
Data Representation Alternatives in Semantically Augmented Numerical Models

Michael Fagan
Rice University, 6100 Main Street, Houston, TX 77005, USA

mfagan@cs.rice.edu
Laurent Hascoet

INRIA, 2004 Route des lucioles, 06901 Sophia-Antipolis, France
laurent.hascoet@sophia.inria.fr

Jean Utke
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA

utke@mcs.anl.gov

Abstract

Transformations of numerical source code may require
the augmentation of the original variables with new data
to represent additional data the transformed program op-
erates on. Automatic differentiation makes extensive use of
this concept. We describe the two principal approaches to
implement the variable augmentation, complete encapsula-
tion and complete separation. The paper concentrates on
two major aspects. First, we characterize the advantages
of each approach and illustrate the effort needed to realize
these advantages in Fortran, C, and C++ as the languages
we are most interested in. Second, we discuss the practi-
cal solutions that in effect represent hybrids of the two ap-
proaches. 1

1. Introduction

Many problems in engineering and science require the
use of numerical models to simulate and optimize complex
behavior. For practical computations these numerical mod-
els are implemented in a programming language such as
Fortran, C, or C++ or in a system such as Matlab. Tak-
ing advantage of the numerical model representation as a
program, we can extend it to gain insight into the model
behavior that is beyond the plain computation of the model
itself. Examples are the computation of uncertainty infor-

1This work was supported by the Mathematical, Information, and Com-
putational Sciences Division subprogram of the Office of Advanced Scien-
tific Computing Research, Office of Science, U.S. Department of Energy,
under Contract W-31-109-ENG-38 and by NSF under ITR contract OCE-
0205590.

mation, guaranteed bounds, envelope representations, and
last but not least derivatives. For this paper the important
commonality of these program transformations is that we
extend the semantics; in other words the original model
computation is preserved. To differentiate from program
transformations that simplify the model or do not preserve
the original semantics, we call them augmenting transfor-
mations. Because they extend the semantics, we have to
find a way to relate the data in the augmenting code to the
data in the original code. This paper looks at this data aug-
mentation issue as a problem faced by all augmenting trans-
formations of numerical programs. We investigate the prob-
lem in the presence of programming language features2 that
impact the augmentation, and we describe a range of solu-
tions. The computation of derivatives with automatic dif-
ferentiation (AD), in particular the generation of an adjoint
code [5], is by far the most complicated augmentation of
numerical programs. The solution of the data augmenta-
tion problem is essential for any implementation of AD, and
therefore its practical relevance is at least at the same level
as that of AD. The examples used here stem from an AD
context, but we emphasize that the issues they illustrate are
not specific to AD.

Throughout the paper we refer to a program P that rep-
resents the numerical model (y, q) = f(x, p) of interest. We
consider as input n independent variables xi and as output
m dependent variables yj . In many practical cases there
can also be s parameters pk that affect the computation
of f, and symmetrically f may modify t variables ql. We
observe that many practical applications perform simula-

2Because of the lack of practical relevance of functional languages for
numerical models, we will consider only imperative programming lan-
guages.

tions and optimizations where the xi and yi vary but the
pi are fixed and the qi hold no practical relevant informa-
tion. An example for this split is a fluid dynamics model
where the material constants are part of p and the veloc-
ities of interest are observed only at certain points in the
discretized space. This split is exploitable for data augmen-
tation; see Sec. 2. The augmenting transformation turns P ,
that is, (y, q) = f(x, p), into P ∗, that is, (y∗, q) = f ∗(x∗, p),
where the x∗

i = (xi, x
′

i) and y∗

j = (yj , y
′

j) contain the orig-
inal xi and yj plus the augmenting data x′

i and y′

j (e.g.,
uncertainties, bounds, or derivatives). The modified f ∗ is
implemented by the original P extended by code P ′ that
propagates the augmenting data. We point out that lan-
guage features that obfuscate the semantics of a given piece
of memory are inherently detrimental to automatic anal-
ysis and transformation and are therefore excluded from
our consideration. Most prominent among these are For-
tran’s equivalence, C/C++’s union, and recasting of
raw memory to pointers to unrelated types.

2. Limiting the Data Augmentation

A naive approach to data augmentation would be to pair
each variable v that occurs in the variable space of the pro-
gram P with an augmenting v′. The ensuing increase of
the memory footprint may be unbearable, however, even
for modest practical applications. Therefore only the vari-
ables that need augmentation, which we call active, should
be augmented. For instance, in AD a variable v is active iff
at some time during the computation of f its value depends
on the value of any of the xi and the value of any of the
yj depend on v. Activity is determined by activity analysis
[?] and in practice can be implemented in a compiler-style
data flow analysis. In most practical applications, the ac-
tive set cannot be determined exactly because of aliasing of
variables [7]; what is computed is a conservative overesti-
mate. Exploiting activity analysis is comparable to program
slicing known from compiler optimization [13]: only ac-
tive variables are augmented, and the augmenting transfor-
mation needs to add code corresponding only to numerical
operations involving active variables. The implied runtime
savings for computing f ∗ are crucial.

