR InfiniBand (∼100 Gbit/s).

CoriGPU. [32] is a development rack of 18 nodes recently added to the Cori system at NERSC. Each node contains
two 20-core Intel Xeon Gold 6148 CPUs with 384GB DDR4 memory and 8 NVIDIA V100 GPUs with 128 GB HBM2
memory (divided into 2 sockets). All GPUs are connected to the CPUs and Infiniband network interface cards via PCIe
3.0.

4.2 Correctness verification across systems

To verify the correctness of our work across various HPC architectures, we follow the standard DCA++ protocol6 to
study superconductivity in the 2D single-band Hubbard model in DCA++. The focus value is the superconducting
transition temperature Tc, a property of the materials. We choose 100k Monte Carlo measurements as it is representative
case to our science problems. The goal is to obtain the same Tc with acceptable statistical noise across all HPC
architectures for a specific scientific case as defined under the protocol.

Fig. 3a shows DCA++ with C++ std :: thread threading generates consistent results across various platforms. It shows
the temperature dependence of the leading eigenvalue λd of the Bether-Salpeter equation. Tc is the temperature where
λd(T=Tc) = 1. All Tc are about 0.076 within acceptable statistical range. Similarly, Fig. 3b shows DCA++ with
hpx:: thread also generates accurate results across multiple HPC architectures. We use the DCA++ application with
C++ std :: thread threading results obtained from runs on Summit as a referencing result, and compare with all other
runs of DCA++ using hpx:: thread on various platforms. As one might note that we have obtained the same Tc within
an acceptable statistical deviation.

5Summit ranked the second place in the TOP500 list in June 2020 [30]
6https://github.com/CompFUSE/DCA/wiki/Tutorial:-Tc

6

https://github.com/CompFUSE/DCA/wiki/Tutorial:-Tc


A PREPRINT - OCTOBER 21, 2020

0.07 0.08 0.09 0.10
T/t

0.90

0.92

0.94

0.96

0.98

1.00

1.02

d

Summit C++ threads Tc = 0.0762±0.0018
Cori C++ threads Tc = 0.0765±0.0023
Wombat C++ threads Tc = 0.0759±0.0010

(a) Here we validate our science case with C++ std :: thread implementation across three
HPC platforms.

0.07 0.08 0.09 0.10
T/t

0.90

0.92

0.94

0.96

0.98

1.00

1.02

d

Summit C++ threads Tc = 0.0762±0.0018
Summit HPX threads Tc = 0.0757±0.0030
Cori HPX threads Tc = 0.0754±0.0012
Wombat HPX threads Tc = 0.0754±0.0021

(b) Validation using the same case with hpx:: thread implementation across the same three
systems. Additionally, we show the C++ std :: thread results on Summit as a reference.

Figure 3: DCA++ correctness verification across multiple architectures as outlined in Table 1. For our scientific
problem we obtain same superconducting transition temperature Tc results (where leading eigenvalue λd(T=Tc) = 1)
within acceptable statistical range. For each platform, we compute DCA++ with 100k Monte Carlo measurements
(representative case to our science problems) for 5 independent calculations. The random number generator used in all
experiments is std :: mt19937_64 from C++ library.

4.3 Compare runtime: std::thread v.s. hpx::thread

For this comparison analysis we compared a version of DCA++ with C++ std :: thread and one with a hpx:: thread
implementation on a single Summit node with 6 MPI ranks, each rank mapped to 7 physical cores and 1 Volta V100
GPU. More performance analysis (i.e. performance analysis on other machines) will be uploaded to the public repository
7 once available.

7https://github.com/STEllAR-GROUP/dca

7

https://github.com/STEllAR-GROUP/dca


A PREPRINT - OCTOBER 21, 2020

Fig. 4 shows DCA++ with hpx:: thread achieves 21% speedup over the one with C++ std :: thread version. The
same improvement is also observed in the distributed runs as well. The speedup is mainly due to faster thread context
switching and reduced scheduler and synchronization overheads in the HPX runtime system (see Section 3). Fig. 5
verifies the speedup and shows by the end of the execution, hpx:: thread version has much less (∼ 2× lower) voluntary
context switches (639 times) relative to std :: thread version (1454 times) and ∼ 4× lower non-voluntary context
switches (18 times) relative to std :: thread version (70 times). For the non-voluntary context switches observed in
hpx:: thread version, we consider these are most likely caused by the synchronization introduced by CUDA itself as
CUDA synchronization is still happening on pthread level.

Figure 4: Time-to-solution for 100k Monte Carlo measurements with error bars obtained from 5 independent executions
on Summit. Using the hpx:: thread implementation we observe up to 21% speedup over the C++ std :: thread version.
Observed performance gain is due to faster context switch and scheduler and less synchronization overhead in HPX
runtime system. Lower is better.

