Centrum voor Wiskunde en Informatica

REPORTRAPPORT

SIEIN]

Software Engineering

Software ENgineering

SEN Linking analysis and transformation tools with
source-based mappings
M. Bruntink

ReporT SEN-RO606 MaY 2006

Centrum voor Wiskunde en Informatica (CWI) is the national research institute for Mathematics and
Computer Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-orienfed structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA|
Software Engineering (SEN)

Modelling, Analysis and Simulation [MAS]

Information Systems (INS)

Copyright © 20006, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 S Amsterdam (NL)

Telephone +31 20 592 9333

Telefax +31 20 592 4199

ISSN 1386-369X

Linking analysis and transformation tools with
source-based mappings

ABSTRACT

This paper discusses an approach to linking separate analysis and transformation tools, such
that analysis results can be used to guide transformations. Our approach consists of two
phases. First, the analysis tool maps its results to relevant locations in the source code.
Second, a mapping in the reverse direction is performed: the analysis results expressed as
source positions and data are mapped to the abstractions used in the transformation tool. We
discuss a prototype implementation of this approach in detail, and present the results of a
number of case studies.

1998 ACM Computing Classification System: D.2.7 Distribution, Maintenance, and Enhancement

Keywords and Phrases: tool interoperability ; source code analysis ; source code transformation

Note: This work has been carried out as part of the Ideals project under the auspices of the Embedded Systems
Institute. This project is partially supported by the Netherlands Ministry of Economic Affairs under the Senter program.

Linking Analysis and Transformation Tools
with Source-based Mappings

Magiel Bruntink
CWI, P.O Box 94079
1098 SJ Amsterdam, The Netherlands
Magiel.Bruntink@cwi.nl

Abstract dence graphs (PDGs). In contrast, transformation tools such
. . L as ASF+SDF [4] operate primairily on abstract syntax trees
This paper discusses an approach to linking separate anal ASTs). To leverage analysis results expressed in the PDG
ysis and transformation tools, such that analysis results Ca’%omain (i.e., CodeSurfer), it is first required to map the anal-
be used to guide transformations. Our approach consists Oysis results,to the AST ciomain (i.e., ASF+SDF). Clearly
two phases. First, the analysis tool maps its results to relei:reating such a mapping (bridge[8]) i,s a non-trivial task, '

vant Ioca'.uons. In _the source code. Seconq, amapping in th? quiring deep understanding of the schemas used at both
reverse direction is performed: the analysis results expresse nds. Even if both tools are targeted at the same language

as source positions and data are mapped to the abstractionﬁ]e use of different grammars, language dialects, and source

used in thg transfqrmaﬂon tool: we d!scuss a prototype ImE:orrespondences complicate this task enormously, especially
plementation of this approach in detail, and present the ®since it is often hard to change those features of a tool.
sults of a number of case studies. . .
In this paper we discuss an approach to createrce-
based mappingbetween tools using different schemas. A
1. Introduction source-based mapping consists of pairs of a source code area
and facts relevant at that area. The perspective taken for

There exists a vast collection of source code analysis anthis discussion consists of two tools working together on the
transformation tools. Most of these tools specialize in eithesame source code; one tool performs the analysis required
analysis or transformation, and rarely a tool is suitable forfor the transformations performed by the other tool. We wiill
both tasks. Ironically, most non-trivial transformation tasksdefine when a source-based mappinstiict andsafe given
require deep analysis. Migrating legacy software to recenthe relevant abstractions in the analysis and transformation
technology, such as AOP, is but one example [5]. tools, and a body of source code. A strictly safe source-

Combining tools is the obvious solution to this function- based mapping guarantees that analysis results are mapped
ality schism. However, tool combination introduces the is-to the desired abstraction in the transformation tool. Further-
sue of tool interoperability, and despite the ample attentiormore, we show how a source-based mapping compares to
it has received from the research community, it still remainamappings created using higher-level schemas.
a largely open problem [8]. Previous work in this area has The paper is organized as follows. Section 6 discusses
focused on solving low-level compatibility issues, resultingrelated work. Section 2 presents source-based mappings in
in many proposals for generic data formats, and communiegetail. The idea of source-based mappings has been imple-
cation protocols [12, 23, 3, 9, 13]. These technologies havenented as a framework called SCATR, which is described in
proved to be useful in several successful tool collaborationSection 3. SCATR has been applied to a number of cases,
such as the ASF+SDF Meta Environment [4]. Another keywhich we report upon in Section 4. In Section 5 we com-
feature of tools like the ASF+SDF Meta Environment is thatpare source-based mappings with schema-based mappings,
they operate on an abstract representation (i.e., ASTs) thahd propose a way to automatically check the safeness and
is shared by all of their components. A common term forstrictness properties.
such an abstract representatioséeemawhich we will use
throughout this paper.]

