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Abstract

The present paper introduces the semantic basis for ab-
stract slicing. This notion is more general than standard,
concrete slicing, in that slicing criteria are abstract, i.e.,
defined on properties of data, rather than concrete values.
This approach is based on abstract interpretation: proper-
ties are abstractions of data. Many properties can be inves-
tigated; e.g., the nullity of a program variable. Standard
slicing is a special case, where properties are exactly the
concrete values. As a practical outcome, abstract slices are
likely to be smaller than standard ones, since commands
which are relevant at the concrete level can be removed if
only some abstract property is supposed to be preserved.
This can make debugging and program understanding tasks
easier, since a smaller portion of code must be inspected
when searching for undesired behavior. The framework also
includes the possibility to restrict the input states of the pro-
gram, in the style of conditioned slicing, thus lying between
static and dynamic slicing.

1 Introduction

The purpose of program slicing [27, 26, 2] is to find the
part of a program (the slice) which is relevant to a subset
of the program behavior: typically, the value of some vari-
ables at a given program point. This is specified by a slicing
criterion, expressed as a program point and a set of vari-
ables. A slice Ps of P w.r.t. a slicing criterion S has to (i)
consist of a subset of the commands of P; (ii) be syntacti-
cally correct and executable; and (iii) give the same result
as P if observations are restricted to S . A slice is usually
computed by analyzing how the effects of a computation
are propagated through the code, i.e., by inferring depen-
dencies. A command must be included in the slice if it can
affect the observation described by the criterion. Slicing has
been widely used as an effective tool in debugging, program
integration, software maintenance and reverse engineering
for identifying the part of a program which is responsible

for some behavior.

Main contribution The present work introduces abstract
program slicing, a general notion based on the observation
that, in typical debugging tasks, the interest is often on the
part of the program which is relevant to some property of
data, rather than their exact value. Observing properties is
something which is less precise than observing values; e.g.,
if the focus is on the nullness of a pointer, then the corre-
sponding observation does not need to distinguish between
different non-null values.

Following the theory of abstract interpretation [7, 6],
properties are abstractions of data. Consequently, slicing
w.r.t. a property amounts to (1) having an abstract slicing
criterion, where abstraction is meant to describe the prop-
erty; and (2) studying dependence only as regards the ab-
straction, differently from the standard, concrete approach.

On the practical side, abstract slicing is interesting since,
in general, the abstract slice on a property of some variables
is smaller than the concrete one on the exact value of the
same variables, since some code might affect the values but
not the property. This can make debugging and program
understanding tasks easier, since a smaller portion of the
code has to be inspected when searching for some undesired
behavior.

While concrete slicing algorithms are typically syntax-
based, the abstract approach must rely on semantics [20]. In
fact, the more abstract the property, the greater the loss of
precision of the syntactic approach w.r.t. the actual seman-
tic. The proposed technique, which is proved to be sound,
can guide the development of abstract slicing tools, where
static analysis will be needed to deal with semantics.

A number of variants of slicing have been proposed [26].
This paper focuses on the backward version, where depen-
dencies are propagated backwards from a given program
point. Related work discusses the relation of abstract slicing
with conditioned, static and dynamic slicing. The language
is imperative with functions and structured data.
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Related work Since slicing is closely related to the cal-
culus of dependencies [5], which, in turn, represents one of
the basic notions in information flow [24, 1], closely related
work can be found in the abstract non-interference (ANI)
[11] theory. There, the notion of non-interference [13] is
relaxed, in the sense that flows are only detected when they
affect a property (the one which can be seen by an attacker,
whose observational power is limited), rather than the con-
crete value of data. Due to this, a program is more likely
to satisfy ANI than standard non-interference, since some
concrete flows are not really harmful at the abstract level.
This observation is analogous to saying that abstract slices
are smaller: properties propagate less than concrete val-
ues. More related work [12] on ANI is compared with the
present approach in Sec. 4.2.

Mastroeni and Zanardini [20] discuss the notion of ab-
stract slicing w.r.t. the program dependency graph approach
[17], underlining that dealing with properties instead of
concrete values implies pruning the graph and, conse-
quently, obtaining smaller slices. This work also discusses
the relation between the syntactic and semantic approaches,
and provides ideas for computing abstract dependencies.

Rival [22] recently characterized abstract dependencies,
representing data properties by means of abstract interpre-
tation. The author discusses abstract dependence and its ap-
plications to alarm diagnosis, together with techniques for
analyzing and composing dependencies. At a first glance,
his notion of semantic slicing [23] seems to be similar to
the present approach. However, it is quite unrelated, since
it is based on trace partitioning, so that the slicing is on sets
of traces, rather than sets of commands.

The use of predicates on states recalls related work on
conditioned program slicing [4, 9, 8], a version of slicing
which lies between static (every possible input considered)
and dynamic [19] (only one input considered) slicing, where
it is possible to consider a subset of the input states. This is
done by specifying a logical formula on the program input,
which identifies the set of states satisfying it (e.g., x≥0 iden-
tifies the set of states where x is non-negative). Although
this feature is not really the main focus of the present paper
(the abstract slicing framework has been originally devel-
oped with static slicing in mind), conditioned slicing can be
definitely useful to implement the use of predicates on states
by using symbolic execution [18] and dependency graphs.
In one sense, the semantic view of abstract slicing includes
conditioned slicing as a way to specify predicates on states,
but mostly uses such predicates as a way to track which path
has been taken during the computation, thus increasing the
precision of the analysis.

