

New Conceptual Coupling and Cohesion Metrics for Object-Oriented Systems

Béla Újházi1, Rudolf Ferenc1, Denys Poshyvanyk2 and Tibor Gyimóthy1
1University of Szeged, Hungary

Department of Software Engineering
ujhazi.bela@stud.u-szeged.hu, {ferenc, gyimi}@inf.u-szeged.hu

2The College of William and Mary, USA
Computer Science Department

denys@cs.wm.edu

Abstract
The paper presents two novel conceptual metrics for

measuring coupling and cohesion in software systems.
Our first metric, Conceptual Coupling between Object
classes (CCBO), is based on the well-known CBO
coupling metric, while the other metric, Conceptual
Lack of Cohesion on Methods (CLCOM5), is based on
the LCOM5 cohesion metric. One advantage of the
proposed conceptual metrics is that they can be
computed in a simpler (and in many cases,
programming language independent) way as compared
to some of the structural metrics.

We empirically studied CCBO and CLCOM5 for
predicting fault-proneness of classes in a large open-
source system and compared these metrics with a host
of existing structural and conceptual metrics for the
same task. As the result, we found that the proposed
conceptual metrics, when used in conjunction, can
predict bugs nearly as precisely as the 58 structural
metrics available in the Columbus source code quality
framework and can be effectively combined with these
metrics to improve bug prediction.

1. Introduction
Coupling and cohesion measures capture the degree

of interaction and relationships among source code
elements, such as classes, methods, and attributes in
object-oriented (OO) software systems. One of the main
goals behind OO analysis and design is to implement a
software system where classes have high cohesion and
low coupling among them. These class properties
facilitate comprehension activities, testing efforts, reuse,
and maintenance tasks.

A vast majority of coupling and cohesion metrics
abound in the literature relies on structural information,
which captures relations, such as method calls or
attributes usages. These metrics have been proved useful
in different tasks, such as, assessment of design quality
[4, 10], impact analysis [8, 36, 41], prediction of
software quality [26], and faults [17, 22, 37],
identification of design patterns [2] etc. However, these
structural metrics lack the ability to identify conceptual
links, which, for example, specify implicit relationships
encoded in identifiers and comments in source code.

In this paper we propose two new conceptual
metrics, namely Conceptual Coupling between Object
Classes (CCBO) and Conceptual Lack of Cohesion of

Methods (CLCOM5) metrics. The proposed metrics are
different from existing conceptual coupling metrics [35]
and cohesion [31] metrics as they utilize different
counting mechanisms inspired by peer structural
cohesion and coupling metrics.

In order to evaluate the proposed metrics, we
compare CCBO and CLCOM5 against a large host of
existing structural and conceptual coupling metrics for
predicting faults in a large open-source software system.
Furthermore, we perform a comprehensive empirical
evaluation of other parameters, such as, impact of pre-
processing techniques. Such parameters also impact
performance of other existing conceptual metrics, such
as Conceptual Cohesion of Classes (C3) [31] and
Conceptual Coupling among Classes (CoCC) [35]. The
results of our empirical study indicate that CCBO and
CLCOM5 not only can be used to build operational
models for predicting fault-proneness of classes, but can
also be effectively used in conjunction with other
structural metrics to improve overall accuracy of bug
prediction models.

Our paper warrants the following contributions:
 We define two new conceptual cohesion and

coupling metrics, which are easier to compute than
their structural protégé.

 We carried out an extensive empirical study of 61
software metrics, including newly proposed
measures to build models for fault prediction using
machine learning and logistic regression analyses.

 We empirically studied a range of parameters that
can impact performance of CCBO and CLCOM5
metrics, such as, impact of corpus stemming and
parameterized thresholds.

 We developed an online appendix summarizing the
results of our empirical study to facilitate
development and comparison of conceptual metrics
and ensure reproducibility of our results.

2. Conceptual Metrics
Our approach to measuring coupling and cohesion

relies on the assumption that the methods and classes of
Object-Oriented systems are connected in more than one
way. While the most explored and evaluated set of
relations among methods and classes are based on data
and control dependencies, in this work we rely on
orthogonal type of relationships, known as conceptual
dependencies to capture conceptual cohesion and
coupling of classes.

Conceptual coupling and cohesion metrics, such as,
CoCC and C3 extract, encode, and analyze the semantic
information embedded in the comments and identifiers
in software. Software developers utilize the comments
and identifiers to represent elements of the problem or
solution domain [11, 15]. Whilst conceptual cohesion
[31] and coupling [35] metrics capture this information
and have been proposed elsewhere in the research
literature, we augment a family of conceptual metrics
with two new members, namely CCBO and CLOM5.

Our metrics rely on the equivalent underlying
mechanism to extract and analyze the conceptual
information from the identifiers and comments in source
code as previous conceptual metrics, which are based on
Latent Semantic Indexing (LSI) [14]. LSI has been used
before to support other source code analysis tasks such
as concept location [34], identification of abstract data
types [29], clone detection [40], traceability link
recovery among software artifacts [1, 13, 30], software
clustering [25], quality assessment [26] and software
measurement [16, 31, 32, 35, 36]. For the sake of
completeness we provide some of the details on the LSI
in the next section.

2.1 Latent Semantic Indexing in the Nutshell
LSI is a machine-learning model that induces

representations of the meaning of words by analyzing
the relations among words and documents in textual
corpus of data. LSI was initially developed in the
context of information retrieval as a way of overcoming
issues with polysemy and synonymy, which are inherent
to the vector space model (VSM) [38]. The specific
technique, which is used by LSI to capture vital
conceptual information and tackle two aforementioned
problems, is dimension reduction, which implies
selecting the top dimensions from a co-occurrence term-
document matrix decomposed using singular value
decomposition (SVD). Consequently, LSI provides an
effective mechanism to assess and evaluate similarity
amid any two documents in the text corpus (i.e.,
methods in software) in an unsupervised fashion. While
the details behind SVD are rather complex and lengthy
to be presented in this paper, we refer a reader to [14].

LSI relies on VSM, which is an extensively used
approach for encoding documents in the corpus as
numerical vectors. More specifically, VSM encodes a
corpus by a term-by-document matrix whose [i, j]th
element indicates the association between the ith term
and jth document. In case of our particular application, a
term is an identifier or a comment, and a document is a
body of the method extracted from a source code file.
The foundation of VSM lies in the mechanism that
represents documents by its association with terms
where the association is measured by term co-
occurrences in the documents. There are several
mechanisms to capture these associations based on term
occurrences such as term frequencies (default case in
our empirical evaluation) and term frequency – inverse
document frequency (tf-idf). In a term-by-document

matrix, a tf-idf value for [i, j]th element implies a
statistical measure evaluating how important a word is
to a document in a corpus. Formally,

log /, ,w tf N dftt d t d 

where tft,d is the term frequency of a document d, and dft
is the term frequency in all the documents in the corpus,
whereas the N is the number of documents in the corpus.
The importance of a word increases proportionally to the
number of times a word appears in the document, but is
offset by the number of times of that word appearing in
the corpus [38].

