
Combining Conceptual and Domain-Based Couplings to
Detect Database and Code Dependencies

Malcom Gethers∗, Amir Aryani†, Denys Poshyvanyk∗
∗College of William and Mary, United States

{mgethers,denys}@cs.wm.edu
http://www.cs.wm.edu/
†RMIT University, Australia

amir.aryani@rmit.edu.au
http://www.rmit.edu.au/

Abstract—Knowledge of software dependencies plays an im-
portant role in program comprehension and other maintenance
activities. Traditionally, dependencies are derived by source code
analysis; however, such an approach can be difficult to use
in multi-tier hybrid software systems, or legacy applications
where conventional code analysis tools simply do not work as
is. In this paper, we propose a hybrid approach to detecting
software dependencies by combining conceptual and domain-
based coupling metrics. In recent years, a great deal of research
focused on deriving various coupling metrics from these sources
of information with the aim of assisting software maintainers.
Conceptual metrics specify underlying relationships encoded by
developers in identifiers and comments of source code classes
whereas domain metrics exploit coupling manifested in domain-
level information of software components and it is independent
from software implementation. The proposed approach is inde-
pendent from programming language, as such it can be used
in multi-tier hybrid systems or legacy applications. We report
the results of an empirical case study on a large-scale enterprise
system where we demonstrate that the combined approach is
able to detect database and source code dependencies with higher
precision and recall as compared to its standalone constituents.

I. INTRODUCTION

Software maintenance and evolution is a particularly intricate
phenomenon in case of long-lived, large-scale, database-centric,
hybrid software systems written in a mix of programming
languages and constantly evolving technologies. It is quite
common for such systems to evolve through the years of
development and maintenance efforts, a number of different
developers and stakeholders, and a multitude of software
artifacts, including ever growing large source code repositories
and databases. One key analysis activity to support maintenance
of such systems is dependency analysis or change impact
analysis, which is defined as the determination of potential
effects to a subject system resulting from a proposed software
change [1]. The main goal of change impact analysis is to
estimate the ripple change effects and prevent side effects (i.e.,
introduction of new bugs) of a proposed change. The scope of
impact analysis includes a number of software artifacts such
as requirements, design, source code, user manuals, database
schemas, and test cases.

An extensive number of approaches have been developed to
support impact analysis. These techniques range from those
based on traditional static and dynamic analyses [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11] to the recent unconventional
approaches, such as those based on Information Retrieval [12],
[13], [14], [15] and Mining Software Repositories [16], [17],
[18], [19]. While source code analysis has been traditionally
used to trace dependencies, it is becoming a challenge to apply
such approaches on database centric applications with evolving
database schemas and underlying programming languages [20].
This problem is becoming even more complex in case of long-
lived legacy systems with obsolete programming languages or
even missing source code.

In this paper we present an approach that combines concep-
tual and domain-based couplings to support impact analysis of
source code and database dependencies. Conceptual couplings
capture the extent to which domain concepts/features and
software artifacts are related to each other. This information
is derived using Information Retrieval (IR) based analysis of
textual software artifacts that are present in the latest version of
a system (e.g., comments and identifiers in a single snapshot of
software) [15]. Conceptual couplings are independent from the
underlying programming language or programming paradigm.
Likewise, domain-based couplings are derived from the domain-
level relationships embedded in software components, which
are independent from software implementation [21]. As such,
domain-based coupling can be used to detect dependencies
even without access to the source code or the database.

The core research assumption behind our approach is that
analysis of conceptual and domain-based couplings leads to
better impact analysis in hybrid software systems. For change
impact analysis, both conceptual and domain-based couplings
have been utilized independently, however, their combined use
has not been previously investigated. The proposed combination
in this paper is a necessary step to evaluate a research
hypothesis that such combined use of conceptual and domain-
based couplings provides improvements to the accuracy of
resulting impact sets.

In order to evaluate the proposed approach, we conducted
an empirical study on ADEMPIERE, an open source Enterprise

http://www.cs.wm.edu/
http://www.rmit.edu.au/

Resource Planning (ERP) system that is an excellent example
of a large-scale, multi-tier, database-centric, hybrid software.
In this case study we used the proposed combination to detect
database and source code dependencies for a number of impact
analysis tasks. The results of this empirical study demonstrated
that the proposed combination of conceptual and domain-
based couplings, across several cut-points, provides statistically
significant improvements in accuracy over either of the two
standalone techniques. For example, the combined approach
reported improvements in precision values of up to 7.05% and
recall values of up to 6.79% over the conceptual coupling and
up to 4.22% in precision and 24.43% in recall over domain-
based coupling. These results are fairly positive considering the
fact that this combination does not require a complex blending
of two approaches and it can be applied to systems written
in a mix of programming languages with non-trivial database
dependencies.

Overall, the contributions of this paper are as the following:
• We present a novel approach to detecting database

and source code dependencies using a combination of
conceptual and domain-based couplings.

• We present an empirical study on one of the biggest
open-source enterprise systems, demonstrating how the
proposed approach can be used to detect database and
source code dependencies; we also compare the combined
approach to the two underlying constituent approaches.

The rest of this paper is organized as follows. Section II
provides a brief discussion on the background and related
work to our study. Section III explains the combined approach.
Section IV presents the case study, and finally Section V
concludes this paper by a discussion on the future areas of
investigation.

II. BACKGROUND AND THE RELATED WORK

The key areas of investigation in this paper are software
dependencies and their relationships with two metrics of
domain-based and conceptual coupling. In this section, we
first describe the related work to change impact analysis and
then present these metrics in more detail.

A. Change Impact Analysis

Dependency analysis and traceability analysis are the two
primary methodologies for conducting change impact analysis.
Commonly, software dependency analysis refers to change
impact analysis of artifacts at the same level of abstraction (e.g.,
code to code or design to design). On the other hand, traceability
analysis relates to change impact analysis of software artifacts
across various levels of abstraction (e.g., code to design or
requirements to test cases). Several IA approaches ranging from
traditional static and dynamic analysis techniques [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11] to the recent unconventional
approaches, such as those based on Information Retrieval [12],
[13], [14], [15] and Mining Software Repositories [16], [17],
[18], [19], exist in the literature.

Coupling measures have also been applied to support change
impact analysis in Object-Oriented systems [3], [22]. Wilkie

et al. [22] investigated if classes with high Coupling Between
Objects (CBO) metric values are more prone to ripple effects
due to software changes. While CBO was determined to be a
useful pointer of change-proneness overall, it was not found to
be adequate to capture all possible types of changes. Briand et
al. [3] investigated the use of structural coupling metrics and
proposed decision models for detecting code classes that have
higher probability to be changed during impact analysis. The
empirical investigation into a number of structural coupling
measures and their combinations showed that those coupling
measures and combinations can be used to guide dependency
analysis and decrease impact analysis overhead. However, the
case study exposed a substantial number of change ripple
effects, which are not accounted for by the structurally coupled
classes.