Finally, despite its title, the work by Hong, Lee and
Sokolsky [16] also discusses an unrelated notion of abstract
slicing. That work uses predicates to answer the question
for every program point, under which variable values does

the program point affect the slicing criterion? [16], and
constraints to answer for every program point, does the pro-
gram point affect the slicing criterion if we are only inter-
ested in certain executions of a program rather than all pos-
sible ones? [16]. As an example, consider the fragment

(1) x := x + 2y + 1 ;
(2) if (x mod 2 = 1) (3) x := x + 1 else (4) x := x − 1

with the final value of x as the criterion. In this case, that
notion of abstract slicing gives predicates

(1) : true (2, 3) : x mod 2 = 1 (4) : x mod 2 = 0

meaning that commands (2) and (3) are relevant only if x
is odd, while (4) is relevant in the opposite case and (1) is
always relevant. Moreover, if the constraint ((2), x mod 2 =
1) is added, meaning the restriction to executions where x
is odd at (2), then the predicate for (4) comes to be false,
since the else branch is never taken. On the other hand, our
approach is interested in relaxing the property: slicing on
the parity of x results in deleting the whole program, since
the final x has always the same parity as the input value.

A logical formulation of dependencies for information
flow and program slicing can be found in the work by
Amtoft and Banerjee [1], where a logic proves indepen-
dencies between variables before and after a prelude (i.e.,
a memory transformer).

2 Preliminaries

This section describes the theoretical foundations of this
work. The programming framework is outlined, and basic
notions of slicing are given. Last section gives an example.

The reader is supposed to be familiar with the basic no-
tions of the abstract interpretation [7, 6] theory of semantic
approximation. Here, it is only pointed out that abstract do-
mains are supposed to be partitioning, i.e., closed under set
complement. This means that an upper closure operator ρ
maps minimal sets (i.e., singletons) of concrete values to
atoms of the domain. This does not imply any loss of gen-
erality, since any ρ can be made partitioning by closing it
under complement, and the resulting ρ′ behaves the same
on singletons (i.e., ρ({v1}) = ρ({v2}) ⇔ ρ′({v1}) = ρ′({v2})).
In the following, domains will basically work on singletons.

The framework The language is basically imperative: it
includes assignment, sequential composition, conditional
and loops, with standard semantics. In addition, following
Nielson, Nielson and Hankin [21] (Ch. 2.6), pointer expres-
sions are included, which take the form l ::= x | x.sel, where
x is a variable and sel is a selector name. Memory locations
can be addressed, for example, by expressions like x.cdr,
which remind of Lisp pairs. The syntax comes to be
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a ::= e | b
e ::= n | l | e1 ope e2 | fe(a) | nil | new
b ::= true | false | ¬b1 | a1 opb a2 | fb(a)
C ::= skip | l := a | C′ ; C′′ |

if (b) Ct else C f | while (b) do Cw

Integers and booleans are the only primitive types; a pointer
l can point to a primitive value or to structured data which
can be accessed by selectors. Programs are supposed to be
always well-typed. Functions fe and fb take sequences a of
parameters and return, resp., an integer or a boolean; they
do not have side effects. Any property will be expressed in
terms of pointers (note that a variable is a pointer). Assign-
ment takes the general form l := a, where l is a pointer. If l
is just a variable, then l := a is an extension of the ordinary
assignment of the well-known while language. If l contains
a selector, then a destructive update of the memory occurs
[21]. new gives a fresh memory location of suitable type,
i.e., l := new allocates memory for all the selectors of l.

A program state σ maps pointers to values. The value
of l in σ is written σ(l), while [[C]] (σ) is the state obtained
by running the command1 C in σ, and [[e]] (σ) is the value
of an expression e in σ. It is possible to specify predicates
(logical formulæ) φ on states, and σ |= φmeans that φ holds
in σ. Sometimes, true is omitted in assertions.

Sharing [25] analysis is needed to keep information
about pointers possibly sharing the same location. The re-
sult of sharing is available at each program point: (1)  (l)
is the set of all pointers which may share with l; and (2)
 (l) is the set of pointers which definitely share with l2,
i.e., are guaranteed to correspond to the same location.

A program trace τ is a sequence of program states. τ is
the trace of a program C in the state σ if it is the sequence of
states obtained by executing C in σ. The set τ[p], where p
is a program point in C, contains all the states in τwhere the
program counter is p (there can be more than one such state
if p is inside a loop: one state for every time p is reached).

Program slicing Program slicing [27, 26, 2] was first in-
troduced as a method used by experienced computer pro-
grammers for abstracting from programs. Starting from a
subset of the program’s behavior, slicing reduces the pro-
gram to a minimal form which still produces that behavior
[27]. An automatic approach studies how data flow through
the program, and computes a minimal3 subset (the slice) of
the program which is needed to obtain the desired behavior.

Such behavior is called the slicing criterion, and is usu-
ally represented, in imperative languages, as a program
point and a set of variables, meaning that the slice Ps of

1The terms program and command will be used interchangeably.
2If no definite sharing is performed, then  (l) = {l} can be taken.
3A slice does not need to be minimal (actually, the entire program is a

slice); anyway, reasonable slicing algorithms are supposed to search for as
small a slice as possible.

P w.r.t. the criterion S should be the minimal subprogram
of P with the same behavior on S . More formally, given
S = (p, X), for a program point p and a set of variables X,
and any input state σ, the slicing condition comes to be

∀x ∈ X.
[[[Ps]] (σ)

]
p (x) = [[[P]] (σ)]p (x)

where [[[P]] (σ)]p (x) is the value of x in the state which is
found at p when executingP in σ. This is the static version
of slicing [26], which does not make any assumptions on
σ. Anyway, conditions can be provided in form of logical
formulas, which restrict the set of input states, in the style
of conditioned slicing [4] (Section 1).