3. Principal Approaches

Section 1 introduced our target, the augmentation of P

with additional data and operations (e.g., derivatives and
their computation). This augmentation is clear enough from
a semantics point of view. From a practical implementa-
tion point of view, however, many options and strategies
can be employed. For example, consider the varying strate-
gies used by many AD tools. Comparisons are difficult be-
cause of a lack of common vocabulary and concepts. We

want to classify these strategies, study their strengths and
weaknesses, and compare existing tools according to this
classification.

Our given original program P has its own data, opera-
tional, and call structure. Our augmenting transformations
will introduce new data structures to hold the augmenting
data v′ and new operational and call structures to compute
these augmenting values. Here operational structures con-
sist of arithmetic operations and intrinsics but also compar-
ison operations used in the control flow. Call structure de-
notes for the most part the call graph, but here we will also
look at the consequences of overloading if this language
feature is present. The central question is how to associate
the new augmenting structures with the original ones. In
the following sections we will characterize two extreme ap-
proaches, for brevity called

1. complete encapsulation and
2. complete separation,

and we will explore the range between these two extremes.

3.1 Complete Encapsulation

Data augmentation needs to create a v′ for each active v

occurring in P . A natural choice is to associate v and v′ by
encapsulating them as a pair into a (new) type. For instance
in C++ we might define
struct aFloat{ float o; float a;}

and redeclare active float variables v to be of type
aFloat, where v.o is the original value and v.a the
augmented value. Figure 1 shows complete encapsulation

#include <math.h>
class Ċ {
private:
struct Ṡ {
aFloat u;
float p;} s;

public:
void bf(aFloat x, aFloat y){

aFloat t;
t=̂dpow(x,2);
s.u=̂s.u+̂t;
y=̂2*̂x*̂s.u+̂s.p;}

};

Figure 1. Example of complete encapsulation.
The transformations occur explicitly (boxed)
at the active leaves of the data structures, that
have been changed from float to aFloat,
and implicitly (capped) for the elementary op-
erations via overloading.

on a short code example. Not all programming languages
provide user-defined structures: an obvious counterexam-
ple is Fortran77 which despite of its age is still in heavy
use because of the existence of compilers with superior op-
timization capabilities. While of limited applicability there
are several practical tricks to emulate a simple pairing, for
example using the built-in complex type [?] or using ar-
rays as we propose in Sec. 5.

Concerning the operational structure, we need to change
all operations involving active variables v to perform the
original operation on the v.o component, as well as the
augmenting operations on the v.a component, possibly in-
volving v.o, too. The obvious choice is to encapsulate the
augmenting and original operations in new (overloaded) op-
erations, shown capped in Fig. 1. The application of the
chain rule in AD is a simple example, so the pow operation
could be overloaded to compute derivatives as in

#include <math.h>
aFloat pow(const aFloat& m, int e){
aFloat r;
r.a=e*pow(m.o,e-1)*m.a; //augmenting
r.o=pow(m.o,e); return r;}

Because of the signature change to f, overloading applies to
f̂, too, and therefore is shown capped. When overloading is
not supported by the language, the augmented f̂ may need
to be renamed if one wants to retain the original code for f
as well. Often, however, there is only a single augmented
version f̂, and neither the original f nor for that matter the
original C and S are needed, so the augmented Ċ and Ṡ that
might otherwise be subject to renaming could in fact reuse
the old names.

Overloading-based augmentation requires explicit modi-
fications only on the atomic leaves of the data types. Several
AD tools (e.g. Adol-C [3]) employ this strategy. However,
we will see in Sec. 4.2 that we may want several special-
ized augmented versions of procedures and types in order
to gain efficiency. In that respect the original f, C, and S
may still be useful in the augmented code. Then renaming
of the augmented Ċ and Ṡ is mandatory, and the augmenta-
tion requires a more intrusive rewriting of the program.

3.2 Separating Operations

The strategy described in the previous section has the
advantage of elegantly reusing nearly all of the program’s
structure. However, elegance doesn’t necessarily imply ef-
ficiency. First, although the compiler implementation of
overloading is improving, overloaded operators that encap-
sulate sufficiently complex code will not be inlined and
therefore incur overhead through the call. Second, and
much more important, the nature of the transformations
concentrating on numerical operations almost always al-
lows code optimizations based on the computational graph

[4] that is implied by a given execution sequence of ele-
mental operations [14]. Examples are constraint propaga-
tion [11] and from AD the cross-country elimination ap-
proach [6, 8]. Restricting the transformation to individual
elementals as done with overloading precludes higher-level
optimized transformations.3 Finally, again in the AD con-
text, some popular code transformations (e.g., the “adjoint
code”) need to handle control flow and call graph augmen-
tations [9] and therefore are clearly beyond the scope of el-
emental operations.

