
Knitting Music and Programming
Reflections on the Frontiers of Source Code Analysis

Nicolas Gold
CREST, Department of Computer Science

University College London
London, UK

n.gold@ucl.ac.uk

Abstract— Source Code Analysis and Manipulation (SCAM)
underpins virtually every operational software system. Despite
the impact and ubiquity of SCAM principles and techniques in
software engineering, there are still frontiers to be explored.
Looking “inward” to existing techniques, one finds frontiers of
performance, efficiency, accuracy, and usability; looking
“outward” one finds new languages, new problems, and thus
new approaches. This paper presents a reflective framework
for characterizing source languages and domains. It draws on
current research projects in music program analysis, musical
score processing, and machine knitting to identify new
frontiers for SCAM. The paper also identifies opportunities
for SCAM to inspire, and be inspired by, problems and
techniques in other domains.

Keywords: Source code analysis; music programming; music
analysis; graphical programming

I. INTRODUCTION
Source-code analysis and manipulation (SCAM) is

fundamental to the creation and maintenance of software
systems, and SCAM techniques are found in most parts of
the software engineering lifecycle. From supporting
program creation in an IDE, through compilation and
deployment, to support for understanding and bug fixing in
maintenance, source code analysis technologies are found
throughout. There continue to be many challenges in
creating and improving SCAM techniques for general
purpose programming languages, and in finding and
addressing challenges posed by new languages and domains.
Both areas represent frontiers of SCAM.

This paper contributes to the development of the research
agenda on the frontier of new domains and languages. Three
current research projects (Section II) in the areas of computer
music and machine knitting are used as concrete starting
points for a reflective analysis of the types of language or
representation that might be amenable to SCAM. The
analysis (Section III) also considers aspects of problem
domains (focusing particularly on music as an example) and
the implications of these for SCAM. The result is a
framework to stimulate and position future research.
Possible avenues for such research, and ideas for cross-
fertilization of principles and methods between SCAM and
other domains, are also presented (Section IV).

II. CURRENT PROJECTS

A. Project 1: Clone Detection in Max/MSP
Project 1 is developing clone detection methods for

music/art programming languages such as Max/MSP.
Max/MSP [9] is a graphical data-flow language widely used
for installation art and interactive music systems. Programs
(termed patches) are constructed by laying out functional
boxes and connecting them with lines to define the dataflow
between them. An example is shown in Fig.1. The language
is similar to Simulink [20] in programming paradigm but in
Max/MSP the semantics depend not just on the connections
between objects but on the way patches are spatially
arranged.

A clone detection method for Max/MSP patches has been
developed and evaluated [14], and clones of various types
have been found. The work is being extended to analyze
PureData [23], a language similar to Max/MSP but where the
semantics depend partly on the creation sequence of patch
lines instead of the spatial arrangement of graphical boxes.

In addition to spatial-layout and creation-order issues,
techniques that tackle these languages need to consider the
broader context e.g. Max/MSP supports reuse and
modularity by nesting patches but programs written in
Max/MSP typically are not large in comparison to those
written in general purpose languages. Thus, single program

Figure 1. Example of a Max/MSP Patch

analysis may not demand high-efficiency techniques for
success. Patch libraries may be large and thus techniques for
efficiently analyzing many small files might be needed. In
addition, it is common for programmers to develop externals
(separate programs in C or C++ that appear as boxes in
Max/MSP patches) so analysis tools may need to operate
across multiple languages simultaneously.

B. Project 2: Turning Musical Scores into Music Systems
This project is researching the engineering of systems for

live ensemble Human-Computer Music Performance
(HCMP) of “popular” music (the specific genres being
considered are jazz and contemporary church music).
HCMP involves computers playing independently alongside
human musicians [10]. A key issue for this research is
finding an appropriate representation for musical scores.
Music representation has been an open research issue for
many years (e.g. see Selfridge-Field [25]) because of the
multiplicity of uses for such representations. Popular music
scores are primarily structural i.e. the individual notes do not
generally need encoding since much of the music is
improvised. Works are organized by sections like verse or
chorus. This resembles block-structuring in programming
languages and possesses the same advantages of modularity
and flexibility.

