Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

PtrTracker
Pragmatic pointer analysis
Biallas, Sebastian; Olesen, Mads Chr.; Cassez, Franck; Huuck, Ralf

Published in:
Proceedings of the 13th IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM), 2013

DOl (link to publication from Publisher):
10.1109/SCAM.2013.6648186

Publication date:
2013

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

Biallas, S., Olesen, M. C., Cassez, F., & Huuck, R. (2013). PtrTracker: Pragmatic pointer analysis. In
Proceedings of the 13th IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM), 2013 (pp. 69-73). IEEE Computer Society Press. https://doi.org/10.1109/SCAM.2013.6648186

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 25, 2024


https://doi.org/10.1109/SCAM.2013.6648186
https://vbn.aau.dk/en/publications/a013e2a6-0a36-4f89-94ed-75daacffb0cd
https://doi.org/10.1109/SCAM.2013.6648186

PtrTracker: Pragmatic Pointer Analysis

Mads Chr. Olesen
Aalborg University
mchro@cs.aau.dk

Sebastian Biallas
RWTH Aachen
biallas @embedded.rwth-aachen.de

Abstract—Static program analysis for bug detection in indus-
trial C/C++ code has many challenges. One of them is to analyze
pointer and pointer structures efficiently. While there has been
much research into various aspects of pointer analysis either
for compiler optimization or for verification tasks, both classical
categories are not optimized for bug detection, where speed and
precision are important, but soundness (no missed bugs) and
completeness (no false positives) do not necessarily need to be
guaranteed.

In this work we present a new pointer analysis tool for
C/C++ code. The tool introduces the notion of heap graphs
that are inspired by shape analysis without the computational
overhead, but also without the verification soundness guarantees.
We explain the underlying ideas and that it lends itself to a fast,
modular and incremental analysis, features that are essential for
large code bases.

To demonstrate the practicality of the solution we integrate
the pointer analyzer into the C/C++ bug checking tool Goanna.
We show that run-times of the new analyzer are close to compile
times on large code bases and, most importantly, that the new
solution is able to reduce false positives as well as to detect
previously unknown pointer bugs in the Git source code.

I. INTRODUCTION

Pointer Analysis. A pointer analysis (or alias analysis) de-
termines a set of all possible (symbolic) memory locations a
pointer variable might point to during execution. The result of a
pointer analysis is for instance instrumental in the optimization
pass in compilers (e.g. to optimize register reloads) and
also in the static analysis (verification) of programs (e.g. to
check for possible NULL pointer dereferences.) However,
the type pointer analysis required depends on the subsequent
phase: the optimizing pass of a compiler uses the pointer
analysis to optimize register reloads; the analysis must be
fast, conservative but not necessarily precise. For verification
purposes, the pointer analysis is used to improve the accuracy
of the static analysis phase and to remove false positives
(spurious warnings). A conservative (sound) static analysis
usually assumes that every pair of pointers can alias each
other and this causes some false positives. To remove the false
positives, the pointer analysis must be more precise than for
optimization purposes and thus it is usually slower and more
memory intensive. Since pointer analyses play such a central
role, a multitude of different analyses with different scopes

NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.

978-1-4673-5739-5/13/$31.00 (© 2013 IEEE

Ralf Huuck
NICTA and UNSW
ralf huuck @nicta.com.au

Franck Cassez
NICTA and UNSW
franck.cassez@nicta.com.au

and granularity have been extensively studied in the past [/1]]
and this is still an ongoing research topic [2].

Pointer Analysis for Static Analysis. It is now well established
that sound static analysis is time-consuming and generates a
lot of false positives. If we drop the soundness requirement for
a best effort to find bugs, we can significantly gain in efficiency
and accuracy [3].

In this paper, we consider pointer analysis in the context
of bug finding without the requirement that our bug finding
tool be sound (no bug is missed, i.e. no false negatives) or
complete (every warning issued by the tool is true, i.e. no
false positives). In this respect our pointer analysis is the
middle-ground between a fast and coarse optimization-oriented
pointer analysis and a sound and computationally expensive
verification-oriented pointer analysis.

