Compatibility Prediction of Eclipse Third-Party Plug-ins in New Eclipse Releases

John Businge, Alexander Serebrenik, Mark van den Brand
Eindhoven University of Technology
Eindhoven, The Netherlands
{j.businge,a.serebrenik,m.g.j.v.d.brand} @tue.nl

Abstract—Incompatibility between applications developed on
top of frameworks with new versions of the frameworks is a
big nightmare to both developers and users of the applications.
Understanding the factors that cause incompatibilities is a step
to solving them. One such direction is to analyze and identify
parts of the reusable code of the framework that are prone to
change. In this study we carried out an empirical investigation
on 11 Eclipse SDK releases (1.0 to 3.7) and 288 Eclipse third-
party plug-ins (ETPs) with two main goals: First, to determine
the relationship between the age of Eclipse non-APIs (internal
implementations) used by an ETP and the compatibility of
the ETP. We found that third-party plug-in that use only old
non-APIs have a high chance of compatibility success in new
SDK releases compared to those that use at least one newly
introduced non-API. Second, our goal was to build and test a
predictive model for the compatibility of an ETP, supported
in a given SDK release in a newer SDK release. Our findings
produced 23 statistically significant prediction models having
high values of the strength of the relationship between the
predictors and the prediction (logistic regression R of up to
0.810). In addition, the results from model testing indicate high
values of up to 100% of precision and recall and up to 98%
of accuracy of the predictions. Finally, despite the fact that
SDK releases with API breaking changes, i.e., 1.0, 2.0 and 3.0,
have got nothing to do with non-APIs, our findings reveal that
non-APIs introduced in these releases have a significant impact
on the compatibility of the ETPs that use them.

Keywords-Eclipse; Plug-ins; non-APIs; Prediction

I. INTRODUCTION

Applications developed on top of frameworks are be-
coming increasingly popular these days and users of these
applications are constantly on the rise [1], [2] (e.g., currently
Eclipse marketplace' reports over 1,300 Eclipse solutions
developed and there are over 1.6m installations of these
solutions installed directly from Eclipse). Frameworks are
constantly evolving to provide better quality of the function-
ality they provide to their clients. The applications that want
to benefit from the better quality provided by the new release
of the framework are subject to compatibility problems [3],
[4]. Understanding the factors that cause incompatibilities is
a step to solving them. One direction is to identify parts of
the reusable code of the framework used by the applications
that are prone to change [5].

In [6], [7] the authors state that Eclipse non-APIs (internal
implementations) are subject to arbitrary change without

Uhttp://marketplace.eclipse.org

notice. The authors discourage the use of these non-APIs and
further state that developers can use them at their own risk.
However, despite being discouraged, we have observed that
the use of non-APIs is not uncommon: 44.2% of the Eclipse
third-party plug-ins (ETPs) on SourceForge have at least one
version that depends on at least one non-API [8]. Moreover,
we found that the use of non-APIs affects the compatibility
of the ETPs with new Eclipse SDK releases [9].

Extending the aforementioned work, in this paper we
target two main goals. First, we consider the relationship
between the age of non-APIs (i.e., the Eclipse SDK release
in which the non-API was introduced) used by an ETP and
the compatibility of the ETP in new SDK releases. Based
on our findings a framework-based application developer can
estimate the maturity of the non-APIs she is using. Second,
we build a predictive model for the compatibility of an
ETP supported in a given SDK release in forthcoming SDK
releases. The predictive model can be used by Eclipse-based
application developers to assess the chances of their applica-
tions’ compatibility in a newer SDK release. Furthermore, it
can be used by Eclipse-based application users before they
update the SDK release where their application is installed
to a newer SDK release. To perform the investigation, we
considered 288 ETPs and extracted from the source code of
11 major SDK releases (1.0 to 3.7) metrics related to age
of the non-APIs used by these ETPs.

The remainder of the paper is organized as follows: In
Section II we discuss preliminary concepts related to Eclipse
and our previous work on ETPs. In Section III we discuss
compatibility of the ETPs. In Section IV we discuss the
relationship between age of non-APIs used by the ETPs
and their compatibility. In Section V present model building
and validation. In Section VI we discuss threats to validity.
Section VII we discuss related work. Finally in Section VIII
we discuss conclusions and future work.

II. PRELIMINARIES
A. Eclipse Plug-in Architecture

Eclipse SDK is an extensible platform that provides core
of services for controlling a set of tools working together
to support programming tasks. The plug-ins in the SDK
provide core functionality upon which all plug-in extensions
are built. Applications contribute to the SDK by extending
its interfaces for specific solutions.

In addition to Java access (visibility) levels, Eclipse has
another level called internal implementations (non-APIs).
According to Eclipse naming convention [7], the non-
APIs are artifacts found in a package with the segment
internal in a fully qualified package name. These ar-
tifacts may include public Java classes, interfaces, public or
protected methods, or fields in such a class or interface. As
opposed to non-APIs, APIs are found in packages that do not
contain the segment internal. For a detailed discussion
of the API usage in Eclipse see [8].

In the current study we are interested in analyzing the
non-APIs (classes and interfaces) used by the ETPs.

B. Data Collection

ETPs were released on SourceForge between January 1,
2003 to December 31, 2010. Data collection took place on
February 16, 2011. We categorized the ETPs according to
their first release (first version) dates in the different years
(2003 to 2010) on SourceForge. The ETPs were further
categorized based on presence of non-APIs dependencies,
i.e., ETPs that had all the versions depending solely on APIs
(ETP-APIs) and those that have at least one of the versions
depending on a non-API (ETP-non-APIs). For further details
on data collection see [8].

C. Compatibility of the ETPs

While Eclipse has multiple notions of compatibility we
focus on API source compatibility: i.e., the source code of
the ETP should continue to compile without errors against
the revised SDK without changes in the ETP sources.