A remaining challenge consists of coping with differences2. ~ Source-based Mappings
between schemas (of the source code) employed by the var-
ious tools. For instance, an analysis tool such as GramFigure 1 shows the general idea of source-based mappings.
matech’s CodeSurfer [2] revolves around program depenthe left hand side is the domain of an analysis tool, while the

Analysis Transformation

for (i = 0; i < length; i++)

{

if (array[i] > max)

{

max = array][i];

}

~NOoO b~ WNBR

}

Stat [1-7]

"for" For-Cond Block

Stat [3-6]

i If-Cond Block

Stat [5]

Source code

Figure 1. Source-based mappings.
Figure 2. Source code example.

transformation domain resides on the right hand side. Both
Operate on the same body of source code. As is Suggested 59|Umn, paired with an end line and column. A source-based
the figure, the tools work with different schemas. mapping then consists of the compositiop(down(s)),

The gray circles and arrows show how a source-baseWheresis an instance of typ8, and the result is an instance
mapping operates. First, an element of the schema used 19§ typeT.
the analysis tool is selected. We will refer to such an element Consider the example source code in Figure 2, and its
as aninstanceof the schema used by the tool. An instanceabridged AST representation. The Stat nodes in the AST
can be of a certaitype for example a PDG or AST node. are annotated with the line numbers that they correspond to.

Subsequently, the selected instance is mapped to an apuppose analysis results defined for PDG nodes are to be
propriate area of the source code, along with the facts ofmapped to Stat nodes in the AST (i.&.js fixed to PDG
interest associated with the instance. Next, the process iodes, and is fixed to Stat nodes). Letbe the PDG node
reversed in the transformation domain. The source code argapresenting the for loop, and ldbwn(s) yield the areaa
obtained in the previous step is used to map the facts of inwhich spans line 1. Nowp(a) should yield the Stat node
terest to an appropriate instance of the schema used by tl@rresponding to the for loop, sineeis included (only) in
transformation tool. the area ([1-7]) of that node.

If analysis and transformation operate on the same There may be some situations in which a source-based
schema, and their mapping to and from the source code imapping is more problematic. Firstown(s) might corre-
identical, it is clear that a source-based mapping will allowspond to more than one instance of typeA common cause
facts about arbitrary instances to be exchanged. In practicef this problem is recursion in grammars. For instance, ex-
this situation is a rare exception, unless analysis and transfopressions are typically defined recursively, and as a result,
mation are performed by the same tool. We are interested imore than one expression may be defined at a source code
the case where analysis and transformation are done by difirea. In Figure 2, the statememix = arrayli]; at
ferent tools, and possibly using different schemas, and therdine 5 is nested within both the for and if statements. Con-
fore with a different source code correspondence. sider thatsis a PDG node representing the statement at line

A source-based mapping can be split into two functions5, anddown(s) is the area spanning line 5. Now there are 3
downandup. Down represents the arrow on the left hand Stat nodes$ to whichup(down(s)) could map, because line
side of Figure 1, whilaip represents the right hand side ar- 5 is included within the area of any of the for, if, and assign-
row. Given that we have fixed typ&andT of instances in ment statements.

the analysis and transformation tools respectiveiyynand A partial solution to this problem would be to have more
up have the following signatures: fine-grained source code correspondence within both anal-
down(S) ~— Area ysis and transformation tools. For example, if the source

correspondence of the AST node for the if statement in Fig-
ure 2 would consist of the lines 3, 4, and 6, instead of the
whereArearefers to a source code area, e.g., a start line andntire range 3-6, then the if statement does not need to be

up(Area) — T,

considered as a target of the of line 5.
Note that thedownfunction also needs to accommodate
the finer-grained source correspondence. Sinca e line
5 no longer yields the AST node of the if statemetawn(s)
has to output any of lines 3, 4 or 6dfis a PDG node rep- 3. Scaffolding
resenting the if statement. Clearly, whether a finer-grained AST
source correspondence can be used on one end is dependent
on the other endDown andup have to be implemented in
a compatible way, and therefore the implementor has to b
Specifications
aware of the source correspondences of I5dhdT.
Tools with an inaccurate source correspondence are there-
fore particularly problematic. However, some means are
needed to cope with these inaccuracies in practice, since
source correspondence within existing tools cannot always 2. Analysis
be easily improved. If the source correspondence at either
end is not accurate enough to obtain a unique target for

1. Parsing

Extended
grammar

up(down(s)), a strategy has to be defined which implements Source code
a choice. For examplejp could select the instance that is _ _
most specific to the area generateddmwn(s). In Figure 2, Figure 3. SCATR overview.

up would then map line 5 to the assignment statement with-

out a problem. Our SCATR framework (see Section 3) im-vided an SDF grammar for that language is available.

plements this strategy. In terms of Figure 1, SCATR operates within the “Trans-
Another problem that may occur due to an inaccurate€formation” domain. Its purpose consists of inserting analysis

source correspondence is that the source codedanea(s) results expressed as scaffolding specifications into the AST

may not be associable with any instance of tfpéecause used by the transformation tool (i.e., ASF+SDF). Figure 3

no such instance is defined @wn(s). This problem may gives an overview of SCATR. Three steps are performed to

also be caused by a bad choice of instance types, e.g., tryirdecorate an AST with analysis results.

to map PDG nodes representing assignments to AST nodes

representing if statements. The implementor of a source- 1. Parsing with a grammar extended with supportsicaf-

based mapping has to make sure the instance types are cho- folds resulting in an AST corresponding to the source

sen such that this problem cannot occur. code. Scaffolds are akin to parse tree annotations [20],

If the second problem (i.e., no instances of typeat and allow analysis results to be attached to nodes in the
down(s)) is not present, or in other words, tfp(down(s)) AST. The precise definition of scaffolds is discussed be-
is defined for alls from the domain, we call a source-based low.

mappingsafe Furthermore, a source-based mapping that
yields exactly oné for eachsis called astrictly safemap-
ping. Both properties can be checked to hold given the in-
stance typeSandT, implementations oflownandup, and
a body of source code. We discuss this further in Section 5.