Zimmerman et al. [19] used CVS logs for detecting evo-
lutionary couplings between source code entities. They used
association rules based on itemset mining that were formed
from the change-sets and used for impact analysis. Canfora et
al. [16] proposed an IR-based technique to index changed files,
commit logs, and previous issue reports from the bug-tracking
repositories to support impact analysis.

More recent work by Robillard [10] and Hill et al. [14]
proposed tools that can assist in navigating and prioritizing
software dependencies during various software maintenance
tasks. For instance, the work by Hill et al. [14] relates to
our approach, since it also uses textual information from the
source code to identify related software entities. A systematic
comparison of impact analysis approaches is not discussed
here, but can be found elsewhere [7]. In the next subsections
we discuss two prerequisite approaches to impact analysis in
this paper: one that is based on the analysis of conceptual
couplings from source code and another one based on the
analysis of textual domain-based couplings.

B. Domain-Based Coupling

Identifying the relationships between domain concepts and
the source code elements has been recognized as an important
task in software maintenance by number of researchers [23],
[24], [25]. Mapping domain entities to source code has been
used for concept location [26], [27], [25], developing reverse
engineering tools [28], [29], and supporting software change
process [30]. In a recent work, a coupling metric, termed
as domain-based coupling, has been proposed as a method
of approximation for software dependencies using solely
domain information [31]. We build our approach based on
the hypothesis that this metric and the conceptual coupling
can complement each other and combining them improves the
accuracy of predicting software dependencies.

At the domain level we use the following terminology [31]:

• A domain variable is a variable unit of data that has a
clear identity at the domain level.

• A domain function provides proactive or reactive domain-
level behaviour of the system including at least one
domain variable as an input or output.

• A user interface component (UIC) is a system component
which directly interacts with users, and contains one or
more domain functions.

These elements are modelled as follows: Domain variables
are modelled by a finite set V . Domain functions are modelled
by a finite set F , and the binary relation USE ⊆ F × V
represents the relation between functions and variables as the
input-output of the functions. UICs are modelled by a finite
set C, and HAS ⊆ C × F represents the relation between
components and functions.

Domain-based coupling has been defined as an indication
of semantic similarity between UICs, and it is measured based
on symmetric and asymmetric weight functions [32] . In the
scope of this paper, we only use the symmetric weight function
that is defined as:

ω(c, c′) =
|c.HAS.USE ∩ c′.HAS.USE|
|c.HAS.USE ∪ c′.HAS.USE|

(1)

For the system under analysis in this paper, we extracted
the information about domain variables, UICs and their
relations from a part of the system business logic that is
stored in the database. Although such information may not be
accessible from other enterprise systems databases; however,
the domain level relations might be derived from system
functional specifications [33], user manuals, and even studying
the behaviour of the working software.

C. Conceptual Coupling

Within a software system, identifiers account for approxi-
mately half of the source code [34]. These identifiers, which
programmers use for names of classes, methods, or attributes
in source code and other artifacts, contain vital information. In
many cases, information encoded in identifier names provide
developers with a starting point during program comprehension
tasks [35]. Self-documenting identifiers, which clearly reflect
the concepts that they are supposed to represent, are essential,
as they decrease the time and effort required to establish
fundamental comprehension for a given program task [36].

Recently, the source code analysis research community
recognized the problem of extracting and analyzing conceptual
information in software artifacts. A number of techniques
appear in the literature which analyze conceptual information,
using IR-based methods, to support software maintenance
tasks. More specifically, IR methods have been used for
feature location [37], [38], traceability link recovery [39],
[40], software measurement [41], [42], [43], [44], and impact
analysis [12], [15], [44]. Due to space limitations, we refer
the interested reader to Binkley and Lawrie [45] for a detailed
discussion of other applications of IR-based techniques in the
context of software maintenance.

We use conceptual similarity as a primary mechanism of
capturing conceptual coupling among software entities. This
measure is designed to capture the conceptual relationship
among documents. Formally, the conceptual similarity between
software entities ek and ej (where ek and ej can be methods),
is computed as the cosine between the vectors vek and vej ,

corresponding to ek and ej in the vector space constructed by
an IR method (e.g., Latent Semantic Indexing - LSI) [46]:

CSE(ek, ej) =
veT

k vej

|vek|2 × |vej |2
(2)

As defined, the value of CSE(ek, ej) ∈ [−1, 1], as CSE is
a cosine in the Vector Space Model (V SM) [47]. For source
code documents, the entities can be attributes, methods, classes,
files, etc. Computing class-class or file-file similarities, CSE
is straightforward (e.g., ek and ej are substituted by ak and aj

in the CSE formula), while deriving CSE for a pair of UICs
requires additional steps. We define the conceptual similarity
between two UICs as (CSED) uick ∈ C and uicj ∈ C (where
C is the set of UICs in software) as:

CSED(uicj , uick) =

∑
cj∈uicj

∑
ck∈uick

CSE(cj , ck)

n
,

(3)
which is the average of the similarity measures between all
unordered pairs of classes from UIC uick and UIC uicj . The
assumption, which is used in defining CSE and CSED, is that
if the classes of a UIC relate to each other, then the two UICs
are also related. More details regarding conceptual coupling
measures can be found in our preliminary work [42], [15].

To leverage the conceptual information embedded in a given
release of a software systems, we first parse the source code
using a developer defined level of granularity (e.g., methods,
files, etc). We represent the software system as a collection of
documents, referred to as a corpus. Each software artifact in
the system will have a corresponding document in the corpus.
We use srcML [48], which provides an XML representation
of source code, for the underlying representation of the source
code and textual information. Using srcML allows use to
preserve the information necessary to generate the corpus (e.g.,
original source code contents including comments, white space,
and preprocessor directives).

D. Software Dependencies

In our study, we use the dependency model that is derived in
recent research [31] in the reverse engineering of ADEMPIERE.
This model has been implemented using FAMIX [49] meta-
model and Moose [50] platform. In this model the software
dependencies are analysed at the source code and the database
layers.

1) Source Code Dependencies: The dependency model is
comprised of three main entities at the source code: Class,
Attribute and Method. Classes are modelled by a finite set
CLS . Attributes are modelled by a finite set ATT where the
binary relation F ⊆ CLS × ATT maps them to the classes.
Methods are modelled by a finite set MET where the binary
relation M ⊆ CLS ×MET maps them to classes. Two classes
cls, cls ′ ∈ CLS can have following relations:

• Returning a type: cls.M−1.R−1.cls ′

• Invoking a method: cls.M.I.M−1.cls ′

• Accessing an attribute: cls.M.A.F−1.cls ′

Fig. 1: Example of two UICs in ADEMPIERE: Product Details and Expense Product tabs.

UIC 1 (Expense Product) UIC 2 (Product Details)

Legend: The arrows highlight a common domain variable (EPC/EAN) between these UICs.