We distilled three key requirements for PtrTracker to make it
applicable in the static analysis of large code bases composed
of thousands of files and with millions of lines of codes: (1) the
pointer analysis must be fast (less than the compile time) while
still being precise; (2) the pointer analysis must be modular and
incremental; modular means that we can analyze a function f
without knowing the calling context or the callees and build a
summary for the function f; incremental means that we can
later enrich the summary of f if in the course of the static
analysis we later analyze a file containing a function g called
by f and collect some useful information (summary) for g; (3)
in addition, it should be able to integrate with an existing tool
with minimal adjustments to incorporate our pointer analysis
results. In our case, we want to integrate in the tool Goanna [4]],
a state-of-the-art bug finding tool for C/C++ which yet lacks a
fast and precise pointer analysis module.

An example of a bug we would like to find is represented
by this C fragment:

void foo(struct bar xa, struct bar xb) {

b = a;
a->f = 0;
42 / b->f;

}

A classic division by zero bug is masked by pointer indirection.
If we do not detect/assume that a and b can alias, this bug
will remain undetected. In real-world cases the statements
are spread out with hundreds of lines in between, including
branching or function calls.

Related Work. The area of pointer (alias) analysis has been
researched extensively [1], [S], [2], mostly targeting compiler



optimization techniques, and focusing on computing may-point-
to information. For static program analysis (i.e. bug finding),
must-point-to information is much more valuable than may-
point-to information, as it enables to decrease the false-positives
rate. There is a substantial body of work addressing pointer
analysis in the context of static analysis [6], [7] but the analysis
times reported in the experiments are unlikely to scale to
large code bases. Our own previous attempt at integrating
pointer analysis in Goanna [8]], resulted in a static analysis
time increased by a factor of three to six, which is too slow
in practice. PtrTracker is inspired by shape analysis [9]. Shape
analysis is claimed to scale up [10]], still the analysis times are
far from those expected from an industrial-grade bug finding
tool.

Our Contribution. We present PtrTracker, a tool that annotates
all pointer dereferences in a program with a set of possible
pointees, which themselves are normal variables. This infor-
mation is gathered in a flow-sensitive way while we lazily
introduce new symbolic names for traversed data structures.
As we will show, this approach is very fast while offering the
required precision to find bugs and suppress spurious warnings
depending on alias information.

II. PRELIMINARIES AND THE EXISTING GOANNA
ARCHITECTURE

Tool Overview. PtrTracker builds on and integrates in
Goanna [4], [11], an automata-based static analyzer for detect-
ing software bugs, memory leaks and security vulnerabilities in
C/C++ programs. Goanna combines static analysis techniques
(e.g. abstract interpretation) with CTL model-checking. The
tools’ high-level architecture is depicted in Goanna
is used as a drop-in replacement for the compiler (e.g. gcc),
for easy integration into existing tool chains. It takes as input
a project composed of C/C++ files, a set of checks which are
properties that characterize the presence of bugs (if the property
is not satisfied there is a bug) and an optional database that
records (previously analyzed) functions’ summaries. Goanna
analyses programs file by file and cross-relates information.
For each file, it first parses the file and builds an Abstract
Syntax Tree (AST) in the form of an XML document; this
XML document is central in the architecture. The XML is
subsequently annotated by a value interval analysis, where each
AST node is annotated with interval information (e.g. range of
some integer variables.) This annotated AST, AST, is converted
to a Control-Flow Graph (CFG). The last stage of the analysis
is performed by a model-checker that takes as input a set of
CTL formulae (the formal definitions of the checks), the CFG
and the optional database of summaries. In case a formula is not
satisfied by the CFG, the model-checker generates a warning
and returns a witness trace (sequence of instructions) to explain
the bug. The model-checker features state-of-the-art abstraction
refinement techniques to remove spurious bugs (that are artifacts
of the abstract CFG.) Each trace (counter-example) returned
by the model-checker is analyzed (False-Positive Elimination)
using an SMT-solver [12] and if it is spurious (infeasible in the

concrete C/C++ semantics), the CFG is refined accordingly and
the model-checker run again on the refined CFG. This enables
us to remove spurious counter-examples (false-positives) and
get more accurate analysis results. Notice that for each file,
for each function in the file, a summary of the analysis can be
stored in a database and can be re-used in subsequent analysis
or in the analysis of files that are processed later. If the optional
database Database; is used, it is enriched after each function
analysis and updated to become Databases.