2. Analysis results are generated by an appropriate analy-
sis tool. The results of the tool are expressestasfold-
ing specificationswhich steer the process of inserting
scaffolds in the AST. Scaffolding specifications are also
discussed below.

3. SCATR 3. Scaffolding is the final step in which the analysis re-
sults are inserted into the AST based on the scaffolding

SCATR (short for Scaffolding And TRansformation, and specifications.
pronounced as ‘scatter’) is a framework supporting the use of . . . _ .
source-based mappings in the context of linking analysis and In the remamder of this section we will flrst d|§cuss the
transformation tools. Scaffolding is a technique proposed by"Plementation of SCATR, followed by a discussion of de-
Sellink and Verhoef in [21], which constitutes the foundation S9N decisions underlying SCATR's architecture.
of SCATR. 31
SCATR is not completely generic, in the sense that the
target transformation tool is fixed; it is aimed at transforma-Figure 4 presents the core modules of the ASF+SDF imple-
tions expressed in ASF+SDF [4] only. Nevertheless, SCATRmentation of SCATR. The format used is SDF, which is sim-
is not tied to a particular analysis tool. Furthermore, SCATRIlar to EBNF, except that the right and left hand sides of the
is independent of the language used in the source code, prgrammar rules are swapped. Any parameters of a module are

Implementation

module Extended-Language [Element Extension]

Extension+ Element — Element
Element Extension+ — Element
module Scaffolder [Program Element]

scaffolder (Program, Scaffolding-Spec*) — Program
module Scaffolding-Spec

"begin" Scaffold Type Position "end" — Scaffolding-Spec
"before" | "after" — Type

"(" Natural Natural)" — Position
module Scaffold [Ext-Scaffold-Data]

"SCAFFOLD" "[" Scaffold-Data* "]" — Scaffold
Data-Name "[" Scaffold-Data* "]" — Scaffold-Data
[A-Z]+ — Data-Name
String — Scaffold-Data
Ext-Scaffold-Data — Scaffold-Data

Figure 4. SDF excerpts of the core modules of SCATR.

listed between square brackets next to the module’s name. while the Element parameter should be set to the sort the user
parameter of an SDF module allows the user to specify avishes to add scaffolds to.
grammar non-terminal for which the module should be in- Scaffolding-Spec.A ScaffoldingSpec specifies the inser-
stantiated. The result of supplying an argument to a parameion of a scaffold at a certain node in the AST. To select the
ter is essentially a textual replacement of the occurrences aérget node the user specifies a Position, that is, line and col-
the parameter by its argument. umn number, in the source file from which the AST was de-
Extended-Language. The module ExtendedLanguage rived. The scaffolder will attach the scaffold to the lowest
allows a grammar to be extended to facilitate scaffolding.node inthe AST that includes the position in its source range.
It defines grammar productions that allow (one or more) Ex-\Whether the scaffold is added to the left or to the right of the
tensions before or after the Element of interest. The user caselected node is determined by the Type, i.e., respectively
specify two parameters when using this module. Element ibefore or after
the grammar sort the user intends to extend. For instance, Scaffold. The syntactical definition of a scaffold resides
Statement would be specified if the user wishes to extenén this module. This definition is loosely based on Sellink
statements. Extension would normally be specified as Scafind Verhoef’s definition in [21]. Scaffolds can contain nested
fold, but additional uses (e.g., comments, annotations) justifyists of named data, which can be of various sorts. By de-
an additional layer of abstraction, as proposed by Sellink anéault, Strings are allowed as Scaffold-Data, but the user can
Verhoef [21]. add custom sorts by instantiating the Ext-Scaffold-Data pa-
Scaffolder. The main module of SCATR defines the scaf- rameter.
folder function. The_scaffolder function traverses its Pro-3.2- Architecture
gram argument and inserts scaffolds to nodes of type Ele-
ment according to a list of ScaffoldingSpecs supplied as thahe source-based mapping for which SCATR was designed
second argument. consists of source code positions, that is, pairs of line and
The user of this module has to make sure the Programsolumn numbers. The analysis tool is expected to map an
and Element parameters are set correctly. Program is to kiestance of its schema (e.g., a PDG node in CodeSurfer) to
instantiated as the top-level sort of the source code grammaa, single source code positiodgwnfunction in Section 2).

