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Abstract
Static software checking tools are useful as an additional au-
tomated software inspection step that can easily be integrated
in the development cycle and assist in creating secure, reli-
able and high quality code. However, an often quoted dis-
advantage of these tools is that they generate an overly large
number of warnings, including many false positives due to the
approximate analysis techniques. This information overload
effectively limits their usefulness.

In this paper we present ELAN, a technique that helps
the user prioritize the information generated by a software
inspection tool, based on a demand-driven computation of
the likelihood that execution reaches the locations for which
warnings are reported. This analysis is orthogonal to other
prioritization techniques known from literature, such as sever-
ity levels and statistical analysis to reduce false positives. We
evaluate feasibility of our technique using a number of case
studies and assess the quality of our predictions by compar-
ing them to actual values obtained by dynamic profiling.

1. Introduction

Software inspection [14] is widely recognized as an effective
technique to assess and improve software quality and reduce
the number of defects [27, 19, 38, 26, 39]. Software inspec-
tion involves carefully examining the code, design, and docu-
mentation of software and checking them for aspects that are
known to be potentially problematic based on past experience.

It is generally accepted that the cost of repairing a defect
is much lower when that defect is found early in the devel-
opment cycle. One of the advantages of software inspection
is that the software can be analyzed even before it is tested.
Therefore, potential problems are identified and can be solved
early, when it is still cheap to fix them.

In this paper, we focus on tools that perform automatic
code inspection. Such tools allow early (and repeated) de-
tection of defects and anomalies which helps to ensure soft-
ware quality, security and reliability. Most defect detection
techniques are built around static analysis of the code. In its
simplest form, this can be the warnings generated by a com-
piler set to its pedantic mode. In addition, various dedicated

∗ This work has been carried out as part of the Trader project under the
responsibility of the Embedded Systems Institute. This project is partially
supported by the Netherlands Ministry of Economic Affairs.

static program analysis tools are available that assist in defect
detection and writing reliable and secure code. A well-known
example is the C analyzer LINT [22]; others are discussed in
the related work. These tools form a complementary step in
the development cycle and have the ability to check for more
sophisticated program properties than can be examined using
a normal compiler; moreover, they can often be customized,
and as such benefit from specific domain knowledge.

However, such static analyses come with a price: in the
case that the algorithm cannot ascertain whether the source
code at a given location obeys a desired property or not, it
will make the safest approximation and issue a warning, re-
gardless of the correctness. This conservative behavior can
therefore lead to false positives, incorrectly signaling a prob-
lem with the code. Kremenek and Engler [24] observed that
program analysis tools typically have false positive rates rang-
ing between 30–100%. In addition, the increased scrutiny
with which the code is examined can lead to an explosion in
the number of warnings generated, especially when the tool is
introduced later in the development process or during mainte-
nance, when a significant code base already exists.

To cope with the large number of warnings, users resort to
all kinds of (manual) filtering processes, often based on the
perceived impact of the underlying fault. Even worse, our ex-
periences indicate that the information overload often results
in complete rejection of the tool, especially in cases where the
first defects reported by the tool turn out to be false positives.
Goal In this paper, we aim at helping user of automated
code inspection tools to deal with this information overload.
Instead of focusing on improving a particular defect detection
technique in order to reduce its false positives, we strive for
a generic prioritization approach that can be applied to the
results of any software inspection tool and assists the user in
selecting the most relevant warnings.

To this end, we propose ELAN, a technique which orders
inspection results based on a (demand-driven) static predic-
tion of the execution likelihood of reported defects. We define
execution likelihood to be the probability that a given program
point will be executed at least once in an arbitrary program
run. The rationale behind this approach is that the violating
code needs to be executed in order to trigger the undesired
behavior. As such, execution likelihood can be considered a
contextual measure of severity, rather than the severity based
on defect types that is usually reported by inspection tools.
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The ELAN algorithm is kept simple on purpose: scalabil-
ity is an issue, as we want to be able to prioritize inspection
results for large industrial systems. Analysis is done statically
instead of dynamically because we want to prioritize inspec-
tion results already during development, when the system can-
not yet be executed. In addition, the embedded nature of our
industrial case makes dynamic profiling less suitable.
Industrial Context The context of this work is the TRADER

project in cooperation with Philips Semiconductors, in which
we investigate and develop methods and tools for ensuring
reliability of consumer electronics devices.

Modern consumer electronics such as MP3-players, mo-
bile phones, televisions, and audio/video media centers, in-
creasingly rely on embedded software for their operation.
In the past, functionality of such devices was mostly imple-
mented in hardware, but nowadays the features of these de-
vices are made easily extensible and adaptable by means of
software. As a consequence, the amount of software embed-
ded in consumer electronics has grown tremendously.

For example, a modern television contains several million
lines of C code and this amount is growing rapidly with new
functionality, such as electronic program guides, increased
connectivity with other devices, audio and video processing
and enhancements, and support for various video encoding
formats. During the development process, this code is rou-
tinely inspected using QA-C, one of the leading commercial
software inspection tools currently on the market. Neverthe-
less, the developers have experienced problems handling the
information overload mentioned earlier which motivated the
research described in this paper.
Overview The remainder of this paper is organized as fol-
lows: section 2 discusses related work, followed by an de-
scription of our approach in section 3. The ELAN algorithm is
presented in section 4. Section 5 discusses a number of exper-
iments and case studies conducted, and in section 6 the results
and approach is evaluated. We conclude with an overview of
contributions and future work in section 7.