To address the obvious drawback of the overloading
approach, instead of complete encapsulation we start by
separating augmenting from original operations. If done
in a straightforward fashion without going into the opti-
mizations mentioned in the previous paragraph, this pro-
cess amounts to inlining of the overloaded operations of
Sec. 3.1 turning t=pow(x,2) into an augmenting state-
ment t.a=2*x.o*x.a4 and a statement for the original
semantics t.o=pow(x.o,2). Now the transformation
has to explicitly generate operations in terms of the com-
ponents of the active type. Figure 2 shows the example
from Fig. 1 with operation separation. Unlike the opera-

#include <math.h>
class Ċ {
private:
struct Ṡ {
aFloat u;
float p;} s;

public:
void bf(aFloat x, aFloat y){

aFloat t;
t.a=2*x.o*x.a;
t.o=pow(x.o,2);
s.u.a=s.u.a+t.a;
s.u.o=s.u.o+t.o;
y.a=2*(x.a*s.u.o+x.o*s.u.a);
y.o=2*x.o*s.u.o+s.p;}

};

Figure 2. Separating operations. Compared
to the code in Fig. 1, augmenting data are
kept encapsulated, but augmenting opera-
tions are separated from original operations.

tional structure, the data structure remains the same as in
the previous section. Since the augmenting data are stored
only a fixed offset away from the original data, it is appro-
priate to call this strategy association by address. Because

3Operators can be overloaded to create computational graphs on the fly,
but that moves the transformation optimization away from compile time to
run time, a move that is rarely beneficial.

4Recognizing the constant exponent 2 and avoiding the second call to
pow is a little side benefit of this more context aware transformation.

it still uses the active type, it does not add any new vari-
ables. This is a significant advantage it retains from the
all-encapsulating approach introduced in Sec. 3.1 because,
as a consequence, there is no extra cost for address compu-
tations relating to the augmenting data. In other words, any
array and structure dereferences or pointer arithmetic oc-
curring for the original data implies that the corresponding
augmenting data can be accessed via a fixed offset that is
computed at compile time. The difference to additional ad-
dress computations necessary at run time will become clear
in the following sections.

A second and no less significant advantage is that while
signatures of procedures may change individual parameter
types to the active type, any overloading resolution mech-
anism known, for instance, in C++ and Fortran9x remains
invariant with respect to the type changes in the signature,
provided the active types properly emulate the built-in con-
versions for the basic numerical types in the programming
language.

3.3 Separating Plain Data

Section 1 points out that user-defined types may not nec-
essarily be supported, as for instance in Fortran77. At the
same time, Fortran77 for instance does not have the con-
cept of explicit pointer arithmetic5 or overloading. There-
fore one need not be concerned about losing either of the
advantages pointed out at the end of Sec. 3.2. In such a con-
text, thinking about the augmenting data as separate from
the original data is quite natural, too. Rather than encap-
sulating data in an active type, one creates new augmenting
variables, for any active original variable. The new variable
is given a name derived from the name of the correspond-
ing original variable following some convention. When the
original procedure is still in use in the augmented program,
the augmented procedure also must be given a new name.
We call this strategy association by name. To make our
point, we turn the example code from the previous sections
into a somewhat simplified Fortran77 code shown in Fig. 3.
Our naming convention just prepends an a. The complete
separation of the data is apparent. From a general source
transformation point of view a complete separation of data
entails a number of important advantages.

• It separates memory allocation of original data from
memory allocation of augmenting data.

• I/O operations remain unaffected.
• Interfacing with external (black box) routines and sys-

tem calls remain unaffected.
• The eventual, manual changes necessary in the en-

vironment calling the transformed code (i.e., the
“driver”) are simple and explicit.

5However, index computations for array dereferences come close.

subroutine af(x,y,ax,ay)
real au
common/aS/ au
real u,p
common/S/ u,p
real ax,ay,at
real x,y,t
at=2*x*ax
t=x**2
au=au+at
u=u+t
ay=2*(ax*u+x*au)
y=2*x*u+p
end subroutine

Figure 3. Separation of plain data.

From a compiler point of view, however, the temporal local-
ity of original and augmented data shown in the transformed
example codes is no longer accompanied by spatial locality,
which can result in an efficiency loss .

3.4 Partial Separation in Structured Data

To get closer to the other extreme strategy of the spec-
trum, we need to consider the complete separation of the
data introduced in Sec. 3.3 for more complicated pro-
gramming language features. Returning to our example in
Fig. 2, one could reasonably attempt the separation shown
in Fig. 4. This comes close to the code in Fig. 3. Clearly,

#include <math.h>
class Ċ {
private:
struct Ṡ {
float au;
float u;
float p;} s;

public:
void af(float x, float y,

float ax, float ay){
float t, at ;
at=2*x*ax;
t=pow(x,2);
s.au=s.au+at;
s.u=s.u+t;
ay=2*(ax*s.u+x*s.au);
y=2*x*s.u+s.p;}

};

Figure 4. Separation of data structures leaves

however, the data separation applied only to active data
structure leaves, as done here, is not complete. Consider,

for instance, an array S* sArr=new S[20]. The mem-
ory of the original and augmenting data is not separate. A
better memory separation requires separating the data struc-
tures themselves, as shown in Fig. 5, where the augmenting
struct aS is distinct from the original struct S. The