If the command at p is executed several times, as in a
loop, then a sequence of values is obtained. Actually, p is
often taken to be the end of the program, without loss of
generality, since

• if p is not the end, then assignments copying variables
in X into fresh variables Y (not modified at any other
program points) can be added after p, so that the crite-
rion (p, X) is equivalent to observing Y at the end;

• if p is in a loop, then Y must keep the sequence of the
values of X. This can be done (1) by using lists and
appending the current values of X at every iteration; or
(2) without lists, by encoding the sequence of values
into a natural number and updating it at any iteration.

With these transformations, an equivalent criterion refer-
ring to the end of the program can be found for any (p, X),
without affecting slicing from the semantic point of view
(clearly, issues may arise about practicality and efficiency).

A sound slicing algorithm [27] must only remove com-
mands which are guaranteed not to interfere with S in any
σ. A typical approach to this problem makes use of reach-
ing definitions analysis [14], i.e., computes which assign-
ments can reach (i.e., have an effect on) the criterion. In-
formally, a definition C′ reaches another command C′′ if a
chain of dependencies exists between them. Dependencies
from Ci to Ci+1 can be (i) explicit, if Ci+1 uses a variable
which is defined by Ci and not redefined on at least one
path from Ci to Ci+1; or (ii) implicit, if Ci+1 is executed con-
ditionally on the outcome of Ci (e.g., Ci can be a boolean
guard). Implicit and explicit dependencies are combined by
means of a global computation. In the end, commands are
not removed, if they may reach the criterion via a chain of
dependencies.

A motivating example: append-reverse This example
gives an account of abstract program slicing. Lists are de-
fined recursively with selectors data, storing the informa-
tion, and next, pointing to the following element. Sup-
pose a property of well-formedness be defined on a list,
which amounts to having data = 0 in the last element.
A well-formed empty list is represented as 〈[0]〉, where
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square brackets indicate that 0 is not a proper element.
A correct implementation of append has to satisfy, e.g.,
append(〈1, 2, 3, 4, [0]〉 , 〈5, 6, [0]〉) = 〈1, 2, 3, 4, 5, 6, [0]〉,
i.e., [0] appears only once at the end of the result.

Consider the following program Par, which works on
two lists list1 and list2, reversing the first one and con-
catenating it with the second. If a1 = 〈1, 2, 3, 4〉 and
a2 = 〈5, 6〉, where [0] is left implicit, then P gives list2 =
〈4, 3, 2, 1, 5, 6〉.

list1 := a1 ; list2 := a2 ;
whi l e ( notLast ( list1 ) ) {

tmp := list1.next ;
list1.next := list2 ;
list2 := list1 ;
list1 := tmp ; }

i f ( nil ( list2 ) ∨ illFormed ( list2 ) )
{ res := nil ; } e l s e { res := list2 ; }

last(x) ≡ notNil(x) ∧ nil(x.next)
notLast(x) ≡ notNil(x) ∧ notNil(x.next)
wellFormed(x) ≡ notNil(x) ∧ lastEl(x).data = 0
illFormed(x) ≡ notNil(x) ∧ lastEl(x).data ! 0

In the end, res is the concatenation if list2 is not null nor ill-
formed, or nil otherwise (since null or ill-formed lists are
supposed to be useless for the purpose of this function).

Let the slicing criterion be the final nullity of res, i.e., the
question q corresponding to the criterion is is res equal to
nil? and refers to the end of the program. It must be noted
that this question is a weaker one w.r.t. the typical slicing
question what is the value of x?, i.e., the requirement for
slicing has been relaxed to some property (the nullity) of
variables, rather than their exact value.

Abstract domains have to be defined to describe the prop-
erties of interest: the picture below shows ρnil for nullity,
and ρ2

 for well-formedness, which only distinguishes be-
tween well-formed lists and all the rest (every abstract value
is associated by the! notation to a predicate, see above).

WF Not-WF

bot

topNIL Not-NIL

bot

top

NIL! nil
Not − NIL! notNil

WF! wellFormed
Not −WF! ¬ wellFormed

It is easy to see that standard slicing on res cannot remove
any part of the program, since all the code affects res. Yet,
the outcome of abstract slicing is different.

The analysis goes backwards. Let Par be written as
Cinit ; Cloop ; Cif , where the three subprograms are, resp.,
the initial assignments, the loop and the conditional. The
first step is to see that the final conditional is relevant to the
criterion, since the nullity of res clearly depends on what
happens in the branches. An important observation is that,

when reaching the loop from below, the initial question q:
is res equal to nil? is no longer interesting. Instead, the
question q′ at the program point after the loop should be
is list2 equal to nil or ill-formed?, which is equivalent to q
after the conditional, as a close glance to the code reveals.
Generating this q′ is crucial in defining abstract slicing.

If ρ2
 is used for well-formedness, then q′ is formulated

as whether list2 has to be abstracted to  or to -.
This is the question which has to be considered when ana-
lyzing Cloop. By looking at the loop semantics, it is possible
to see that such property of list2 does not change, i.e., for
every σ before the loop:

ρ2
(σ(list2)) = ρ2



([[
Cloop

]]
(σ) (list2)

)

Since the entire loop is irrelevant to the desired property
(i.e., the well-formedness of list2 after the loop, which
amounts to the final nullity of res), it can be completely
sliced out, thus resulting in a quite different outcome
w.r.t. concrete slicing. In fact, in a typical debugging task,
there is no need to search in the loop for the reason of the
ill-formedness of rest, since nothing relevant happens there.

Note that the question about the well-formedness of list2
has been formulated in terms of ρ2

. If more precise do-
mains ρ0

 or ρ1
 (shown below) are used instead, then the

loop cannot be sliced out, as shown in Ex. 6.1.