2. Related Work

Automatic Code Inspection There are a number of tools that
perform some sort of automatic code inspection. The most
well-known is probably the C analyzer Lint [22] that checks
for type violations, portability problems and other anoma-
lies such as flawed pointer arithmetic, memory (de)allocation,
null references, and array bounds errors. LClint and splint
extend the Lint approach with annotations added by the pro-
grammer to enable stronger analyses [12, 13]. Various tools
specialize in checking security vulnerabilities. The techniques
used range from lightweight lexical analysis [32, 37, 30] to ad-
vanced and computationally expensive type analysis [21, 17],
constraint checking [34] and model checking [8]. Some tech-
niques deliberately trade formal soundness for performance
in order to scale to the analysis of larger systems [11, 6, 16]

whereas others focus on proving some specific properties
based on more formal verification techniques [3, 7, 9].

Several commercial offerings are available for conducting
automated automatic code inspection tasks. Examples in-
clude QA-C,1 K7,2 CodeSonar,3 and Prevent.4 The latter was
built upon the MECA/Metal research conducted by Engler et
al. [41, 11]. Reasoning5 provides a defect analysis service
that identifies the location of potential crash-causing and data-
corrupting errors. Besides providing a detailed description of
defects found, they report on defect metrics by measuring a
system’s defect density and its relation to industry norms.
Ordering Inspection Results The classic approach most
automated code inspection tools use for prioritizing and filter-
ing results is to classify the results based on severity levels.
Such levels are (statically) associated with the type of defects
detected; they are oblivious of the actual code that is being
analyzed and of the location or frequency of a given defect.
Therefore, the ordering and filtering that can be achieved us-
ing this technique is rather crude. Our approach is based on
the idea that this can be refined by taking into account certain
properties of the identified defect with respect to the complete
source code that was analyzed.

A technique that is more closely related to our approach, is
the z-ranking technique by Kremenek and Engler [24]. They
share our goals of prioritizing and filtering warnings based on
their properties with respect to analyzed code but do so based
on the frequency of defects in the results. Their approach aims
to determine the likelihood that a given warning is a false pos-
itive. It is based on the idea that, typically, the density of
defects in source code is low. Thus, when checking source
code for a certain problem, there should be a large number of
locations where that check is not triggered, and relatively few
locations where it is triggered. Conversely, if a check results
in many triggered locations and few non-triggered ones, these
triggers are more likely to be false positives. This notion is
exploited by keeping track of success and failure frequencies,
and calculating a numeric score by means of a statistical anal-
ysis. The warning reports can then be sorted accordingly.

Besides severity levels and z-ranking, we are not aware of
any other work that deals with ordering inspection results.
Static Profiling Static profiling is used in a number of
compiler optimizations or worst-case execution time (WCET)
analyses. By analyzing program structure, a prediction is
made as to which portions of the program will be most fre-
quently visited during execution. Since this heavily depends
upon branching behavior, some means of branch prediction
is needed. This can range from simple and computationally
cheap heuristics to expensive data flow based analyses such
as constant propagation [23, 28, 4] or symbolic range propa-
gation [31, 5, 25]. Although there has been a lot of research
on branch prediction, there are only a few approaches that

1 www.programmingresearch.com
2 www.klocwork.com 3 www.grammatech.com
4 www.coverity.com 5 www.reasoning.com
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take this a step further and actually compute a complete static
profile [40, 35]. For branch prediction, these use heuristics
similar to the ones we employ. The difference with respect
to our work is that they try to estimate the, computationally
expensive, execution frequency, whereas we compute execu-
tion likelihood which is less involved. Moreover, in contrast
with these approaches, we do not perform computations for
the complete program, but demand-driven: only for the loca-
tions associated with the warning reports.
Testability Voas et al. [33] define software testability as ”the
probability that a piece of software will fail on its next exe-
cution during testing if the software includes a fault”. They
present a technique, dubbed sensitivity analysis, that analyses
execution traces obtained by instrumentation and calculates
three probabilities for every location in the program. Together
they give an indication of the likelihood that a possible fault in
that location will be exposed during testing. The first of these
three, execution probability, is similar to our notion of execu-
tion likelihood, the chance that a certain location is executed.
The other two are the infection probability, i.e. the probability
that the fault will corrupt the data state of the program, and the
propagation probability, the likelihood that the corrupted data
will propagate to output and as such be observable.

Although the concepts involved are very similar to our
own, the application and analysis method differ greatly: a
location that is unlikely to produce observable changes if it
would contain an error should be emphasized during testing,
whereas we would consider that location to be one of low pri-
ority in our list of results. In addition, Voas approximates
these probabilities based on dynamic info whereas we try
to make predictions purely statically. Finally, infection- and
propagation probability apply to locations that contain faulty
code, while the inspection results we are dealing with may
also reveal security vulnerabilities and coding standard viola-
tions that do not suit these two concepts.