Variables Binding in Goanna. Goanna has limited capability
w.r.t the analysis of variables’ ranges (and pointers): some vari-
ables are ignored if not bound to explicitly declared variables.
To illustrate these concepts, consider the expression a + b
where a and b are integers. The AST’s XML representation
of the expression is

<Op2 op="Add">
<Ref name="a"
<Ref name="b"

</0p2>

binder="7" />
binder="8" />

An Op2 node is any binary operation, and a Ref node is a
variable reference, where the binder uniquely represents the
variables in the program (in cases a local variable overlaps
a global variable.) A binder refers back to an XML node
(7) containing the declaration of this variable. The interval
analysis determines some possible ranges for the variables and
this information is stored in the annotated XML ASTs5: min
and max are new attributes added to the relevant nodes. For
instance if we infer that a is in the interval [1,2] and b in
[42,42], the node Op2 is annotated with [43,44], because the
result of the expression a + b is in [43, 44].

<0p2 op="Add" min="43" max="44">
<Ref name="a" binder="7" min="1" max="2" />
<Ref name="b" binder="8" min="42" max="42" />

</0p2>

The current interval analysis only knows about binders, and
because binders only exist for variables that are syntactically
declared, some variables are ignored in the interval analysis.
As an example consider a struct pointer dereference p—>f,
which is represented in the AST’s XML as:

<Op2 op="Arrow">
<Ref name="p" binder="7" is_pointer="true" />
<Field name="f" />

</0p2>

Because p->£ is not explicitly syntactically declared, the
interval analysis (and subsequent steps) ignores it. Notice that
it does not matter whether field £ above is a basic type or a
pointer. It is ignored in the interval analysis. To be able to reason
about pointers, we have to overcome the previous limitation
imposed by explicitly declared binders. The solution to this is
to introduce new variables (representing memory locations),
which are binders, for syntactic items such as p—>f. Notice
that we do this in a lazy manner, only when such a binder is
needed.



Goanna

| C/C++ —{ Parser —{ AST ’—‘—>[PtrTracker]—>{ AST, }f—{lnterval Analys1s)—>| AST, |

Model False-Positive _
Database
s{ Checking Elimination Jé

Figure 1.

III. PTRTRACKER: POINTER ANALYSIS WITH HEAP
GRAPHS

A. Pointer Operations in C

The foundation for our pointer analysis builds on the facts
that (1) C pointers are either an 1-value (something on the left-
hand side of an assignment) or an r-value (something on the
right-hand side of an assignment) and (2) all pointer operations
in C can be encoded with three basic operators:

1) addr: taking the address of an 1-value and returning it
as an r-value, e.g. &p,

2) deref: dereferencing an address (an r-value) and returning
the 1-value it points to, e.g. *p,

3) value-of: doing a deref followed by a addr operation.
This is a derived operation, and needed in cases of pointer
arithmetic and pointer assignments such as p = g where
q is an l-value, but needs to be turned into an r-value.
For our analysis, this is semantically equivalent to p =
&*q.

The relationship between the pointer operations and the basic
syntactic C expressions is rather straightforward. Figure
shows the semantics of the basic operators. Array references
such as p[i] are handled as *(p+i) according to the C standard.

deref

deref

&*p
r-value

&p
r-value

value-of

value-of

Figure 2. Pointer Operations in C

The architecture of Goanna, with the integration of PtrTracker highlighted.

B. Heap Graphs

PtrTracker performs an abstract interpretation over the
structure of the heap, where the underlying abstract domain is
a heap graph. An example is depicted in Each node
of the heap graph represents a contiguous chunk of memory
(an “object” in C99 terms). Moreover, each node is made up
of one or more memory cells, i.e. the memory node represents
a struct, with a memory cell for each field. If the cell is
of a pointer type (indicated by the bullets) it has one or more
out-going edges, representing the memory cells it is possibly
pointing to.

Note, pointers can point inside structs, i points to a—>c.
Non-struct objects, such as an int « pointer, are equivalent
to a struct with a single field and are covered by the previous
representation.

The abstract transformers for the heap graph domain are
expressed in terms of the basic operations described in
Abstract transformers are currently implemented
for C and a large part of C++.

( a 0

struct A *a&\)

*a

) )
r . \/k'int c J
i
struct B *d e
L int e

J

il

Figure 3. A heap graph

Assignments are performed as a strong update if we only
have one 1-value. In this case, we remove the existing arrow(s)
and add arrows to the r-values. If, on the other hand, we have
multiple I-values, we perform a weak update adding new arrows
to all r-values.

C. Inter-procedural Analysis

Goanna itself supports inter-procedural analysis. Because
functions can be analyzed in any order (Goanna also features
concurrent/multi-core analysis) PtrTracker assumes as a mini-
mal base:

Al  deep no-aliasing: function parameters do not alias
each other, and following parameter pointers also



do not lead to aliases to other parameters. As an
example, consider the function void foo (struct
bar *a, struct bar =*b); we assume that a
and b do not alias when we enter the function; the
same holds for any pointer field £ a->f != b->f
for any sequence of dereferences.