In [9], for each of the ETP-APIs and ETP-non-APIs,
we determined an ETPs’ API source compatibility with the
different SDK releases (1.0 to 3.7) by compiling the ETP
with each of the SDK releases. The jar files of the SDK
release we want to test for source compatibility with the ETP
are included in the BUILDPATH of the ETP. Compatibility
results into zero compile time errors in the Eclipse console.
To determine compatibility of the same ETP with another
SDK release, we swapped the jar files in the BUILDPATH
of the ETP of the former SDK release with the latter.

Furthermore, we found that ETP-APIs were always com-
patible in later SDK releases that do not involve API
breaking changes [10] and most of the ETP-non-APIs were
incompatible. For this reason, in the current study we
decided to further our investigation only on compatibility
of ETP-non-APIs in new SDK releases.

To study compatibility of ETPs we have to choose the
baseline, i.e., the “intended SDK version”. However, this
version is rarely indicated in the ETP source code. Luckily,
the results in [9] revealed that the majority of the ETPs are
source compatible with the SDK released in the same year
as the ETP. Therefore, in the current study, we have chosen
those SDK releases, to be the baselines of the ETPs’ source
compatibility. A few of the ETPs that were incompatible

Compatibility of ETPs in new Eclipse SDK releases

ETPs 30 | 31 | 32 | 33 | 34 | 35 | 3.6 | 3.7

20 ® (3| 0o alala]a]a
IERHEHEEHEIEE
wou |y 5 | 20 | 20 | 20 | 0 | 2
2] o g W6 | 21 |2 | 20 | o
2 ® |y B | 17| s
34 36 IS: 351 360 288
35| 0B | S
3.6 30 IS: 228

Table I: Compatibility of the ETPs developed on top
of a given Eclipse release in new Eclipse release(s). F-
Compatibility failure and S—Compatibility success.

with the SDK release in the same release year were found
to be compatible with the SDK released in the previous year
or a year before the previous. For these ETPs we chose the
latest SDK release they compile with as their baseline.

III. COMPATIBILITY OF ETP-NON-API

Table I shows the results of the compatibility experiments
for the current study. The first column indicates the compat-
ibility with respect to SDK release baselines. The ETPs in
the column # ETPs are all source compatible with the SDK
releases in first column. Column 3.0-3.7 show the number
of ETPs that successfully compile (S) and fail to compile
(F) with the corresponding SDK releases.

Figure 1 shows the results of compatibility failure and
success trends of the ETP supported in the different SDK
releases (2.1-3.6) with the next SDK release (left plot) and
the most recent SDK release (right plot). The plots are
normalized results of corresponding entries in Table I (F
and S are a percentage of the number on compatible ETPs—
column # ETPs). Both figures show a general increase in
the compatibility success of the ETPs.

IV. AGE OF NON-APIS vS COMPATIBILITY

In this section, we investigate the relationship between the
age of the non-APIs used by an ETP and the compatibility of
the ETP in a new SDK release. We analyze the compatibility
of the ETP by looking at the ETPs’ compatibility success
or failure in the new SDK release. For age of the non-APIs
used by the ETP, we search the SDK release in which the
non-API was introduced along the evolution of the SDK.

A. Hypotheses

In [9], we have inspected a small number of ETPs and
observed that increase in compatibility success can be at-
tributed to newly released ETPs using “old” non-APIs. This
informal observation has lead to formulating the following
null and alternative hypotheses.

ETP Compatibility with the Next Eclipse Release

=
o
3

©
3

%
3

~
I}

@
3

-o-Failure

-#-Success

Percentage of ETPs
@
3

2.1 3.0 31 3.2 33 3.4 35 3.6
Eclipse Releases

(a) Next Eclipse release (diagonal Table I)

Percentage of ETPs

ETP Compatibility with the Last Eclipse SDK Release (3.7)

-#-Failure

@
S

-#-Success

21 3.0 31 3.2 33 3.4 35 3.6
Eclipse Releases

(b) Last Eclipse release (colum 3.7 Table I)

Figure 1: Compatibility trends for ETPs developed on top of the SDK releases (x-axis) with the next SDK release (left) and

the most recent SDK release—3.7 (right).

non-APIs from Eclipse SDK Releases
Compatibility # ETPs Aggregation 1.0 | 2.0 2.1 3.0 3.1 32 | 33 34 3.5
Median 0 0 0 0 0
% Success 16 Mean 22 0.0 0.1 0.3 0.1 0
§ 32 Max 3 1 2 1 0
o : Min 0 0 0 0 0
% Median 25 1 [0 | 2 [0 [0
a. Failure 24 Mean 5.8 4.5 0.5 2.3 1. 0.5
g Max 32 |20 | 2 8 11 4
K Min 0o oo o
= Median 0 0 0 0 0 0 0 0
2 Success 23 Mean 23 | 0.1 1.5 | 09 | 0.1 0.1 0.1 0
é a5 Max 10 | 15 1 8 6 1 2 2 0
2 : Min 0 0 0 0 0 0 0 0
o~ Median 1.5 0 0 0 0 0 0 0 0
& Failure 10 Mean 2.3 1.8 |1 03 | 09 | 05 | 03 | 03 | 0.1 0
= Max 16 | 17 | 4 | 12|17] 6 5 3 0
Min 0 0 0 0 0 0 0 0

Table II: The descriptive statistics of non-APIs in ETPs supported in Eclipse SDK 3.2 and 3.5. The groups (Failure and
Success) are with respect to compatibility of the ETPs with Eclipse 3.7.

o H1y: Older non-APIs used in an ETP are equally likely
to cause compatibility problems of the ETP with new
SDK releases as the newer non-APIs.

o H1,: The older a non-API used in an ETP, the less
likely it will cause compatibility problems of the ETP
with new SDK releases.

B. Fact Extraction

We carried out the following steps in extracting the facts
used in our analysis using a number of scripts:

1) We extracted public non-APIs (classes and interfaces)
from each of the SDK releases (1.0 to 3.6) using the
Abstract Syntax Tree (AST) of Eclipse JDT. We further
classified these non-APIs based on the SDK releases
that introduce them.