3. Approach

The approach we propose for prioritizing code inspection re-
sults is based on the workflow depicted in figure 1. The pro-
cess consists of the following steps (starting at top-left node):

1. The source code is analyzed using some code inspection
tool, which returns a set of inspection results.

2. The inspection results are normalized to the generic for-
mat that is used by our tools. The format is currently
very simple and contains the location of the warning in
terms of file and line number, and the warning descrip-
tion. We include such a normalization step to achieve
independence of code inspection tools.

3. We create a graph (SDG) representation of the source
code that is inspected. Nodes in the graph represent pro-
gram locations and edges model control- and data flow.

4. For every warning generated by the inspection tool, the
following steps are taken:

sources

SDG
creation SDG

normalized
inspection

results

execution 
likelihood 
analysis

annotated
inspection

results

result
ordering

ordered 
inspection

results

inspection
results

code
inspection normalization

external
order hints

Figure 1. Prioritization based on ELAN

(a) based on the reported source location, the analyzer
searches the corresponding vertex in the graph.

(b) it then proceeds to calculate the execution likeli-
hood of this location/vertex based on analyzing the
structure of the graph, and annotates the warning
with this likelihood.

5. The inspection results are ordered by execution likeli-
hood, possibly incorporating external hints such as sever-
ity levels or z-ranking results.

System Dependence Graph Central to our approach is the
computation of the execution likelihood of a certain location
in the program. In other words, we need to find all possi-
ble acyclic execution paths of the program that include our
location of interest, and make predictions for the conditions
(or branches) found along that path. To this end, we use the
program’s System Dependence Graph (SDG) [20], which is a
generalization of the Program Dependence Graph (PDG).

In short, the PDG is a directed graph representing control-
and data dependences within a single routine of a program (i.e.
intra-procedural), and the SDG ties all the PDGs of a pro-
gram together by modeling the interprocedural control- and
data dependences. A PDG holds vertices for, amongst others,
assignment statements, control predicates and call sites. In
addition, there is a special vertex called entry vertex, model-
ing the start point of control for a function. In the remainder,
we will use the terms vertex, program point and location inter-
changeably. The edges between vertices represent the control-
and data dependences. Our approach currently does not con-
sider information from dataflow analysis, so we limit our dis-
cussion to control dependences. The most relevant causes for
such control dependencies are:

• there is a control dependence between a predicate vertex
v and a second vertex w if the condition at v determines
whether execution reaches w;

• there is a control dependence between a function’s entry
point and its top-level statements and conditions;

• there is a control dependence between a call site and its
corresponding function entry point.
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Conditions in the code are represented by one or more control
points in the SDG. Each control point corresponds to a ’sim-
ple’ condition, e.g., (a>1)||(b<3) is represented by two
control points (a>1) and (b<3) to ensure correct modeling
of dependences within such short-circuited expressions.

Clearly, we can find all possible execution paths by sim-
ply traversing the SDG with respect to these control depen-
dences. Moreover, they make for an efficient traversal, as we
only need to visit those points that actually influence how con-
trol proceeds throughout the program, i.e. the control points
and call sites. However, performing a traversal of the com-
plete SDG for finding all paths to just a single point is not
very efficient. To better guide this search, we base our traver-
sals on program slicing.
Slicing The slice of a program P with respect to a certain
location v and a variable x is the set of statements in P that
may influence the value of variable x at point v. Although we
are not actually interested in dataflow information, this slice
must necessarily include all execution paths to v, which is
exactly what we are looking for. By restricting ourselves to
control flow information, we can rephrase the definition as
follows: the control-slice of v in P consists of all statements
in P that determine whether execution reaches v. Calculating
the execution likelihood of v is now reduced to traversing all
paths within this slice. The next section presents an algorithm
for performing such execution likelihood computations and
discusses a number of optimizations to refine the results and
to speed up computation.

4. Execution Likelihood Analysis

This section will introduce the algorithm calculating the exe-
cution likelihood for a single program point. Recall that we
define the execution likelihood to be the probability that the
given point will be executed at least once in an arbitrary pro-
gram run. Given the SDG of a project, computation is based
on a simple depth-first graph traversal, obtaining probabilities
by predicting branch probabilities and combining all the paths
found from the main entry point to our point of interest. For
simplicity, we assume that the project contains a main func-
tion that serves as a starting point of execution. However, this
is not a strict prerequisite, as we will see later on.
Basic algorithm To calculate an execution likelihood esti-
mate ev for a vertex v in a programs SDG P , we perform the
following steps:

1. Let Bv be the control-slice with respect to v. The re-
sult is a subgraph of P that consists of the vertices that
influence whether control reaches v.