#include <math.h>
class Ċ {
private:
struct aS{ float au;} as;
struct S {
float u;
float p;} s;

public:
void af(float x, float y,

float ax, float ay){
float t, at ;
at=2*x*ax;
t=pow(x,2);
as.au=as.au+at;
s.u=s.u+t;
ay=2*(ax*s.u+x*as.au);
y=2*x*s.u+s.p;}

};

Figure 5. Plain data structures separation

benefit is that an original allocation of sArr can be kept
unmodified, separated from the augmenting allocation
aS* asArr=new aS[20]. This method has to be con-
cerned with overloading resolution. For example, void
f(float p, float q), where we assume neither p
nor q is active, and void f(float x), assuming x ac-
tive, are unambiguously resolved. The augmented versions,
however, void f(float p, float q) vs. void
f(float x, float ax), are not. In general for this
particular approach with incomplete data separation, the
transformation engine has to contain some knowledge about
the overloading resolution to avoid these conflicts.

3.5 Complete Separation

To realize the advantages mentioned at the end of
Sec. 3.3, one has to separate all structures that hold data,
and not only simple C-like user-defined types as the
struct S in our example. However, our C++ example
reveals the dilemma right away. Obviously the separation
applies to data structure hierarchies, and consequently
we want to create a separate class aC that contains
struct aS. At the same time the operations to be
augmented are coded in a member function of class C,
and they, and possibly also the augmenting operations,
are using private data members (see the respective last
augmenting statement). For our example code a possible

#include <math.h>
class aC{
private:
struct aS{ float au;} as;
public:
void af(float x, float y,

float ax, float ay,
C& c){

float t, at ;
at=2*x*ax;
t=pow(x,2);
as.au=as.au+at;
c.s.u=c.s.u+t;
ay=2*(ax*c.s.u+x*as.au);
y=2*x*c.s.u+c.s.p;} };

Figure 6. Complete separation in data struc-
tures

solution is shown in Fig. 6. This requires class aC to
be declared a friend within the definition of class C
to enable access to the private members of class C. Any
invocation such as c.f(x,y) would be augmented to
ac.af(x,y,ax,ay,c). If the friend notion is not
available, augmentation can still try to release the access
control, but in some languages (e.g., Fortran9x) access
control and scoping are coupled, making name clashes
possible. In general, complete separation becomes harder
as the data structures contain more private or static com-
ponents. We already pointed out that the augmenting code
is expected to use numerical values from the original code
and therefore a complete separation of the arithmetic is
generally impossible. We also point out that the arithmetic
operations may reuse not only values from the original
data but also control flow conditions. The overloading
resolution problem described in Sec. 3.4 persists. We
mentioned in Sec. 3.2 the need to replicate address com-
putations. For example, an address computation done
for the original data ((&c)+(++i))->f(x,y) needs
to be replicated in the preceding6 augmenting statement,
((&ac)+i+1)->af(x,y,ax,ay,*((&c)+i+1)).
The conclusion to be drawn from this section is that while
complete data separation remains a possibility, the ensuing
code transformation becomes vastly more complicated than
the transformations introduced in Sec. 3.1 and Sec. 3.2,
respectively.

4. Impact of the Separation Level

The paper intends to cover all important aspects a given
choice of separation levels has on the augmenting transfor-

6For consistency reasons we let the augmentation always precede.

mations in the presence of various programming language
features. To streamline the introduction of the separation
levels in Sec. 3, we tacitly ignored a number of issues that
originate from the activity analysis described in Sec. 2 as
well as practical concerns and language features.

4.1. Transformation of Code Subsets

Section 2 explains the need to approximate the set of ac-
tive variables as a subset of all variables in the code base.
In order to ensure semantic correctness, the static activity
analysis has to make conservative assumptions, in particu-
lar in the presence of aliasing, which lead to an overestimate
of active variable subset. Alias analysis is a prerequisite of
activity analysis, and we point out that aliasing also lim-
its the ability to statically construct computational graphs
needed for optimized transformations (see Sec. 3.2). Some
improvements can be achieved with sophisticated analyses,
and statically undecidable problems may be helped with
runtime information. Either one can be prohibitively ex-
pensive for programs with a large code base, but one still
would want to reduce the overestimate. In practice, such
large applications often are not transformed in their en-
tirety; instead, only a subset P + of the program’s proce-
dures containing all relevant code for the computation of
(y, q) = f(x, p) (see Sec. 1) is subject to analysis and trans-
formation. The smaller code base reduces the number of
conservative assumptions and therefore leads to better ap-
proximations of the active variable set, truly aliased vari-
ables, and so forth. Aside from the formally inactive sub-
computations (q) = fa(x, p) and (y, q) = fb(p), one should
think of the inactive remainder of procedures P− as diag-
nostic code, initializations, and data pre- and postprocess-
ing. The split implies consequences for the call structure
and the data structure. The data structure issues are ad-
dressed in Sec. 4.3. For the call structure we distinguish
for a given procedure s the following two cases.