2) For each of the ETPs supported in the different SDK
releases, we extracted non-APIs used by the ETP.

3) For each non-API in the non-API collection of each
ETP, we searched where in the non-API collections of
the SDK (Step 1 above) is it located.

Table II shows the descriptive statistics of the non-APIs
in the ETPs supported in two SDK releases, 3.2 and 3.5.
Descriptive statistics for other releases is available at [11,
p-2].

C. Data Transformation

To perform the formal statistical analysis of the relation-
ship between the age of the non-APIs used in an ETP and
the compatibility of the ETP, we chose to use the ordinal
scale enabling us to perform measure of association [12].
We transformed the data into a contingency table that is
required for an ordinal measure of association between the
variables. To generate the contingency table we started by
ranking the age of the non-APIs used by the ETP supported
in a given SDK release such that rank I is associated
with non-APIs introduced in the SDK release where the
ETP is supported, rank 2 with non-APIs introduced in the
SDK release preceding the SDK release where the ETP is
supported, etc. Next we determine the overall age of the
non-APIs used by the ETP as the age of the youngest used
non-API. The rationale behind the overall age ranking of the

New Eclipse Releases

33 34 35 36 37
101
o
m
o 2
£
4_—h_|'ﬂ 3
I
o
[
£ o2
5
& 107
E
2 8 -
o g
o
o
4 H
b
wopee b b b I L S B
13 5 1 3 5 1 35 4 3 5 1 3 5

Age of non-APIs

(a) ETPs supported in SDK 3.2. x-axis, 1=3.2, 2=3.1, etc. (b) ETPs supported in SDK 3.3. x-axis, 1=3.3, 2=3.2,

Ananedwod

Number of ETPs

New Eclipse Releases

3.4 3.5 36

@
T

>
i
s4njied

5
-

b A
ss8dIns
Ayngquedwod

23486712
Age of non-APls

etc.

Figure 2: Histograms showing the source compatibility trends of ETPs supported in SDK 3.2 (left) and SDK 3.3 (right).

non-API age ranking
32(1) [3.112)] 3.03) [2.1 | 2.005) 1.0(6)
Failure 6 4 4 1 1 0
Success 2 5 4 1 2 10

Table III: Contingency table for overall age rank of the non-
APIs of the ETPs supported in SDK 3.2 with respect to the
compatibility with SDK 3.3.

non-APIs used by the ETP is based on the stated hypothesis,
i.e., the youngest used non-API are most likely to cause
compatibility problems of the ETP with new SDK releases.
Finally, for each of the new SDK releases the results are
grouped according to the compatibility success/failure with
respect to the different new SDK releases.

D. Results

Table III shows the contingency table for the distribution
of the ages of the non-APIs in the ETPs supported in SDK
3.2 with respect to the compatibility with SDK 3.3. The the
cells indicate the number of ETPs that succeeded or failed
to compile with SDK 3.3 depending on the latest/youngest
introduced non-APIs the ETPs use. For example 6 in the cell
(Failure, 3.2(1)) indicates that there are six ETPs that failed
with SDK 3.3 and all six contained at least one non-API
introduced in SDK 3.2 as the youngest non-API. Similar
contingency tables can be built for other SDK releases.

Figure 2 shows the plots of the contingency tables of the
ages of the non-APIs for the ETPs supported in SDK 3.2
and 3.5 with respect to the compatibility with newer SDK
releases. The rest of the plots of the other ETPs can be found
in [11, pp.3—10]. For example, the sub-plot-block 3.3 of the
left plot in Figure 2 represents Table III.

Table IV presents the results of Kendall’s 7, rank correla-
tion coefficients for the contingency tables akin to Table III.
All the correlation coefficients are statistically significant
(p < 0.05) except one for ETPs originating from SDK 2.1

New SDK releases

3.0 3.1 32 33 34 35 3.6 37
2.1 247 433 371 371 371 371 371 371
3.0 .389 .293 293 .345 .398 450 .450
3.1 .547 .647 .647 .647 .647 .647
32 .538 .683 .800 725 725
33 476 .665 .693 759
34 269 .376 336
3.5 544 .602

Table IV: Kendall’s 7. correlation coefficients for the age of
the non-APIs used by the ETPs and the compatibility of the
ETPs over new SDK releases. The results of ETPs supported
in SDK 3.6 are not included since they exhibit over-fitting
as a result of imbalance in the number of failing (2) and
successful (28) ETPs.

and compatibility with SDK 3.0 typeset in bold (p = 0.198).
When interpreting the strength of the correlation, one should
keep in mind that 7. > 0.9 is very rare unless in an
undesirable situation of a more or less perfect separation
in the groups being compared [13]. The perfect separation
would mean in our case that the ETPs that succeed depend
only on old non-APIs and the ETPs that fail depend on at
least one young non-API.

E. Discussion

From the histograms in Figure 2 we can observe that the
plots of the ETPs supported in SDK 3.2 and 3.3 that failed in
new SDK releases (upper plots), are positively skewed. This
indicates that the majority of the ETPs that failed in the new
releases use at least one young non-API and very few of the
ETPs that fail in new releases use only old non-APIs. The
lower plots of Figure 2 are negatively skewed indicating that
majority of the ETPs that successfully compiled with new
SDK releases mostly use very old non-APIs and very few
that succeed use a young non-API. The rest of the plots [11,
pp-3-10] show similar trends except for the histogram for

ETPs supported in SDK 2.1. The reason for this histogram
to have a different shape is that the non-APIs used by the
ETP are all relatively young.

The values Kendall’s 7. in Table IV are all greater than
zero and are all but one significant at a level of 0.05. This
implies that there is an evidence of the tendency of ETPs
that use only old non-APIs to be compatible in new SDK
releases (positive relationship of age vs compatibility).