SCATR will attempt to map this source code position to anneeds to be extended such that nodes of interest (i.e., of
appropriate node in an AST maintained by ASF+Ship (typeT in terms of Section 2) can be preceded or followed
function in Section 2). The analysis tool is burdened withby nodes representing scaffolds. SCATR provides for a
making sure that the source-based mapping obtained is safiexible way of extending grammars. The module Extended-
i.e., it must ensure that an AST node of the selected sort ikanguage adds two grammar productions to extend the sort
defined at the source code positions it exports. of interest such that it can be preceded and followed by scaf-
Scaffolding. Determining which nodes are extended with folds. The details of this module are presented in Subsec-
a scaffold depends on two sources of information. First, thdion 3.1.
user of the SCATR framework specifies the tyud AST Lexical Scaffolding. Scaffolding as defined by Sellink
nodes that can receive a scaffold. For instance, the user mand Verhoef [21] operates slightly differently. Their ap-
choose to add scaffolds to Statement nodes, if Statement ispgioach extends the target grammar much more extensively,
sort defined by the language grammar. In Subsection 3.1 wiay allowing scaffolds in front of each terminal (occurrence
discuss how the user achieves the sort selection. of a lexical sort). This has the advantage that scaffolds can
Second, the scaffolding specification lists source code poalso be added directly to the source code itself, followed by
sitions paired with scaffolds containing data. The scaffolde@n invocation to the parser to obtain a scaffolded AST. In our
function adds a scaffold to a node if and only if the node is ofsimple approach to grammar extension this results in many
the selected sort, and the source code position specified wigtmbiguities during parsing.
the scaffold is included in the source code area spanned by An advantage of our approach is that the scaffolding pro-
the node. cess inserts scaffolds at exactly the nodes of interest in the
Note that this process requires that the target AST is fullyAST. This is beneficial for the purpose of specifying trans-
decorated with source position information, that is, eactformations based on the scaffolds, as no extra work has to
node in the AST can be mapped to its corresponding arele done to locate the scaffolds (if any) associated with the
within the source code. node. Sellink and Verhoef’s approach causes the scaffolds
One intricacy of the scaffolding process remains to be exto be added as leaves in the AST, possibly a long way from
plained. A source code position can point to more than onéhe nodes of interest. Without additional support for locating
node of the user selected sort. In C, for example, nested statgécaffolds in the AST, this is an unpractical situation for the
ments, or expressions, can cause this effect. SCATR ensurépecification of transformations. Kat al. provide methods
that astrict (see Section 2) mapping is obtained through twothat are capable of locating scaffolds, and dealing with them
design decisions. The AST is traversed in a bottom-up fashin transformations [14].
ion, and a scaffold is inserted at most once. In effect, a scaf- Finally, one could argue that simple grammar extension
fold is added to the most specific (or lowest) AST node ofcould suffice if one would lexically insettracketedscaf-
the user selected sort, that includes the specified source coffdds. A bracketed scaffold surrounds the source region it
position in its area. This behavior implemented by SCATRapplies to with brackets, so that no ambiguity arises during
may not always be desirable (though it has been for our purParsing. A similar approach is taken by source code fac-
poses). tors [?]. As it turns out, lexically inserting bracketed scaf-
The number of AST nodes that are pointed to by thefolds is not practical. The analysis tool exporting its results
source-based mapping could possibly be reduced by improwould then be required to generate the positions of the brack-
ing upon the accuracy of source code positions. Source cods in a way that is lexically compatible with the grammar
areas could alternatively be used to create a source bastged by the transformation tool. In our approach, the analy-
mapping. A source code area more accurately describes ti§és tool can suffice by generating a position that it knows to
source representation of an instance by specifying the linée within the source area of an AST node of the desired sort
and column numbers of the start and end of the instancdsafeness).
We discussed this solution in Section 2, and have shown that
the use of a finer grained source correspondence onone epgl Cgse Studies
(here in the analysis tool) requires changes in the other end
(here the transformation tool). For flexibility SCATR uses The SCATR framework is currently being used in several
the relatively inaccurate source code positions, and dealga| transformation tasks. These tasks consider components
with multiple matching nodes by picking the most specific of a 10 million line C system, developed and maintained by
node. ASML, a Dutch lithography manufacturer. The tasks are
Grammar Extension. In order for scaffolds to be added related to our earlier work on (crosscutting) concern isola-
to AST nodes, the grammar used to parse the source cod@n [5], and consist of elimination of concern code, and in-

1The type of an AST node corresponds to a grammar sort or non- 2In systems which do not require AST transformations to be syntax pre-
terminal. serving such grammar modification may be unnecessary.

sertion of domain annotations (among others). These transey Atrace(CC 868
formations are required in a larger migration effort toward 14y TRAéE INT 869
aspect-oriented technology. iy -

_)) func_name, 870

Source-to-source transformations are desired in these u, (read_fd=%d timeout=%d)" 871
cases, since developers have to be able to work with the reaud fd - 872
transformed code. Specifically this requires the abilities to timeaut)' 873

parse code in the presence of C preprocessor directives, and

to preserve comments and white-space. Due to the availabil-

ity of an SDF grammar for ANSI C extended with prepro-
cessing directives and rewriting with layout capability [24],

the ASF+SDF Meta environment [4] is used to implementpegin
the transformation tasks. The C grammar was modeled SCAFFOLD["TRACING"]

strictly after the ANSI C specification, and extended with pefore

support for the specific preprocessor use within ASML. (868 0)

Several analyses required to identify concern code havend
previously been implemented [5] as plugins to GrammaT-
ech’s CodeSurfer [2]. Since these analyses are not trivial,
and significant effort would be needed to re-implement thenf-igure 6. Scaffolding specification for a single trac-
in ASF+SDF, the choice was made to reuse the CodeSurféRg call.
plugins. SCATR was developed to solve the problem of
leveraging CodeSurfer’s analysis results in transformations
expressed in ASF+SDF.