The conceptual similarity between documents is
measured via the cosine or inner product between the
corresponding vectors (i.e., methods), which increases if
more words are shared. This underlying mechanism
entirely supports the idea of measuring conceptual
coupling and cohesion in software based on word
matching from identifiers and comments in software.

2.2 Conceptual Cohesion & Coupling Metrics
The definitions of the new conceptual cohesion and

coupling of classes builds on our previous work for
measuring the conceptual cohesion [32] and coupling
[36] of classes. The source code of the software system
is parsed and transformed into a corpus of textual
documents where each document corresponds to the
implementation of a method. Aforementioned LSI
technique takes the corpus as an input and creates a
term-by-document matrix, which captures the dispersion
and co-occurrence of terms in class methods. SVD is
used next to construct a subspace, referred to as the LSI
subspace. All methods from this matrix are represented
as vectors in the LSI subspace. The cosine similarity
between two vectors is used as a measure of conceptual
similarity between two methods and is purported to
determine shared conceptual information between two
methods in the context of the entire software system.
This mechanism to capture conceptual similarity among
documents has been introduced before in Conceptual
Coupling of Classes and Conceptual Cohesion of
Classes measures and is also used here.

Next we define the model, CCBO, and CLOM5
measures. Some of the definitions have been presented
elsewhere [35], however, we also include them for the
sake of completeness.

2.3 Principal Definitions
Definition 1 (System, Classes, Methods). We define

an OO system as a set of classes C = {c1, c2…cn} with
the number of classes in the system n = |C|. A class has a
set of methods. For each class c  C, M(c) = {m1, …,
mt} represent its set of methods, where t = |M(c)| is the
number of methods in a class c. The set of all the
methods in the system is denoted as M(C).

An OO system C can be also viewed as a set of
connected graphs GC = {G1,.., Gn} with Gi representing
class ci. Each class ci  C is also represented by a graph
Gi  GC such that Gi = (Vi, Ei), where Vi = M(ci) is a set

of vertices corresponding to the methods in class ci and
Ei  ViVi is a set of weighted edges that connect pairs
of methods from the class.

Definition 2 (Conceptual Similarity between
Methods). The conceptual similarity between methods
(CSM) mk  M(C) and mj  M(C), CSM(mk, mj), is
computed as the cosine amid two vectors vmk and vmj,
representing mk and mj in the LSI semantic space:

CSM(mk, mj) =
22 |||| jk

j
T
k

vmvm

vmvm



As defined, the value of CSM(mk, mj)  [-1, 1], as
CSM is a cosine similarity in the LSI space. In order to
fulfill non-negativity property of software metrics [9],
we refine CSM as the following:





 


0

0),(),(
),(1

else

mmCSMifmmCSM
mmCSM

jkjk

jk

CSM1 has been used as a base for defining C3 [31]
and CoCC [35] measures before.

Definition 3 (Parameterized Conceptual Similarity)
In our work we define conceptual cohesion and

coupling metrics utilizing counting mechanisms,
stemming from existing structural metrics, which are
sensitive to the input information such as nodes and
edges (e.g., methods and attribute references). Thus, in
this work we introduce a notion of a parameterized
conceptual similarity, which distinguishes among
significant and non-significant conceptual interactions
among methods of classes.

In particular, we conjecture that it is possible to
empirically derive a threshold for a given software
system to distinguish between strong and weak
conceptual similarities. More formally, we define
parameterized CSMP as:

CSMP(mk, mj, t) =
11 (,)

0

k jif CSM m m t

else

 



Of course, the particular threshold t depends on the
specific software system. In our previous experience, the
absolute value of the cosine similarity can not be used as
a reliable indicator of presence or absence of conceptual
relationship among pairs of methods as more
comprehensive analysis of similarity distributions is
required. One of the main research questions in our
empirical evaluation is centered on empirically deriving
such a threshold and analysis of the impact on the choice
of threshold values on the resulting metrics.

2.4 Conceptual Lack of Cohesion in Classes
In this paper we define our first metric, namely

CLCOM5 using CSMP as the foundation for computing
conceptual similarities among methods of classes,
however, in terms of counting mechanism we rely on
one of the ideas from previously defined structural
metrics, namely LCOM5 [23], graph based cohesion
metric. The main difference between our metric,
CLCOM5 and C3, conceptual cohesion of classes

metric, is that we define a parameterized version of
cohesion metric using a different counting mechanism:

),(),(5 GNoCCxcCLCOM 

where NoCC identifies the number of connected
components in the graph GC= (M(c), E), c  C, E 
M(c) M(c), and (mk, mj)  E if CSMP(mk, mj, t)=1.

2.5 Conceptual Coupling between Object Classes
The definition of CCBO relies on previous

definitions for CoCC metric. We provide these
definitions and explain how we adjusted them in the
current work.

Let ck  C and cj  C be two distinct (ck  cj) classes
in the system. Each class has a set of methods M(ck) =
{mk1, …, mkr}, where r = |M(ck)| and M(cj) = {mj1, …,
mjt}, where t = |M(cj)|. Between every pair of methods
(mk, mj) there is a similarity measure CSMP(mk, mj). We
can similarly define the conceptual similarity between
two classes cj and ck, that is CSCP , as follows:

CSCP(ck, cj, t) =
11 (,)

0

k jif CSC c c t

else

 



The definition ensures that the conceptual similarity
between two classes is symmetrical, as CSC(ck, cj) =
CSC(cj, ck). In this case we use class granularity to build
the corpus. This is the main difference between
computing CLCOM5 and CCBO metrics. We refine the
conceptual similarity for a class c as the following:

CCBO(c, t) = 
 kk ccCc

k
P tccCSC

,

),,(,

which is the sum of the parameterized conceptual
similarities between a class c and all the other classes in
the system.

3. Empirical Case Study
In this section we present the design of the empirical

case study aimed at comparing CLCOM5 and CCBO
with other structural and conceptual coupling metrics for
the task of predicting bugs in open-source software as
well as identifying and analyzing various factors
impacting performance of the proposed measures. The
description of the study follows the Goal-Question-
Metrics design presented in [6]. The data, which has
been used to generate the results in this paper, was
previously used in [36].