A2  No-aliasing on global variables: Parameters do not
alias global variables.
A3 Side-effect free function calls: Function calls do not

modify parameters and always return new memory
cells.

These assumptions are in general unsound, but they are essential
for the pointer analysis to derive practical information. For
instance without A3, if we analyze a function f that calls g
and g has not yet been analyzed, we cannot assume anything
of the (pointer) variables that are passed to g, nor of the global
variables. This implies, after the call to g, we have to assume
that two pointers can alias each other or a global variable.
Note, if during the course of the analysis we discover that
two parameters of f can alias each other, we can trigger a re-
analysis of f under the revised assumption collecting contextual
knowledge for the behavior of f. This feature will be available
soon in PtrTracker.

IV. INTEGRATING PTRTRACKER AND GOANNA

The goal of introducing a pointer analysis in Goanna is to
eliminate both false positives and false negatives. An essential
part is that the analysis can integrate such that the key features
of the tool are preserved: performance, ability to run as a
compiler drop-in, re-use of existing checks and applicability to
real-world programs. To be useful for bug-hunting the pointer
analysis needs to be flow-sensitive, because flow-insensitive
information would mask any manipulation done to pointers
— which is counter-productive if one wants to detect bugs in
pointer manipulation.

A. Implementation Details

There is a number of implementation details in PtrTracker
which differs from a standard abstract interpretation or shape
analysis, because of the special setting. Firstly, the analysis
does not compute a fixed-point because this is unnecessary.
In shape analysis summary nodes would be used to ensure
termination (due to recursive data structures such as linked
lists), but because we are more interested in must-information
summary nodes are of little value.

Additionally, any syntactic element that does not point to
any one unique memory location is also of little interest since
this will disallow strong updates. Consider the C fragment:

struct list =xa;

struct list xcur;

for (cur=a; cur!=NULL;
foo (cur, a);

}

cur=cur—->next) {

Here the best information we can derive for the call to foo
is that cur points to some element of the list starting at a.

However, we can derive that a always points to the same
memory cell. Because of these observations, it is sufficient to
recurse into recursive data structures until enough information
has been gained such that loop invariants have been learned,
and verified to be invariants.

The analysis is implemented in a lazy way, such that memory
nodes are only added to the heap graph if needed. As such
a struct with many members is only represented by the
members referenced in the function currently being analyzed.
Because the analysis computes information for each program
point there is a lot of redundancy in the analysis result: we
exploit this redundancy by storing the memory nodes in a
flow-insensitive way, and only storing the edges (“points-to”
information) of the graph for each program point. Both of
these optimizations are essential for the performance of the
analysis.

B. Arrays and Pointer Arithmetic

In C99, pointer arithmetic can only be used to move a pointer
within a chunk of memory. That is, dereferencing a pointer
outside “its” object is an error and should ideally be detected.
In our analysis, we mark all nodes which are accessed via
pointers which were subject to pointer arithmetic as containing
arrays. Here, the index operator [] is handled as a special case
of pointer arithmetic as described in Sect. Afterwards, we
assume that the pointer aliases the complete array represented
by the node. Hence, we can ignore pointer arithmetic altogether.

In a subsequent analysis, however, all pointer offsets can
be recalculated using an integer analysis taking the pointer
arithmetic into account. If we have must-alias information, we
can infer tight bounds on the stride of memory that is accessed
using this pointer.

C. Re-Using Existing Checks

To a large extent the existing Goanna checks were re-used
without modification. In a few places some patterns were
generalized to not look for explicit variable references, but also
looking at other AST nodes that were annotated with a binder.

Some checks were rewritten to gain additional accuracy
by taking pointer information into account: freeing allocated
memory twice, losing the last reference to allocated memory,
returning pointers to the local stack, and dereferencing a pointer
that is possibly NULL. These rewritten checks improved both
the rate of false positives and false negatives, compared to the
old checks they replaced.

D. Path-Sensitive Checks

Our analysis determines alias information in a flow-sensitive
way. This information, however, is not directly used to generate
warnings. Instead, we employ a model-checker to verify certain
properties of the program. This method can, in principle,
recover the path-sensitivity for certain checks. Take, e.g., a
possible double-free, which manifests itself as two calls to the
free function where the argument points to the same object
in both cases. In this case, our model-checker will determine
a path containing two successive calls to the free function.