The relationship of age vs compatibility between the ETPs
supported in SDK 3.1, 3.2, 3.3 and 3.5 and the corresponding
new SDK releases is relatively strong. As opposed to this,
for the ETPs in SDK 2.1 and 3.0 the relationship is relatively
weak, which can be explained by observing that all non-APIs
were relatively young at that time. Similarly, for SDK 3.4
the relationship is weak due to presence of many outliers.

On two occasions we furthermore observe a decrease of
the 7. values for ETPs originating from the same SDK
from one new SDK release to the next one. This is, for
instance, the case for ETPs originating from SDK 3.2: 7,
drops from 0.800 to 0.725. This decrease can be attributed
to introduction of outliers further discussed in Section V.

The results also indicate that some non-APIs that were
introduced in early SDK releases continue to be used in later
SDK releases without causing incompatibility problems.
This could possibly mean that these non-APIs have reached
maturity but they have not been graduated into APIs.

Summarizing, we reject H1y and accept H1, that “a
newly introduced non-APIs used by an ETP is likely to cause
incompatibilities of the ETP with new SDK releases”.

V. COMPATIBILITY PREDICTIONS

In this section we will build and validate prediction
models for estimating the compatibility of an ETP, supported
in a given SDK release, in new SDK releases. To perform
a compatibility prediction of an ETP in a new SDK release
(release;) we have to know in which SDK release the ETP
is supported (release;, ¢ < j) and for which SDK release
the prediction is required. As dependent variable we take
compilation success or failure of the ETP with respect to
release;, as independent variables—the number of non-APIs
used in the ETP originating from the SDK releasey, k < i.
For instance, Table II shows values of the dependent and
independent variables for release; = 3.2 and release; = 3.7
as well as for release; = 3.2 and release; = 3.7. Since we
base our predictions on ETPs supported in SDK releases 2.1,
3.0, ..., 3.6 and predict compilation success for releases 3.0,
3.1, ..., 3.7 we need to construct 36 prediction models.

To build and validate the models, we need a data-set
for training the models and a separate data-set for testing
the built models. Given release; and release; as above,
as the training set we consider all ETPs in the cell of
(release;, release;) in Table I, e.g., to predict compatibility
of ETPs supported in 3.1 with respect to 3.4 we consider 34
ETPs, 14 of which are compatible with 3.4 (denoted “S” in

Table I). The training set consists of all ETPs supported with
respect to SDKs released prior to release; and compatible
with it, e.g., to test our model for predicting compatibility
of ETPs supported in 3.1 with respect to 3.4 we consider
37 ETPs, 9 that have been originally supported in 2.1 and
are compatible with 3.1, and 28 that have been originally
supported in 3.0 and are compatible with 3.1.

A. Hypotheses

In this section we state the hypotheses that will assess
how good the predictors are.

o H2q: There is no statistical relation between the num-
ber of non-APIs (taking into account the age of these
non-APIs), used by an ETP and the ETPs’ compatibility
in newer SDK releases.

o H2,: There is a statistical relation between the number
of non-APIs (taking into account the age of these non-
APIs), used by an ETP and the ETPs’ compatibility in
newer SDK releases.

B. Model training

In this section we will discuss how the trained the models
that were built.

1) Methodology: The multivariate logistic regression
model (based on equation 1 and 2) below was used to train
the models. The data used to train some of the prediction
models is presented in the descriptive statistics in Table II,
i.e., the prediction models of the compatibility of the ETPs
with the last SDK release (3.7). For a given the ETPs
supported in a given SDK release, the predictor variables are
number and ages of the non-APIs and the predicted variable
is the compatibility (failure or success). For example, using
the sample of the data we used in Table II, in building
the model to predict compatibility of the ETPs supported
in SDK 3.2 with SDK 3.7 (upper part of the table), the
predictor variables are the number of non-APIs used by the
ETP introduced in the SDK releases 1.0, 2.0,...,3.2 and the
predicted variable compatibility which is a binary, i.e., 0
for failure and 1 for success. The logistic function used in
building the prediction models is 1 [13]:

1
1+e 2
where Z is the linear combination of predictor variables and

P(Comp)-is the probability of compatibility.

P(Comp) = ey

where X's are the predictor variables and p is the number of
predictor variables.

To perform the analysis, we used the software IBM SPSS
Statistics 19. We used the backward-stepwise elimination
method (Backward: LR) to build the models. Backward-
stepwise elimination starts with all the variables in the
model, then at each step, variables are evaluated for entry

3.5 3.6 3.7
B Sig B Sig B Sig
1.0 -0.462 .064 | -0.235 106 | -0.119 .336
2.0 -0.840 .708 | -0.109 459 | -0.086 .490
2.1 -1.240 382 0.137 .886 0.343 .649
3.0 -0.788 .065 0.575 .035 | -0.603 .008

340 31 | 0903 225 | 0126 729 | 0131 717
32 - — | -0009 983 | 0115 782
33 - - - - - -

const 6.770 .023 4.091 .001 2.480 .000

Table V: Prediction variables for ETPs supported in Eclipse
34 in new Eclipse releases. Variable 3.2, 3.3 and 3.4
was were omitted in the corresponding models since they
had very high S.E (indicates multi-collinearity between the
predictors)

3.6 3.7
5 Sg | B S
1.0 -0.139 393 -0.927 067
2.0 -0.141 243 -0.528 077
2.1 -2.042 .068 0.422 .904
35 3.0 -0.050 930 0.867 147
3.1 0.056 .883 -0.564 373
3.2 -3.018 .028 -3.583 .088
3.3 1.274 .370 1.701 554
3.4 -0.973 316 -1.309 381

const 3.293 .005 6.025 .020

Table VI: Prediction variables for ETPs supported in Eclipse
3.5 in in new Eclipse releases. None of the non-APIs present
in the ETPs was introduced in Eclipse 3.5.