First, s is called in P + but defined in P−; in other words
s is not subject of the transformation. The procedures that
are defined in P + may have their signature changed and
may also be renamed. Consequently their call sites will be
transformed accordingly. Neither one is the case for the s
we are concerned with. However, there can be call sites in
P+ where the actual parameter is active; a typical example
would be a diagnostic or debugging routine that periodi-
cally writes data to a log. Complete data separation will
always have the original data available to pass as parame-
ters. Incomplete data separation will pose problems, how-
ever. Suppose, for instance, that in the fashion of Fig. 4,
active leaves are separated, but not active structures. Pass-
ing the encapsulated augmented structure to s will not pose
problems as long as s follows the structure accessors. But
operations that access raw memory, for instance for binary

I/O, will be affected. Any approach using encapsulation
within an active type will encounter a type mismatch unless
the transformation algorithm inserts pre- or postcall conver-
sions that use a passive temporary. For example, the original
code may contain float p; s(p); where p is active
and therefore needs to turn into

aFloat p;
float t;
t=p.o; // if p is in the IN set of s
s(t);
p.o=t; // if p is in the OUT set of s

where the IN and OUT sets have the usual data flow mean-
ing. Because of the data copying there is an efficiency con-
cern. Such calls may be infrequent, for instance during
initial setup, or diagnostic, which might be disabled. For
cases in which they are not active but are integral to the
implementation, for instance the writing of checkpoints for
restarts, one might have to consider moving s into P + or
manual adjustments.

Second, s is defined in P + and called in P−, and pre-
sumably also in P +. A typical example may be a cost func-
tion computed on the model state at each step in a time-
stepping scheme but also during the initialization phase on
the initial state. For the encapsulation approach with an ac-
tive type we have the reverse type mismatch, but now there
is no transformation applied to P− to solve the problem.
Often one can solve the problem by replicating s, renam-
ing the replicant to as, applying all augmenting transfor-
mation to the definition of as, and call as in P + in place
of s. The caveat associated with this method is explained in
Sec. 4.3. For the calls to swithin P + there can obviously be
cases where the conversion shown in the previous paragraph
needs to be reversed, that is, when the formal parameter of
s is active and the actual is not; see also Sec. 4.2. For data
separation approaches we can employ the same replication
method; however, the caveat applies.

A related problem is that of external interfaces. Unlike
the situations considered above, external interfaces denote
calls to procedures for which no source code definition is
available. At the same time the computations performed
are semantically active; that is, they depend on the indepen-
dent variables and impact the dependents. This situation oc-
curs whenever (third-party) numerical libraries are used and
therefore is quite common. With rare exceptions for AD,
there is no expectation to have libraries that already con-
tain code implementing the semantics of the augmentation
of interest and much less an implementation that matches
any given choice of augmenting data representation. Con-
sequently, one will have to use an interface layer that wraps
the external calls. Regardless of the choice of data represen-
tation in the transformation itself, the wrapper will always
have to rely on complete data separation in order to be able
to make the original external call. In most cases the aug-

menting code will have to be manually created and be made
part of the wrapper. An activity analysis can yield very large
overestimates as the consequence of external calls. One of
the conservatively correct assumptions has to be that all for-
mal parameters depend on each other, that is, all actual pa-
rameters become active if one is active, when in reality there
may only be a few dependencies. Incidentally this can be
mitigated by stubbing out the external calls with (simpli-
fied) code emulating the actual dependencies or by feeding
dependencies signatures into the augmentation tool. In this
sense the stubs can be viewed as a natural extension to the
wrapper layer.

4.2. Activity and Generalization

Activity analysis can be made more or less sensitive
to context and control flow, yielding more or less precise
activity information. The notion of activity that we have
been using in Sec. 3 is context and flow insensitive. In its
flow-insensitive form, activity analysis globally marks one
variable active if it is active at some point in the flow, for
some execution context. The activity of a variable does not
change throughout its scope. In its flow-sensitive form, ac-
tivity analysis computes for each variable an activity sta-
tus that evolves as the flow advances; for example, in AD
a variable becomes inactive after it is reset to a constant.
Overapproximation is nevertheless necessary when the con-
trol flow merges two flow branches with different activities.
Also, when only one element of an array becomes active,
then the whole array becomes active, unless the analyzer
implements array region analysis [?]. Flow-sensitive ac-
tivity analysis closely follows the structure of the control
flow graph, and its primary benefit is to further limit the
number of operations that have to be augmented. Still, a
flow-sensitive activity analysis may indicate a considerably
smaller scope for the augmenting data than that of the orig-
inal data. Consider the following example,

void f(float x, float y, float p) {
// lots of code with inactive uses of p
if (isFullMoon) p=x; p=sin(p); y=p;
// lots of code with inactive uses of p
}

where no actual parameter for p is ever active. A naive ac-
tive type approach forces p to become of type aFloat and
thereby also forces all actual parameters to be converted. A
sophisticated approach would retain the type of p but would
have to introduce a local aFloat lp in the branch body
and still have to do the conversion. The data separation ap-
proach would quite naturally introduce the corresponding
ap within the loop body (as the nearest enclosing scope)
without the need for conversion.

Activity naturally extends to objects more complex than
variables, in which case it is no longer a single Boolean.