3.1 Definition and the Context
Our primary goals include comparing new

conceptual metrics against existing coupling and
cohesion metrics and determining whether combining
the metrics can support the task of predicting bugs in
large open-source software. In this empirical study the
quality focus was on establishing orthogonality among
CCBO, CLCOM5 and existing coupling and cohesion
metrics and improving on accuracy of bug prediction,
while the perspective was of a software developer
analyzing a release of a software system for possible

faults. The context of this case study consists of a large
open-source software system, that is, Mozilla, which is
implemented in a mix of programming languages
spanning from C/C++, Java, IDL, XML, HTML, to
JavaScript. It should be noted that we analyzed only
C++ classes from the source code and computed CCBO,
CLCOM5 and other structural and conceptual metrics
among object-oriented classes implemented in C++
only.
3.1.1. Cohesion and coupling metrics. In order to
determine whether the newly proposed metrics capture
new dimensions in coupling measurement, we selected
61 exiting structural and conceptual metrics for
comparison, including coupling metrics (e.g., CBO,
RFC), cohesion metrics (e.g., Coh, Coh, LCOM1,
LCOM2, LCOM3), CK [12] metrics suite as well as
other metrics implemented in our metrics collection
tool, namely Columbus [20]. In addition to these
structural metrics we also considered a conceptual
cohesion metric, that is, C3 [31]. Other guiding criteria
that we used to choose the metrics is availability of the
results reported for these metrics elsewhere in the
literature [10, 22] to facilitate systematic comparison
and evaluation of the results.
3.1.2. Subject software system. For our case study we
have chosen one large real-world software system.
Mozilla 1 is an open-source Web browser ported to
almost all identified software and hardware platforms.
It is as large as many industrial size programs and is
developed mostly in C++. We do not analyze the parts
of Mozilla written in other programming languages,
such as, C, Java, IDL, XML, HTML, etc. In our case
studies, we use the source code of version 1.6 of
Mozilla. It should be noted that we opted to work with
such a system to emulate real-world settings where
analyzing the source code written in such a detailed
programming language as C++ introduces difficulties in
addition to compiling such systems on different
platforms.
3.1.3. Building and indexing text corpora. In order to
compute CCBO and CLCOM5 metrics we first need to
generate a corresponding corpus for the software
system. To build such a corpus for Mozilla we extracted
the textual information, i.e., identifiers and comments,
from the source code using method level granularity,
where each document in the corpus represents a method
from the software system (that is, a sequence of
identifiers and comments implementing corresponding
method). More specifically we extracted the following
textual information: (1) comments, (2) local and
attribute variable names, (3) user defined types, (4)
methods names, (5) parameter lists and (6) names of the
called methods. It should be noted that the comments
preceding or proceeding the code have been extracted

1 http://www.mozilla.org/

using similar heuristics to [21], which have been
implemented in our Columbus reverse engineering
framework. Finally, we opted for not including the
names of the primitive types in the corpus and we
considered those to be a part of our stop word list.

Once a corpus is built, we index it through Latent
Semantic Indexing using the term-by-document co-
occurrence matrix corresponding to the corpus. LSI
captures important conceptual relationships (i.e.,
couplings) among methods and classes within the
corpus. After modeling the corpus using LSI, conceptual
coupling and cohesion metrics can be computed (for the
details on how CCBO and CLCOM5 are computed
using underlying textual information refer to Section 2).
The next section describes all the necessary settings for
other researchers who are willing to reproduce the
results of our empirical study.
3.1.4. Settings of the case study. All the structural
coupling measures were computed using Columbus
[20]. Columbus is a reverse engineering framework that
contains the components for analyzing arbitrary C/C++
source code and presenting the extracted information in
any desired form. In this case study, we used the
compiler wrapper technology of Columbus to extract
the facts from Mozilla’s source code. For more details
on how compiler wrapping is done in Columbus refer to
our previous work [19, 22].

 The textual information needed to compute CCBO
and CLCOM5 has been also extracted using the
Columbus framework. We used a cross-platform
numerical analysis and data processing library ALGLIB2
to compute the Singular Value Decomposition, which is
needed for the LSI algorithm.

Since we used method level granularity to construct
the corpus for Mozilla we extracted all types of methods
from classes in the source code, including constructors,
destructors, and accessors. Comments and identifiers
were extracted from the body of each method as well
before and after given Columbus’ heuristics. The
resulting text from the source code was pre-processed
using the following parameters: some of the tokens were
eliminated (e.g., operators, special symbols, numbers,
reserved keywords of the C++ programming language,
primitive data types standard library function names
including standard template library); the identifier
names in the source code were split into original words
based on observed coding standards and naming
conventions, e.g., Google’s C++ coding standard3. For
instance, the following identifiers are split into words
‘lack’, ‘of’ and ‘cohesion’: ‘LackOfCohesion’,
‘Lack_of_cohesion’, etc. During this indexing process,
LSI does not utilize a predefined vocabulary, or a
predefined grammar, hence no morphological analysis
or transformations were performed, such as abbreviation
expansion. However, we build various corpora with and

2 http://www.alglib.net
3http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

without stemming to study its impact on the metrics in
our empirical study.
3.1.5. Predicting faults using machine learning
algorithms and software metrics. In order to evaluate
the usefulness of our metrics we conducted a number of
analyses to discover possible relationships between the
values of the metrics and the number of bugs found in
Mozilla’s classes. We employed regression analysis
methods along with machine learning techniques,
which are widely used to predict an unknown variable
based on one or more a priori known variables. We
opted to use these statistical techniques to study
relationship between the metrics and faults in classes.

The logistic regression method predicts if a class is
faulty or not, but does not infer a probable number of
bugs in classes. We used univariate logistic regression
analysis to examine each metric separately and
multivariate analysis to study common effectiveness of
the combinations of various metrics. In addition to
regression analyses we exploited machine learning
methods to predict the fault-proneness of classes. While
similar studies have been done in the past on the CK
metrics [22], in this paper we apply machine learning
techniques on 61 conceptual and structural metrics to
predict fault-proneness in software. We utilize a suite of
machine learning techniques implemented in Weka4, an
open-source collection of machine learning algorithms
for data mining tasks. The usage of this toolset
simplifies the validation part, since these algorithms are
well-documented and easy to use. In particular we use
Naïve Bayes, Bayesian Logistical Regression, Bayes
Net, Logistic Regression, RBF Network, Simple
Logistic Regression, SMO, IB-k, Conjunctive Rule,
Decision Table, ADTree and REP Tree. The Naïve
Bayes is a statistical based algorithm based on
probabilistic models. IB-s is a k-means clustering
algorithm combined with a simple classifier. The
difference between the logistic and simple logistic
regression analyses are that logistic regression makes
multi-nominal regression by using all of the given
predictors, however, simple logistic regression may
eliminate some of those. SMO is a sequential minimal
optimization algorithm for training a support vector
classifier. RBF network is a Gaussian radial basis
function network, which is akin to artificial neural
network, which uses radial basis functions as activation
functions in the neurons. Some of these algorithms are
rule/tree based algorithms. For instance, Conjunction
Rule is rule based and it provides conjunction rules for
classifying labels. Decision Table generates complex
logical rules from the given learning examples and it
generates rules to classify incoming labels. ADTree is
an alternative decision tree algorithm, which generates
rules for the cases of metric values. Finally, REPTree is
a fast decision tree learner, which builds a

4 http://www.cs.waikato.ac.nz/ml/weka/

decision/regression tree via information gain/variance
and prunes it using reduced-error with back-fitting.