Predicted
New SDK releases
35 3.6 3.7

Observed S F S F S F
34 S 30 1 29 1 26 2
’ F 2 3 3 3 5 3
S 24 0 23 0

35 g 4 5|1 9

Table VII: Classification results form model training. S—
Compatibility, F-Incompatibility

3.5 3.6 3.7
A P R A P R A P R
34 192 97 94 | 89 97 91 81 93 84
3.5 88 100 86 | 97 100 96

Table VIII: Error analysis for model training. A—Accuracy,
P—Precision and R—Recall

and removal. For all the models, we use the default value for
the p-value for entry and removal of the variables of 0.05
and 0.1, respectively, was used. Forward-stepwise selection
was also tried and the results were more or less the same
as the backward-stepwise elimination method and the Enter
method a little bit worse. Using equation (1) in the models,
the predicted value (observed prediction), are in the range of
0 to 1. For all the models, we applied the default threshold
of 0.5 on the predicted value, i.e., the model considers an
ETP to be incompatible if the predicted value is less than
0.5, and compatible, otherwise.

2) Results: Table V and VI present the results of the
linear combinations (equation (2)) of the predictor vari-
ables for the ETPs supported in SDK 3.4 and 3.5 with
respect to the ETPs’ compatibility in the corresponding
newer SDK releases. Models for other releases can be
found in [11, pp.12-13]. After the stepwise elimination
analysis, the predictor variables in bold remained in the
model, i.e., having significant impact on the outcome of the
prediction. The variables not in bold are not considered to
have a significant impact on the outcome of the prediction.
Table IX presents the results of Nagelkerke R? for all the
corresponding models. Nagelkerke R? indicates the strength
of the relationship between the predictors and the prediction
in the model.

For example, in Table VI, the variables 2.1, 3.2 and const
remained in the model as the most significant predictors
on the outcome of the prediction in from SDK 3.5 to
3.6. Therefore, prediction model between ETPs supported
in SDK and SDK 3.6 is shown in equation (3) below. To
make a prediction for an ETP supported in SDK 3.5 for
its compatibility in SDK 3.6 one should substitute only the
number of non-APIs used by the ETP introduced in SDK
2.1 and 3.2. The corresponding value of Nagelkerke R? =
0.691, indicating strength of the relationship between the
predictors and the prediction in the model from SDK 3.5 to
3.6 is shown in cell (3.5, 3.6) in Table IX. Table V shows
the corresponding results of prediction for ETP supported in
SDK 3.4 in newer SDK releases.

1

P(Comp) = 11 ¢ 3.20312.042+5D K5 1 13.018+5 DK 2 3)

The classification and error analysis training for the
models we trained for the ETPs supported in SDK 3.4
and 3.5 are presented in Table VII and Table VIII, re-
spectively. Table VII shows the number of correctly and
incorrectly classified cases. Table VIII shows the results
for accuracy, precision and recall [14] corresponding to
the results presented in Table VII. Accuracy measures the
portion of all decisions that were correct decisions, i.e.,
computed from the numbers in Table VII, the result of ((S,S)
+ (EF)/((S,S)+(S,F)+(FF)+(F,S)). Precision measures the
portion of the assigned categories that were correct, i.e.,
the result of (S,S)/((S,S)+(S,F)). Recall measures the portion
of the correct categories that were assigned, i.e., the result
of (S,S)/((S,S)+(F,S)). Over all the models considered the
accuracy values are normally distributed (Shapiro-Wilk’s
p ~ 0.14) with the mean of 83.4% and standard deviation
6.7%. For precision and recall we do not observe a normal
distribution (Shapiro-Wilk’s p < 0.05). Precision ranges
between 63% and 100% with the median of 84%, recall—
between 62% and 96% with the median of 80%. Detailed
results for the classification and error analysis for all the
trained models can be found in [11, p.13].

Table IX: Nagelkerke R? values showing the strength of the
relationship between the predictors and the prediction for
all the models that we generated. Values exceeding 0.5 are
typeset in boldface.

3) Discussion: A number of observations can be drawn
from the results. First, we observe high values of Nagelk-
erke’s coefficient of determination R? in Table IX, indicating
that the proportion of variation explained by the predictors.
Recall that the values of R? for the logistic regression
model are typically much smaller than those observed for
linear regression model [13]. Models with R? = 0.371 [15],
R? = 0.382 and R? = 0.409 [16] and even R? = 0.175 [17]
have been shown to make useful predictions. Similarly to
Gyimothy et al. [17] and English et al. [15], we also used
the univariate logistic regression but it performed worse than
the multivariate regression.

For testing goodness of fit in our models, we performed
the Hosmer-Lemeshow test [18, p.147]. This test checks
how closely the observed and predicted probabilities match:
rejecting the null-hypothesis would mean that there is a
significant lack of agreement between the fitted logistic
regression model and the observed data, and the model
should not be used for statistical inference. All the Hosmer-
Lemeshow statistics for our models were not significant at
a threshold of 0.05, in fact, they were always higher than
0.25. Non-significance indicates that the model prediction
does not significantly differ from the observed.

We also cross checked the correlation between the predic-
tors variables. A few of the variables were highly correlated
that caused over-fitting in the models. These variables also
had a very high standard error when included in the over-
fitted model. We excluded these variables in the models as
can be seen in the models we presented in Section V-B2.