Figure 5: Comparison of non-voluntary and voluntary context switches using the APEX performance measurement
counters when executing DCA++ with C++ std :: thread and hpx:: thread versions on Summit. We observe that the
hpx:: thread implementation has much less context switches than std :: thread in DCA++ and aides to the performance
gains in using HPX over std :: thread. Lower is better.

Fig. 6 was generated using the NVIDIA Nsight Systems on Summit. The figure shows two different threading affinity
strategies adapted in C++ std :: thread (left) and hpx:: thread version (right) in DCA++. Each row in the figure
represents average hardware thread utilization. The height of the hardware thread utilization is represented by the height
of the black histogram.

For our test case we set the SMT to 4 for both executions. The C++ std :: thread version uses 4 hardware threads per
physical core; while, HPX-enabled DCA++ by default utilizes only one hardware thread per physical core. Also, if we
combine the adjacent 4 hyper-threads (SMT) for each physical core in C++ std :: thread version, the overall utilization
is not as high as in the hpx:: thread version. Moreover, even if the DCA++ is modified to use the same affinity settings
(which requires explicit changes in the code base) as HPX, the performance is not improved (i.e. the affinity settings do
not cause the speedup of HPX). The reason of the speedup is due to the fact that HPX thread management (and context
switching in particular) exposes less overheads and lower synchronization overheads. With faster context switch from
HPX threads, DCA++ is able to feeds more computing workload into GPU faster. This directly increases the GPU
utilization resulting in the observed performance improvement.

8



A PREPRINT - OCTOBER 21, 2020

Figure 6: NVIDIA Nsight System profiler showing CPU utilization; for C++ std :: thread (left, shows only 28 active
hyper-threads) and hpx:: thread (right) versions for DCA++. hpx:: thread version sets one hyper-thread per physical
core to achieve better hardware utlization while std :: thread spreads work over 4 hyper-threads per physical core.

We further verified that thread caching malloc (i.e. tcmalloc) is not the cause of the speedup with hpx:: thread version
which uses tcmalloc. TCMalloc assigns each thread a thread-local cache and reduces lock contention for multi-threaded
programs[33]. We performed LD_PRELOAD tcmalloc for DCA++ std :: thread version, and the execution time
remains the same as the one without tcmalloc. This finding strengthens our conclusion that the 21% speedup seen for
the hpx:: thread version is due to the fact that user-level context switching is more efficient and synchronization with
HPX threads imposes less overhead (see Fig. 4).

4.4 HPX-APEX Profiling Analysis

APEX was originally designed to be integrated with the HPX runtime, and enabling APEX support is straightforward.
When configuring HPX, flags are passed to CMake in order to enable APEX support and provide the path to library
dependencies such as OTF2, CUPTI and NVML. After configuration, build and installation the HPX runtime will
have APEX performance measurement enabled. As mentioned in Section 2, all HPX tasks are timed by APEX. In
addition, tasks defined in the application can be annotated to provide unique labels using the hpx:: annotated_function
facility in HPX. At runtime, different APEX features (e.g. tracing, output summary format, different counter sets) are
enabled/disabled through the use of environment variables, a configuration file, or the APEX programming interface.

For the experiments described below, APEX collected a full event trace to OTF2 and monitored several HPX, operating
system, CPU and GPU utilization counters. Counters that were particularly useful for these experiments include
kernel-level context switches (both voluntary and not), user and system level CPU utilization, GPU utilization and
memory consumption, HPX idle rates and queue lengths.

We traced DCA++ with APEX on Summit as shown in Fig. 7. We are able to annotate any functions with
hpx:: annotated_function function wrapper in the code to distinguish their execution time in final profiling data.
Here we annotate walker and accumulator functions, as they are the most computation-intensive parts in DCA++
code. From Fig. 7b, one can clearly observe that the walker function takes majority of the time in a single DCA++
run. The profiling measurement library can also gather HPX thread idle rate (as seen in Fig. 8a) and queue length (as
seen in Fig. 8b). The idle rate counter indicates how utilized each of the HPX worker threads are during each sampled
time period (lower is better). In the context of HPX, it is not a problem having the shown queue lengths as creating
and managing HPX threads (tasks) is generally very cheap (less than 1 µs per thread). The queue depth indicates how
much work, in the form of queued tasks, is available for each of the worker threads. The counters are collected on a
per-worker basis, and the values shown here represent averages across all worker threads.