2. Starting from the main entry point vs, perform a depth-
first search to v within Bv, enumerating all the paths (se-
quences of vertices) to v. This is a recursive process;
traversal ends at v, then the transition probabilities are
propagated back to vs, where the transition probability
pw,v is the a posteriori probability that execution reaches

v via w. For any given vertex w visited within the traver-
sal, this is calculated in the following manner:

(a) If w is v, skip all steps, pv,v is 1.
(b) For every control-dependence successor s of w in

Bv , determine ps,v

(c) Determine the probability that control is transferred
from w to any of its successors s. We do this by first
grouping the probabilities ps,v by the label of the
edge needed to reach s from w. E.g., when w rep-
resents the condition of an if statement, we group
probabilities of the true and false branches of w to-
gether. For every group we determine the probabil-
ity that at least one of the paths found is taken, we
denote this set Sw.

(d) If w is not a control point, there will be just one
element in Sw, and its probability is pw,v.

(e) If w is a multiway branch (switch), all its cases are
thought to be equally likely, and as such pw,v can
be obtained by adding all probabilities in Sw and
dividing them by the number of cases.

(f) If w represents the condition of an if statement, we
consider this a special case of the switch mentioned
above: each of its branches is thought equally
likely, so pw,v is obtained by adding both elements
of Sw and dividing them by 2.

(g) If w is a loop, it is assumed that the loop will be
executed at least once. Sw consists of one element
representing the probability of the loop body, and
pw,v is taken to be equal to this value.

3. When recursion returns at our starting point vs, we have
calculated the transition probability from vs to v, which
is our desired execution likelihood ev .

As stated earlier, the algorithm is designed for computation of
execution likelihood in a project with a single starting point of
execution. If we are dealing with a partially complete project,
or we are in any other way interested in the execution likeli-
hood with a different starting point, the approach can be easily
modified to suit that purpose. Instead of using program slic-
ing, we use a related operation called program chopping. The
chop of a program P with respect to a source element s and
a target element t gives us all elements of P that can transmit
effects from s to t. Notably, the chop of P between its main
entry point and any other point v is simply the slice of P with
respect to v. Notice that if we let Bv be the chop with respect
to vs and v, we can take any starting point vs and end up with
the desired conditional execution likelihood.

While traversing the graph, transition probabilities for the
paths taken are cached. As such, when traversing towards v,
for a given w ∈ Bv we only need to calculate pw,v once.
This approach necessarily only works within one traversal,
i.e. when computing the execution likelihood of one point, be-
cause the prequel to some subpath may differ between traver-
sals. However, when computing the likelihood for multiple
locations within one program in a row, it is likely that at least
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part of the traversal results can be reused. For any point v in a
procedure f , we can split the transition probabilities into one
from vs to the entry point sf of f , and the transition probabil-
ity from sf to v. Effectively, this means that for any point in
f we only compute pvs,sf

once.
An important contributor to performance is that our algo-

rithm is demand-driven: it only computes execution likeli-
hoods for locations of interest, instead of computing results
for every location in the program. Given that the number lo-
cations with issues reported by an inspection tool will typi-
cally be much smaller than the total number of vertices in the
graph, this is a sensible choice. Together with our deliberately
simple heuristics, it forms the basis for a scalable approach.
Refined branch prediction heuristics To gain more in-
sight into the performance/accuracy trade-off, the algorithm
was extended with some of the branch prediction heuristics of
Ball and Larus [2], used in the manner discussed by Wu and
Larus [40]. They tested the heuristics empirically and used
the observed accuracy as a prediction for the branch probabil-
ity. For example, they observed that the value check heuris-
tic predicts ’branch not taken’ accurately 84% of the time.
Therefore, when encountering a condition applicable to this
heuristic, 16 and 84 are used for the ’true’ and ’false’ branch
probabilities, respectively. Whenever more than one heuristic
applies to a certain control point, the predictions are combined
using the Dempster-Shafer theory of evidence [18], a gener-
alization of Bayesian theory that that describes how several
independent pieces of information regarding the same event
can be combined into a single outcome.

The heuristics will replace the simple conventions used in
steps (d) through (g) discussed above. The behavior with re-
gard to multiway branches has not been changed, and in cases
where none of the heuristics apply the same conventions are
used as before. A brief discussion of the application of the
different heuristics follows below, their associated branch pre-
diction probabilities can be found in table 1. The table lists the
probability a condition that satisfies the heuristic will evaluate
to true. We should remark that these numbers are based on
empirical research on different programs [2] than used in our
experiments. However, Deitrich et al. [10] provide more in-
sight into their effectiveness and applicability to other systems
(and discuss some refinements specific to compilers).

The refined heuristics are:
Loop branch heuristic: This heuristic has been modified to
apply to any loop control point. The idea is that loop branches
are very likely to be taken, similar to what was used earlier.
The value is used as multiplier for probability of the body.
Pointer heuristic: Applies to a condition with a comparison

Heuristic Probability Heuristic Probability
Loop branch 0.88 Pointer 0.40
Value check 0.16 Loop exit 0.20
Return 0.28