All the models were trained to provide binary
predictions which imply that they predict if a class is
prone to be faulty or not based on the values or
combination of values of particular metrics. In order to
estimate the performance of generated predictive models
we utilized the ten-fold cross-validation technique. As
for the training bug data we utilized the bug data that
was gleaned and used in our previous work elsewhere
[22].

3.2 Research Questions
We address the following research questions (RQ)

within the context of this empirical study.
 RQ1: Are the new metrics, CCBO and CLCOM5,

orthogonal as compared to existing structural and
conceptual coupling and cohesion metrics?

 RQ2: How does stemming impact accuracy of
CCBO and CLCOM5 for predicting fault-
proneness of classes?

 RQ3: What is the optimal threshold for CCBO and
CLCOM5 for predicting fault-prone classes?

 RQ4: Does combining CCBO and CLCOM5 with
existing structural and conceptual cohesion and
coupling metrics improve accuracy of predicting
fault-prone classes?

To respond to our research questions we compare
CCBO and CLCOM5 with other coupling and cohesion
metrics as well as explore the impact of combining
coupling metrics.

3.3 Evaluation of Metrics and Analysis
Precision, recall and accuracy are three widely used

information retrieval metrics that were employed to
measure performance of software metrics for various
maintenance tasks including predicting fault-prone
classes. We explain these measures in the context of true
positives (TP), true negatives (TN), false positives (FP)
and false negatives (FN) in the context of fault-
proneness prediction.

True Positive is a candidate class, which was
predicted as faulty and contained a bug, whereas a True
Negative is a candidate class predicted as non-faulty and
containing no bugs. The False Positive is class that was
marked as faulty by the model, but actually did not
contain a fault, whereas a False Negative is a class
where the model marked a class as non-faulty and it did
contain a bug. Accuracy, Precision and Recall are
defined as the following:
Accuracy=

FNTNFPTP

TNTP


 , Prec=

FPTP

TP


, Recall =

FNTP

TP



While reporting the results we also used F-measure,
which is a harmonic mean of precision and recall.

In order to explore the principal, orthogonal
dimensions captured by the coupling and cohesion
measures (both conceptual and structural) we performed
Principal Component Analysis (PCA) on the metrics.
Applying PCA to metrics data consists of the following

steps: collecting the metrics data, identifying outliers,
and performing PCA. We applied PCA in the similar
manner as in our previous work [31, 35], including
procedures for identifying outliers and rotating principal
components. In general, via PCA we can recognize
groups of variables (i.e., metrics), which are likely to
measure the same underlying dimension (i.e., specific
mechanism that defines, for instance, coupling or
cohesion) of the object to be measured (e.g., cohesion of
a classes).

3.4 Case Study Results
3.4.1. RQ1 – Results of the principal component
analysis. PCA was performed on 3,625 classes from
Mozilla (that is, classes for which we could compute all
the metrics) with 61 structural and conceptual metrics.
While the complete results are quite lengthy to be
presented in this paper, we summarize some of the
results and provide the link to the complete results in
the online appendix 5 , which also contains the brief
explanations of the metrics mentioned in the following.

The PCA resulted in 11 Principal Components (PCs)
that describe 87.6% of the variance in our data set. We
provide top four PCs with their interpretations:

PC1 (27%): There are several metrics which were
included in this component: cohesion metrics LCOM-
LCOM5, NLMA, NLMAni and our CLCOM5, size
metrics NML, NMLD, NAML, NAL, NMLDpub,
NMLpub, LOC, lLOC, coupling metrics NFMA, NOI
and RFC, and the WMC complexity metric. These
clusters of the results are consistent with previous work
with some changes in the rankings of the PCs [10].

PC2 (21%): This component was comprised of
several coupling metrics RFC1, RFC2 and RFC3,
inheritance-based metrics AID, DIT, NOA, NMI and
various size metrics, such as, NM, NMpub, NMprot,
NMD, NMDpub, NMDprot, NAM.

PC3 (7.2%): This component was described mostly
by NMLDpriv, NMDpriv, NMLpriv and NMpriv

5 http://www.cs.wm.edu/semeru/scam10-conceptual-metrics

metrics. As it can be seen in the results for the other
RQs, these metrics’ prediction performance were quite
offset from the other variants of these metrics, such as,
NMLDpub, NMLDprot.

PC4 (6%): This component consisted of the
structural cohesion Co1, Co2, Coh metrics, CCBO and
C3 conceptual metrics.

In addition to PCA we also analyzed correlations
among the metrics. While we pinpoint a few interesting
observations in this paper, we refer the interested reader
to the online appendix for the complete analysis results.

CCBO correlated with CLCOM5 with a coefficient
of 0.41 and a few other structural metrics, such as Coh,
CBO, RFC with a coefficient between 0.4 and 0.5. On
the other hand, CLCOM5 was highly correlated with
many other structural metrics such as LOC, LLOC,
NOI, CBO, RFC and WMC with a correlation
coefficient above 0.7. These results indicate that the new
conceptual cohesion and coupling metrics are closer to
structural metrics as previously defined conceptual
metrics, such as C3. This result can be interpreted as a
positive result as conceptual metrics are less expensive
to compute compared to many structural metrics and do
not depend on the specific programming language at
hand as well as building specialized parsers for those
languages and systems to derive the metrics.
3.4.2. RQ2 – identifying impact of stemming on
CCBO and CLCOM5 metrics for predicting fault-
prone classes. The conceptual metrics rely on the
quality of the underlying comments and identifiers in
source code as well as specific pre-processing strategies
used to transform the corpus before indexing. While
previous work did not look closely into this important
factor, we perform close investigation of the impact of
stemming on the performance of conceptual metrics
and their combinations with structural metrics to
identify fault-prone classes. The goal of this
investigation is to identify whether stemming helps in
building better models for predicting faults, which
utilize conceptual metrics.