L NLWF IF

WFL WFNL IFL IFNL
NIL

bot

top

WF IF NIL

bot

top

L! last
NL! notLast
IF! illFormed

In fact, these domains also contain the nil abstract value,
which is not preserved for list2 in Cloop. I.e., a null value
for list2 may become, after Cloop,  in ρ1

, or one between
 and  in ρ0

, thus making the loop relevant to the
property. In other words, the following holds:

∃σ. ρ0
(σ(list2)) ! ρ0



([[
Cloop

]]
(σ) (list2)

)

∃σ. ρ1
(σ(list2)) ! ρ1



([[
Cloop

]]
(σ) (list2)

)

and forbids to slice out the loop with ρ0
 or ρ1

. This corre-
sponds to the intuition the weaker the property, the smaller
the slice (Theorem 5.2). The following will show that ob-
taining more precise domains (as, in this case, ρ0

 or ρ1


instead of ρ2
) actually comes from a less precise analysis,

which infers too strong preconditions (Ex. 6.1).

3 The underlying theory

This section will formally define the basic semantic no-
tions of abstract slicing: how slicing criteria are defined,
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and how (in)dependence is tailored to deal with properties
instead of concrete values.

Agreements and slicing criteria An agreement is a set
of conditions Aρ(l) for a pointer l and an abstract domain
ρ. The definition on traces means that, given a program
point p and two traces τ1 and τ2, an agreement A requires
ρ(σ1(l)) = ρ(σ2(l)) for every Aρ(l) ∈ A, and every σi ∈
τi[p]. Note that, for a trace, there can be more than one
such state, one for each time execution reaches p.

A(σ1, σ2) ≡ ∀Aρ(l) ∈ A. ρ(σ1(l)) = ρ(σ2(l))
A(τ1, τ2, p) ≡ ∀σ1 ∈ τ1[p], σ2 ∈ τ2[p].A(σ1, σ2)

Aρ(a) refers to the computed value of a: Aρ(a)(σ1, σ2) ≡
ρ([[a]] (σ1)) = ρ([[a]] (σ2)). Set brackets are often omitted
whenA is a singleton. A(l) is ρ if Aρ(l) ∈ A, - otherwise.

A slicing criterion S ∈ S is the property of the program
which must be preserved when slicing the original P to ob-
tain a smaller one Ps. In other words, Ps is the part of P
which is needed to keep S unchanged.

An algorithm for slicing tries to find the smallest subpro-
gram of P which preserves S . In most frameworks, a crite-
rion is a pair (p, X) where p is a program point and X ⊆ X
is a set of program variables: this means that the property
to be preserved is the value of variables in X at p. In ab-
stract slicing, criteria can be specified w.r.t. abstract prop-
erties (on pointers): the pair (p, {Aρ1(l1) . . .Aρk (lk)}) means
that, for every li, the property ρi must be preserved in Ps,
i.e., that ρi(σ(li)) must be the same as ρi(σs(li)), where σ
and σs are states of traces of, resp., P and Ps at p. Without
loss of generality, p is assumed to be the end of the program
(Sec. 2), so that it will be left implicit in the following.

Due to this, a slicing criterion takes the same form as
an agreement, and, in the following, these concepts will be
used somehow interchangeably. It will be shown that this
makes sense, i.e., criteria and agreements define tightly re-
lated notions. Next definition defines the correctness of an
abstract slice, where the slicing criterion is an agreement.

Abstract slicing condition Let Ps be the slice of P
w.r.t. an agreement (criterion)A. In order for Ps to be cor-
rect, [[P]] (σ) and [[Ps]] (σ) must agree onA for every initial
σ: A([[P]] (σ) , [[Ps]] (σ)).

Note that a concrete criterion L (a set of pointers) can
be expressed as {A⊥(l)}l∈L, meaning that two traces agree on
the exact value of L, as required by the identity domain ⊥.

Example 3.1 Consider the code Par in Sec. 2: as pointed
out before, the slice Ps

ar on the final nullity of res does not
include the loop: it takes the form

list2 := a2 ;
i f ( nil ( list2 ) ∨ illFormed ( list2 ) )
{ res := nil ; } e l s e { res := list2 ; }

where the first command has been sliced out as well, since
it only affects list1 (provided a2 does not depend on list1).
In fact, running both Par and Ps

ar on some σ leads to the
same value for a2, so that list2 reaches the conditional with
the same value w.r.t. ρ2

 since the loop is irrelevant to it.
Finally, since the guard has the same value, the final nullity
of res is the same (since res := list2 is only executed with
list2 ! nil). Therefore, the slice is correct.

Independence This section defines the independence of
an expression w.r.t. an agreement on states, a predicate on
states and an output domain on values [20]: (A)φ ! (a, ρ)
means that, for every σ1 and σ2 where φ holds, A(σ1, σ2)
implies Aρ(a)(σ1, σ2), i.e., that the results of evaluating
a agree on ρ. This definition is similar to narrow non-
interference [12] (NANI) on expressions, where domains
are actually tuples of domains. The present definition is
specialized to the case where there is no public/private dis-
tinction, and enriched with restrictions φ on states.

Independence states that input variables do not affect the
value of a w.r.t. ρ if their variability obeys φ and A. In
other words, it is not required that all (concrete) variations
of states be irrelevant, but only those which satisfy φ and
do not make a difference w.r.t. A, i.e., such that the varia-
tion agrees with the original. FindingA s.t. (A)φ ! (a, ρ)
amounts to compute the maximal variability on the input
which does not affect the abstract property of a.