Table 1. Heuristics and associated probabilities

of a pointer against null, or a comparison of two pointers.
The rationale behind this heuristic is that pointers are unlikely
to be null, and unlikely to be equal to another pointer.
Value check heuristic: This applies to a condition containing a
comparison of an integer for less than zero, less than or equal
to zero. This heuristic is based on the observation that integers
usually contain positive numbers.
Loop exit heuristic: This heuristic has been modified to apply
to any control point within a loop that has a loop exit statement
(i.e. break) as its direct control predecessor. It says that loop
exits in the form of break statements are unlikely to be reached
as they usually encode exceptional behavior.
Return heuristic: Applies to any condition having a return
statement as its direct successor. This heuristic works because
typically, conditional returns from functions are used to exit in
case of unexpected behavior.
Implementation ELAN has been implemented as a plugin
for Codesurfer,6 a program analysis tool that can construct de-
pendence graphs for C and C++ programs. As our approach is
based on the SDG, the way in which this graph is constructed
directly affects its outcome, especially in terms of accuracy. It
should be noted, therefore, that the graphs both have missing
dependences (false negatives) and dependences that are actu-
ally impossible (false positives). For example, control- or data
dependences that occur when using setjmp/longjmp are not
modeled. Another important issue is the accuracy of depen-
dences in the face of pointers, think for example of modeling
control dependences when using function pointers. To im-
prove this accuracy, a flow insensitive and context insensitive
points-to algorithm [29] is employed to derive safe informa-
tion for every pointer in the program.

5. Experiments and Case Studies

This section reports on experiments designed to evaluate the
accuracy and performance of our technique. Recall that the
execution likelihood predictions are used in ranking different
locations; we therefore compare rankings based on predic-
tions with rankings based on measurements in actual program
runs. Apart from this ordering, we also evaluate accuracy by
checking correspondence of the actual prediction values with
their measured counterparts. We analyze performance by tim-
ing the aforementioned experiments and relate the analysis
speed to the size of the SDG involved. Finally, in sections
5.3 and 5.4 we present two case studies that were conducted
to assess the approach in practice.

5.1. Correlating predictions with runtime

For this experiment we created a benchmark set of programs
consisting mainly of simple open source command-line tools.
Table 2 lists some source code properties for the different
programs. Comment and whitespace lines were left out in

6 www.grammatech.com
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Project Name KLoC # vertices # non-global # CPoints CC/fn CPoint/LoC
avg stddev max avg stddev max

Antiword 24 119391 35371 2787 8.0 11.0 596 0.13 0.10 0.77
Chktex 8 30422 10149 769 9.8 18.2 412 0.19 0.13 0.85
Lame 53 93812 39937 3673 7.9 25.9 904 0.12 0.19 3.25
Link 17 88766 33647 3009 5.6 9.4 358 0.16 0.15 1.0
Uni2Ascii 3 10368 5022 138 29.3 33.4 1004 0.23 0.21 0.91

Table 2. Case study programs and their metrics

the number of KLoC reported. The apparent discrepancy be-
tween the number of KLoC and the size of the SDG in ver-
tices can be largely attributed to the use of global variables. In
the SDG, global variables are simulated by adding them as a
parameter to every function in the project, and every parame-
ter introduces 2 extra vertices. To get a better feeling for the
consequences, we have filtered out these generated global pa-
rameter vertices in the ’non-global’ column. These results are
already more in line with what we would expect from the size
in terms of KLoC. Of course, the number of routines, param-
eters, and conditional statements are yet another influence. In
the next seven columns, this is quantified by the total num-
ber of control points in the program, the cyclomatic complex-
ity (per function), and the control points related to number of
lines in the program (again per function).

The programs were picked such that it would be easy to
construct ’typical usage’ input sets, and automatically perform
a large number of test runs. For every case, at least 20 differ-
ent test runs were recorded. Every one of the programs was
subjected to the following steps:

1. Build the project using Codesurfer. This involves the
normal build and building the extra graph representations
used by our technique.

2. Build the project using gcc’s profiling options, in order
to obtain profiling information after program execution.

3. Run the ELAN algorithm for every control-point vertex
in the project. This will give a good indication of analy-
sis behavior distributed throughout the program (since it
approximates predictions for every basic block). More-
over, this step was performed twice: with and without
branching heuristics.

4. Gather a small dataset representing typical usage for the
project, and run the program using this dataset as input.
For all the program locations specified in step 3, deter-
mine the percentage of runs in which it was visited at
least once. This last step uses gcov, which post-processes
the profile data gathered by gcc’s instrumentation.

5. Create two sets of program locations, the first sorted
by prediction, the second by actual usage, and compare
them using Wall’s unweighted matching method [36].
This will give us a correlation score for different sections
of the two rankings.

To illustrate this correlation score, consider the following ex-
ample: suppose we have obtained the two sorted lists of pro-

gram locations, both having length N , and we want to know
the score for the topmost m locations. Let k be the size of the
intersection of the two lists of m topmost locations. The cor-
relation score then is k/m, where 1 denotes a perfect score,
and the expected score for a random sorting will be m/N . In
our experiments, scores were calculated for the topmost 1%,
2%, 5%, 10%, 20%, 40% and 80%. The correlation scores for
the different programs can be found in table 3, where the first
number in every cell is the score without the use of heuristics,
and the second is obtained using heuristics.