Table I. Ten-fold cross validation of conceptual & structural metrics with & w/o stemming for predicting faults
 Conceptual-no-stem All-metrics-no-stem Conceptual-with-stem All-metrics-with-stem

ML Algorithm A P R F A P R F A P R F A P R F

Bayesian Log. Reg. 68.3 70.5 69.1 69.8 71.8 76.7 67.3 71.7 68.8 70.4 71.2 70.8 71.5 71.5 74.7 72.3

Bayes Net 67.0 64.7 83.4 72.8 70.5 72.5 71.5 72.0 67.3 65.0 83.1 73.0 70.5 72.4 71.8 72.1

Naïve Bayes 68.1 67.9 75.9 71.7 69.2 73.1 66.3 69.6 68.5 67.9 77.2 72.3 69.1 73.1 66.3 69.5

Logistic Regression 67.6 73.6 61.0 66.7 72.5 76.6 69.5 72.8 67.9 72.6 63.4 67.7 72.4 77.0 68.4 72.4

RBF Network 67.1 70.1 66.4 68.2 69.3 70.7 71.9 71.3 68.7 68.8 75.1 71.8 69.7 71.9 70.5 71.2

Simple Logistic 67.6 73.5 60.9 66.6 72.1 75.9 69.6 72.6 67.8 72.6 63.4 67.7 71.8 75.6 69.2 72.3

SMO 67.8 73.8 61.1 66.9 72.4 76.2 69.8 72.8 68.0 72.5 64.1 68.0 72.2 76 69.7 72.7

IB-k 66.6 67.9 70.3 69.1 71.2 73.1 72.5 72.8 68.8 70.5 70.9 70.7 72.7 74.5 73.8 74.2

Conjunctive Rule 65.8 79.9 47.6 59.6 69.6 81.8 55.0 65.8 64.5 73.1 52.6 61.2 69.5 82.1 54.3 65.4

Decision Table 67.8 65.8 81.9 73.0 70.3 73.6 68.5 71.0 68.1 66.5 80.7 72.9 70.5 74.3 67.9 71.0

AD Tree 68.4 65.9 84.2 73.9 70.9 72.8 72.3 72.5 68.3 65.7 84.6 74.0 71.0 74.4 69.3 71.7

REP Tree 67.3 67.8 73.2 70.4 71.2 72.6 73.6 73.1 67.6 68.5 72.3 70.3 70.6 72.2 72.6 72.4

The results of the ten-fold cross-validation of various
configurations of the models using and not using
stemming are presented in Table I. The first part of the
table presents the results of applying several machine
learning techniques for predicting bugs in Mozilla on the
models built using three conceptual metrics (i.e., CCBO,
CLCOM5 and C3) without stemming. As it can be seen,
the performance of these models in terms of precision
(P), recall (R), accuracy (A) and F-measure (F) are quite
high as compared, for instance to random classifiers.
While the performance of the metrics are rather
consistent across various machine leaning algorithms,
we identify that the AD Tree algorithm produces the
highest accuracy, recall and F-measure values (i.e.,
68.4%, 84.2% and 73.9% respectively), while
Conjunctive rule achieves the highest precision.

It should also be noted that the results of combining
new conceptual metrics (without stemming) for
predicting fault-proneness is comparable to the
combination of structural metrics (see Table II).
Furthermore, the models based on conceptual metrics
are able to outperform the models based on structural
metrics in terms of recall and f-measure (i.e., 84.2 vs.
73% and 73.9% vs. 72.4 respectively).

When we compare the results of combining all the
structural metrics (i.e., all-metrics-no-stem in Table I)
against conceptual metrics without stemming (i.e.,
conceptual-no-stem in Table I), we can observe slight
improvement in the accuracy (that is, 72.5% vs. 68.4%)
and precision (that is, 81.8% vs. 79.9%), while the best
recall and F-measure are obtained with conceptual
metrics (that is, 84.2% and 73.9%, respectively).

Table II. Ten-fold cross validation of the structural
metrics for predicting fault-proneness

ML Algorithm A P R F
Bayesian Log. Reg. 70,5 71.8 73.0 72.4

Bayes Net 69.9 72.1 70.6 71.4
Naïve Bayes 69.1 73.2 66.1 69.5

Logistic Regression 72.1 76.6 68.5 72.3
RBF Network 68.9 75.0 62.1 67.9

Simple Logistic 71.7 75.2 69.9 72.3
SMO 71.4 74.7 69.9 72.2
IB-k 70.2 72.3 71.0 71.6

Conjunctive Rule 70.1 81.7 56.4 66.7
Decision Table 70.6 75.3 66.5 70.7

AD Tree 70.9 75.2 67.5 71.1
REP Tree 70.5 72.9 70.5 71.7

According to the results while applying stemming

(see conceptual-with-stem in Table I), we have positive
improvements in case of accuracy, recall and F-measure.
Moreover, we can observe that this improvement is
consistent for these parameters across different machine
learning algorithms utilized. We can also observe a
noticeable improvement in recall and F-measures for
conceptual metrics with stemming over structural
metrics.

Finally, the results for combining conceptual metrics
with stemming (all-metrics-with-stem in Table I) and all
the structural metrics leads to the conclusion that this
combination produces the best values across all the
parameters, such as, accuracy, precision, recall and F-
measure (i.e., 72.7%, 82.1%, 74.7% and 74.2%
respectively). Likewise, the models with all the metrics
and stemming outperforms the model, which is based on
a combination of pure structural metrics (see all-metrics-
with-stem in Table I and Table II).

Based on these results we conclude that stemming
does improve the results for predicting fault-prone
classes. According to our best knowledge, this is the
first research result in the literature, which empirically
confirms the positive impact of stemming on conceptual
metrics given positive impact on the external software
quality attribute, such as fault-proneness of classes.
Assuming this result we apply stemming from now on to
answer the remaining research questions.
3.4.3. RQ3 – Identifying optimal thresholds for
CCBO and CLCOM5 metrics for predicting fault-
proneness of classes. CCBO and CLCOM5 are
parameterized metrics, which depends on the threshold
t to identify conceptual similarities among class
methods. While we used a default threshold of 0.7 to
answer RQ2, it is necessary to identify acceptable
values of this parameter for the given task. We
acknowledge that the process of identifying an optimal
threshold could be software system specific, thus, we
present the results for Mozilla only.