Since no appropriate existing encoding was found, the
initial work of this project [13] defined a score representation
to encode three key aspects: static score, arrangement, and
dynamic score. The static score represents the music as it is
written on the page, the arrangement is the ordering of
sections and repeat structures as defined by the performers,
and the dynamic score is a static score “unfolded” according
to the arrangement to enable media synchronization and
playback. The language reported in [13] is satisfactory for
well-formed scores, however in popular music it is not
always the case that scores are well-formed and a more
advanced approach is being developed to transform the
encoding language into Extended Hierarchical Finite State
Machines. This will allow analysis by techniques such as
model-checking [8] and model-projection [2] to determine
the validity of the arrangement, and will also allow the
integration of functional architectural components such as
cueing systems for score rearrangement at performance-time.
The language needs to be simple and domain-oriented so that
users with little or no programming experience can simply
re-encode the musical notation on a manuscript page.

C. Project 3: Knitting with Machines
Project 3 is in the very early stages of exploring, through

collaboration with an independent fashion designer, the
extent to which knitting designs for seamless garments can
be treated as source code and subjected to various source
code transformations, e.g. to save yarn. Machines capable of
knitting rapidly to bespoke designs now routinely produce
knitted garments. Human software engineers program them,
yet at this stage of the research it appears that this process is
largely (if not entirely) a deterministic translation from a
graphical design with annotations (e.g. for stitch density at
various points) to a set of program statements. The “source

code” is thus a mixture of graphical and textual
representations arising naturally from the design process.

III. REFLECTIONS

A. Problem Characteristics
All problems addressed by SCAM have their roots in

domain questions. For general-purpose languages (GPL),
these questions are typically drawn from the problem domain
of software engineering, e.g. in program slicing, both
problem (reducing program size) and solution (slicing) exist
in the same domain. In identifying problems amenable to
SCAM, the first step is to consider one or more domain
questions, e.g. why are certain performers’ musical
interpretations preferred to others, or how can partially-
improvised music scores be represented?

Secondly, the availability of domain representations that
can be used as source code must be established. This will
require finding existing representations that embody
principles typically necessary for execution, e.g. dependence,
sequence, conditions, and branching. If such a
representation does not exist, it may be appropriate to
consider introducing one, although the ability of users to
adopt explicit programming notions in their work must be
considered if programming is required.

Thirdly, the nature of “successful” execution in the
problem domain must be considered. Drawing on Harman’s
concept of “tendency to executability” [15], it is likely that
many domain representations can be executed in the
traditional computing sense. However, the degree to which
that execution actually meets a domain-appropriate
understanding of execution may vary, e.g. one can
automatically “execute” a full musical score using programs
that increasingly embody good musical performance practice
(see Hiraga et al. [16]). For HCMP systems like Project 2,
the music is partly improvised so there is no deterministic
execution path when successful performance (execution) is
considered from the perspective of the problem domain
(performing good music). Successful execution may be seen
either as deterministic movement through the ordered score
sections (deterministic analyses are thus deemed to
completely capture executability in the domain) or as the
production of aesthetically pleasing music (executability
must account for performer interpretation). New, non-
deterministic concepts of execution and analysis may be
needed to incorporate uncertainty and interpretation, e.g.
using probabilistic formulations of dependence [3] or
modeling human input.

Some domain problems and/or representations may not
lend themselves to execution at all (e.g. finding clusters in
performance timings [26] or audio analysis for musical
features using tools like Sonic Visualiser [5]) and may be
inappropriate for SCAM approaches.

The separation between formal and interpretive
semantics of execution finds a natural parallel in music. A
musical score is an analyzable formal representation that
typically constrains a performer to an ordered set of notes.
However, the music performed (i.e. executed) relies on the
performer’s interpretation (performers are not mere

reproducers of the composer’s score but bring their own
creativity to each performance [6]). It is therefore possible
to perform a score deterministically using a system of
performance rules, or interpretively (applying performance
norms but allowing room for creative expression). Similar
ideas can be seen in E-Type systems [7] where a software
system installed in its environment deterministically models
and executes part of the overall social-technical system.
Users who work around software limitations might be seen
as bringing an interpretive execution to the system as a
whole. In terms of software evolution, interpretive execution
of the socio-technical process might be seen as driving new
requirements to minimize the non-deterministic aspects.

In summary, the applicability of a SCAM approach in a
new problem domain depends on at least the following: the
questions, concepts, and methods of users; the domain
representations that can be used as source code; how far
these tend to deterministic executability and whether this
captures a sufficiently rich domain goal; the potential
benefits for the problem at hand; and opportunities for new
domain insights.