When considering the ranking data in table 3, we will de-
note the upper n% of the ranking as block n. We are first and
foremost interested in the correlation scores of the top-most
blocks of locations. Typically, a randomized ranking would
produce correlation scores of 0.01, 0.02 and 0.05 for these
top blocks, which is easily outperformed by the ELAN tech-
nique. However, there is a problem in using these correlation
scores for evaluating the accuracy of the ranking. Consider
Antiword, for example: in our test series, 3.8% of the loca-
tions involved were always executed, which means that the
two top-most blocks in our table will consist entirely of loca-
tions with measured value 1. There is no way to distinguish
between these locations, and as such, no way to compare rank-
ings. Even if predictions are perfect, locations in our predicted
block 1 could be anywhere in block 2 of the other ranking. In
practice this will be less of a problem since these values are
used in conjunction with, e.g., the reported severity. Still, it
shows that is important not to look at just the ordering, but
also at the distribution of actual values.

In table 4, the average execution likelihood for all the loca-
tions in a certain block are shown; again, the values represent
the results without heuristics and with heuristics, respectively.
We took the ranking based on our computed likelihood and
calculated the average measured execution likelihood. The
values shown in table 4 cannot be compared amongst pro-
grams, as they depend on the runtime behavior of the program.

Portion Antiword Chktex Lame Link Uni2Ascii
Upper 1% .45 - .45 .25 - .50 .14 - .14 .22 - .22 1.0 - 1.0
Upper 2% .44 - .44 .22 - .33 .11 - .11 .11 - .11 1.0 - 1.0
Upper 5% .61 - .61 .30 - .26 .25 - .24 .30 - .29 .67 - .67
Upper 10% .50 - .46 .34 - .32 .26 - .26 .59 - .55 .29 - .29
Upper 20% .42 - .45 .24 - .26 .34 - .34 .57 - .57 .67 - .67
Upper 40% .52 - .49 .40 - .41 .46 - .45 .60 - .61 .57 - .57
Upper 80% .78 - .79 .76 - .76 .83 - .83 .83 - .83 .79 - .79

Table 3. Correlation scores

Boogerd, Moonen – Prioritizing Software Inspection Results using Static Profiling SERG

6 TUD-SERG-2006-001



Portion Antiword Chktex Lame Link Uni2Ascii
Upper 1% .91 - 1.0 1.0 - 1.0 .71 - .75 .87 - .91 1.0 - 1.0
Upper 2% .73 - .89 .89 - .89 .35 - .47 .89 - .94 1.0 - 1.0
Upper 5% .68 - .83 .83 - .78 .35 - .36 .89 - .90 1.0 - 1.0
Upper 10% .65 - .72 .72 - .72 .40 - .43 .89 - .90 1.0 - 1.0
Upper 20% .49 - .59 .62 - .61 .39 - .40 .81 - .82 .87 - .87
Upper 40% .40 - .40 .41 - .41 .30 - .29 .70 - .72 .57 - .57
Upper 80% .28 - .47 .47 - .46 .35 - .35 .57 - .56 .44 - .44

Table 4. Average measured execution likelihood

For example, consider the differences between values for An-
tiword, which has 3.8% of its locations always executed, and
Chktex, which has 33.5% of its locations always executed.
What does matter, however, is the distribution within one pro-
gram: we expect the locations ranked higher to have a higher
actual execution likelihood, and, with some exceptions, ex-
actly this correlation can be observed here.

Finally, in a last experiment we investigated the accuracy
of our predictions. Initial analysis of the correlation data
showed that it was distributed according to an inverse bell
curve. Therefore we focus our attention on investigating accu-
racy of values at the borders, i.e. values close to 1, or close to
0. In other words, can we trust predictions that a certain loca-
tion will always be executed, or vice versa, never be executed?
This question is relevant because the former locations will al-
ways end up at the top of our ranking, so we want to limit
the number of false positives there. Similarly, the latter loca-
tions will be ranked at the bottom, therefore never inspected,
and we do not wish to skip locations that might turn out to
be important. For all the locations with associated prediction
values close to 1 we checked whether they were really always
executed. Likewise, for locations having predictions close to
0, we calculated the percentage of locations that were actually
never executed. For example, the row for interval ’> 0.98’
holds the percentage of locations that have a prediction value
higher than 0.98 and were always executed. Data for both
the original variant and the one using heuristics, is shown in
tables 5 and 6 in the familiar fashion.

5.2. Performance measurements

The benchmark set used in the previous section consists of
programs of different size (cf. table 2), which helps to under-
stand the scalability of the approach. Recall our algorithm,
which computes a slice, traverses the subgraph obtained, and
derives predictions for conditions. This signifies the impor-
tance of the size of the SDG, rather than the number of KLoC.
This relationship is illustrated in figure 2. Timing measure-
ments were taken for every experiment in section 5.1, and we

Interval Antiword Chktex Lame Link Uni2Ascii
1 100 - 100 100 - 100 100 - 100 94 - 91 100 - 100
> 0.99 100 - 100 92 - 93 100 - 100 92 - 93 100 - 100
> 0.98 100 - 100 92 - 93 100 - 100 92 - 93 100 - 100
> 0.95 100 - 100 92 - 93 100 - 100 92 - 94 100 - 100

Table 5. Accuracy ’always executed’ predictions

Interval Antiword Chktex Lame Link Uni2Ascii
0 100 - 100 100 - 100 100 - 100 100 - 100 100 - 100
< 0.01 71 - 71 42 - 41 69 - 69 35 - 44 89 - 100
< 0.02 69 - 69 45 - 42 68 - 69 34 - 41 79 - 89
< 0.05 69 - 69 47 - 45 69 - 68 33 - 37 67 - 80

Table 6. Accuracy ’never executed’ predictions

calculated the average time taken per location. All measure-
ments were performed on a laptop with an Intel Pentium Mo-
bile 1.6Ghz and 512Mb memory running MS Windows XP
Pro. For completeness, we have also included data for the
industrial case described in the next section.