In order to search for the optimal thresholds for
CCBO and CLCOM5 metrics on our dataset we
computed accuracy values of the metrics across various
thresholds starting from 0.05 until 0.95 with a step of
0.05. It should be noted that we used a reduced set of
machine learning algorithms in this case, which
corresponded to the subset of algorithms indicating a
superior performance in RQ2. According to our results
(see Figure 1) it can be seen that the thresholds for
CLCOM5 resulting in the accuracy of at least 64%
reside in the interval [0.3, 0.95], whereas the peak
performance of 68.5% in accuracy is observed in the
interval of [0.7, 0.8]. These results are consistent across
all the machine learning algorithms used in this
situation.

On the other hand, the accuracy of CCBO is more
sensitive to threshold values as compared to CLCOM5
metric. Here we observe that the accuracies of the
algorithms slowly decline from 0.05 threshold. This
finding is quite interesting suggesting that we should
assign higher thresholds for CLCOM5 cohesion metric
and lower thresholds for CCBO coupling metrics to
warrant better prediction accuracy of fault-proneness.

While using the best thresholds (see Table V) for
CLCOM5 and CCBO we observed some improvement
in CLCOM5 over LCOM5 while predicting fault-prone
classes in terms or accuracy (that is, 68.8% vs. 64.6%),
recall (that is, 72.2% vs. 71.3%) and F-measure (that is,
70.8% vs. 68.1%). CCBO measure appears to be better
at recall (that is 74.6% vs. 72.8%). Finally both
conceptual measures, CLCOM5 and CCBO, outperform
existing C3 measure in terms of accuracy, precision and
F-measure.
3.4.4. RQ4 – Results of combining CCBO and
CLCOM5 with structural and conceptual metrics
for fault-proneness. Lastly, we tested if combining
CCBO, CLCOM5 and structural metrics improves the
performance of models for fault prediction as compared
to combinations of C3 & structural metrics.

Based on the results we conclude that combining
CCBO and CLCOM5 with structural metrics prediction
models are more robust than combinations of existing
conceptual metric C3 and structural metrics. We derive
these conclusions based on the analysis of the average
results of accuracy, precision and recall measures.

Table III. Combining CCBO and CLCOM5 with
structural (left) and C3 and structural metrics (right)

 CCBO,CLCOM5+struct C3+struct
Algorithm A P R A P R

Bayes. Log. Reg. 71.6 74.8 70.1 71.7 73.1 73.9
Bayes Net 70.7 72.6 72.0 70.3 72.3 71.6
Naïve Bayes 69.2 73 66.5 68.9 73 65.9
Logistic Reg. 72.0 75.8 69.6 71.8 76.3 68.1
RBF Network 69.8 72.4 69.8 69.8 72.4 69.5
Simple Logistic 71.6 75.5 69.0 71.9 75.6 69.5
SMO 72.0 74 72.7 72.1 75.6 70.1
IB-k 73.0 75.4 72.9 72.3 74.7 72.2
Conjunctive Rule 69.7 81.1 56.0 69.9 80.9 56.7
Decision Table 70.4 74.1 67.9 70.4 74.1 67.9
AD Tree 71.0 72.9 72.3 70.5 74.3 67.9
REP Tree 71.1 73.4 71.3 70.6 72.6 71.6

 3.4.5. Analyzing metric intervals. In addition to
answering the research questions we examined the
proposed metrics more closely. In particular we
analyzed histograms of distributions of faulty classes
across metric intervals, where x-axis represents metric

intervals and y-axis shows faulty (dark grey) and non-
faulty (light gray) classes (see Figure 2).

Interestingly enough, all the three conceptual
metrics, existing C3 and proposed CCBO and CLCOM5
reflect our underlying hypotheses. In other words, C3
captures more faulty classes while the metrics values are
low, likewise the CLCOM5 metric; whereas CCBO
captures more faulty classes when the metrics values are
getting higher.

3.4.6. Results for the logistic regression analysis. We
also decided to examine individual performance of the
metrics using univariate logistic regression. The set-up
of this study was similar to our previous work [22, 32].

According to the results, which present top 12
performing metrics (out of 61 metrics) according to
accuracy values, CCBO and CLCOM5 were not the best
measures. However, CLCOM5 appears to be the best
measure in the family of cohesion metrics and CCBO
appears to be one of the best coupling structural metrics
besides CBO, RFC and RFC3. This result further
supports the usefulness of proposed metrics.

Table IV. Results of regression analysis
Metric Acc. Prec. Rec. Metric Acc. Prec. Rec.
CBO 71.9 74.1 72.4 lLOC 68.9 76.4 59.8
NOI 71.4 76.8 66.1 RFC3 68.9 77.7 58.1

WMC 70.3 77.7 61.8 LOC 68.7 76.9 58.6
RFC 69.8 75.9 63.2 CLCOM5 67.5 73.5 60.9

NFMAni 69.8 75.5 63.7 CCBO 66.7 66.7 74.6
NFMA 69.3 72.9 67.2 NAML 66.7 74.7 56.4

3.5 Threats to validity
We recognize some issues that could have affected

the results of the case study and may have limited our
interpretations. We have demonstrated that our metrics
are more similar to some of the structural metrics than to
existing conceptual metrics; however, we obtained these
results by analyzing classes from only one large C++
open-source system. In order to generalize the results,
large-scale assessment is needed taking into account
software from diverse domains, implemented in
different programming languages and environments.

The conceptual measures (that is, CCBO and
CLCOM5) depend on consistent and concise naming
conventions for identifiers and comments. When these

Figure 1. CLCOM5 (left) and CCBO (right) accuracies across different thresholds

are missing, the emphasis for capturing coupling or
cohesion should be placed on static or dynamic metrics.

CCBO and CLCOM5 measures, as currently
defined, do not take into account polymorphism and
inheritance. The measures only consider methods of a
class that are implemented or overloaded in the class.

In our case study for predicting fault-proneness we
used one large (i.e., Mozilla) software system, however,
to permit for generalization of the results, yet again,
large-scale evaluation is needed, which should take into
account several releases of software systems
implemented in multiple languages (that is, not only
C++ as covered in our case study).

We also observed that the machine learning
algorithms did not generate the best models in every
case. In other words, we did not investigate collinearity
among the metrics to identify similar groups of metrics
to improve the predictive power for the models. Instead,
we utilized all the software metrics generated by
Columbus. We will redirect our future research efforts
to study this phenomenon.

Our metrics rely on parameterized conceptual
similarities among methods, which assume specifying a
threshold for operational measures. While we used near-
optimal threshold values (as indicated via analysis of all
other possible threshold values), these threshold values
may vary for other software systems. Our future work
will target not only identifying ranges of acceptable
threshold values, but also guidelines to users of the
metrics on how to identify these thresholds.

4. Related Work
Our related work can be broadly classified into two

areas – conceptual cohesion and coupling metrics and
predicting fault-proneness of classes.