B. Language Characteristics
The projects’ representations may be seen as increasingly

“domain-embedded” source code languages. Project 1 is
dealing with a language that is (from the perspective of
general-purpose languages) unusual in programming
paradigm, syntactic presentation, and execution semantics. It
may be characterized as a domain-specific programming
language (DSL) since its overt intention is to permit the
writing of programs, with syntax and constructs designed to
support a particular domain [11].

Project 2 is defining, transforming and analyzing a
language for representing a particular aspect of musical
scores. The method implicitly allows the user to define their
own programming language through the creation and
ordering of static score sections and the placing of simple

conditions on their execution, although a typical user is
unlikely to perceive this as programming (indeed, the
intention is that they do not). The static score encoding is not
intended as a programming language at all. It could be
termed an Artificial Domain-Embedded Language (ADEL),
one that is not concerned overtly with programming but
instead with representing domain concepts.

In the case of Project 3, the “language” does not arise
from computing concerns at all, but naturally from domain
practice. Since the designer’s domain of discourse is
primarily graphical, the intervention of programmers is
currently required to produce programs for knitting
machines, but since there is an apparently deterministic
relationship between the pattern and the garment these
designs might be treated as source code. This might be
termed a Natural Domain-Embedded Language (NDEL).

These reflections suggest a spectrum of language types
from general-purpose, through domain-specific and
embedded languages to non-executable domain
representations (NEDR) like audio. As the language type
moves from GPL towards NDEL, it is likely that end-user
programming becomes the default paradigm, although not
necessarily in the traditionally-studied domain of office
systems [4]. Table 1 summarizes these reflections, showing
characteristics in the rows, and types of language in the
columns. It might be argued that the outward-facing frontiers
of SCAM lie in working with languages and domains
characterized by the middle three columns.

IV. NEW OPPORTUNITIES
This section presents two groups of ideas. The first

consists of opportunities for SCAM to be fruitfully applied to
new problems and domains; the second consists of those
from which SCAM might draw inspiration for novel
techniques.

TABLE I. TABLE OF LANGUAGE AND DOMAIN CHARACTERISTICS

 GPL DSL ADEL NDEL NEDR

Language Source Language
Designer Language Designer Language

Designer Domain User Domain User

Language Intent Programming Programming/Domain
Representation

Domain
Representation

Domain
Representation

Domain
Representation

Concepts Encoded Programming Programming/Domain Domain Domain Domain

Typical User Programmer Programmer Domain User Domain User Domain User

Apparent Executability High High Medium Low None

Tendency to
Executability High High Medium Medium/Low None

Likely Execution
Determinism Total Total Partial Partial None

A. Possible Domains for SCAM Solutions
Processing [24] is a Java-based DSL for arts computing.

It allows a variety of programming styles and has its own
IDE that supports writing and managing sketches
(Processing’s file collection scheme) but few analytical
capabilities, e.g. slicing. Users may wish to undertake such
transformations but the nature of the source code could pose
challenges. Processing sketches can be quite unstructured
and thus require multi-level analysis through the underlying
Java code to compute a slice.

More advanced program analysis may require new slice
criteria such as a temporal dimension expressed in terms of
frames of interest or time elapsed in addition to position and
variables. For example, a Processing sketch was written by
the author for a collaborative project [1] to digitally capture
and replay musicians’ shape responses to musical stimuli
using a graphics tablet. The sketch is structured using the
standard Processing setup() and draw() routines that
are executed once, and once per frame, respectively. During
development, various bugs were found in the interaction
between capture and replay frames, and also in the temporal
sequencing of stimuli. It would have been extremely helpful
to be able to slice on lines of code, but only for particular
frames, or framesets. In this case, debugging was aided by
explicitly controlling frame-rate and frame-type but this is
not the most desirable solution.

Another potentially rich domain is Live Coding. This is
a contemporary musical (and sometimes video) performance
practice involving programming live on-stage, typically
using textual interpreted synthesis languages such as
SuperCollider [27] and with the source code projected in
real-time for an audience [4]. SCAM might contribute
artistically e.g. to live coding visualizations such as those
discussed by McLean et al. [19] and/or through the real-time
derivation and display of source code properties (e.g.
cohesion and coupling or other metrics). Blackwell and
Collins’ discussion of programming languages in this context
points to possible avenues for SCAM contributions [4].
Their observation that program behavior in live coding may
not be predictable but may vary according to human and
aesthetic performance dynamics lends weight to the
argument for new non-deterministic models of execution and
analysis. They claim that music notations do not need to
support arbitrary restructuring in the same way as languages
like UML. However, the experience of Project 2 [13]
suggests that in some cases there is such a need and that
there is untapped potential for transformation tools and
techniques. They also identify maintenance and
comprehension issues for this domain, at which SCAM
techniques may be targeted [4].