9



A PREPRINT - OCTOBER 21, 2020

0 s 20 s 40 s 60 s 80 s 100 s 120 s

CPU thread 0

CPU thread 4

CPU thread 5

CPU thread 2

CPU thread 3

CPU thread 6

CPU thread 7

CPU thread 8

GPU Dev: 0 Ctx:01 Str:00007

GPU Dev: 0 Ctx:01 Str:00014

GPU Dev: 0 Ctx:01 Str:00015

GPU Dev: 0 Ctx:01 Str:00016

GPU Dev: 0 Ctx:01 Str:00017

GPU Dev: 0 Ctx:01 Str:00034

GPU Dev: 0 Ctx:01 Str:00035

GPU Dev: 0 Ctx:01 Str:00018

GPU Dev: 0 Ctx:01 Str:00026

GPU Dev: 0 Ctx:01 Str:00022

GPU Dev: 0 Ctx:01 Str:00024

GPU Dev: 0 Ctx:01 Str:00036

GPU Dev: 0 Ctx:01 Str:00037

GPU Dev: 0 Ctx:01 Str:00028

GPU Dev: 0 Ctx:01 Str:00023

(a) Master timeline plot monitored events including CPU and GPU activities

All Processes, Accumulated Exclusive Time per Function

234.955 s

167.516 s

59.172 s

43.753 s

42.203 s

40.299 s

31.472 s

28.231 s

26.693 s

22.765 s

21.702 s

19.819 s

walker

cudaMemcpyAsync

apex::process_profiles

GPU: volt…_64x64_nn

cudaLaunch…ble*, int)

cudaLaunch…ble*, int)

cudaEventRecord

cudaStreamSynchronize

cudaLaunc…_64x64_nn

cudaMemcpy2DAsync

cudaMemsetAsync

cudaLaunch…ble*, int)

0 s20 s40 s60 s80 s100 s120 s140 s160 s180 s200 s220 s

(b) Top 10 time consuming functions. Both annotated functions (user defined kernels) and
CUDA API calls can be captured. Exclusive time means the amount of time spent in just this
function and no subroutines are included.

Figure 7: HPX-APEX profiling results on Summit summarizing CPU and GPU activities.

coun
t

0 k
1 k
2 k
3 k
4 k
5 k
6 k
7 k
8 k
9 k

10 k
11 k
12 k

0 s 25 s 50 s 75 s 100 s 125 s

(a) HPX thread idle rate (unit: 0.01%), lower is better.

coun
t

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 
0 s 25 s 50 s 75 s 100 s 125 s

(b) HPX queue length (unit: number of available tasks), higher is better.

Figure 8: HPX-APEX profiling on Summit showing HPX thread idle rate and queue length.

In [8] authors reported that while storing two-particle green function Gtp on the device allows condensed matter
physicists to explore larger and more complex (higher fidelity) science problems, but we are limited to the device
memory size. The data of device memory usage from HPX-APEX shown in Fig. 9 can help us track memory usage
and provide computational scientists guidance on how to address memory-bound challenge as defined in [8]. We
are planning to distribute Gtp across nodes and implement a token ring algorithm to transfer single-particle Green’s
function G between nodes. The implementation will take advantage of high-speed network between devices available
on the machine (i.e. NVIDIA NVLink on Summit) in order to transfer device data efficiently.

10



A PREPRINT - OCTOBER 21, 2020

coun
t

0.0 k
0.2 k
0.4 k
0.6 k
0.8 k
1.0 k
1.2 k
1.4 k
1.6 k
1.8 k
2.0 k
2.2 k

0 s 25 s 50 s 75 s 100 s 125 s

Figure 9: HPX-APEX profiling results on Summit summarizing device memory used (unit: megabyte) over the time.

5 Conclusion

In this paper we used the Dynamical Cluster Approximation (DCA++) one of the leading Quantum Monte Carlo solvers
as a research vehicle to test the feasibility of the HPX runtime system and use the abstraction layer in the programming
model to understand the performance bottlenecks across multiple architectures (both host side and accelerator based
devices).

We observed significant performance benefit (∼21% speedup over standard threads) by just using the HPX threading
model due to the faster context switches and lower synchronization overheads guaranteed by the HPX runtime. In
this work we also validated our claims using the APEX performance measurement library and with the HPX-APEX
integration one can observe in-depth analysis of the threading behavior (eg. CPU / GPU utilization counters, device
memory allocation over time, kernel level context switches and more).