For two classes cls, cls ′ ∈ CLS , their direct dependency has
been defined as:

cls.D.cls ′ (4)

and their indirect dependency has been defined as:

cls.D.D−1cls ′ (5)

where D = {M−1.R−1,M.I.M−1,M.A.F−1} represents a
direct relation between two classes.

2) Database Dependencies: The main entity at the database
layer is the table. The set of all tables are modelled by the finite
set TBL, For two tables t , t ′ ∈ TBL, their direct relationship
has been defined as:

t.FK .t′ (6)

and their indirect relationship has been defined as:

t.FK .FK−1.t′ (7)

where the binary relation FK ⊆ TBL× TBL represents the
foreign key between tables.

3) Architectural Dependencies: A software component is
composed of one or more classes, and two components are
architecturally dependent either by a dependency between their
classes or by a dependency between the tables that are accessed
by these classes. More formally the binary relation DEP ⊆
C × CLS represents classes that a UIC depends on, and the
relation REF ⊆ CLS × TBL represents tables that a class
reads or writes to. Two components c, c′ ∈ C has been defined
as architecturally dependent if and only if they are in one or
more of the following relationships:

c.DEP .DEP−1.c′ (8)
c.DEP .D.DEP−1.c′ (9)

c.DEP .D.D−1.DEP−1.c′ (10)
c.DEP .REF .REF−1.DEP−1.c′ (11)

c.DEP .REF .FK .REF−1.DEP−1.c′ (12)
c.DEP .REF .FK .FK−1.REF−1.DEP−1.c′ (13)

where Equation 8 shows a shared class between c and c′,
Equation 9 shows a direct dependency between their classes,

Equation 10 shows an indirect dependency between their
classes, Equation 11 shows a shared table between these
components, and finally Equation 12 and Equation 13 represent
the direct and indirect relations between their tables.

In the next example, we describe how to derive the domain-
based coupling for two UICs of ADEMPIERE

E. Example

In this example, we demonstrate how we measure the
domain-based coupling, conceptual coupling and architectural
dependencies. Product Details and Expense Product are two
UICs of ADEMPIERE that we use in this example (Figure 1).

1) Domain-Based Coupling: Expense Product (c1) has one
domain function and 17 domain variables, as follows:

c1.HAS = { Add Product Definition of Expense Type }.

c1.HAS .USE = { Classification, Discontinued, DiscontinuedAt,
UOM, UPC/EAN, TaxCategory, RevenueRecognition,... }.

Product Details (c2) contains one domain function and 23
domain variables as follows:

c2.HAS = {Edit Product Details }.

c2.HAS .USE = { LastPOPrice, DiscontinuedAt, Discontinued,
OrderPackQty, PriceEffective, UOM, UPC/EAN,... }.

There are 4 common domain variables between these UICs as
follows:

c1.HAS .USE ∩ c2.HAS .USE = { UOM, UPC/EAN,
Discontinued, DiscontinuedAt }.

and in total 36 (17 + 23− 4) variables used by either of these
UICs; thus:

ω(c1, c2) = 4/36 = 0.11

2) Conceptual Coupling: Expense Product (c1) depends on
two classes in the source code:

{org.compiere.model.MProduct,
org.compiere.model.X_M_Product}

Product Details (c2) depends on two classes in the source code:
{org.compiere.model.X_M_Product_PO,

org.compiere.model.MProductPO}
We compute CSE(clsj , clsk) for all unordered pairs of classes,
where

clsj ∈ {org.compiere.model.MProduct,
org.compiere.model.X_M_Product}

clsk ∈ {org.compiere.model.X_M_Product_PO,
org.compiere.model.MProductPO}

which results in the following values for CSE, given the
current example:

CSE(org.compiere.model.MProduct,

org.compiere.model.X_M_Product_PO) = 0.581

CSE(org.compiere.model.MProduct,

org.compiere.model.MProductPO) = 0.718

CSE(org.compiere.model.X_M_Product,

org.compiere.model.X_M_Product_PO) = 0.497

CSE(org.compiere.model.X_M_Product,

org.compiere.model.MProductPO) = 0.765

Once we have computed CSE for the set of unordered pairs
of classes, we compute the average to obtain CSED.

CSED(ExpenseProduct, ProductDetails) = 0.64064

3) Dependencies: Analysis of the source code and the
database of Product Details and Expense Product shows that
there are source code and database dependencies between them.
At the code layer there are three instances of indirect depen-
dencies between the classes behind these UICs (Equation 10).
At the database layer these classes read and write into two
tables M_Product_PO and M_Product where these tables are
connected by a direct relation (Equation 12). Hence, Product
Details and Expense Product are architecturally connected.

III. COMBINED APPROACH

Our approach to combining conceptual and domain depen-
dencies uses the union of suggestions based on conceptual and
domain information (see Algorithm 1). More specifically, our
approach returns the union of the set of dependencies detected
by the two coupling metrics. The user specifies an initial entity
and a cut point1 for determining the number of dependencies
to suggest. For a given cut point, we establish the final set
of dependencies by determining the number of dependencies
suggested by each individual technique as equal (or one
additional element is contributed by conceptual coupling) and
the cardinality of the union is equal to the specified value of
the cut point. Our approach detects dependencies using the
following steps:

Step 1: Select the UIC, for which we want to detect
dependencies. Note that our approach starts with a
given entity.

Step 2: Compute conceptual couplings between the given
UIC and all other UICs to detect dependencies based
on conceptual information.

Step 3: Compute domain couplings between the given UIC
and all other UICs to detect dependencies based on
domain information.

1Cut point specifies the number of predicted dependencies our approach
will return to the user.

Step 4: Compute the set of dependencies from the combi-
nations of couplings computed in steps 3 and 4. See
Algorithm 1 for the exact details.

IV. CASE STUDY

In this section we describe the design of the case study
conducted to empirically assess our proposed approach. The
description of our study follows the Goal-Question-Metrics
paradigm [51], which includes goals, quality focus, and context.
The goal of the case study is to analyze (i) whether conceptual
coupling and domain-based coupling are orthogonal and (ii)
whether combining conceptual and domain-based coupling
metrics improves the accuracy when detecting dependencies.
The quality focus is on ensuring improved accuracy, while
the perspective was of a software developer inquiring about
architectural dependencies in a multi-tier hybrid system.

A. Research Questions

In the context of our case study the following research
questions (RQs) are addressed:

1) RQ1: Does conceptual and domain-based couplings
detect orthogonal database and code dependencies?

2) RQ2: Does combining conceptual and domain-based cou-
plings improve our ability to accurately detect database
and code dependencies?

To respond to our research questions, we analyzed each cou-
pling metric’s ability to detect database and code dependencies
in a multi-tier hybrid system.