C. Model outliers

Like any other empirical study, our data had outliers.
As outliers we have considered values with the absolute
studentized residuals exceeding 2 [19]. In all the models,
the number of outliers ranged between zero and two. The
highest number of outliers of four was observed in the
model between between SDK 3.2 and 3.3. We observed
three types of outliers: 1) ETPs that depend on very only
old non-APIs and failed to compile in new releases. The
outliers of ETPs with very old non-APIs are of two types:
those that graduate from non-API to APIs and those that
change their interface and still stay non-APIs. Failure caused

Prediction for Predictor Variables

30 | 3.1 32 | 33 | 34 | 35 36 | 3.7 10 20 21 30 31 32 33 34 35
E [21 | 462 | 471 | 386 | 386 | 386 | .386 | .386 | .386 Significant | 25 24 2 20 3 4 0 0 0
3 [30 362 | 356 | 356 | 377 | 456 | 477 | 477 Total 35 35 35 27 20 14 9 5 2
‘g 3.1 449 1 810 | .810 | .810 | .810 | .810 Percentage | 71 69 6 74 15 29 0 0 0
g [32 517 | 582 | 571 | 512 | 512
o 33 545 | 657 | .629 | .769 Table X: The frequency of the predictor variables in the
£ 32 703 | .503 | 383
5 33 o1 803 models. Significant—number of times a predictor variable

was considered significant, Total-number of times a pre-
dictor was used to build the model.

by only graduation of non-API was found in only one
of the ETPs we analyzed. This indicates that graduation
of non-APIs is very limited. Preliminary investigation on
the graduation of non-APIs a long the evolution of SDK
showed similar results. In a follow-up study we intend
to investigate graduation on non-APIs in the evolution of
Eclipse. 2) ETPs that had dependency on newly introduced
non-APIs but still compiled with new SDK releases. One
possible reason for this scenario could be that the non-
API is actually old but was just renamed or moved. Our
methodology identifies renamed and moved classes as newly
introduced. Alternatively, the newly introduced non-API can
turn out to be stable.

D. Predictor frequency

In this section we present and discuss the most frequently
selected significant predictors in the built models.

Table X presents the a summary results of frequency of the
most significant predictors selected. Detailed results can be
found in [11, p.11]. With the exception of predictor 3.5, all
other predictors have non-APIs. We observe that the most
frequent significant predictors are 1.0, 2.0 and 3.0. SDK
releases 1.0, 2.0, and 3.0 are releases considered to have
API breaking changes [10]. Despite the fact that the AP/
breaking changes have got nothing to do with non-APIs,
our study reveals that non-APIs from SDK releases 1.0, 2.0
and 3.0 have a significant impact on the compatibility of the
ETPs.

E. Model validation

In this section we will test a sample of the models we
built in Section V-B2. Below we describe the methodology
we used to collect the data for testing the models.

1) Methodology: For a given model under test, we col-
lected cases of data that was used to build models for ETPs
supported in earlier SDK releases. For example, testing the
models between ETPs supported in SDK 3.1 with new SDK
releases, we use cases of ETPs supported in SDK 3.0 and
SDK 2.1 that compiled with SDK 3.1. The rationale is that
if an ETP compiles an SDK release, then it is supported
in that SDK release. Since we also know the compatibility
results of these ETPs with newer SDK releases after 3.1, we
consider these compatibility results as the expected results.

For computing the observed results, the collected cases are
substituted into the model between SDK 3.1 and the SDK we

Predicted
New SDK releases
35 3.6 3.7
Observed S F S F S F
34 S 82 0 79 0 79 0
F 5 0 6 2 6 2
35 S 102 6 9% 9
F 4 0 4 3

Table XI: Classification results form model testing. S—
Compatibility, F-Incompatibility.

3.5 3.6 3.7
A P R A P R A P R
34 | 94 100 94 | 93 100 93 | 93 100 93
3.5 91 94 96 | 88 91 96

Table XII: Error analysis for model festing. A—Accuracy,
P—Precision, R—Recall.

are trying to predict (equation 1). Since the cases imported
from ETPs developed for earlier SDKs have no entries (non-
APIs) in later releases, we put zeros in those missing entries.
For example, the cases imported from SDK 3.0 to 3.1 have
no non-APIs introduced in SDK 3.1 as the ETPs existed
earlier than SDK 3.1. We put zeros in the entry 3.1 which
also implies that each of the non-APIs in the imported cases
will be one year older in SDK 3.1 compared to SDK 3.0.

2) Results: Table XI and XII present a sample of classi-
fication results and error analysis, respectively, from model
validation for the ETPs supported in SDK 3.4 and 3.5.
Across all models tested if only significant predictors were
considered accuracy newer falls below 84%, precision—
below 83%, recall—below 90%. If significance of the
predictors is ignored accuracy newer falls below 76%,
precision—below 74%, recall—below 90%. Detailed results
can be found in [11, p.14].

3) Model Discussion: Like in model training, the results
results of model testing reveal high values of accuracy,
precision and recall. Furthermore, out of curiosity, we val-
idated the models by including all predictors, ignoring the
respective significance of the predictors. We observed that
there is no big difference when all the predictor variables are
included in the model. The results from model testing for
the comparison when only significant predictors and when
all the predictors are included in the models can be found
in [11, p.14].

From the classification results, we can observe that we
have very few data cases in the incompatibility group
compared to those in the compatibility group. This due to
the fact that most of the ETPs that compiled with the next
SDK release after the SDK in which the ETPs are supported
also compiled with the rest of the new SDK releases until
SDK 3.7. Furthermore, we also observe that the percentage
of incorrectly predicted incompatible ETPs is high in some
cases. This is due to the fact that some of these incompatible
ETPs were observed as outliers during the model training
phase. In a follow-up study we plan to collect a new data-

set of ETPs to replicate the model testing exercise.

F. Overall discussion

Recall that all possible combinations of the SDK release
in which ETP is supported and the SDK release the pre-
diction is made for, should lead to 36 models. However,
not all these models are different: if non-APIs that the
ETPs supported in release; did not change between release;
and release; 1, then the same ETPs that are compatible
with respect to release; are also compatible with respect
to release; 1. Hence, predictive models for release; and
release;, on the one hand, and release; and release; 1, on the
other hand, are identical. Moreover, since number of ETPs
supported in 3.6 and compatible with 3.7 was very high and
the number of ETPs supported in 3.6 and compatible with
3.7 was very low, no meaningful logistic prediction model
has been constructed.