6 Acknowledgment

Authors would like to thank Thomas Maier (ORNL), Giovanni Balduzzi (ETH Zurich) and Ed D’Azevedo (ORNL)
for their insights during the optimization phase of DCA++. The authors thank John Biddiscombe (ETHZ / CSCS) for
initiating the port of DCA++ to HPX, for providing the initial implementation, and insightful discussions. OLCF system
admins Matt Belhorn (ORNL) and Ross Miller (ORNL) assisted the authors with setting up libraries / programming
models on Summit and Wombat. We would further like to thank Marc Day and Kevin Gott (LBNL) for assisting us
with allocation on the CoriGPU at NERSC.

This work was supported by the Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S.
Department of Energy, Office of Science, Advanced Scientific Computing Research (ASCR) and Basic Energy Sciences
(BES) Division of Materials Sciences and Engineering, as well as the RAPIDS SciDAC Institute for Computer Science
and Data under subcontract 4000159855 from ORNL. This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.
This research also used resources of the National Energy Research Scientific Computing Center, a DOE Office of
Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.

References

[1] M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke, and H. R. Krishnamurthy. Nonlocal dynamical
correlations of strongly interacting electron systems. Phys. Rev. B, 58:R7475–R7479, Sep 1998.

[2] M. H. Hettler, M. Mukherjee, M. Jarrell, and H. R. Krishnamurthy. Dynamical cluster approximation: Nonlocal
dynamics of correlated electron systems. Phys. Rev. B, 61:12739–12756, May 2000.

[3] Thomas Maier, Mark Jarrell, Thomas Pruschke, and Matthias H. Hettler. Quantum cluster theories. Rev. Mod.
Phys., 77:1027–1080, Oct 2005.

[4] Thomas Heller, Patrick Diehl, Zachary Byerly, John Biddiscombe, and Hartmut Kaiser. Hpx–an open source c++
standard library for parallelism and concurrency. Proceedings of OpenSuCo, page 5, 2017.

[5] Hartmut Kaiser, Maciek Brodowicz, and Thomas Sterling. ParalleX: An Advanced Parallel Execution Model
for Scaling-impaired Applications. In 2009 International Conference on Parallel Processing Workshops, pages
394–401. IEEE, 2009.

[6] Hartmut Kaiser, Thomas Heller, Daniel Bourgeois, and Dietmar Fey. Higher-level parallelization for local and
distributed asynchronous task-based programming. In Proceedings of the First International Workshop on Extreme
Scale Programming Models and Middleware, ESPM ’15, pages 29–37, New York, NY, USA, 2015. ACM.

11



A PREPRINT - OCTOBER 21, 2020

[7] Hartmut Kaiser, Patrick Diehl, Adrian S. Lemoine, Bryce Adelstein Lelbach, Parsa Amini, Agustín Berge, John
Biddiscombe, Steven R. Brandt, Nikunj Gupta, Thomas Heller, Kevin Huck, Zahra Khatami, Alireza Kheirkhahan,
Auriane Reverdell, Shahrzad Shirzad, Mikael Simberg, Bibek Wagle, Weile Wei, and Tianyi Zhang. Hpx - the c++
standard library for parallelism and concurrency. Journal of Open Source Software, 5(53):2352, 2020.

[8] Giovanni Balduzzi, Arghya Chatterjee, Ying Wai Li, Peter W Doak, Urs Haehner, Ed F D’Azevedo, Thomas A
Maier, and Thomas Schulthess. Accelerating dca++ (dynamical cluster approximation) scientific application on
the summit supercomputer. In 2019 28th International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 433–444. IEEE, 2019.

[9] T. Heller, H. Kaiser, and K. Iglberger. Application of the ParalleX Execution Model to Stencil-based Problems. In
Proceedings of the International Supercomputing Conference ISC’12, Hamburg, Germany, 2012.

[10] Thomas Heller, Hartmut Kaiser, Andreas Schäfer, and Dietmar Fey. Using HPX and LibGeoDecomp for Scaling
HPC Applications on Heterogeneous Supercomputers. In Proceedings of the Workshop on Latest Advances in
Scalable Algorithms for Large-Scale Systems, ScalA ’13, pages 1:1–1:8, New York, NY, USA, 2013. ACM.

[11] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio, and Dietmar Fey. HPX: A Task Based
Programming Model in a Global Address Space. In Proceedings of the 8th International Conference on Partitioned
Global Address Space Programming Models, PGAS ’14, pages 6:1–6:11, New York, NY, USA, 2014. ACM.

[12] Hartmut Kaiser, Bryce Adelstein-Lelbach, Thomas Heller, and Agustin Berge et.al. HPX V1.4.1: The C++
Standard Library for Parallelism and Concurrency, 2020. http://dx.doi.org/10.5281/zenodo.598202.