B. Metrics and statistical analysis

1) Overlap: To analyze the orthogonality of the conceptual
and domain-based coupling metrics (RQ1), we used the
following overlap metrics [52]:

correctmi∩mj
=
|correctmi ∩ correctmj |
|correctmi

∪ correctmj
|
%

correctmi\mj
=
|correctmi

\ correctmj
|

|correctmi ∪ correctmj |
%

where correctmi corresponds to the set of correctly detected
dependencies by the coupling metric mi. It is worth noting
that correctmi∩mj

captures the overlap between the set of
correctly detected dependencies identified by the two coupling
metrics. More specifically, the metric gives an indication of
what percentage of correctly detected dependencies are common
to both techniques. On the other hand, correctmi\mj

measures
the correct dependencies identified by mi and missed by mj .
The latter metric gives an indication of how a coupling metric
contributes to complementing the set of correct dependencies
identified by the other metric, thus providing insight into the
orthogonality between metrics.

Algorithm 1 Disjunctive combination

1: #Procedure to detect dependencies using disjunctive combination
2: #entity: initial entity to detect dependencies for
3: #cp (cutpoint): number of dependencies to suggest
4: procedure DETECTDEPSDISJ(entity, cp)
5: #Use domain coupling to detect cp/2 dependencies
6: DomDeps ← getDomCpl(entity, cp/2)
7: #Use conceptual coupling to detect cp/2 dependencies
8: ConcDeps ← getConcCpl(entity, cp/2)
9: #If number of detected dependencies is less than cp get more dependencies

10: if |DomDeps ∪ ConcDeps| < cp then
11: #Return the set of detected dependencies
12: return (DomDeps∪ConcDeps∪ DetectDepsDisj(entity, cp−|DomDeps∪ConcDeps|))
13: end if
14: return DomDeps ∪ ConcDeps
15: end procedure

2) Precision and Recall: Precision and recall, two widely
publicized information retrieval metrics [47], are used to
measure the ability of the coupling metrics to detect de-
pendencies (RQ2). In the context of detecting dependencies,
precision indicates the percentage of dependencies correctly
identified, whereas recall measures the percentage of all correct
dependencies in the system that are identified. These metrics
are formally defined as follows:

recall =
|cor ∩ det|
|cor|

% precision =
|cor ∩ det|
|det|

%

where cor and det correspond to the sets of correct dependen-
cies and all dependencies detected using the coupling metric,
respectively.

3) Statistical Analysis: To further compare the difference in
accuracy obtained using the combination of the two coupling
metrics we used statistical analysis. That is, we utilized a
statistical significance test to confirm that the number of
correct dependencies identified by the combination of the two
metrics was significantly higher than those identified using
either individual metric. In other words, we compared the
number of correct dependencies identified using the disjunctive
combination to test the following null and alternate hypotheses:

H0: there is no difference between the number of
correct dependencies identified using the disjunctive
combination.
Ha: there is a statistically significant difference be-
tween the number of correct dependencies identified
using the disjunctive combination.

We use the student t-test [53] and the results were intended
as statistically significant at α = 0.05.

C. System Under Analysis: ADEMPIERE

We evaluate our hypothesis with a case study on a large
scale Enterprise Resource Planning (ERP) system, called

ADEMPIERE2. It is composed of multiple subsystems across
various domains such as accounting, asset management, sales
and finance, etc. Such diversity enables us to limit the impact
of domain specific properties (e.g., complexity of business
rules) on the evaluation results.

Fig. 2: High Level Architecture of ADEMPIERE

ADempiere

Compiere

Legend: The view is obtained by aggregating the software dependencies in
the system along the package hierarchy [54].

ADEMPIERE represents the state of art of open source
systems with a multi-tier architecture and four distinct user
interfaces including a Java GUI and three web interfaces. This
project was forked from Compiere open source ERP that itself
was created in 1999. In the last decade, ADEMPIERE has been
evolved to one the most active open source enterprise projects,
and at the time of writing this paper it has the download rate
of more than 1,000 times per month. Figure 2 shows the high
level architecture of ADEMPIERE. This view is created by
aggregating the dependencies between source code elements,
and the size of each module is proportional to the number of

2http://www.adempiere.com/ADempiere_ERP

http://www.adempiere.com/ADempiere_ERP

TABLE I: Number of Dependencies in ADEMPIERE

Code IDR DDR ARC
PairWiseDep. 25,856 8,899 12,749 27,015

Legend: COD: Source code dependencies, IDR: Indirect database relation-
ships, DDR: Direct database relationships, ARC: Architectural dependencies,
PairWiseDep.: Number of pairwise architecturally dependent UICs

lines of code [54]. In this study, we focus on the core part
of ADEMPIERE that is composed of more than 3,000 Java
classes.

The user interface of ADEMPIERE is composed of windows,
tabs and fields. A window has one or more tabs, and a tab
includes multiple fields. In this study, we focus on tabs as
the minimum user interface component with at least one
domain function, that leads us to 889 UICs. We traced the
dependencies between these UICs through the source code and
the database layers as described in Section II-D. The outcome
of the dependency analysis is presented in Table I. In summary,
there are 27,015 UIC pairs connected by architectural (source
code + database) dependencies.
Note that in this table, the number of pairwise dependencies
represents the number of dependent UIC pairs rather than the
number of individual dependencies between them.

D. Results

1) RQ1: Does conceptual and domain-based couplings
detect orthogonal database and code dependencies?: We first
investigate whether conceptual and domain-based couplings
detect orthogonal database and code dependencies. Our focus
is on determining if the two metrics actually complement
one another. Given this insight, we can determine whether
it will be beneficial to combine the two metrics. A scenario
where augmenting the two coupling metrics is beneficial is
when both metrics provide complementary sets of correct
dependencies. If the two metrics identify identical or highly
similar dependencies, it may not be worthwhile to combine
the metrics.

With regards to the orthogonality of the two metrics, Table II
presents the results of the overlap analysis. For the various cut
points considered, we measure three aspects of the data. Given
the set of correct dependencies identified by each metric we
determine the percentage of correct dependencies (1) identified
by both metrics (correctconc∩dom) and (2) unique to domain-
based coupling metric (correctconc\dom) and (3) unique to
conceptual coupling metric (correctdom\conc). As the table
reveals, the percentage of correct dependencies returned by
both metrics does not exceed 31%. This demonstrates that
the two metrics are indeed orthogonal, given the current
software system under consideration. This result provides a
strong indication that combining conceptual and domain-based
couplings can be beneficial. We empirically evaluate such a
combination in the next section.