Activity of a variable of a structured type is the collection
of the activities of its components. Activity of a procedure
call site is the collection of activities of the actual param-
eters, both before and after the call. Context-sensitive ac-
tivity indicates activity for the formal parameters of a pro-
cedure related to specific call sites and as such is related to
flow-sensitive analysis. For example, within the analyzed
code a procedure s(float u) may at one location in the
code be called with an inactive actual parameter, while at
another location the call involves an active actual parame-
ter. This notion of context sensitivity can also be applied
to user-defined types. Here the equivalent of the individual
call site of the procedure is the individual instantiation of
the type in question. The usage of context-sensitive analy-
sis is the specialization of procedures and user-defined types
according to the varying activity patterns of parameters and
members respectively. As in program slicing, specialization
of data types saves memory, and specialization of proce-
dures saves run time and memory. However, specialization
can lead to a combinatorial growth in the number of varia-
tions of a procedure or type.

Generalization is the opposite of specialization. Conser-
vatively correct generalization activates any formal proce-
dure parameter that has at least one call site with an ac-
tive actual parameter. This approach may necessitate the
conversions mentioned in Sec. 4.1. Activity within user-
defined types can be generalized similarly across all instan-
tiations. This approach obviously forfeits the memory and
runtime savings of specialization at the advantage of a sim-
pler transformation. In many cases, however, generalization
is preferred by tool developers, assuming that the intended
meaning of a procedure implies consistent activity patterns.
Similarly the assumed uniformity between array elements,
unlike user-defined type members, justifies that we merge
their individual activity information into a single Boolean.

Even if generalization is often preferred to specializa-
tion, the original procedure or user-defined type is often
kept in the augmented program, as a particular case of spe-
cialization, when no parameter or member is active. As
mentioned in Sec. 3.4, this may create augmented procedure
name conflicts, which can be solved by renaming or incor-
porating overloading resolution mechanisms in the transfor-
mation engine.

4.3. Data Scopes

In Sec. 4.1 and Sec. 4.2 we conveniently avoided the pos-
sibility of data with a scope outside that of a single pro-
cedure invocation or type instance. Such data may have
global, procedure static, or type static scope.7 For global
data the only problem arises with a split of the code base
as in Sec. 4.1. If global data is activated because of its use

7C/C++ like file static scope is a rather technical problem.

in P+ but also used in P−, the activation is transparent as
long as data separation is employed. For data encapsulation
with an active type the problem cannot be solved by simple
replication as done with procedures. However, if the origi-
nal data is already properly encapsulated within a singleton
class with access methods, one could manually insert code
that synchronizes the original and the augmenting replicant.
The original purpose of the code split was to not subject P −

to analysis (and transformation). This indicates at least a
need for some simple second stage of transformations ap-
plied to P−.

Section 4.1 hinted at a problem in replicating proce-
dures, which (obviously by now) is the existence of pro-
cedure static data. For all practical purposes, this is global
data with access limited to the procedure body. In order to
safely replicate procedures, this data needs to be promoted
to truly global data regardless of the chosen data augmenta-
tion method. Once the data is globalized, all remarks made
for global data apply. As with the global data already, the
downside is that the original has to be subjected to minor
transformations such as removal of the procedure static data
declaration and potential access changes to disambiguate
names and synchronize global data replications.

The type static data can be handled in a similar fashion.
However, one should observe that the data encapsulation
approach does not imply type replication. Only data sepa-
ration does, but there the synchronization is not needed and
hence should be a less complex transformation.

4.4. Nonscalar Data

Aside from purely scalar operations involving single
floating-point and integer variables, many numeric mod-
els require computations involving vectors, matrices, and
higher-dimensional arrays. Such operations are often ex-
ecuted by using highly optimized linear algebra libraries.
Some languages (e.g., Fortran9x) even provide an array no-
tation and built-in intrinsics that operate on array elements
just like scalar intrinsics. Consequently a mix between op-
erations with arrays as operands and scalar operations with
array elements as operands is to be expected.

Consider, for instance, a typical saxpy operation8 exe-
cuted by calling saxpy(a,x,y) implemented in an ex-
ternal library, where a is a scalar and float x[n],y[n]
are vectors of matching length, and also assume x and y are
active, while a is not. With data separation we have float
ax[n],ay[n] and can easily generate an augmenting
statement, for example, for a derivative computation us-
ing the same library and calling saxpy(a,ax,ay). With
simple data encapsulation we have aFloat x[n],y[n],
and now there is an obvious need to extract the .o and
.a components into float arrays if one still wants to

8This means yi = a ∗ xi + yi, i = 1, . . . , n.

reap the benefits of the library calls. On the other hand,
when array elements are used in scalar operations, they
maintain the proximity of x[i].o to x[i].a. Alter-
natively one might decide to introduce array classes (e.g.,
here simplistically struct aVector{ float o[n];
float a[n];}) and avoid the extraction at the expense
of losing spatial locality for the scalar components x.o[i]
to x.a[i] In other words, we can recast this as a problem
of data layout that is dependent on the frequency of use of
array vs scalar data in the model code.