Example 3.2 Consider the integer expression xyz2. Let
 be the abstract domain of sign: (v1) = (v2)
iff v1 and v2 are both negative or both non-negative. In this
case, the assertion (A(y))x>0 !

(
xyz2, 

)
holds. In

fact, x and z can take any value (with x > 0) without affect-
ing the sign of xyz2 (although x and z can affect its concrete
value). On the other hand, the sign of xyz2 does not change
as long as the sign of y does not, but a change in the sign of
y propagates to the sign of xyz2.

4 Inferring information for slicing

This section describes the program analysis steps which
are needed in order to compute abstract slices: (1) proving
invariance, i.e., that executing a command is irrelevant to a
given property on data; (2) studying how agreements prop-
agate through the program code, in order to find the condi-
tions for states to vary without changes in the criterion. The
latter is obtained with a set of rules, the -system, basically
inspired by previous work on abstract non-interference [11].

From the semantic point of view, a command C can be
sliced out if a property which is strong enough to ensure
agreement on the criterion is invariant through the execution
of C. In other words, what the command does can only
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modify properties which do not make a difference in the
desired observation.

Example 4.1 (continued from Ex. 3.1) The question
about the final nullity of res is found, by propagating
agreements, to be equivalent to the well-formedness (on
ρ2
) of list2 after the loop. Therefore, the loop can be sliced

out since it does not modify such property.

On the practical side, deleting C relies on (1) systematically
propagating a property which is weak (used as the opposite
of strong, restrictive) enough to be semantically invariant
on C; and (2) being able to prove such invariance.

4.1 Inferring invariance

Slicing needs information about properties of data which
are preserved through the execution of a command. Such
information takes the form of assertions φ (A,C) mean-
ing that, for every state σ such that σ |= φ, the condition
A(σ, [[C]] (σ)) holds. In other words, the effect of C on the
program state is irrelevant to A (i.e., A is invariant on C),
so that, to this purpose, C cannot be distinguished by skip.

In the following, we assume to have a (sound) static an-
alyzer which answers yes to the question is A invariant on
C under the condition φ? if it is able to guarantee that the
assertion φ (A,C) holds, and no if this guarantee cannot
be provided. This is quite a standard abstract interpretation
approach to static analysis: the input-output pairs of the de-
notational semantics of a command are abstracted w.r.t.A,
and the analyzer tries to detect that any abstract pair takes
the form (V,V) for some abstract value V , meaning that, at
the abstract level, the semantics is the identity function.

The use of φ allows to improve the precision by taking
contexts into account. For example, analyzing a command
C inside a loop can get a more precise result if information
about the truth value of the loop guard is also considered.

Example 4.2 Let C be x := x ∗ y, and φ be y > 0. In
this case, φ is required to successfully answer the question
φ ({A(x)},C), since knowing the sign of y guarantees
that the sign of x does not change after the assignment.

4.2 The logic for propagating agreements

This section describes how agreements are propagated
via a system of logical rules, the -system. Hoare-style
triples [15] are used for this purpose, in the style of weak-
est precondition calculus [10]. Basically, the precondition
is the weakest agreement on two states before a command
such that the agreement specified by the post-condition
holds after the command. Predicates on program states can
be used, so that triples are, actually, 4-tuples which only
take into account a subset of the states: {A}φ C {A′} (where

φ (A,C)
{A}φ C {A}

-

{A}φ skip {A}
-

{A}φ C {A′} {A′}C(φ) C′ {A′′}
{A}φ C ; C′ {A′′}

-

{A2}φ2 C
{
A′

2

}
A1 1 A2 A′

2 1 A′
1 φ1 ⇒ φ2

{A1}φ1 C
{
A′

1

} -




∀lsh ∈  (l) . (A)φ ! (a,A′(lsh))

∀lsh ∈  (l) \  (l) . ∀σ |= φ.
A′(lsh)(σ(lsh)) = A′(lsh)(([[a]] (σ))(lsh))




{
A [lnsh ← A(lnsh) 4A′(lnsh)]∀lnsh"(l)

}φ
l := a {A′}

-

{A}φ Ct 5C f {A′}
{A}φ if (b) Ct else C f {A′}

-’

{At}φ∧b Ct {A}
{
A f

}φ∧¬b
C f {A}

{
Ab 4 At 4 A f

}φ
if (b) Ct else C f {A}

-”

φ⇒ Cw(φ) {A 4Ab}φ∧b Cw {A 4Ab}
{A 4Ab}φ while (b) do Cw {A 4Ab}

-

Figure 1. The -system

the true predicate is often omitted) holds if, for everyσ1 and
σ2,

σ1 |= φ ∧ σ2 |= φ ∧ A(σ1, σ2) ⇒
A′([[C]] (σ1) , [[C]] (σ2))

The transformed predicate C(φ) is one which is guaranteed
to hold after a command C, given that φ holds before, in the
style of strongest post-condition calculus [3].

The -system (Fig. 1) is related to recent work on narrow
non-interference [11]. Such work defines a similar system
of rules, the -rules, for assertions [η]C(η′), where η and η′

are basically the (tuples of) abstract domains corresponding
to, resp.,A andA′. The systems differ in that:

• pointers require the -rule for assignment to account
for sharing, while -rules only work on integers;
• in the present approach, partitions are implicit since

domains are supposed to be partitioning;
• the -system does not distinguish between public and

private since this notion is not relevant in slicing;
• the rule for conditional is not included in the -system;

indeed, this is quite a tricky rule, and, in general, ex-
pressing a conditional with loops and using the rule 6
for loops results in inferring less precise assertions;
• in the -system, predicates φ on program states, which

can improve the precision, are not supported;
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- This rule makes the relation between invariance and
the -system clear. The triple {A} C {A} amounts to say
that two traces agree after C, provided they agree before on
the same A. On the other hand, the invariance of A on C
means that any state before C agrees on A with the state
after C. Invariance is a stronger requirement than the mere
preservation {A} C {A} of agreements.