2) RQ2: Does combining conceptual and domain-based
couplings improve our ability to accurately detect database and
code dependencies?: Our primary goal is to enhance our ability

to detect dependencies by using the orthogonality of coupling
metrics. In this work, we consider a disjunctive approach to
combining coupling metrics. Based on our finding (see Tables
III, IV, V, and VI), the disjunctive approach outperforms
either of the individual coupling metrics in virtually all the
cases. The orthogonality of the two metrics, as discussed
in the previous sub-section, appears to contribute to the
results of the disjunctive combination. Our results show that
the combination of conceptual and domain-based couplings
improves the performance over either individual coupling
metrics. For example, consider a case in Table III where
cut point is 10. Conceptual and domain-based couplings in
this instance yield precision values of 25.67% and 29.41%
respectively, while the combination of the two increases
precision to 31.99%. Comparable improvements are apparent
throughout all the results. Similar results are achieved when
detecting database and code dependencies. Table V indicates
that, for a cut point of 100, we obtain improvements in both
precision and recall when the disjunctive approach is used.
In this case, conceptual and domain-based coupling yield
7.94% and 8.88% precision respectively, while the disjunctive
combination gives yields precision of 9.74%. With respect to
recall, conceptual and domain-based coupling returns 52.38%
and 30.35% respectively. The disjunctive combination is able
to correctly identify 54.78% of correct dependencies. There
are a few cases where the disjunctive combination does not
perform as well as one of the individual metrics (see Table IV).
In most cases, this is caused by the large discrepancy between
the two techniques. When there is a substantial difference in
the performance of the two techniques, the technique with
the lower accuracy negatively impacts the accuracy of the
disjunctive approach. As discussed in Section IV-B3, statistical
analysis is used to confirm that the improvements that we
observe are not by chance. Our application of the statistical
test determines whether the improvement in detection accuracy
obtained using the disjunctive approach compared to use of
each individual metric is statistically significant. Results of the
statistical analysis (see Table Table VII) indicate that in most
cases where we observe an improvement using the disjunctive
approach, we are able to reject the null hypothesis and conclude
that there is a statistical significant improvement.

E. Threats to Validity

We outline some of the threats to validity that could influence
the results of our empirical case study and limit our ability
to generalize our findings. We demonstrated the benefits of
combining conceptual with domain-based couplings metrics to
improve accuracy of impact analysis, however, our case study
is performed using only one open source software system that
is ADEMPIERE. Although this system is representative of a
large spectrum of open-source systems in practice, to claim
generalization and external validity of our results would require
additional empirical evaluation on more software systems,
which are also implemented in other programming languages
(or even mixes of programming languages) and using different
development paradigms. Yet, re-engineering such systems to

TABLE II: Overlap analysis for conceptual (Conc) and domain-based (Dom) couplings for various cut points.
Cut Points 10 20 30 40 50 60 70 80 90 100

Architectural Dependencies
correctconc∩dom 25.27% 25.65% 25.86% 26.90% 27.80% 28.26% 28.88% 29.84% 30.45% 30.40%
correctconc\dom 35.00% 37.86% 39.02% 39.24% 39.72% 40.04% 40.14% 39.92% 40.07% 40.79%
correctdom\conc 24.67% 24.85% 24.65% 24.33% 23.90% 23.35% 28.63% 29.18% 28.54% 27.87%

Direct Database Dependencies
correctconc∩dom 10.37% 16.30% 18.86% 20.69% 22.03% 22.90% 23.70% 25.09% 25.86% 26.17%
correctconc\dom 22.39% 27.00% 28.49% 29.59% 31.46% 32.63% 33.38% 34.03% 34.57% 36.11%
correctdom\conc 40.82% 39.25% 38.50% 36.75% 34.25% 33.86% 33.01% 31.69% 30.85% 29.22%

Indirect Database Dependencies
correctconc∩dom 14.20% 16.87% 19.09% 21.07% 22.87% 24.16% 26.14% 27.51% 28.98% 28.96%
correctconc\dom 38.76% 46.06% 47.90% 48.57% 49.29% 49.43% 49.53% 49.01% 48.05% 49.07%
correctdom\conc 18.06% 17.40% 16.38% 16.05% 15.62% 14.91% 20.41% 21.28% 20.89% 20.13%

Source Code Dependencies
correctconc∩dom 27.97% 28.18% 28.38% 29.52% 30.53% 31.00% 31.79% 32.74% 33.41% 33.40%
correctconc\dom 38.06% 41.35% 42.96% 43.16% 43.59% 43.84% 43.68% 43.59% 43.76% 44.49%
correctdom\conc 25.22% 25.58% 25.18% 24.88% 24.21% 23.62% 23.12% 22.63% 21.92% 21.21%

TABLE III: Accuracy (precision (P) and recall (R)) for detecting architectural dependencies using Conceptual (Conc), Domain-
based (Dom), and Combined (Comb) approaches for various cut points.

Cut Points P(10) R(10) P(20) R(20) P(30) R(30) P(40) R(40) P(50) R(50) P(60) R(60) P(70) R(70) P(80) R(80) P(90) R(90) P(100) R(100)
Conc 25.67 12.26 20.95 17.23 18.42 20.35 16.75 22.84 15.80 25.59 15.06 28.48 14.42 30.72 13.80 32.39 13.24 33.98 12.78 35.37
Dom 29.41 7.40 25.72 10.46 23.54 12.59 22.34 14.76 21.43 16.62 20.91 18.28 20.56 21.86 20.30 26.06 19.95 27.52 19.64 28.22
Comb 31.99 12.57 27.75 17.14 25.18 21.06 23.10 23.51 21.65 26.37 20.52 28.83 19.90 33.67 19.31 38.71 18.71 40.84 18.24 42.15

Comb vs. Conc 6.32 0.32 6.81 -0.09 6.76 0.71 6.35 0.67 5.85 0.78 5.46 0.35 5.48 2.95 5.51 6.32 5.47 6.86 5.46 6.79
Comb vs. Dom 2.58 5.18 2.03 6.68 1.64 8.46 0.76 8.75 0.23 9.75 -0.39 10.55 -0.65 11.80 -0.99 12.65 -1.24 13.33 -1.40 13.93

TABLE IV: Accuracy (precision (P) and recall (R)) for detecting direct database dependencies using Conceptual (Conc),
Domain-based (Dom), and Combined (Comb) approaches for various cut points.

Cut Points P(10) R(10) P(20) R(20) P(30) R(30) P(40) R(40) P(50) R(50) P(60) R(60) P(70) R(70) P(80) R(80) P(90) R(90) P(100) R(100)
Conc 8.40 4.43 9.60 7.95 9.48 10.06 9.16 12.62 9.53 15.05 9.80 16.92 9.90 18.46 9.71 19.83 9.44 21.12 9.34 22.53
Dom 17.59 4.98 17.75 8.26 17.58 10.95 17.27 13.29 16.96 14.96 16.72 16.59 16.41 17.90 16.23 19.12 16.01 20.11 15.75 20.69
Comb 15.00 5.50 16.49 9.59 16.48 12.64 16.07 15.26 15.56 17.78 15.32 19.80 15.00 22.10 14.62 23.89 14.22 25.21 13.98 26.42

Comb vs. Conc 6.60 1.07 6.89 1.64 7.00 2.59 6.90 2.65 6.03 2.73 5.52 2.87 5.11 3.64 4.91 4.07 4.77 4.08 4.63 3.89
Comb vs. Dom -2.59 0.52 -1.27 1.32 -1.10 1.69 -1.20 1.97 -1.39 2.82 -1.40 3.21 -1.41 4.21 -1.61 4.77 -1.79 5.09 -1.77 5.73

TABLE V: Accuracy (precision (P) and recall (R)) for detecting indirect database dependencies using Conceptual (Conc),
Domain-based (Dom), and Combined (Comb) approaches for various cut points.