Conceptual cohesion of classes or C3 [31] is one of
the first conceptual metrics proposed in the research
literature. C3, similarly to CLCOM5 and CCBO is
based on the analysis of the semantic information

embedded in the source code, such as identifiers and
comments. C3 has been recently used in conjunction
with structural cohesion metrics to predict faults in
object-oriented classes [32]. CoCC [35] is a conceptual
coupling metric, also based on LSI, stems from C3,
however, it was defined to capture coupling among
classes based on conceptual similarities among methods
in different classes. CoCC has been shown to
outperform structural coupling metrics for the task of
impact analysis on a large open-source system [36].
Finally, WME is a conceptual cohesion metric based on
Latent Dirichlet Allocation and information theory
approaches [28]. This cohesion metric has been shown
to capture different aspects of class cohesion and
improved fault prediction for most existing cohesion
metrics. While building comprehensive models for fault
prediction was not at the focus of papers presenting
conceptual metrics, this paper not only introduces new
metrics, but also explores their role in building complete
models for fault prediction.

Existing research showed that software metrics can
be used as good indicators for the fault proneness of
classes in OO systems [3, 5, 7, 10, 17, 22, 33, 37, 39].
More specifically, some of the existing approaches also
utilized machine learning [22] and logistic regression
analyses [3, 5, 7, 10, 22, 33, 39] to build metric-based
models for fault prediction. Our paper is different from
the previous work as it defines new conceptual metrics
for class cohesion and coupling, which appear to be an
improvement over the state-of-the-art. Finally, this work
explores a set of machine learning techniques and
regression analyses to test a number of models based on
the combinations of structural and conceptual metrics
along with the detailed investigation into principal
factors impacting the performance of the conceptual
metrics. Finally, prediction of fault-prone classes or
simply bug prediction is an active area of research,
which produced a number of research publications in the
last decade. Besides conference and journal publications

Table V. Ten-fold cross validation of CLCOM5, LCOM5, CCBO and C3 for predicting faults in classes
 CLCOM5; t=0.75 LCOM5 CCBO; t=0.1 CBO C3

Algorithm A P R F A P R F A P R F A P R F A P R F

Naïve Bayes 68.8 71.0 69.8 70.4 62.8 66.8 59.3 62.8 67.3 68.8 70.3 69.5 71.9 73.9 72.8 73.3 65.4 63.3 83.2 71.9

Bayesian Log. Reg. 68.7 70.2 71.4 70.8 61.0 69.7 46.9 56.1 67.3 68.4 71.5 69.9 71.9 74.1 72.4 73.2 55.3 54.4 97.0 69.8

Simple Logistic 67.6 73.5 61.0 66.6 64.6 65.2 71.3 68.1 66.8 66.7 74.6 70.5 71.9 74.1 72.4 73.2 55.4 54.5 97.0 69.8

IB-k 68.3 69.4 72.2 70.8 64.6 65.4 70.9 68.0 64.9 64.8 74.2 69.2 71.9 74.1 72.4 73.2 65.6 63.0 85.3 72.5

Conjunctive Rule 66.5 73.4 57.9 64.7 64.6 65.2 71.3 68.1 67.4 68.9 70.5 69.7 70.5 77.7 62.3 69.2 61.8 58.5 96.5 72.8

AD Tree 68.7 70.2 71.4 70.8 64.6 65.2 71.3 68.1 67.1 68.6 70.3 69.4 71.9 74.1 72.4 73.2 65.5 63.3 83.1 71.9

Figure 2. Distribution of (non) faulty across C3 (left), CCBO (center) and CLCOM5 (right) metric intervals

on the topic, specialized conferences were organized
such as PROMISE6 and MSR7 with their specialized
data sets for predicting fault-prone classes in software.

5. Conclusion
The paper defines novel operational measures for

conceptual class cohesion and coupling measurement,
which have been empirically validated. An extensive
case study using machine learning techniques on metrics
data indicates that the proposed measures have
comparable accuracy with those defined suing structural
information. Moreover, combinations of novel metrics
with existing host of measures attests statistically
significant improvement in the results across multiple
evaluation criteria.

The paper lays the basis for the future work that
makes use of conceptual information for coupling and
cohesion measurement. The proposed metrics could be
further extended and refined, for instance, by taking into
account inheritance. Another direction is to improve the
quality of the underlying textual information by
applying advanced source code pre-processing
techniques for splitting [18] and expanding [24, 27]
compound identifiers and comments in software. Since
both CCBO and CLCOM5 rely on textual (unstructured)
information, we are considering including external
documentation in the corpus, which should extend the
context in which words are used in software to capture
underlying conceptual similarities.

6. Acknowledgment
We acknowledge Malcom Gethers for preparing the

online appendix. This work was supported in part by the
János Bolyai Research Scholarship of the Hungarian
Academy of Sciences, the Hungarian national grants
OTKA K-73688, TECH 08-A2/2-2008-0089 and GOP-
1.1.2-07/1-2008-0007, and NSF CCF-1016868. Any
opinions, findings and conclusions expressed herein are
the authors; and do not necessarily reflect those of the
sponsors.

7. References
[1] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and Merlo, E.,
"Recovering Traceability Links between Code and Documentation", IEEE
Transactions on Soft. Engineering, vol. 28, no. 10, pp. 970 - 983., 2002
[2] Antoniol, G., Fiutem, R., and Cristoforetti, L., "Using Metrics to Identify
Design Patterns in Object-Oriented Software", in Proc. of 5th IEEE
METRICS'98, Bethesda, MD, pp. 23 - 34., 1998
[3] Arisholm, E., Briand, L. C., and Foyen, A., "Dynamic coupling
measurement for OO software", IEEE TSE, vol. 30, no. 8, pp. 491-506., 2004
[4] Bansiya, J. and Davis, C. G., "A hierarchical model for object-oriented
design quality assessment", IEEE TSE, vol. 28, no. 1, pp. 4-17., 2002
[5] Basili, V. R., Briand, L. C., and Melo, W. L., "A Validation of OO Design
Metrics as Quality Indicators", IEEE TSE, vol. 22/10, Oct., pp. 751-761., 1996
[6] Basili, V. R., Caldiera, G., and Rombach., D. H., The Goal Question Metric
Paradigm, John W & S, 1994.
[7] Briand, L., Melo, W., and Wust, J., "Assessing the Applicability of Fault-
Proneness Models across OO Software Projects", TSE,vol.28/7,706-720., 2002
[8] Briand, L., Wust, J., and Louinis, H., "Using Coupling Measurement for
Impact Analysis in OO Systems", in IEEE ICSM'99, pp. 475-482., 1999