Example 4.3 Let parity be the property of interest:
(v1) = (v2) iff v1 and v2 have the same parity.
In this case, x := x + 1 does not preserve (x), but
two initial states agreeing on (x) lead to final states
which still agree on it. Therefore, {A(x)} x := x +
1 {A(x)} holds. On the other hand, x := x + 2 also
satisfies a stronger requirement: that (x) does not
change. Therefore, besides having {A(x)} x := x +
2 {A(x)}, the equality A(x)(σ, [[x := x + 2]] (σ)), equiv-
alent to  (A(x), x := x + 2), is also true.

-, -, - The - rule describes no-op.
The assertion holds for everyA and φ since

[[
skip
]]

(σ) = σ.
- is also easy: soundness holds by transitivity.
In -, 1 stands for the (pointwise) comparison on

agreements, i.e., A1 1 A2 if ∀l.A1(l) 1 A2(l), where
A1(l) 1 A2(l) is the comparison on the precision of abstract
domains, meaning thatA1(l) is more precise thanA2(l).

- This rule means: if some A excludes (when φ
holds) the dependence w.r.t. A′ of a on l and all pointers
possibly sharing with it, then suchA4A ′ is strong enough
as a precondition. However the use of  (l) is meant to
increase the precision (i.e., to weaken the precondition),
since the value of any ldsh ∈  (l) is lost after the assign-
ment, unless a depends on it. Consequently, the precondi-
tionApre can have, asApre(lnsh), the domainA(lnsh) instead
of A′(lnsh) 4 A(lnsh), still preserving correctness. Taking
Apre = A4A ′ is correct, but less precise.

The second condition of the rule requires the assignment
be irrelevant w.r.t.A′ for pointers which may be updated or
left unchanged. This could look as quite conservative, but
is really needed for correctness.

The - rule can be compared with the rule 3 for
assignment in the -system [12]:

[η]a(ρ), [Π(ηy) 1 Π(ρy)]y∈L\{x}, x ∈ L
[η]x := a(ρ)

3

where [η]e(ρ) means

∀σ1, σ2. η(σL1) = η(σL2) ⇒ ρ([[a]] (σ1)L) = ρ([[a]] (σ2)L)

and (1) ρ is, actually, A′(lsh) in the condition of -;
(2) σL restricts σ to public variables; and (3) Π(ηy) 1 Π(ρy)
means that the partition on singletons induced by ηy (the
component of η corresponding to y) must be more concrete
than the one of ρy. Rules 3 and - differ in that:

• pointers require - to account for sharing;
• in -, partitions are kept implicit since domains

are partitioning, and the 1 condition on ηy and ρy is
guaranteed by the fact thatApre is stronger thanA;
• x ∈ L does not appear in - since there are no

private variables; also, states are not restricted to L.

Example 4.4 (continued from Sec. 2) Consider the as-
signments in the branches of Cif , with {Aρnil(res)} as post-
condition. res := nil satisfies (∅) !

(
nil, {Aρnil(res)}(res)

)
,

i.e., (∅) ! (nil, ρnil), and res does not share (and  (res) \
 (res) = ∅). In this case, ∅ (i.e., no restrictions) can be
taken as precondition, since res ∈  (res), so that its value
does not go through the assignment. The resulting triple
comes to be {∅} res := nil

{
Aρnil(res)

}

which makes sense since any final state agrees on ρnil(res).
On the other hand, res := list2 yields{

Aρnil(list2)
}

res := list2
{
Aρnil(res)

}

since the nullity of res after the command is equivalent to
the nullity of list2 before.

Lemma 4.1 (soundness of -) LetApre(σ1, σ2), and
σ′i = [[l := a]] (σi). Then, provided σ1 |= φ and σ2 |= φ and
the conditions of the rule hold,A′(σ′1, σ

′
2) holds, i.e.,

∀l0.A′(l0)(σ′1(l0)) = A′(l0)(σ′2(l0))

Proof All the proofs can be found in an extended (same
text plus proofs) technical report version [29].

- In a conditional if (b) Ct else C f , there are two pos-
sibilities. Rule -’ states that an input agreement which
implies the output one, regardless of the path taken, is
a good candidate as a precondition. Here, the assertion
{A}φ C′ 5C′′ {A′} means that

∀σ1, σ2. A(σ1, σ2) ∧ σ1 |= φ ∧ σ2 |= φ ⇒
A′([[C′]] (σ1) , [[C′]] (σ2) , [[C′′]] (σ1) , [[C′′]] (σ2))

whereA′(·, ·, ·, ·) states that all the four values agree onA′.
This rule requires A′ to hold on the output state indepen-
dently from the value of b. Soundness is easy (note that the
above assertion implies {A}φ C′ {A′} and {A}φ C′′ {A′}).