SCATR has been used for the transformation of two com
ponents, CC1 and CC2, consisting of 32,402 and 17,71
non-blank lines of code, respectively. Efforts are currently
ongoing to apply SCATR to 10 components, totalling ap-
proximately 2 million lines of code.

Figure 5. Example tracing call.

A CodeSurfer plugin was previously developed to iden-
tify all the tracing calls for all functions. The result consists
of a set of PDG nodes representing the calls to the tracing
nction. Furthermore, a utility script was developed to ex-
port these PDG nodes along with the fact that they belong to
the tracing concern, into SCATR’s scaffolding specification
format (see Section 3). An example scaffolding specification
is shown in Figure 6. It states that a scaffold of the form
SCAFFOLD["TRACING"] should be added before the in-
The first transformation task we consider consists of thestance at source code line 868, column 0. This source code
elimination of code belonging to a number of concerns: position corresponds to the first character of the tracing call.

4.1. Case Study: Concern Code Elimination

e Tracing. Dynamic execution tracing of each function Effectively this export script implements tligwn func-
such that the values of input and output parameters cafion that was described in Section 2. The other part of the
be inspected. source-based mapping, thg function, is implemented by

o) o) SCATR. Function calls are parsed as Statements in our SDF

e Timing. Collection of timings for each function execu- ¢ grammar, thus instantiating SCATR for this task starts by
tion. extending the C grammar such that scaffolds can be added

e Function Naming. Each function has a local variable to Statement nodes. As was explained in Section 3, this is
which holds a string representing the function’s name done through_ the parameters of the module ExtendedLan-

‘guage (see Figure 4).

These strings are used within tracing and logging calls. The next step consists of the invocation of the scaffolder

e Parameter Checking Pointer parameters of functions function, with the (parsed) source code and all generated
should not be NULL before they are referenced, eacr?caffqldlng specifications as argume!’lts. Theresultisan AST
function therefore has to implement checks. The pai" which QII th.e Statement nodes pqmted to by the s_caffold—
rameter checking concern is discussed in detail in [5]. IN9 specifications are decorated with a scaffold. Figure 7

shows how this would look if a decorated node was pretty
The instantiation of SCATR for the elimination of these con- printed.
cerns is very similar in all cases, therefore we suffice with Finally, the AST is traversed one more time by a function
a discussion of the elimination of the tracing concern in thisthat removes all nodes decorated with a specific scaffold. In
paper. The tracing concern consists of calls to a tracing functhis case the traversal would look for tracing scaffolds, but
tion, where the arguments are the values of either input ofor the other concerns the scaffolds contain the respective
output parameters. An example is shown in Figure 5. names of the concerns.

SCAFFOLD["TRACING"]<<THXAtrace(CC, int CCCN_Wait(int read fd, 549

THXA_TRACE_INT, int timeout) 550

func_name, __trace__ (in (read_fd timeout) out ()) 551

"> (read_fd=%d, _timeout=%d)", { 552

read_fd, Co 553

timeout);>> } 554
Figure 7. Tracing call decorated with a scaffold. Figure 8. Tracing annotation.

The source-based mapping we defined in this case WO”‘E’egin
because it is strict and safe, as defined in Section 2. First,scaFFOLD [IN [read_fd timeout] OUT []
safeness holds because in the ANSI C grammar the first charia, -
acter of the name of the called function is guaranteed to point (550 25)
to an AST node of type Statement. Second, the mapping igpq
also strict, due to SCATR’s strategy of selecting the most
specific node of type Statement. The Statement node rep-
resenting the tracing call will always be lower in the AST Figure 9. Scaffolding specification for temporary
than Statement nodes representing any surrounding statseaffolds.
ments. For now these properties follow from the structure of

the grammar, anq SCATR's selection strategy. In the fUtureSOrt is Declarator, which spans the area from the start of the
we would like to implement a tool to check whether thesef

. . . nction name CCCNWait in Figure 8), up to and includ-
properties hold given a body of source code, and a demefgg the closing parenthesis of the signature. A CodeSurfer
source-based mapping.

scriptis used to implementownby generating a scaffolding
specification with the input/output information wrapped in a
scaffold, and the source code position corresponding to the
closing parenthesis of the function signature. An example is

After all tracing code has been eliminated, a compile-timeShoWn in Figure 9.