6 http://promisedata.org/
7 http://msr.uwaterloo.ca/

[9] Briand, L. C., Daly, J., and Wüst, J., "A Unified Framework for Coupling
Measurement in OO Systems", IEEE TSE, vol. 25/1, pp. 91-121., 1999
[10] Briand, L. C., Wüst, J., Daly, J. W., and Porter, V. D., "Exploring the
relationship between design measures and software quality in object-oriented
systems", Journal of System and Software, vol. 51, no. 3, pp. 245-273., 2000
[11] Caprile, B. and Tonella, P., "Restructuring Program Identifier Names", in
Proc. of 16th IEEE ICSM'00, San Jose, California, USA, pp. 97-107., 2000
[12] Chidamber, S. R. and Kemerer, C. F., "Towards a Metrics Suite for Object
Oriented Design", in Proc. of OOPSLA'91, pp. 197-211., 1991
[13] De Lucia, A., Fasano, F., Oliveto, R., and Tortora, G., "Recovering
Traceability Links in Software Artefact Management Systems", TOSEM, vol.
16, no. 4, 2007.
[14] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and
Harshman, R., "Indexing by Latent Semantic Analysis", Journal of the
American Society for Information Science, vol. 41, pp. 391-407. , 1990
[15] Deissenboeck, F. and Pizka , M., "Concise and Consistent Naming",
Software Quality Journal, vol. 14, no. 3, pp. 261-282, 2006
[16] Dit, B., Poshyvanyk, D., and Marcus, A., "Measuring the Semantic
Similarity of Comments in Bug Reports", in Proc. of 1st STSM'08, 2008
[17] El-Emam, K. and Melo, K., "The Prediction of Faulty Classes Using
Object-Oriented Design Metrics", NRC/ERB-1064, vol. NRC 43609, 1999.
[18] Enslen, E., Hill, E., Pollock, L., and Vijay-Shanker, K., "Mining Source
Code to Automatically Split Identifiers for Software Analysis", in Proc. of 6th
IEEE MSR, Vancouver, BC, Canada, pp. 71-80., 2009
[19] Ferenc, R., Beszedes, A., and Gyimóthy, T., "Extracting Facts with
Columbus from C++ Code", in Proc. of 8th CSMR''04, March, pp. 4-8., 2004
[20] Ferenc, R., Beszédes, Á., Tarkiainen, M., and Gyimóthy, T., "Columbus -
Reverse Engineering Tool and Schema for C++", in ICSM'02, 172-181, 2002
[21] Fluri, B., Würsch, M., Giger, E., and Gall, H., "Analyzing the co-evolution
of comments and source code", SQJ, vol. 17/ 4, pp. 367-394., 2009
[22] Gyimóthy, T., Ferenc, R., and Siket, I., "Empirical validation of OO
metrics on open source software for fault prediction", TSE,vol.31/10,Oct' 2005.
[23] Henderson-Sellers, B., Software Metrics, U. K., Prentice Hall, 1996.
[24] Hill, E., Fry, Z. P., Boyd, H., Sridhara, G., Novikova, Y., Pollock, L., and
Vijay-Shanker, K., "AMAP: Automatically Mining Abbreviation Expansions
in Programs to Enhance Software Maintenance Tools", in MSR'08.
[25] Kuhn, A., Ducasse, S., and Gîrba, T., "Semantic Clustering: Identifying
Topics in Source Code", IST, vol. 49/3, pp. 230-243, 2007
[26] Lawrie, D., Feild, H., and Binkley, D., "Leveraged Quality Assessment
Using Information Retrieval Techniques", in ICPC'06, pp. 149-158., 2006
[27] Lawrie, D., Feild, H., and Binkley, D., "Extracting Meaning from
Abbreviated Identifiers", in Proc. of 7th IEEE SCAM'07, Paris, France, 2007.
[28] Liu, Y., Poshyvanyk, D., Ferenc, R., Gyimóthy, T., and Chrisochoides, N.,
"Modeling Class Cohesion as Mixtures of Latent Topics", in ICSM'09.
[29] Maletic, J. I. and Marcus, A., "Supporting Program Comprehension Using
Semantic and Structural Information", in ICSE'01, pp. 103-112., 2001
[30] Marcus, A. and Maletic, J. I., "Recovering Documentation-to-Source-Code
Traceability Links using LSI", in ICSE'03, pp. 125-137.
[31] Marcus, A. and Poshyvanyk, D., "The Conceptual Cohesion of Classes", in
Proc. of 21st IEEE ICSM'05, Budapest, Hungary, pp. 133-142., 2005
[32] Marcus, A., Poshyvanyk, D., and Ferenc, R., "Using the Conceptual
Cohesion of Classes for Fault Prediction in OO Systems", TSE, vol. 34/2, pp.
287-300., 2008
[33] Olague, H., Etzkorn, L., Gholston, S., and Quattlebaum, S., "Empirical
Validation of Three Software Metrics Suites to Predict Fault-Proneness of
Object-Oriented Classes Developed Using Highly Iterative or Agile Software
Development Processes", IEEE TSE, vol. 33, no. 6, pp. 402-419., 2007
[34] Poshyvanyk, D., Guéhéneuc, Y. G., Marcus, A., Antoniol, G., and Rajlich,
V., "Feature Location using Probabilistic Ranking of Methods based on
Execution Scenarios and IR", TSE, vol. 33/6, pp. 420-432., 2007
[35] Poshyvanyk, D. and Marcus, A., "The Conceptual Coupling Metrics for
Object-Oriented Systems", in IEEE ICSM'06, Phil., PA, pp. 469 - 478., 2006
[36] Poshyvanyk, D., Marcus, A., Ferenc, R., and Gyimóthy, T., "Using
Information Retrieval based Coupling Measures for Impact Analysis",
Empirical Software Engineering, vol. 14, no. 1, pp. 5-32., 2009
[37] Quah, T.-S. and Thwin, M. M. T., "Application of neural networks for
software quality prediction using OO metrics", in ICSM'03,pp. 116-125.
[38] Salton, G. & McGill, M., Introduction to Modern IR, McGraw-Hill, 1983.
[39] Subramanyam, R. and Krishnan, M. S., "Empirical Analysis of CK
Metrics for Object-Oriented Design Complexity: Implications for Software
Defects", IEEE TSE, vol. 29, no. 4, pp. 297-310., 2003
[40] Tairas, R. and Gray, J., "An Information Retrieval Process to Aid in the
Analysis of Code Clones", ESE, vol. 14, no. 1, pp. 33-56., 2009
[41] Wilkie, F. G. and Kitchenham, B. A., "Coupling measures and change
ripples in C++ application software", JSS, vol. 52, pp. 157-164., 2000.