[13] Thomas Heller, Hartmut Kaiser, Patrick Diehl, Dietmar Fey, and Marc Alexander Schweitzer. Closing the
Performance Gap with Modern C++. In Michaela Taufer, Bernd Mohr, and Julian M. Kunkel, editors, High
Performance Computing, volume 9945 of Lecture Notes in Computer Science, pages 18–31. Springer International
Publishing, 2016.

[14] Thomas Heller, Bryce Adelstein Lelbach, Kevin A Huck, John Biddiscombe, Patricia Grubel, Alice E Koniges,
Matthias Kretz, Dominic Marcello, David Pfander, Adrian Serio, et al. Harnessing Billions of Tasks for a Scalable
Portable Hydrodynamic Simulation of the Merger of two Stars. The International Journal of High Performance
Computing Applications, 33(4):699–715, 2019.

[15] Gregor Daiß, Parsa Amini, John Biddiscombe, Patrick Diehl, Juhan Frank, Kevin Huck, Hartmut Kaiser, Dominic
Marcello, David Pfander, and Dirk Pfüger. From Piz-Daint to the Stars: Simulation of Stellar Mergers using
High-level abstractions. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–37, 2019.

[16] Patricia Grubel, Hartmut Kaiser, Jeanine Cook, and Adrian Serio. The performance implication of task size for
applications on the hpx runtime system. In 2015 IEEE International Conference on Cluster Computing, pages
682–689. IEEE, 2015.

[17] Kevin Huck, Allan Porterfield, Nick Chaimov, Hartmut Kaiser, Allen Malony, Thomas Sterling, and Rob Fowler.
An autonomic performance environment for exascale. Supercomputing Frontiers and Innovations, 2(3), 2015.

[18] P. Amini and H. Kaiser. Assessing the Performance Impact of using an Active Global Address Space in HPX:
A Case for AGAS. In 2019 IEEE/ACM Third Annual Workshop on Emerging Parallel and Distributed Runtime
Systems and Middleware (IPDRM), pages 26–33, 2019.

[19] John Biddiscombe, Thomas Heller, Anton Bikineev, and Hartmut Kaiser. Zero Copy Serialization using RMA
in the Distributed Task-Based HPX Runtime. In 14th International Conference on Applied Computing. IADIS,
International Association for Development of the Information Society, 2017.

[20] Standard ISO/IEC. ISO International Standard ISO/IEC 14882:2017(E) - Programming Language C++. Geneva,
Switzerland: International Organization for Standardization (ISO), 2017.

[21] Standard ISO/IEC. ISO International Standard ISO/IEC 14882:2020(E) - Programming Language C++. [Working
draft]. Geneva, Switzerland: International Organization for Standardization (ISO), 2020.

[22] Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Knüpfer, Wolfgang E Nagel, and Felix Wolf.
Open trace format 2: The next generation of scalable trace formats and support libraries. In Advances in Parallel
Computing, volume 22, pages 481–490. IOS Press, Amsterdam, NL, 2012.

[23] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber, Holger Mickler, Matthias S
Müller, and Wolfgang E Nagel. The vampir performance analysis tool-set. In Tools for high performance
computing, pages 139–155. Springer, 2008.

[24] OpenMP Application Programming Interface v5.0, November 2018.
[25] CUDA Profiling Tools Interface, August 2020.

12



A PREPRINT - OCTOBER 21, 2020

[26] NVIDIA Management Library, August 2020.
[27] Subhash Saini, Haoqiang Jin, Robert Hood, David Barker, Piyush Mehrotra, and Rupak Biswas. The impact

of hyper-threading on processor resource utilization in production applications. In 2011 18th International
Conference on High Performance Computing, pages 1–10. IEEE, 2011.

[28] Tianyi Zhang, Shahrzad Shirzad, Patrick Diehl, R Tohid, Weile Wei, and Hartmut Kaiser. An introduction to
hpxmp: A modern openmp implementation leveraging hpx, an asynchronous many-task system. In Proceedings
of the International Workshop on OpenCL, pages 1–10, 2019.

[29] Summit user guide, 2020.
[30] TOP500 List, 2020.
[31] Wombat user guide, 2020.
[32] CoriGPU user guide, 2020.
[33] Sanjay Ghemawat and Paul Menage. Tcmalloc: Thread-caching malloc, 2009.

13


	1 Introduction
	1.1 Contribution

	2 Background
	2.1 DCA++
	2.2 HPX
	2.3 HPX-APEX Integration

	3 Implementation
	4 Results
	4.1 Systems overview
	4.2 Correctness verification across systems
	4.3 Compare runtime: std::thread v.s. hpx::thread
	4.4 HPX-APEX Profiling Analysis

	5 Conclusion
	6 Acknowledgment