Cut Points P(10) R(10) P(20) R(20) P(30) R(30) P(40) R(40) P(50) R(50) P(60) R(60) P(70) R(70) P(80) R(80) P(90) R(90) P(100) R(100)
Conc 16.05 17.81 13.69 25.71 12.14 30.70 10.90 34.83 10.31 38.78 9.84 42.68 9.30 45.85 8.82 48.19 8.30 50.08 7.94 52.38
Dom 13.94 7.22 11.79 10.96 10.64 13.49 10.03 15.97 9.66 18.11 9.39 19.83 9.25 23.49 9.20 27.95 9.06 29.68 8.88 30.35
Comb 18.15 17.44 15.85 24.38 14.09 30.09 12.69 33.46 11.72 37.05 11.08 40.12 10.73 45.35 10.44 50.78 10.07 53.34 9.74 54.78

Comb vs. Conc 2.10 -0.37 2.16 -1.33 1.95 -0.61 1.79 -1.36 1.41 -1.73 1.24 -2.56 1.43 -0.50 1.63 2.58 1.77 3.26 1.80 2.40
Comb vs. Dom 4.22 10.22 4.06 13.42 3.46 16.61 2.66 17.49 2.06 18.94 1.69 20.29 1.48 21.86 1.24 22.83 1.02 23.66 0.86 24.43

TABLE VI: Accuracy (precision (P) and recall (R)) for detecting source code dependencies using Conceptual (Conc), Domain-
based (Dom), and Combined (Comb) approaches for various cut points.

Cut Points P(10) R(10) P(20) R(20) P(30) R(30) P(40) R(40) P(50) R(50) P(60) R(60) P(70) R(70) P(80) R(80) P(90) R(90) P(100) R(100)
Conc 27.72 14.11 22.52 19.68 19.83 23.38 18.03 26.18 16.99 29.20 16.19 32.41 15.52 34.79 14.86 36.69 14.26 38.40 13.76 39.92
Dom 31.22 8.03 27.32 11.35 25.00 13.62 23.73 16.04 22.73 18.02 22.18 19.84 21.70 21.59 21.32 22.99 20.93 24.11 20.60 24.90
Comb 34.05 13.99 29.57 19.07 26.83 23.54 24.63 26.28 23.07 29.43 21.87 32.18 21.08 35.05 20.33 37.55 19.68 39.45 19.19 40.83

Comb vs. Conc 6.33 -0.12 7.05 -0.61 7.01 0.16 6.60 0.11 6.07 0.23 5.68 -0.24 5.57 0.26 5.47 0.86 5.43 1.05 5.42 0.91
Comb vs. Dom 2.83 5.95 2.25 7.72 1.84 9.92 0.90 10.25 0.33 11.41 -0.31 12.34 -0.62 13.45 -0.99 14.56 -1.24 15.34 -1.41 15.93

build benchmarks in order to evaluate approaches like this one
remains a tedious and error-prone task. Thus, we make the
data from our case study publicly available 3 so that other
researchers can verify and perhaps even reproduce our results.

We apply an IR technique to textual information extracted
from the source code of software systems to derive conceptual
coupling metrics. Hence, our findings may have been impacted
by the consistency of variable naming and commenting
practices of ADEMPIERE software developers. The use of
Latent Semantic Indexing to compute conceptual couplings is
also sensitive to a set of user-defined parameters, such as pre-
processing techniques and a dimensionality reduction factor,
that is k. It is a viable risk that the results obtained by our

3http://hdl.handle.net/102.100.100/7799

approach are valid only for a particular set of these parameter
values, that is, particular values of k and chosen pre-processing
strategies, such as identifier splitting and stemming. To address
this risk, we relied on the parameter values and pre-processing
strategies that were used in our previous work [18], [13].

We measured the accuracy of impact analysis using a
benchmark we created with precision and recall metrics. Our
benchmark is based on the software dependencies that are
derived from the FAMIX meta model and Moose technology;
however, it is possible that, when creating our benchmark, we
did not detect all true dependencies. Furthermore, it is possible
that a different accuracy metric may generate different results;
however, both these metrics are widely used and accepted in the
community, including various papers on impact analysis. We

TABLE VII: Statistical Analysis.
Cut Points P(10) R(10) P(20) R(20) P(30) R(30) P(40) R(40) P(50) R(50) P(60) R(60) P(70) R(70) P(80) R(80) P(90) R(90) P(100) R(100)

Architectural Comb vs. Conceptual <0.001 0.147 <0.001 0.583 <0.001 0.065 <0.001 0.095 <0.001 0.0754 <0.001 0.285 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Comb vs. Domain <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.0272 <0.001 0.2849 <0.001 0.831 <0.001 0.947 <0.001 0.993 <0.001 0.999 <0.001 0.999 <0.001

Direct Comb vs. Conceptual <0.001 0.003 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Comb vs. Domain 0.999 0.039 0.999 <0.001 0.998 <0.001 0.998 <0.001 0.999 <0.001 0.999 <0.001 0.999 <0.001 0.999 <0.001 0.999 <0.001 0.999 <0.001

Indirect Comb vs. Conceptual <0.001 0.811 <0.001 0.987 <0.001 0.835 <0.001 0.976 <0.001 0.989 <0.001 0.999 <0.001 0.716 <0.001 0.008 <0.001 0.002 <0.001 0.019
Comb vs. Domain <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Source Code Comb vs. Conceptual <0.001 0.657 <0.001 0.911 <0.001 0.375 <0.001 0.4237 <0.001 0.345 <0.001 0.638 <0.001 0.345 <0.001 0.091 <0.001 0.056 <0.001 0.089
Comb vs. Domain <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.018 <0.001 0.219 <0.001 0.758 <0.001 0.923 <0.001 0.988 <0.001 0.998 <0.001 0.999 <0.001

also tried F-measure, which is based on precision and recall,
and also noticed statistically significant improvements with
our combined approach; however, we do not report the results
based on F-measure in the paper because of space limitations.
The accuracies of the two standalone techniques, conceptual
coupling and domain-based couplings, however, seem to have
low values in some cases (mostly for larger cut points, so
it is to be expected); however, they are comparable to other
previous results [19].

Nevertheless, the main contribution of our work is to improve
accuracy by forming an effective combination. Yet, we do
not claim that our combined approach would operate with
equivalent improvement in accuracy on other systems, including
closed source.

V. CONCLUSION AND FUTURE WORK

The empirical evaluation on a large scale enterprise software
provides support for our proposed combined approach with
several conclusions in the context of dependency analysis.
Overall, combining conceptual and domain-based couplings
improves accuracy. The empirical findings demonstrate that in
certain cases an improvement of 24.43% in recall and 7.05%
in precision is achieved when conceptual and domain-based
couplings are combined. Of course, some of these results and
magnitude of improvements are different for database and code
dependencies, however, we observe an overall improvement
across different cut points for all types of dependencies.
Moreover, the overall improvement in precision and recall
obtained when combining the two types of couplings is
statistically significant for the dataset of dependencies used
in our evaluation. We conjecture that obtained improvement
in accuracy for the proposed approach is, in part, due to the
orthogonal nature of the correct software entities detected by
the two couplings, which has been confirmed in our empirical
case study.