Note that suchA can always be found (in the worst case,
it is the identity {A⊥(l)}l). However, sometimes it can be
more convenient to exploit information about b. In such
cases, -” can be applied, which means that the initial
agreementAt 4A f is strong enough to verify the final one,
provided the same branch is taken in both traces, asAb re-
quires. In fact, Ab is built from b, and distinguishes states
w.r.t. its value:

Ab(σ1, σ2) ⇔ [[b]] (σ1) = [[b]] (σ2)
The rule means that, whenever two states agree on the
branch to be executed, and the triples on the branches hold,
the whole triple holds as well. Knowing the value of b when
analyzing the branches may allow to obtain a better result.
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Example 4.5 (continued from Sec. 2 and Ex. 4.4) In Cif ,
Ab comes to be {Aρ2


(list2)}, since the abstract domain for-

malizes exactly the condition in the guard:

ρ2
(σ(list2)) =  ⇔ ¬ ([[b]] (σ))

The precondition obtained by -” from results in Ex. 4.4 is
{
Aρ2


(list2)
}
4 ∅ 4

{
Aρnil(list2)

}
=
{
Aρ2


(list2), Aρnil(list2)
}

However, information about the context can be used in the
else branch (namely, that b is false, which implies list2 !
nil), so that the triple for res := list2 becomes

{∅}¬b res := list2
{
Aρnil(res)

}

and leads to a more precise assertion for Cif :{
Aρ2


(list2)
}

Cif

{
Aρnil(res)

}

Lemma 4.2 (soundness of -”) If σ1 and σ2 satisfy φ
and agree onAb4At4A f , then the corresponding outputs
σ′1 and σ′2 agree onA under the hypotheses of the rule.

Note that the rule to be chosen for the conditional de-
pends on the precision of the outcome: -” can be a good
choice if (1) it can be applied; and (2) its result is better
(weaker) than the one obtained by -’.

- The meaning of the rule for loops can be under-
stood by discussing its soundness: if φ is preserved after
any pass through the body, and the agreement which is pre-
served by the body guarantees the same number of iteration
in both executions (i.e., it is more precise than Ab), then it
is preserved through the entire loop.

Lemma 4.3 (soundness of -) Let σ0
1 and σ0

2 sat-
isfy φ, and agree on A 4 Ab. Then, given σ′i =
[[while (b) do Cw]]

(
σ0

i

)
, the result (A4Ab)(σ′1, σ

′
2) holds.

Theorem 4.4 (-soundness) Let C be a command, A′ be
required after C, φ be a predicate and p be the program
point before C. Let also A be an agreement computed be-
fore C by means of the -system. Let τ1 and τ2 be two
traces, and the states σ1 ∈ τ1[p] and σ2 ∈ τ2[p] satisfy
A(σ1, σ2) and φ. Then, the condition A′(σ′1, σ

′
2) holds,

where σ′i = [[C]] (σi).

5 Slicing a program

This section defines a compositional function , with
an auxiliary ′, for slicing a program w.r.t. an abstract
slicing criterion and a predicate on states, using the results
obtained by invariance analysis and the -system. The func-
tion  takes a command C, a criterionA and a predicate
φ on states, and returns the slice4 of C w.r.t. A and φ. If,

4Note that, here, statements are replaced by skip instead of being re-
moved; however, a final removal of all skip is trivial.

in the initial call, φ is not the true predicate, then the algo-
rithm implements a conditioned [4] form of abstract slicing
(Section 1).

 (C,A)φ = skip if φ (A,C)
= ′ (C,A)φ otherwise

′ (l := a,A′)φ = l := a
′ (C′ ; C′′,A′′)φ = C′(s) ; C′′(s)

where φ′ = C′(φ) ∨C′(s)(φ)
{A′}φ′ C′′ {A′′}
C′(s) =  (C′,A′)φ

C′′(s) =  (C′′,A′′)φ
′

′
(
if (b) Ct else C f ,A′

)φ
= if (b) Cs

t else Cs
f

where Cs
t =  (Ct,A′)φ∧b

Cs
f = 

(
C f ,A′

)φ∧¬b

′ (while (b) do Cw,A′)φ = while (b) do Cs
w

if {A}φ∧b Cw {A′}
A 1 A′ 1 Ab

where Cs
w =  (Cw,A)φ∧b

The basic meaning is: when  is given a program C, an
agreement A and a predicate φ, it tries first to slice C out
completely by proving that C preserves A given φ. Other-
wise, it goes recursively into the program structure, trying
to slice out some sub-parts. For example,  (l := a,A)φ

has two possible outcomes: (i) skip, ifA is invariant on the
assignment; or (ii) l := a, otherwise (because ′ has been
called). Most rules are easy to understand.

The rule for concatenation relies on finding two triples
for the sub-commands, and slice them according to the
agreement which is found to hold between C′ and C′. Note
that C′(s)(φ) is not available yet when computing the triple
on C′′. This problem must be carefully addressed in an al-
gorithmic approach, for example by computing a fixpoint
which progressively refines the predicate and the slice.

The general meaning of the rules for loops is that a loop
can be (1) completely removed, if φ (A,C); (2) kept as a
loop and had the body sliced, if the slice of the body does
not change neitherA w.r.t. the original body, nor the num-
ber of iterations. Note that suchA can always be found: in
the worst case, it is the identity {A⊥(l)}l.

The function  is called several times at different pro-
gram points. Due to this, every p (apart from those which
are internal to removed code) can be seen to be annotated
with agreements: p is annotated with A (written p : A) if
 (C,A)φ is called, and C ends at p (it is easy to see that
there is only one call for every p). Due to the rule on con-
catenation, a command C between program points p and
p′, with p : A and p′ : A′, satisfies {A}φ C {A′}, if the
call was  (C,A′)φ. The beginning of the program is an-
notated with A0 s.t. {A0}φ C0 {A}, where C0 is the first
command, and  (C0,A)φ has been called.
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Back to append-reverse This section resumes the discus-
sion in Sec. 2 and gives the result of applying our tech-
nique to Par. The initial call is 

(
Par, Aρnil(res)

)true
:

since the nullity of res is clearly not invariant on Par,
′

(
Par, Aρnil(res)

)true
is called.