Out of the 23 models currently we have validated 13. The
remaining models will be validated in a follow-up study.
From the discussion of the results in Section V-B and V-E,
we can reject H2 and accept H2, that “the number of non-
APIs (taking into account the age of the non-APIs), used by
an ETP supported in a given SDK release, when used as
predictors, have a significant impact on the outcome of the
ETPs’ compatibility in newer SDK releases”.

Besides the interesting statistics, we observe that our
results generate a different model for most of the predic-
tions. Differences between the models can be attributed to
interplay of two different factors. First of all, evolution of
Eclipse SDK results in differences between releases, so a
priori there is no reason to expect that the same model
can predict compatibility of an ETP with respect to them.
For situations where the all the non-APIs used by the ETPs
did not change between releases, we observe that we have
the same models, e.g., from SDK 3.6 to 3.7 in for ETPs
supported in SDK 3.2 [11]. Second, non-APIs originating
from the same SDK release are not necessarily the same
in all subsequent SDK releases, since different subsequent
SDK releases might use different versions of the non-API.

VI. THREATS TO VALIDITY

As any other empirical study, our findings may subject
to validity threats. We categorize the possible threats into
construct, internal and external validity.

Construct validity focuses on how accurately the metrics
utilized measure the phenomena of interest. The methodol-
ogy used to measure the age of the non-APIs used by the
ETPs, is subject to construct validity. Because we wanted
to use a quick way of determining the age of non-APIs, the
applied methodology considers renamed or moved non-APIs
as newly introduced in the SDK releases. In a follow-up
study we want to use code cloning to determine the moved
and renamed non-APIs [20].

Internal validity is related to validity of the conclu-
sion within the experimental context of the ETP collection
considered above. We have paid special attention to the
appropriate use of statistical machinery in all the results we
have presented.

External validity is the validity of generalizations based
on this study. Much as we only consider Open Source
ETPs from SourceForge, we could say that our results are
generalizable to all the Eclipse solutions since we do not
measure ETP specific artifacts. The artifacts we measure
are based on the framework. However, our results may not
be generalizable beyond the Eclipse-based solutions. Going
beyond Eclipse we realize that the same study needs to be
carried out on a different plug-in framework.

VII. RELATED WORK

This work complements our previous work in [8], [9],
[21]. In [21] we investigated the constrained evolution of
21 carefully selected ETPs on Lehman’s software evolution
laws. Specifically, we investigated the evolution of ETPs’
dependencies on Eclipse interfaces in the new releases of the
ETPs. In [8] we investigated the Eclipse API usage by 512
ETPs, and proposed the distinction between ETP-APIs and
ETP-non-APIs. In [9], we investigated the survival of ETPs
in SDK releases by comparing two groups of ETPs: those
that had all versions depending solely on APIs (ETP-APIs)
and those that have at least one of the versions depending
on a non-API (ETP-non-APIs). The current study is one of
the follow-up studies proposed in [9].

Class change proneness: Several studies have applied met-
rics related to internal factors that impact change proneness
in a software system. Penta et al. in [5] and [22] investigated
the relationship between design pattern roles and class
change proneness. Penta et al. in [5] carried out a finer-grain
level of design pattern roles. This study reports some classes
playing certain design pattern roles (e.g., Adapter, Receiver
and Command) are more change prone compared to the
classes that do not play these roles. Romano and Pinzger
in [23] investigates the relationship between Chidamber and
Kemerer metrics and change proneness. The authors reports
that cohesion exhibits the strongest correlation with the
number of code changes. In comparison to our study, we
investigate the impact age of non-APIs (which is an external
factor), used by the ETPs on change proneness of the non-
APIs.

Predictive models: A number of studies have reported
predictive models. Most of these models are based on
predicting defects in a software system. Mende and Koshke
in [24] presented two strategies, probabilistic classifier and
regression algorithms, to incorporate the treatment of effort
into defect prediction models. A number of studies have
built defect prediction models based on C&K metrics for
example [15], [16], [17]. In comparison to our study, we

report compatibility prediction models of framework-based
applications in new versions of the framework.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we analyzed source code to investigated two
main goals: 1) the relationship between the age of non-APIs
used by an ETP and the compatibility of the ETP in new
Eclipse SDK releases. 2) to build and validate a compatibil-
ity predictive model for an Eclipse third-party plug-in (ETP),
supported in a given SDK release, in a new SDK release.
For first goal, we have observed that newly introduced non-
APIs used by an ETP are likely to cause incompatibilities
of the ETP with new SDK releases. For the second goal,
we have built 23 and currently we have validated 13 of
the 23 compatibility predictive models. We have shown that
the built models can generate good predictions with high
accuracy, precision and recall. Furthermore, despite the fact
that SDK releases with API breaking changes, i.e., 1.0, 2.0
and 3.0, have got nothing to do with non-APIs, our findings
reveal that non-APIs introduced in these releases have a
significant impact on the compatibility of the ETPs that use
them with new SDK releases.

The investigation of the stability of the non-APIs is based
on an external artifact, i.e., the impact the non-APIs has on
software that use it. In a follow-up study we plan to carry
out an investigation by measuring the internal artifacts of the
non-API, e.g., relationship age of the non-API and changes
on the signature of the non-API.

In testing the models, based on the methodology we used
to collect testing samples, we had very few cases of ETPs
that were incompatible. In some models, the percentage
of the incorrectly predicted ETPs was high for the few
incompatible cases considered. In a follow-up study we
will collect more samples to test the models. We will
also investigate the possibility of combining predictors to
make better predictions (e.g., using a non-linear combination
of predictor variables or transformation of the predictor
variables prior to model fitting). We will also investigate on
how we can combine models to come up with one or few
general prediction models (e.g. using voting majority [17]).
The models presented can be used to make interpolation
compatibility predictions, i.e., predictions can only be made
SDK releases that were used to train the models. In a follow-
up study we plan to build extrapolation prediction models,
i.e., making predictions on an SDK we have not used in
building the model. We also intend to develop a domain
specific tool based on the models that can be used to make
predictions with the help of a tool like RASCAL [25]. One
might also consider more refined prediction models based
on usage of specific SDK packages as predictor variables.
To express the degree of dependence of an ETP on a
specific SDK package one can apply econometric inequality
indices [26], [27] or the Squale model [28].