We note that the distinction x[i].o vs. x.o[i] that
a source transformation has to accomplish for C and C++
is not fully reflected in Fortran9x array notation. In par-
ticular, one can define an active type aReal equivalent
to the C aFloat and declare type(aReal)::x(n), a
vector of n instances of aReal accessed componentwise
by x(i)%o and x(i)%a, respectively. At the same time
the vectors of all original and augmenting reals are ac-
cessible via x%o and x%a, respectively. For saxpy vec-
tor operations in our example above, one can therefore
simply write y%o=a*x%o+y%o and for the augmenting
y%a=a*x%a+y%awithout having to consider the data lay-
out. Obviously, spatial data locality still is a concern, and
therefore array dimension specific types may still be desir-
able.

The implicit extraction also works for array slicing, for
example, x(1:n:3)%o, which extracts every third orig-
inal data component and even extends to arrays of nested
structured types. Array notation may become ambiguous,
for example if the augmenting component a is itself an ar-
ray. Then an expression such as x(1:n:3)%a would be
rejected by the compiler, and the extraction into an inter-
mediate temporary array must still be done explicitly. This
kind of array notation makes it particularly easy to generate
the pre- and postconversion codes that switch dynamically
between encapsulation and separation, for example by writ-
ing ax = x%a.

Code transformations employing encapsulation for lan-
guages that do not support array notation still may face the
issue of the dual use of data as arrays and single compo-
nents. Robust code generation for conversions into and out
of the encapsulated data representation for library calls re-
quires dimension information that should ideally be encap-
sulated with the array itself. A code transformation for low-
level languages such as C could solve this problem by pro-
moting the plain memory pointers that serve as array han-
dles to proper C++ array class instances. However, this mat-
ter is clearly beyond the scope of this paper.

5. The Index Method

The complete encapsulation (association by address)
technique elaborated thus far requires that the program-

ming language support structured types. Some languages,
such as Fortran77, do not support structured types. In
Sec. 4.4 we pointed out that the Fortran9x array notation
supports distributivity of structured type selection over
array section operations. In other words, the meaning
of the construct select(a,section(3:7,x))
should be the array section defined by
foreach e in section(3:7,x), select(a,e)
Some programming languages, even though they offer some
level of array notation, do not enjoy this property. This
is the case, for example, for Python and the Matlab
language. The Python “expression” x[3:7].a is not
even syntactically correct. C and C++ don’t have explicit
sectioning operations; but for higher-dimensional arrays
(e.g., aFloat x[n][m]) there is – similar to Python –
no syntax x[i].a supporting this distributivity.

Both of these difficulties can be overcome, however, with
a simple technique we call the index method. Instead of
augmenting a variable by changing the variable type to a
structured type, we augment a variable by adding an index.
Using the index solution, a scalar becomes a 1-dimensional
array, a 1-dimensional array becomes a 2-dimensional ar-
ray, and so on. The first position of the augmented array
holds the original function value. Positions 2, . . . , d hold
the augmenting values. For example, consider these sample
Fortran77 declarations and their associated augmentations.

real x =⇒ real x(2)

real y(m,n) =⇒ real y(2,m,n)

Here we have d = 2, but obviously d can be set to the
desired number of augmenting values. In this scheme, all
references to the value of x use index 1, and all augmenting
references use index 2. Thus, a sample program statement

y = x * z

would be augmented, in the special case of AD, to

y(2) = x(1)*z(2) + x(2)*z(1) //augmenting
y(1) = x(1)*z(1) //original stmt

Note that array section operations are now completely
benign. There is no interfering structured-type selection op-
eration. For example, consider the simple Matlab line

v = sin(x(3:9))

The index-method AD-augmented code would be
v(2,:) = cos(x(1,3:9)) * x(2,3:9)
v(1,:) = sin(x(1,3:9))

In short, the index method emulates a complete encapsula-
tion solution for languages (such as Fortran77) that have no
structured types, and for languages (such as Python or Mat-
lab) that have array section operations with weak distribu-
tivity properties. The main drawback of the index method

compared to the structured type method is that the augment-
ing data type must match the original data type. One also
has to be concerned with the proper initialization of the aug-
menting data that has to be made explicit, instead of sim-
ply using default initializers defined within an active type.
Moreover, languages may impose limitations on the num-
ber of dimensions, preventing further dimension extension
when the limit has already been reached in the original code.
In the case of Fortran this limit is 7. Nevertheless, the index
method is an elegant solution to the problem of scalar vs
array use of array data explained in Sec. 4.4.

6. Tools and Summary

Section 1 points to AD as a heavy user of numeric aug-
mentations. It seems worthwhile to look at a few AD tools
in the context of the four data augmentation approaches
characterized in Sec. 3.

Adifor [2] was originally conceived as a tool for For-
tran77 and not surprisingly follows the complete separation
approach as motivated in Sec. 3.3. The absence of language
features in Fortran77 that complicate the complicate separa-
tion as shown in Sec. 3.5 has made it a reliable tool capable
of handling most Fortran77 codes. Furthermore, an exper-
imental postprocessor semiautomates the index method for
Fortran 77 programs.