Dependence underpins many SCAM techniques but does
not easily translate to the musical domain. However, if such
a mapping can be conceived, there may be opportunities to
develop novel musicological analyses, for example, in
automated music summarization similar to Marsden’s
approaches toward automating Schenkerian analysis [18],
but based on alternative views of deep music structure. It is
likely that any notion of dependence in music will need to be

interpretive and require probabilistic or nuanced
descriptions.

B. Possible Solutions for the SCAM Domain
The way music is laid out on a page has a significant

influence on its comprehensibility and usability. For
example, expert musicians use pattern matching and
chunking when reading music and deduce note duration from
note spacing [28]. It is thus important that the spacing of the
music reflects the character of the music [22]. Since expert
programmers use plan recognition and chunking in
comprehension [21], perhaps source code layout could be
inspired by the principles of music engraving and reflect
something of the execution characteristics of a program in its
layout. Similar ideas for making programs readable have
been considered before (e.g. Knuth’s literate programming
[17]) but by treating a program almost as an artwork to be
mentally executed (like a musical score) and laying it out
accordingly, new and fruitful directions for program
comprehension might be identified.

A source code file could be seen as a palimpsest (a
document used and then overwritten one or more times).
Documentary palimpsests are analysed using various
chemical, physical or optical techniques (e.g. multi-spectral
imaging [12]) to reveal the overwritten texts but the notion
has been applied in other non-physical domains (e.g. cinema
[29]). Software repositories offer an easy way to access the
previous versions of source code files but perhaps methods
for understanding evolution histories might be enhanced by
adopting palimpsest-oriented cultural enquiry methods from
other domains e.g. in the investigation of major software
system failures and the cultures and circumstances
surrounding their creation.

Further inspirations may be found in other types of
musical analysis. As discussed above, dependence is not a
concept that easily translates to music yet if it could be, this
may offer new insights into program dependence. Other
parallels might be found between programming patterns and
motivic structures in music, with techniques for analysing
musical motives offering new ways to approach program
structure. Finally, the principles of automated Schenkerian
analysis [18] for music summarization might be applied to
program summarization to support comprehension and other
tasks.

V. CONCLUSION
The impact of SCAM is beyond doubt, yet there continue

to be exciting frontiers to explore in developing new and
improved techniques for existing domains of application, and
in the identification of new source codes and domains for
analysis. The reflective framework developed in this paper
identifies frontiers in the analysis and manipulation of
domain-specific source codes. These can arise through
domain-specific programming language design, through the
introduction of representations for domain concepts, or by
reusing naturally occurring domain representations. In
developing the framework, the paper has drawn on three
specific projects to consider the nature of their languages and
domains, and how these might be addressed by SCAM. It

has also shown where SCAM might benefit from the cross-
fertilization of ideas and techniques.

ACKNOWLEDGMENTS
I am very grateful to the many colleagues and

collaborators with whom I have worked over the last few
years for stimulating discussions and support of my
interdisciplinary research, in particular David Binkley, Indu
Choraria, David Clark, Roger Dannenberg, Mark Harman,
Jens Krinke, Daniel Leech-Wilkinson, John Rink, and Neta
Spiro. This work is supported by the UK Engineering and
Physical Sciences Research Council [grant numbers
EP/F059442/2 and EP/G060525/2].

REFERENCES
[1] AHRC Research Centre for Musical Performance as Creative

Practice, “Shaping music in performance,”
http://www.cmpcp.ac.uk/smip.html

[2] K. Androutsopoulos, D. Binkley, D. Clark, N.E. Gold, M. Harman, K.
Lano, and Z.Li, “Model Projection: Simplifying models in response
to restricting the environment,” Proc. 33rd Int. Conf. on Software
Engineering (ICSE 2011), 21-28 May 2011, Waikiki, Honolulu,
Hawaii.

[3] G.K. Baah, A. Podgurski, M.J. Harrold, “The probabilistic program
dependence graph and its application to fault diagnosis,”, Proc. Int.
Symp. on Software Testing and Analysis 2008, Seattle, WA, July
2008.

[4] A. Blackwell and N. Collins, “The programming language as a
musical instrument,” Proc. 17th Psychology of Programming Interest
Group (PPIG) Workshop, Brighton, UK, 29 June-1 July 2005, pp.
120-130.