The rule for concatenation applies to C0 ; cif , where
C0 is Cinit ; Cloop. It finds (1) φ′ = C0(true) ∨
Cs

0(true) = true (here, Cs
0 is not needed, but see Sec. 5);

(2)
{
Aρ2


(list2)
}true

Cif

{
Aρnil(res)

}
(see Ex. 4.5); (3)

Cs
0 = 

(
C0, Aρ2


(list2)

)true
(see below); and (4) Cs

if =


(
Cif , Aρnil(res)

)true
= Cif (i.e., there is no slicing here).

As for 
(
Cinit ; Cloop, Aρ2


(list2)

)true
, the same rule

applies. Again, φ′ = true. In this case, the call


(
Cloop, Aρ2


(list2)

)true
takes the first pattern because of

invariance, and skip is returned. In the concatenation rule,
Aρ2


(list2) is also given as the agreement before Cloop, so

that the following call will be 
(
Cinit, Aρ2


(list2)

)true
,

which slices out list1 := a1 and keeps list2 := a2.
The main achievement is that the whole loop can be ex-

cluded from the slice, since it is not responsible for the well-
formedness of list2. In general, this can have a big impact
on debugging the program, e.g., when the focus is on why
res = nil at the end. Note that standard slicing would con-
sider the whole program as relevant.

Correctness This theorem proves that slices satisfy the
abstract slicing condition. Actually, a stronger condition
holds, since inputs are only required to agree onA0, instead
of being equal.

Theorem 5.1 Let Cs =  (C,A)φ, and σ and σs be two
states satisfying A0(σ, σs), σ |= φ and σs |= φ, where
the initial program point is annotated with A0. Then,
A([[C]] (σ) , [[Cs]] (σs)) holds.

The correctness of  shows that it makes sense to use
an agreement as a slicing criterion. In fact, a criterion can
be seen as an agreement on traces which correspond to two
programs C and Cs which are different but tightly related by
a command erasure transformation.

Another important property is that slices become smaller
if criteria become weaker. Let C1≤C2 hold if C1 is obtained
from C2 by replacing some commands by skip (which boils
down to be a slice of C2).

Theorem 5.2 Let φ1 ⇒ φ2 andA2 1 A1. Then, Cs1 ≤ Cs2,
where Cs1 =  (C,A1)φ1 and Cs2 =  (C,A2)φ2 .

6 Practical issues

The  algorithm is not meant to be directly exe-
cutable. Rather, it is more to be seen as a systematic se-

mantic approach to abstract slicing. Several components
are needed in order to answer crucial questions:

1. an invariance analyzer to prove assertions φ (A,C);
2. weakest precondition calculus [10] to find A s.t., for

given C,A′ and φ, the assertion {A}φ C {A′} holds;
3. symbolic execution [18] to deal with predicates on

states, and strongest post-condition calculus [3] to find
φ′ such that, given C and φ, the assertionσ |= φ implies
[[C]] (σ) |= φ′ for every σ.

The -system is a reasonable proposal to answer question 2
but, of course, it is not complete and can be improved. This
task and question 1 rely on sharing analysis and on com-
puting independence of expressions [20]. Not surprisingly,
both tasks need non-trivial machinery to symbolically deal
with operations on the abstract domains.

Besides (see Sec. 5), the rule for concatenation needs to
be dealt with carefully in order to be correctly implemented.

Moreover, question 3 can be approached by means of
some strongest post-condition calculus. Symbolic execu-
tion has already been practically used in computing pred-
icates on states in program slicing: related work (Section
1 includes a discussion of the conditioned program slicing
[4] framework, which has already been implemented in the
ConSIT tool [9].

The precision of the slicing basically depends on how
precisely these tasks are solved. In fact, an imprecise out-
come of some component (e.g., too strong preconditions, or
failure to prove invariance) may result in the impossibility
to slice out some parts of the code which are semantically
irrelevant to the abstract criterion.

Example 6.1 In P, the agreement
{
Aρ2


(list2)
}

is produced
before Cif . This means that the -system was clever enough
to detect that the boolean guard splits states exactly as
ρ2
 does, and to exploit the non-nullity of list2 in the else

branch. On the other hand, simply proving less precise re-
sults as

{
Aρ1


(list2)
}

does not allow to remove the loop.

7 Conclusions and future work

The present paper introduces a semantic basis for an ab-
stract program slicing algorithm. The proposed technique
allows to slice a program with respect to a given property,
represented as an abstraction, instead of concrete values.

This kind of reasoning inherently relies on program se-
mantics. Indeed, considering syntax alone is quite a good
approximation in the case of concrete slicing, but becomes
too imprecise when abstract properties are considered [20].
The theoretical basis is proven to be sound. Implementing
the algorithm depends on having static analysis components
which are designed to prove assertions on the program se-
mantics. The more assertions can be guaranteed, the better
the result of the slicing (i.e., the smaller the abstract slice).
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Future work One direction of future work consists of ac-
counting for more realistic frameworks. An interprocedural
(where procedures can have side effects) formulation would
be a first step in this direction. In the longer run, work will
be focused on full Object-Oriented languages.

The logical and static analysis components needed to
implement the algorithm deserve further study. The power
of such techniques from the semantic point of view has to be
investigated. In addition, attention will be paid to existing
tools which can be used (as they are, or optimized/special-
ized or generalized) to this purpose.

Finally, effort will be put on implementing the presented
framework, based on the issues pointed out in Section 6.
This is a more advanced task, and needs good solutions to be
found for technical/practical issues. Dealing with the sym-
bolic computations involved in the algorithm (e.g., prov-
ing abstract independence on expressions) is needed: this
is quite a common issue in practical works on abstract non-
interference [12, 28].
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