5.3. Industrial Case Study

This section discusses how our approach performs on the in-
dustrial source code from Philips that runs embedded in one
of the televisions used as a guinea pig in the Trader project.
The subsystem used in these experiments is the application
that is used to drive the infrastructure layer of the television.

Unfortunately, the embedded nature of the software meant
that we could not easily obtain dynamic profiling data. For
example, the gcc profiling options used above add instrumen-
tation that log execution data to disc, but the TV has no disc.
As a consequence, we could not repeat the static versus dy-
namic profiling correlation experiments that we used earlier
to benchmark our technique.

We intend to address this issue by extending the monitor
that was concurrently developed by our colleagues [1] to col-
lect dedicated dynamic profiling information and send it out
via our test TV’s communication port. However, that is left as
future work. For now, we discuss a number of characteristics
derived from Philips source code by our analysis and show
that these results are comparable to the ones from the other
case study, leading us to believe that the approach will work
equally well on the Philips code.
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Project Name KLoC # vertices # non-global # CPoints CC/fn CPoint/LoC
avg stddev max avg stddev max

TV subsystem 67 1926980 119010 10079 9.6 19.1 909 0.33 0.51 10

Table 7. Metrics for industrial case (TV subsystem)

With respect to the metrics in table 7 we observe that again,
we can see the impact of the use of global variables on the
size of the SDG, and that the other characteristics are compa-
rable to those in table 2. Figure 2 confirms this observation:
the last point in the graph represents the television subsystem,
and the approach seems to scale well to this graph size. It sug-
gests that, in terms of performance, ranking locations in larger
graphs is still feasible.

5.4. Inspection case study

This section reports on a small case study in ordering actual
inspection results from SPLINT on two programs from our test
set, Antiword and Lame. SPLINT uses lightweight static anal-
ysis to check a program for instances of well-known imple-
mentation flaws, and the checking can be extended by means
of annotations. Since our two guinea pigs do not incorporate
such annotations, SPLINT was run in weak mode, meant for
”typical unannotated C code”. The goal of this experiment is
mainly to see whether ranking errors is feasible in terms of the
time involved, and whether the accuracy remains at the level
observed in our earlier correlation experiment (section 5.1).

In order to make this comparison, the same set of statistics
are reported, they can be found in table 8. For both programs,
the correlation scores and execution likelihoods are shown.
In table 9, the analysis time per location in milliseconds is
shown for the correlation case experiment discussed in sec-
tion 5.1 (for reference), and for this inspection case. The last
column shows the number of locations involved in the case
study. The performances in the inspection case are illustrative
for the effect of caching. This is apparent in the case of Lame,
which benefits due to the larger number of locations, and the
lack thereof in Antiword.

6. Evaluation

Accuracy When looking at the data of the accuracy exper-
iments, perhaps most striking are the differences between ta-
bles 3 and 4. Even though locations with a higher execution

Portion Antiword Lame
correlation EL correlation EL

Upper 1% 100 - 100 100 - 100 0 - 0 100 - 100
Upper 2% 100 - 100 100 - 100 11 - 11 100 - 100
Upper 5% 67 - 67 67 - 67 17 - 17 63 - 67
Upper 10% 50 - 50 50 - 50 44 - 41 45 - 42
Upper 20% 46 - 38 38 - 38 49 - 49 44 - 44
Upper 40% 54 - 50 20 - 20 69 - 70 26 - 27
Upper 80% 81 - 83 14 - 16 77 - 77 16 - 16

Table 8. Inspection case: accuracy

likelihood in general seem to be ranked higher, the correla-
tion scores resulting from the comparison with the ranking
based on those measured values simply do not measure up.
This trend is also visible in the rankings obtained in the case
study. To understand this, we need to look at the locations
that will end up high in the ranking: in our test set, the per-
centage of locations that were always executed ranged from
4% to 34%. This typically means that, even though we may
propagate many of the ’interesting’ locations towards the top
of the list, we cannot distinguish between those in the topmost
regions of that list. This explains the seeming discrepancy be-
tween correlation score and average execution likelihood.

A second interesting observation is that in all tests, pre-
diction values close to 1 or 0 are good indicators of locations
that will always be executed, or never be executed, respec-
tively. The main problems for these predictions would be false
positives or false negatives in the dependence graph used, but
apparently this does not have a great impact. There is one no-
table anomaly, however: some locations in Link seem to have
been mispredicted. Manual inspection revealed the culprits
to be two top-level statements in the main function, which,
judging by the flow of control and profile values reported for
the surrounding statements, should always be executed, re-
gardless of the programs input. Nevertheless, these lines are,
seemingly incorrect, reported as never executed by gcov, re-
sulting in the anomaly.