We plan to develop and empirically corroborate other
combinations of conceptual and domain-based couplings (e.g.,
weighed contributions of entities from conceptual and domain-
based couplings based on the confidence in each source of
information). One important future direction includes the
addition of static and dynamic couplings as well as coupling
measures based on change data, i.e., evolutionary couplings.
We are also planning rigorous comparative studies with these
approaches (e.g., structural and evolutionary metrics). In
previous studies [18], [15], it was reported that conceptual
metrics performed as well as or better than those based on
structural or evolutionary metrics. Our ultimate goal is to

combine all these different types of couplings to improve
change impact analysis.

7 Acknowledgments - We would like to thank Fabrizio
Perin, Dr. Mircea Lungu and Prof. Oscar Nierstrasz for
providing the data and the dependency model of ADEMPIERE
architecture. This work is supported by the United States NSF
CCF-1218129, NSF CCF-1016868, NSF CCF-0916260 grants.
Any opinions, findings, and conclusions expressed herein are
the authors’ and do not necessarily reflect those of the sponsors.

REFERENCES

[1] S. Bohner and R. Arnold, Software Change Impact Analysis. Los
Alamitos, CA: IEEE Computer Society, 1996.

[2] A. Beszedes, T. Gergely, J. Jasz, G. Toth, T. Gyimothy, and V. Rajlich,
“Computation of static execute after relation with applications to software
maintenance,” in 23rd IEEE International Conference on Software
Maintenance (ICSM ’07), Paris, France, 2007, pp. 295–304.

[3] L. Briand, J. Wust, and H. Louinis, “Using coupling measurement
for impact analysis in object-oriented systems,” in IEEE International
Conference on Software Maintenance (ICSM’99). IEEE Computer
Society Press, 1999, pp. 475–482.

[4] K. Gallagher and J. Lyle, “Using program slicing in software main-
tenance,” Transactions on Software Engineering, vol. 17, no. 8, pp.
751–762, 1991, gallagher91.pdf.

[5] J. Law and G. Rothermel, “Whole program path-based dynamic impact
analysis,” in 25th International Conference on Software Engineering,
Portland, Oregon, 2003, pp. 308–318, law03.pdf.

[6] L. Moonen, “Lightweight impact analysis using island grammars,” in
10th International Workshop on Program Comprehension (IWPC’02),
Paris, France, 2002, pp. 219–228.

[7] A. Orso, T. Apiwattanapong, J. Law, G. Rothermel, and M. Harrold,
“An empirical comparison of dynamic impact analysis algorithms,” in
IEEE/ACM International Conference on Software Engineering (ICSE’04),
2004, pp. 776–786.

[8] M. Petrenko and V. Rajlich, “Variable granularity for improving precision
of impact analysis,” in 17th IEEE International Conference on Program
Comprehension (ICPC’09), Vancouver, BC, Canada, 2009, pp. 10–19.

[9] X. Ren, F. Shah, F. Tip, B. Ryder, and O. Chesley, “Chianti: a tool
for change impact analysis of java programs,” in 19th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications(OOPSLA ’04), Vancouver, BC, Canada, 2004, pp. 432–448.

[10] M. Robillard, “Automatic generation of suggestions for program in-
vestigation,” in Joint European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Lisbon, Portugal, 2005, pp. 11 – 20.

[11] P. Tonella, “Using a concept lattice of decomposition slices for program
understanding and impact analysis,” IEEE Transactions on Software
Engineering, vol. 29, no. 6, pp. 495–509, 2003, tonella03.pdf.

[12] G. Antoniol, G. Canfora, G. Casazza, and A. Lucia, “Identifying the
starting impact set of a maintenance request: A case study,” in 4th
European Conference on Software Maintenance and Reengineering
(CSMR’00), Zurich, Switzerland, 2000, pp. 227–231, antoniol00.pdf.

[13] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, “Integrated impact anal-
ysis for managing software changes,” in 34th IEEE/ACM International
Conference on Software Engineering (ICSE’12), Zurich, Switzerland,
2012, p. to appear 10 pages.

[14] E. Hill, L. Pollock, and K. Vijay-Shanker, “Exploring the neighborhood
with dora to expedite software maintenance,” in 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE’07),
2007, pp. 14–23.

[15] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy, “Using
information retrieval based coupling measures for impact analysis,”
Empirical Software Engineering, vol. 14, no. 1, pp. 5–32, 2009.

[16] G. Canfora and L. Cerulo, “Impact analysis by mining software and
change request repositories,” in 11th IEEE International Symposium on
Software Metrics (METRICS’05), 2005, pp. 20–29.

[17] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling
based on product release history,” in Proceedings of the International
Conference on Software Maintenance (ICSM’98), 1998, pp. 190 – 198.

[18] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Collard, “Blending con-
ceptual and evolutionary couplings to support change impact analysis in
source code,” in 17th IEEE Working Conference on Reverse Engineering
(WCRE’10), Beverly, Massachusetts, USA, 2010, pp. 119–128.

[19] T. Zimmermann, A. Zeller, P. Weißgerber, and S. Diehl, “Mining version
histories to guide software changes,” IEEE Transactions on Software
Engineering, vol. 31, no. 6, pp. 429–445, 2005.

[20] A. Maule, W. Emmerich, and D. S. Rosenblum, “Impact analysis of
database schema changes,” in 30th IEEE/ACM Inernational Conference
on Software Engineering (ICSE’08), Leipzig, Germany, 2008, pp. 451–
460.

[21] A. Aryani, F. Perin, M. Lungu, A. N. Mahmood, and O. Nierstrasz,
“Can we predict dependencies using domain information?” in WCRE,
M. Pinzger, D. Poshyvanyk, and J. Buckley, Eds. IEEE Computer
Society, 2011, pp. 55–64.

[22] F. Wilkie and B. Kitchenham, “Coupling measures and change ripples in
c++ application software,” The Journal of Systems and Software, vol. 52,
pp. 157–164, 2000.

[23] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, “The concept
assignment problem in program understanding,” in Proceedings of the
International Conference on Software Engineering (ICSE). IEEE, 1993,
pp. 482–498.

[24] V. Rajlich and N. Wilde, “The role of concepts in program compre-
hension,” in Proceedings of the International Workshop on Program
Comprehension, 2002, pp. 271 – 278.

[25] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location in
source code: A taxonomy and survey,” Journal of Software Maintenance
and Evolution: Research and Practice (JSME), 2012.

[26] D. Ratiu and F. Deissenboeck, “How programs represent reality (and
how they don’t),” in Proceedings of the Working Conference on Reverse
Engineering, Oct 2006, pp. 83 –92.