weaver is responsible for regenerating the tracing function- Similar to the result in Figure 7, running the scaffolder
ality. As it turns out, the tracing concern requires some nonfunction on the source code with the annotation scaffolding

trivial analysis to figure out which function parameters aresSpecifications results in fgnction signatures _With scaffolds
used as input and which are used as output parameters. Sin@gPended to them. The final step then consists of a traver-
it would be costly to integrate this analysis into the build pro-S&l Which trivially translates the present scaffolds into the
cess, it was decided to perform a one-time analysis of thf&cing annotations shown in Figure 8. o
source code, and insert the results (i.e., input / output char- Safeness and strictness of the mapping used in this case
acteristics) into the code @®main annotationsin our case, ~ follows by the same argument we used before. According to
the domain annotations are specifically targeted at a compildD® ANSI C grammar, the closing parenthesis of a function
time weaver for C, WeaveC [1]. Here we will discuss the useSignature matches exactly one node of sort Declarator.
of SCATR in the annotation process.
Again, thg anglysis is performed by a CodeSurfer plugin,5_ Discussion
and results in a list of input and output parameters for each
function_ (PDG). Figurg 8 gives an example of how a d_omainSource-based mappings vs. schema-based mappings
annotation should be inserted in the source code at line 551.
The annotation has been inserted after the function signafhe defining feature of source-based mappings is that they
ture, and before the defining block of the function. It showslocate the instances of interest through pointers in the source
that this function CCCN_Wait) has two input parameters, code itself. Other approaches exist to solve the location prob-
read_fd andtimeout ,and no output parameters. lem, that do not utilize source correspondences at all (or as
The insertion process works by first inserting temporarymuch). Theseschema-basedpproaches locate instances of
scaffolds containing the analysis results, and then translataterest in the target (transformation) tool through queries
ing the scaffolds into the desired domain annotation formatexpressed using the target schema. HSML is, in essence,
SCATR again requires the selection of the grammar sort tsuch an approach [7], since it allows maintenance hot spots
which scaffolds need to be added. Since the annotation hde be identified through complex queries expressed using the
to be inserted after the function signature, the appropriatgrammar of the target language. Other examples are the var-

4.2. Case Study: Insertion of Domain Anno-
tations

ious query languages for XML documents, e.g. XPath omore than one instance of tyge Therefore, implementing
XQuery. a source-based mapping requires knowledge of overlapping
Let's consider how a schema-based mapping could bg&ource correspondences of instances of fypéf the prob-
used in the context of linking an analysis and a transformalem cannot be evaded by changidgwr(s) to generate a
tion tool. The setting is the same as defined in Section 2mnore specific source code area, a strategy will have to be
i.e., we want to map analysis results for instances of §pe implemented inup to make a choice, as was discussed in
to instances of typd in a transformation tool. The anal- Section 2.
ysis and transformation tools have different schemas of the In summary, a schema-based mapping requires detailed
source code. What alternatives to thevnandupfunctions knowledge of the target schema. It may be required to know
would need to be implemented? the definition of other types of instances than the type of
To start withdown recall that its purpose is to map an interest, because containment relations need to be traversed

instances to an appropriate area of source code, such thalfom the top down leading to the instance of ihterest. In con-

up can map that area to an instance of typeThe analogue trast, the know!ed_ge_ a source-based mapping needs of the

of downin a schema-based mapping then consists of a fund@rget schema is limited to the type of interest only. How-

tion that mapss to an appropriate expression in the schemaEVerg't is requwed_to be aware of its source corresponce, and

used by the transformation tool. Subsequently, the anabgdéossmle ovgrlappmg source correspondences of instances of

of upis tasked with interpreting this expression and apply-the type of interest.

ing the results to the matching instances. For instance,

expression pointing out the assignment statement (at line

in Figure 1 could consist dbtat — Block — Stat [0] — Block The use of source-based mappings in real transformation

— Stat [0], whereStat [i] would refer to the i-th statement tasks may benefit from some form of automated verification.

within a block. In particular, checking the safeness and strictness properties
The question that arises is what knowledge is required focould be a good starting point. Fortunately, these properties

the implementation of a schema-based mapping, and hoean be checked automatically for a fixed body of source code

does this compare to a source-based mapping? Creating &8y the following process. First, the domain of the source-

expression that points out an instance of interest requiresased mapping is established. All instanses type S be-

knowledge of the target schema. For example, the expreseng to the domain. For eachthenup(down(s)) is per-

sion above can only be created if it is known that the Staformed, yielding a list of instances of tyge If this list is

node of interest is the O-th child of its parent Block node con-empty, no instance of typ€ was found defined atown(s),

taining it, which is a child of a Stat node itself, and so forth, the source-based mapping is not safe, and an error must be

all the way up to the top Stat node. As a result, creating sucheported. If the list contains exactly one instabcihe map-

an expression requires knowledge of the target schema froping is safe and strict fa: Finally, a list of length 2 and more

the top down to at least the type of the instances of interindicates that multiple instances are defined@wn(s), and

est. Possibly this knowledge requirement can be mitigatethe mapping is not strict, resulting in an error. After sll

by designing a query language that allows abstraction, butave been checked, the complete mapping is only safe and

we conjecture that at least all the containment relations musttrict if no errors have been reported.

still be known in order to accurately point out the instances For some schemas, the safeness and strictness properties

of interest. could even be determined for all possible bodies of source
A source-based mapping requires different knowledge ofode. For now this remains the area of future research.