[5] C. Cannam, C. Landone, and M. Sandler, “Sonic Visualiser: An open
source application for viewing, analysing, and annotating music audio
files,” Proc. ACM Multimedia 2010 Int. Conf., Firenze, Italy, Oct
2010.

[6] N. Cook, Music: A Very Short Introduction, Oxford Univ. Press,
1998.

[7] S. Cook, R. Harrison, M.M. Lehman, P. Wernick, “Evolution in
software systems: foundations of the SPE classification scheme,” J.
Software Maintenance and Evolution: Research and Practice, vol. 18,
2006 pp. 1-35.

[8] J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S. Pasareanu,
Robby, and H. Zheng, “Bandera: Extracting finite-state models from
Java source code,” Proc. 22nd Int. Conf. on Software Engineering,
Limerick, Ireland, IEEE Computer Society Press, pp. 439–448, 2000.

[9] Cycling74, Max/MSP, http://www.cycling74.com

[10] R.B. Dannenberg, “A vision of creative computation in music
performance,” Proc. 2nd Int. Conf. on Computational Creativity,
Mexico City, April 2011.

[11] M. Fowler, Domain-Specific Languages, Addison-Wesley, 2011.
[12] M. Gau, H. Miklas, M. Lettner, and R. Sablatnig, “Image acquisition

and processing routines for damaged manuscripts,” Digital
Medievalist, vol. 6, 2010.

[13] N.E. Gold and R.B. Dannenberg, “A reference architecture and score
representation for popular music human-computer music performance
systems,” Proc. 11th Int. Conf. on New Interfaces for Musical
Expression (NIME2011), 30 May 2011-1 June 2011, Oslo, Norway.

[14] N.E. Gold, J. Krinke, M. Harman, and D. Binkley, “Cloning in
Max/MSP patches,” Proc. 37th Int. Computer Music Conf. (ICMC),
Huddersfield, UK, 31 July- 5 Aug, 2011, in press.

[15] M. Harman, “Why source code analysis and manipulation will always
be important,” Proc. 10th IEEE Int. Working Conf. on Source Code
Analysis and Manipulation, Timişoara, Romania, 12-13 Sept 2010.

[16] R. Hiraga, R. Bresin, K. Hirata, and H. Katayose, “Rencon 2004:
Turing test for musical expression,” Proc. Int. Conf. on New
Interfaces for Musical Expression (NIME04), Hamamatsu, Japan,
June 2004.

[17] D. Knuth, “Literate Programming,” The Computer Journal, vol. 24,
no. 2, 1984, pp. 97-111.

[18] A. Marsden, “Schenkerian analysis by computer: A proof of
concept,” Journal of New Music Research, vol. 39, no. 3, in press.

[19] A. McLean, D. Griffiths, N. Collins, and G. Wiggins, “Visualisation
of live code,” Proc. Electronic Visualisation and the Arts (EVA) –
London 2010, London, UK, July 2010.

[20] Mathworks, Simulink,
http://www.mathworks.co.uk/products/simulink/

[21] A. Von Mayrhauser and A.M. Vans, “Program comprehension during
software maintenance and evolution,” IEEE Computer, vol. 28, no. 8,
August 1995, pp. 44-55.

[22] H.-W. Nienhuys and J. Nieuwenhuizen, “LilyPond, a system for
automated music engraving,” Proc. XIV Colloquium on Musical
Informatics (XIV CIM 2003), Firenze, Italy, May 2003.

[23] PureData, http://puredata.info
[24] Processing, http://processing.org
[25] E. Selfridge-Field (ed.), Beyond MIDI: The Handbook of Musical

Codes, MIT Press, 1997.
[26] N. Spiro, N.E. Gold, and J. Rink, “The Form of Performance:

Analyzing Pattern Distribution in Select Recordings of Chopin’s
Mazurka Op. 24 No. 2,” Musicae Scientiae, vol. 14, 2010, pp 23–55.

[27] SuperCollider, http://supercollider.sourceforge.net
[28] A.J. Waters, G. Underwood, and J.M. Findlay, “Studying expertise in

music reading: Use of a pattern-matching paradigm,” Attention,
Perception and Psychophysics, vol. 59, no. 4, pp 477-488. 1997.

[29] D.G. Young, “Hamlet” in the Cinema: A Palimpsest of Performance,
Ph.D. Thesis, The University of Oklahoma, 2007.