Eclipse ETPs are examples of framework-based software.
Similarly to the distinction between API and non-API in
Eclipse other frameworks publish guidelines pertaining to
stability of their interfaces: e.g., NetBeans distinguishes
between eight categories of interfaces, including unstable
“private” and “friend”, more stable “devel” and even more
stable “stable” and “official” [29]. Hence, studies similar in
spirit to our work can be carried out on further software
frameworks.

(1]

(2]

(3]

(4]

(51

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

REFERENCES

T. Tourwé, T. Mens, Automated support for framework-based
software evolution, in: ICSM, 2003, pp. 148-157.

D. Brugali, G. Broten, A. Cisternino, D. Colombo, J. Fritsch,
B. Gerkey, G. Kraetzschmar, R. Vaughan, H. Utz, Trends in
robotic software frameworks, in: D. Brugali (Ed.), Software
Engineering for Experimental Robotics, Vol. 30 of Tracts in
Advanced Robotics, Springer, 2007, pp. 259-266.

W. Wu, Y.-G. Guéhéneuc, G. Antoniol, M. Kim, AURA: A
hybrid approach to identify framework evolution, in: ICSE,
2010, pp. 325-334.

B. Dagenais, M. P. Robillard, Recommending adaptive
changes for framework evolution, ACM Trans. Softw. Eng.
Methodol. 20 (2011) 19:1-19:35.

M. Di Penta, L. Cerulo, Y.-G. Gueheneuc, G. Antoniol, An
empirical study of the relationships between design pattern
roles and class change proneness, in: ICSM, 2008, pp. 217
—226.

Provisional API guidelines (Consulted on January 20, 2011).
URL http://wiki.eclipse.org/Provisional_API_Guidelines

J. des Rivieres, How to use the Eclipse API, http:
/lwww.eclipse.org/articles/article.php?file=Article- API-Use/
index.html, consulted on January 01, 2011 (2001).

J. Businge, A. Serebrenik, M. G. J. van den Brand, Eclipse
API usage: the good and the bad, in: SQM, CEUR WS, 2012.

J. Businge, A. Serebrenik, M. G. J. van den Brand, Survival
of Eclipse third-party plug-ins, in: ICSM, 2012.

J. Arthorne, T. Eicher, M. Keller, D. Williams, Version num-
bering, http://wiki.eclipse.org/Version_Numbering, consulted
on October 05, 2011 (2009).

J. Businge, A. Serebrenik, M. G. J. van den Brand, Com-
plementary material for “Compatibility prediction of Eclipse
plug-ins over new Eclipse releases”, http://www.win.tue.nl/
~aserebre/SCAM12Appendix.pdf (2012).

A. Agresti, Categorical Data Analysis, John Wiley & Sons,
Inc., 2002.

M. J. Norusis, SPSS 16.0 Guide to Data Analysis, Prentice
Hall Inc., Upper Saddle River, NJ, 2008.

N. C. Barford, Experimental measurements : precision, error
and truth, Chichester : Wiley, 1985.

[15]

[16]

(7]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

M. English, C. Exton, I. Rigon, B. Cleary, Fault detection and
prediction in an open-source software project, in: PROMISE,
2009, pp. 17:1-17:11.

Y. Zhou, H. Leung, Empirical analysis of object-oriented
design metrics for predicting high and low severity faults,
IEEE Trans. Softw. Eng. 32 (10) (2006) 771-789.

T. Gyimothy, R. Ferenc, 1. Siket, Empirical validation of
object-oriented metrics on open source software for fault
prediction, IEEE Trans. Softw. Eng. 31 (10) (2005) 897-910.

D. W. Hosmer, S. Lemeshow, Applied Logistic Regression,
Wiley, 2000.

D. Belsley, E. Kuh, R. Welsch, Regression Diagnostics: Iden-
tifying Influential Data And Sources Of Collinearity, Wiley,
2004.

T. R. Dean, M. Di Penta, K. Kontogiannis, A. Walenstein,
Clone detector use questions: A list of desirable empirical
studies, in: Duplication, Redundancy, and Similarity in Soft-
ware, 2007, pp. 1-5, Dagstuhl Seminar Proceedings 06301.

J. Businge, A. Serebrenik, M. G. J. van den Brand, An
empirical study of the evolution of Eclipse third-party plug-
ins, in: EVOL-IWPSE’10, 2010, pp. 63-72.

J. M. Bieman, G. Straw, H. Wang, P. W. Munger, R. T.
Alexander, Design patterns and change proneness: An ex-
amination of five evolving systems, in: Software Metrics
Symposium, 2003, pp. 40—49.

D. Romano, M. Pinzger, Using source code metrics to predict
change-prone Java interfaces, in: ICSM, 2011, pp. 303-312.

T. Mende, R. Koschke, Effort-aware defect prediction models,
in: CSMR, 2010, pp. 107-116.

P. Klint, T. van der Storm, J. Vinju, Rascal: A domain
specific language for source code analysis and manipulation,
in: SCAM, 2009, pp. 168-177.

A. Serebrenik, M. van den Brand, Theil index for aggregation
of software metrics values, in: ICSM, 2010, pp. 1-9.

B. Vasilescu, A. Serebrenik, M. G. J. van den Brand, You
can’t control the unfamiliar: A study on the relations between
aggregation techniques for software metrics, in: ICSM, 2011,
pp. 313-322.

K. Mordal, N. Anquetil, J. Laval, A. Serebrenik, B. Vasilescu,
S. Ducasse, Software quality metrics aggregation in in-
dustry, Journal of Software: Evolution and Process-
doi:10.1002/smr.1558.

J. Tulach, API stability, http://wiki.netbeans.org/API_
Stability, consulted on June 19, 2012 (January 7 2012).