the target schemeDown(s) has to yield a source code area

that corresponds to an instance of typat the transforma-

tion end (safeness). Therefore, implementitayvn cannot 6. Related Work

be done without knowledge of the source correspondencsr.OOI interoperability

of instance typel. Recall the example explained in Sec-

tion 2, where a finer-grained source correspondence withifThe topic of tool interoperability has been widely discussed

the transformation tool requiretbwnto be changed accord- in the community [8, 9]. A large number of proposals exist

ingly. However, as long as the safeness property can be gugf the literature that contribute a solution to interoperabil-

anteeddowndoes not have to re-generate the exact sourcgy issues. Among others, technologies like the ToolBus [3],

correspondence of the transformation tool. OASIS [13], and IDL [22] provide architectures for integra-
Additional awareness is needed for guaranteeing théon of tools. Communication is an essential part of tool in-

strictness property, i.e., making sure that at most one instanderoperability, and as such a number of data interchange for-

of typeT is the target ofip(dowr(s)). This problem can oc- mats have been defined. Examples are GXL [12], a graph-

cur if down(s) is included in the source correspondence ofbased format, ATerms [23], and RSF [18]. Technologies

%%utomatically checking safeness and strictness

like these provide tool interoperability solutions at a differ- 7. Conclusion

ent level than source-based mappings. In terms of [8], these

technologies provide protocols, (data) marshalling, or reprel this paper we discussed source-based mappings, a tech-
sentations. Source-based mappings are aimed at solving théjue to link analysis and transformation tools. The setting
identification (of source elements) problem. used for this discussion consisted of analysis and transfor-
mation tools that do not share a schema of the source code,
and therefore reuse of analysis results by the transformation
tool is not trivial. We defined two properties, safeness and

Source code markup is a technique that has been used girictness, that constitute a base of confidence in the map-
many different contexts. Here we focus only on those apPiNg between two tools. These properties can be checked
proaches that are closely related to source-based mappingd/tomatically for a given body of source code, allowing for
Scaffolding by Sellink and Verhoef [21] is proposed to be & practical way of verification of a source-based mapping.
used to store intermediate results of transformations, and The idea of source-based mappings was implemented in
share results between tools via markup in the source codée SCATR prototype tool, which allows analysis results to
However, they do not explicitly focus on the issue of toolsbe mapped into ASTs produced by ASF+SDF. Two case
using different schemas. Source code factors by Madton Studies showed how this technology could be used in prac-
al. [16] is an approach that is very similar to scaffolding, astice to implement transformation tasks such as concern code
it also marks up the source code with intermediate analysi§limination or insertion of domain annotations.
and transformation results. An interesting link may exist between this work and is-
HSML by Cordy et al. [7] is a markup approach that land grammars [17], or agile parsing [6]. These technologies
allows maintenance hot spots to be defined as queries eflloW the easy adaptation of grammars to specific tasks. For
pressed in the target schema. In that sense it is a schemStance, the grammar could be limited to defining only the
based mapping as defined in Section 5, except that the rl§_tatements.that need to be removed, or the program elements
sults of the mapping are also made visible in the source codéat analysis results must be attached to. o
through markup. The difference with source-based map- Acknowledgements Thanks to Jurgen Vinju, Rob
pings consists of the extensive use of the target schema Byconomopoulos, Tijs van der Storm and Tom Toérfer
HSML. A source-based mapping is less dependent on theorrecting drafts of this paper. This work has been carried

target schema, but more dependent on the source correspdiit as part of the Ideals project under the auspices of the Em-
dence. bedded Systems Institute. This project is partially supported

by the Netherlands Ministry of Economic Affairs under the

Markup and annotations

XML is a popular means to marking up source code. In
[6], Cordy proposes a method to markup source code Wm§enter program.
task-specific XML. By employing agile parsing (possibly
combined with island grammars [17]), the source code gramR eferences
mar can be adjusted to focus the source markup to those
pieces of source code that are interesting to the task at hand1] WeaveC. http://sourceforge.net/projects/
In our SCATR framework, pretty printing the scaffolded weavec/ .
AST has the same result, since scaffolds are only added 1qz] paul Anderson, Thomas W. Reps, Tim Teitelbaum, and Mark
those nodes that are interesting within a transformation task. ~ zarins. Tool support for fine-grained software inspection.
[19] instead proposes to markup all the source code with |EEE Software20(4):42-50, 2003.
XML corresponding to its AST, resulting in a verbose rep-

. [3] Jan A. Bergstra and Paul Klint. The discrete time TOOLBUS
resentation.

— a software coordination architecturgcience of Computer
Programming 31(2-3):205-229, 1998.

Tool interoperability schemas [4] M. van den Brand, Arie van Deursen, Jan Heering, Hayco

» de Jong, Merijn de Jonge, Tobias Kuipers, Paul Klint, Leon
A number of schemas have been proposed specifically forthe \jgonen, Pieter A. Olivier, Jeroen Scheerder, Jurgen J. Vinju,

purpose of tool interoperability. The Dagstuhl Middle Meta- Eelco Visser, and Joost Visser. The ASF+SDF Meta-
model (DMM) [15] is aimed at object-oriented and procedu- Environment: a component-based language development en-
ral languages, and can further be extended by the user of the vironment. Electronic Notes in Theoretical Computer Sci-
schema. Columbus [10] is a specific schema for C++ pro- ence 44(2), 2001.

grams. Both Columbus and DMM are expressed as UML 5] . Bruntink, A. van Deursen, and T. Touéw Isolating id-

diagrams. Holet al.[11] instead use an E/R diagram to de- iomatic crosscutting concerns. Rroceedings of the Interna-
fine a schema for Datrix, a software exchange format for C, tional Conference on Software Maintenance (ICSM:0BEE
C++ and Java programs. Computer Society, September 2005.