[27] ——, “From reality to programs and (not quite) back again,” in
Proceedings of the International Conference on Program Comprehension
(ICPC), 2007, pp. 91 –102.

[28] S. Tilley, “Domain-retargetable reverse engineering. ii. personalized user
interfaces,” in Proceedongs of the International Conference on Software
Maintenance(ICSM), 1994, pp. 336 –342.

[29] ——, “Domain-retargetable reverse engineering. iii. layered modeling,”
in Proceedongs of the International Conference on Software Maintenance
(ICSM), 1995, pp. 52–61.

[30] K. Wong, “On inserting program understanding technology into the
software change process,” in Proceedings of the Fourth Workshop on
Program Comprehension, 1996, pp. 90 –99.

[31] A. Aryani, F. Perin, M. Lungu, A. N. Mahmood, and O. Nierstrasz, “Can
we predict dependencies using domain information?” in Proceedings of
the 18th Working Conference on Reverse Engineering (WCRE). IEEE,
2011, pp. 55–64.

[32] A. Aryani, I. D. Peake, and M. Hamilton, “Domain-based change
propagation analysis: An enterprise system case study,” in Proceedings
of the IEEE International Conference on Software Maintenance (ICSM).
IEEE, 2010, pp. 1–9.

[33] A. Aryani, I. D. Peake, M. Hamilton, H. Schmidt, and M. Winikoff,
“Change propagation analysis using domain information,” in Proceedings
of the 20th Australian Software Engineering Conference (ASWEC).
Australia: IEEE, 2009, pp. 34–43.

[34] F. Deissenboeck and M. Pizka, “Concise and consistent naming,” in 13th
IEEE International Workshop on Program Comprehension (IWPC’05),
St. Louis, Missouri, USA, 2005, pp. 97–106.

[35] C. Caprile and P. Tonella, “Nomen est omen: Analyzing the language
of function identifiers,” in 6th IEEE Working Conference on Reverse
Engineering (WCRE’99), Atlanta, Georgia, USA, 1999, pp. 112–122.

[36] G. Antoniol, Y.-G. Gueheneuc, E. Merlo, and P. Tonella, “Mining the
lexicon used by programmers during software evolution,” in 23rd IEEE
International Conference on Software Maintenance (ICSM’07). Paris,
France: IEEE Computer Society Press, 2007, pp. 14–23.

[37] D. Poshyvanyk, Y. Guéhéneuc, A. Marcus, G. Antoniol, and V. Rajlich,
“Feature location using probabilistic ranking of methods based on
execution scenarios and information retrieval,” IEEE Transactions on
Software Engineering, vol. 33, no. 6, pp. 420–432, 2007.

[38] D. Poshyvanyk and D. Marcus, “Combining formal concept analysis
with information retrieval for concept location in source code,” in 15th
IEEE International Conference on Program Comprehension (ICPC’07),
Banff, Alberta, Canada, 2007, pp. 37–48.

[39] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Transactions on Software Engineering, vol. 28, no. 10, pp. 970 – 983,
2002.

[40] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering trace-
ability links in software artefact management systems using information
retrieval methods,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 16, no. 4, 2007.

[41] A. Marcus and D. Poshyvanyk, “The conceptual cohesion of classes,” in
21st IEEE International Conference on Software Maintenance (ICSM’05),
Budapest, Hungary, 2005, pp. 133–142.

[42] D. Poshyvanyk and A. Marcus, “The conceptual coupling metrics for
object-oriented systems,” in 22nd IEEE International Conference on
Software Maintenance (ICSM’06), Philadelphia, PA, USA, 2006, pp. 469
– 478.

[43] Y. Liu, D. Poshyvanyk, R. Ferenc, T. Gyimóthy, and N. Chrisochoides,
“Modeling class cohesion as mixtures of latent topics,” in 25th IEEE In-
ternational Conference on Software Maintenance (ICSM’09), Edmonton,
Alberta, Canada, September 20-26 2009, pp. 233–242.

[44] M. Gethers and D. Poshyvanyk, “Using relational topic models to capture
coupling among classes in object-oriented software systems,” in 26th
IEEE International Conference on Software Maintenance (ICSM’10),
Timişoara, Romania, 2010, pp. 1–10.

[45] D. Binkley and D. Lawrie, “Maintenance and evolution: Information
retrieval applications,” in Encyclopedia of Software Engineering, P. A.
Laplante, Ed. Taylor & Francis, 2010, pp. 454–463.

[46] T. K. Landauer, P. W. Foltz, and D. Laham, “An introduction to latent
semantic analysis,” Discourse Processes, vol. 25, no. 2&3, pp. 259–284,
1998.

[47] R. A. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley, 1999.

[48] M. L. Collard, H. H. Kagdi, and J. I. Maletic, “An xml-based lightweight
c++ fact extractor,” in 11th IEEE International Workshop on Program
Comprehension (IWPC’03). Portland, OR: IEEE-CS, 2003, pp. 134–143.

[49] S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz, “A meta-model
for language-independent refactoring,” in Proceedings of International
Symposium on Principles of Software Evolution (ISPSE ’00). IEEE
Computer Society Press, 2000, pp. 157–167. [Online]. Available:
http://scg.unibe.ch/archive/papers/Tich00bRefactoringMetamodel.pdf

[50] O. Nierstrasz, S. Ducasse, and T. Gîrba, “The story of Moose:
an agile reengineering environment,” in Proceedings of the European
Software Engineering Conference (ESEC/FSE’05). New York NY:
ACM Press, 2005, pp. 1–10, invited paper. [Online]. Available:
http://scg.unibe.ch/archive/papers/Nier05cStoryOfMoose.pdf

[51] V. R. Basili, G. Caldiera, and D. H. Rombach., The Goal Question Metric
Paradigm. John W & S, 1994.

[52] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, “On the
equivalence of information retrieval methods for automated traceability
link recovery,” in 18th IEEE International Conference on Program
Comprehension (ICPC’10), Braga, Portugal, 2010, pp. 68–71.

[53] M. D. Smucker, J. Allan, and B. Carterette, “A comparison of
statistical significance tests for information retrieval evaluation,”
in Proceedings of the sixteenth ACM conference on Conference on
information and knowledge management, ser. CIKM ’07. New
York, NY, USA: ACM, 2007, pp. 623–632. [Online]. Available:
http://doi.acm.org/10.1145/1321440.1321528

[54] M. Lungu and M. Lanza, “Softwarenaut: Exploring hierarchical system
decompositions,” in Proceedings of CSMR 2006 (10th European Confer-
ence on Software Maintenance and Reengineering). Los Alamitos CA:
IEEE Computer Society Press, 2006, pp. 351–354.

http://scg.unibe.ch/archive/papers/Tich00bRefactoringMetamodel.pdf
http://scg.unibe.ch/archive/papers/Nier05cStoryOfMoose.pdf
http://doi.acm.org/10.1145/1321440.1321528