Performance There are two observations that we can make
regarding performance: first of all, the approach seems to
scale well to larger software systems, where the version that
uses the refined branch prediction heuristics is only slightly
outperformed by the simpler one. It goes to show that includ-
ing more sophisticated analyses can still result in a feasible so-
lution. Secondly, there is one program that does not conform
to this observation: performance on Lame is significantly
lower than on any of the others. Manual inspection revealed
that the Lame frontend has a function that parses command-
line arguments with a great number of short-circuited expres-
sions. Because this occurs early on in the program, it affects
many of the locations we are testing. Specifically, this means
that computation of 25% of the locations involved requires
traversal through this function, and 6.5% of the locations are
within this function itself. The latter shows that our evalua-

Project Correlation case Inspection case # Locations
No heur. Heur. No heur. Heur.

Antiword 52 69 360 531 74
Lame 594 655 313 329 542

Table 9. Inspection case: performance (msec)
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tion experiment is actually somewhat negatively biased since
a relatively large number of locations were taken from a com-
putationally expensive function. The data obtained from the
case study in table 9 seems to corroborate this. However, this
kind of biased distribution is unlikely when ordering actual
inspection results. In addition, such large short-circuited ex-
pressions are atypical for the type of software analysed in the
Trader project, leaving little reason for concern at this time.
Orthogonality We remark that our approach is orthogo-
nal to other prioritization and filtering techniques discussed
in the related work. However, in combination with these ap-
proaches, ELAN can best be applied as final step because the
filtering of the earlier stages in combination with our demand
driven approach effectively reduces the amount of computa-
tions that will need to be done.
Applicability In our test set, we use programs that are one-
dimensional in their tasks, i.e. perform one kind of operation
on a rather restricted form of input. This limits issues related
to the creation of appropriate test inputs, and allows us to fo-
cus on evaluating the approach itself. It does mean, however,
that we must devote some time to the question how to gener-
alize these results to other kind of programs.

The ELAN approach is based on information implicit in
the control structure of the program, and as for the heuristics,
in the way humans tend to write programs. This information
will always be present in any program. However, there may be
parts of the control structure that are highly dependent on in-
teraction or inputs. Fisher and Freudenberger observed that, in
general, varying program input tends to influence which parts
of the system will be executed, rather than influencing the be-
havior of individual branches [15]. This suggests that, typi-
cally, there are a number of highly data-dependent branches
early on in the program, while the rest of the control struc-
ture is rather independent. For example, a command-line tool
may have a default operation and some other modi of oper-
ation that are triggered by specifying certain command-line
arguments. At some point in this program, there will be a
switch-like control structure that calls the different operations
depending on the command-line arguments specified. This
control structure is important as it has a major impact on the
rest of the program, and it is also the hardest to predict due
to its external data dependence. However, this information (in
terms of our example: which operation modi are most likely
to be executed) is exactly the type of information possessed by
domain experts such as the developers of the program. There-
fore, the simple extension of our approach with a means to
specify these additional (input) probabilities can further im-
prove applicability to such situations.

7. Concluding Remarks

Contributions We present a method for the prioritization of
software inspection results based on statically computing the
likelihood that program execution reaches locations for which

issues are reported, i.e., we prioritize code inspection results
using static profiling. We discuss a novel demand-driven algo-
rithm for computing execution likelihood based on the system
dependence graph and we present and evaluate a number of
optimizations that further increase accuracy and performance.

We investigate the feasibility of the described approach us-
ing a number of case studies in which a prototype tool was de-
veloped and applied to several open source software systems.
We investigate the correlation between our static predictions
and actual execution data found by dynamic profiling and we
report on the performance of our approach. This empirical
validation shows that the approach is capable of producing a
listing where program locations with a higher measured ex-
ecution likelihood tend to be higher ranked. In addition, the
approach scales well to larger systems.

Finally, we discuss experiments conducted on the Philips
television software whose inspection motivated this research.
We show that this code shares relevant characteristics with the
code investigated in the case studies, leading us to believe that
the approach will work equally well on the Philips code.
Future Work Future work (that is actually already ongo-
ing) includes deriving dynamic profiling data from the soft-
ware embedded in a television and assessing the correlation
between our execution predictions and the actual runtime data.

Together with Philips Semiconductors, we are preparing a
larger case study, scheduled to start summer 2006, in which
our technique will be evaluated during development and in-
spection of software to be embedded in a new digital TV.

Finally, we want to experiment with a number of ideas to
further improve our approach by incorporating more advanced
program analysis techniques, such as range propagation [25],
that are basically aimed at enabling better estimations of the
outcomes of conditions. Also, they can be used to compute
execution frequencies, which will benefit the ranking by bet-
ter distinguishing between locations with a likelihood of 1.
However, since such analyses typically come with additional
computational costs, we want to investigate if the improved
accuracy actually warrants the expenses involved.
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