[6] James R. Cordy. Generalized selective XML markup of[18] Hausi A. Miller, Mehmet A. Orgun, Scott R. Tilley, and

(7]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

source code using agile parsing. Pnoceedings of the 11th
International Workshop on Program Comprehension (IW,PC)
pages 144-153. IEEE Computer Society, May 2003.

James R. Cordy, Kevin A. Schneider, Thomas R. Dean, ang19]

Andrew J. Malton. HSML: Design directed source code hot
spots. InProceedings of the 9th International Workshop
on Program Comprehension (IWP(Q)ages 145-156. IEEE
Computer Society, May 2001.

James R. Cordy and Jurgen J. Vinju. How to make a
bridge between transformation and analysis technologies? In
James R. Cordy, Ralf ammel, and Andreas Winter, edi-
tors, Dagstuhl Seminar Proceedingsumber 05161, Schloss
Dagstuhl, Germany, 2006. Internationales Begegnungs- und
Forschungszentrum (IBFI).

J. Ebert, K. Kontogiannis, and J. Mylopoulos, editors. [22]

Dagstuhl Seminar Interoperability of Reengineering Tpols
Schloss Dagstuhl, Germany, January 2001. Internationales
Begegnungs- und Forschungszentrum (IBFI).

Rudolf Ferenc andirpad Besdes. Data exchange with the
columbus schema for C++. IRAroceedings of the 6th Euro-
pean Conference on Software Maintenance and Reengineer-
ing (CSMR) pages 59-66. IEEE Computer Society, March
2002.

Richard C. Holt, Ahmed E. Hassan, Bruno Lég&bastien
Lapierre, and Charles Leduc. E/R schema for the datrix
C/C++/Java exchange format. Rroceedings of the Seventh
Working Conference on Reverse Engineering (WCR&jes
284-286. IEEE Computer Society, November 2000.

Richard C. Holt, Andreas Winter, and Andy Soch GXL:
Toward a standard exchange format. Mmoceedings of
the Seventh Working Conference on Reverse Engineering
(WCRE'00) pages 162-171, November 2000.

Dean Jin and James R. Cordy. Ontology-based software anal-
ysis and reengineering tool integration: The OASIS service-
sharing methodology. IRroceedings of the 21st IEEE Inter-
national Conference on Software Maintenance (IC3dapes
613-616. IEEE Computer Society, September 2005.

Jan Kort and Ralf Bmmel. Parse-tree annotations meet re-
engineering concerns. Proceedings of the 3rd IEEE Inter-

national Workshop on Source Code Analysis and Manipula-
tion (SCAM) pages 161-170. IEEE Computer Society, 2003.

Timothy Lethbridge, Sander Tichelaar, and Erhard
Plodereder. The dagstuhl middle metamodel: A schema
for reverse engineering. Electronic Notes in Theoretical
Computer Scienc®4:7-18, 2004.

Andrew J. Malton, Kevin A. Schneider, James R. Cordy,
Thomas R. Dean, Darren Cousineau, and Jason Reynolds.
Processing software source text in automated design recovery
and transformation. IfProceedings of the 9th International
Workshop on Program Comprehension (IWP@ages 127—
134. IEEE Computer Society, May 2001.

Leon Moonen. Generating robust parsers using island gram-
mars. InProceedings of the Eighth Working Conference on
Reverse Engineering (WCRpages 13-22. IEEE Computer
Society, October 2001.

10

[20]

(23]

[24]

James S. Uhl. A reverse engineering approach to subsystem
structure identification. Journal of Software Maintenance:
Research and Practic&(4):181-204, December 1993.

James F. Power and Brian A. Malloy. Program annotation in
XML: A parse-tree based approach.Rroceedings of the 9th
Working Conference on Reverse Engineering (WCR&jes
190-198. IEEE Computer Society, October 2002.

James M. Purtilo and John R. Callahan. Parse tree annota-
tions. Communications of the ACN32(12):1467-1477, 1989.

21] M. P. A. Sellink and C. Verhoef. Scaffolding for software ren-

ovation. InProceedings of the Conference on Software Main-
tenance and Reengineering (CSMRages 161-172. IEEE
Computer Society, February 2000.

Richard T. Snodgrass and Karen Shannon. Supporting flexible
and efficient tool integration. 1Advanced Programming En-
vironments, Proceedings of an International Workshogc-

ture Notes in Computer Science, pages 290-313. Springer,
June 1986.

Mark van den Brand, H. A. de Jong, Paul Klint, and Pieter A.
Olivier. Efficient annotated termsSoftware — Practice and
Experience30(3):259-291, 2000.

Jurgen J. Vinju Analysis and Transformation of Source Code
by Parsing and RewritingPhD thesis, University of Amster-
dam, 2005.