Adifor90, the follow-on to Adifor, is under development
and supports association-by-name, association-by-address
using structured types, and association-by-address using the
index method.

Adol-C [3] comes from the other end of the spectrum and
uses complete encapsulation described in Sec. 3.1 via the
operator overloading capabilities of C++ for the automatic
differentiation of C and C++ codes. Within the AD com-
munity the operator overloading-based tools are character-
ized as the opposite of “source-transformation” tools such
as Adifor. The assumption is that one can get away with
global type change of all floating-point variables to an active
type perhaps via a #define. In practical codes, the pres-
ence of unions, the use of malloc, and built-in I/O op-
erations require more involvement. Consequently the truly
automatic use of Adol-C as in the web-based optimization
server NEOS [?] employs a code transformation step that
not only changes the floating-point type explicitly in the
code but also turns unions into structs and mallocs
into news.

Tapenade [12] follows the separation approach of Fig. 5.
It was not originally devised for object languages, and there-
fore this is the maximal separation level it uses. How-

ever, Tapenade has been extended to Fortran9x and there-
fore deals with modules. At the module level, the choice
was made not to apply separation: when a module is differ-
entiated, it encapsulates both the original module variables,
types, and procedures and their differentiated counterparts.
Since activity analysis is flow and context dependent, gen-
eralization is an issue. Generalization is systematic for dif-
ferentiated structured types and procedures, except for one
particular specialization for the completely nonactive case,
namely, the original type or procedure is kept.

Adic and OpenAD/F [1, 10] both originate from the
OpenAD framework; in other words, they both use the same
underlying transformation engine. The current implementa-
tion most closely resembles the encapsulated data with sep-
arate operations approach described in Sec. 3.2. By design,
the framework is language independent. Currently all ma-
ture AD tools for C++ rely on complete encapsulation but
the lack of awareness of structure beyond elemental opera-
tions is a major problem for efficiency. Adic is being devel-
oped to handle C++, and OpenAD/F is geared to Fortran9x.
Avoiding the apparent complexities of data separation for
these languages is the main rationale for this design.

We have categorized a spectrum of transformation ap-
proaches for data augmentation into

• complete encapsulation, Sec. 3.1;
• encapsulated data with separate operations, Sec. 3.2;
• partially separate data, Sec. 3.4; and
• complete separation, Sec. 3.5 and Sec. 3.3.

Each of the approaches yields different levels of complexity
for the augmenting transformations. We have considered in
particular the following language features.

• User-defined types and access control
• Overloading and overloading resolution
• Pointers and pointer arithmetic
• Vector operations
• Global data and static data

While we can characterize the consequences of the four dif-
ferent augmentation approaches on the transformation, the
areas of increased complexity are fairly separate and are a
tradeoff rather than enable a direct comparison. Because
tool development is ongoing, in particular with regard to
more problematic language features, we still lack enough
practical experience to draw an informed conclusion about
which of the four approaches is best.

References

[1] Adic v2.0.
http://www.mcs.anl.gov/adicserver.

[2] Adifor.
http://www.cs.rice.edu/˜adifor.

[3] Adol-C.
http://www.math.tu-dresden.de/˜adol-c.

[4] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques and Tools. Addison Wesley, 1986.

[5] A. Griewank. Evaluating Derivatives: Principles and Tech-
niques of Algorithmic Differentiation. Number 19 in Fron-
tiers in Appl. Math. SIAM, Philadelphia, 2000.

[6] A. Griewank and S. Reese. On the calculation of Jaco-
bian matrices by the Markowitz rule. In A. Griewank and
G. Corliss, editors, Automatic Differentiation of Algorithms:
Theory, Implementation, and Application, pages 126–135.
SIAM, Philadelphia, PA, 1991.

[7] S. Muchnick. Advanced Compiler Design and Implementa-
tion. Morgan Kaufmann Publishers, San Francisco, 1997.

[8] U. Naumann. Optimal accumulation of jacobian matrices by
elimination methods on the dual computational graph. Math.
Prog., 3(99):399–421, 2004.

[9] U. Naumann, J. Utke, A. Lyons, and M. Fagan. Control
flow reversal for adjoint code generation. In Proceedings
of the Fourth IEEE International Workshop on Source Code
Analysis and Manipulation (SCAM 2004), pages 55–64, Los
Alamitos, CA, 2004. IEEE Computer Society.

[10] OpenAD.
http://www.mcs.anl.gov/OpenAD.

[11] H. Schichl and A. Neumaier. Interval analysis on directed
acyclic graphs for global optimization. J. Global Optimiza-
tion, 33(4):541–562, 2005.

[12] Tapenade.
http://www-sop.inria.fr/tropics.

[13] F. Tip. A survey of program slicing techniques. Journal of
programming languages, 3:121–189, 1995.

[14] J. Utke. Flattening basic blocks. In M. Bücker, G. Corliss,
P. Hovland, U. Naumann, and B. Norris, editors, Automatic
Differentiation: Applications, Theory, and Implementations,
volume 50 of Lecture Notes in Computer Science, pages
121–133. Springer, 2006.