Instead of directly reporting this as an error, we first check
whether this path is actually feasible. If the path is not feasible
(e. g., it depends on two consecutive if-statements with contrary
conditions), the false positive elimination module [12] can
eliminate it and refine the CFG. When we analyze the refined
CFG we effectively regain the path-sensitive information.

V. CASE STUDY

We have tried our prototype on a number of open source
projects, to make sure that it supports a sufficient portion of C
to be useful. We here report on running Goanna+PtrTracker
on the well-known Git projec

The runtime of the stock Goanna on a single core without
PtrTracker was 26mb2s, which produced 266 warnings. En-
abling PtrTracker slightly increased the runtime to 27m35s
(an increase of 2.6%), while producing 271 warnings. Because
Goanna is a drop-in replacement for the compiler in the build
system both run times include the overhead of the actual
compilation.

The 5 additional warnings are classified as follows:

o 1 true positive about the address of a local being stored
in a global variable.

e 1 true positive about an arithmetic shift resulting in
undefined behaviour, see found by an existing
check being able to reason about pointers as additional
variables.

e 1 true positive about a NULL dereference, involving
interprocedural reasoning.

e 2 probably false positive about out of bounds array
accesses using enum variables.

returns [1,32]

xdl_hashbits (countl) ;
1 <<

struct histindex index;
int sz;

index.table_bits =
sz = index.records_size =
index.table_bits;

Figure 4. Example of bug found in Git: “interval [1, 32] is out of range of
the shift operator”

VI. CONCLUSION & LESSONS LEARNED

We have integrated a new pointer analysis tool, PtrTracker, in
the industrial-grade static analyzer Goanna. PtrTracker is a very
pragmatic pointer analysis that satisfies the requirements of be-
ing very scalable, generally applicable and easily integrateable.
The analysis and design choices are interesting from a practical
perspective: it gives an alternative to more traditional pointer-
analyses in terms of usefulness for bug finding. While designing
and implementing PtrTracker, we learned the following lessons:

« Real-world C programs contain complex pointer expres-
sions (sometimes arising from pre-processor inlining)
which must be handled compositionaly. We were able

Uhttp://git-scm.com

[1

—

[2

—

[3

=

[4

flnar

[5

—_

[6

=

[7]

[8]

[9]

(10]

(1]

[12]

to reduce all expressions to the operation depicted in
Fig. 2l which is key to the design of our analysis.

A pragmatic approach to handle parameters and function
calls is necessary (our assumptions A1-A3). Otherwise, a
pointer analysis will likely generate no helpful results at
all (i.e., aliasing everything) resulting in too many false
positives.

A multi-pass analysis and contextual analysis can be
used to refine/invalidate assumptions, propagating alias
information across function calls.

Must-alias information, i.e. pointer dereferences with a
fixed target, is much more helpful for bug-detection than
may-alias information, and effectively rules out false
positives.

Pointer analysis is a complex and sometimes delicate topic.
We keep the pointer analysis separate, and provide a set
of possible variables for each pointer dereference, which
helps tremendously in reducing the complexity.

REFERENCES

M. Hind, “Pointer analysis: haven’t we solved this problem yet?” in
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, 2001, pp. 54-61.

U. Khedker, A. Mycroft, and P. Rawat, “Liveness-Based Pointer Analysis,”
in Static Analysis Symposium. Springer, 2012, pp. 265-282.

A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. R. Engler, “A few billion lines of
code later: using static analysis to find bugs in the real world,” Commun.
ACM, vol. 53, no. 2, pp. 66-75, 2010.

R. Huuck, A. Fehnker, S. Seefried, and J. Brauer, “Goanna: Syntactic
Software Model Checking,” Automated Technology for Verification and
Analysis, pp. 216-221, 2008.

B. Hardekopf and C. Lin, “The ant and the grasshopper: fast and accurate
pointer analysis for millions of lines of code,” in Proceedings of SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 2007, pp. 290-299.

M. Buss, D. Brand, V. Sreedhar, and S. A. Edwards, “A novel analysis
space for pointer analysis and its application for bug finding,” Science
of Computer Programming, vol. 75, no. 11, p. 921, 2010.

V. B. Livshits and M. S. Lam, “Tracking pointers with path and context
sensitivity for bug detection in C programs,” in ESEC / SIGSOFT FSE,
2003, pp. 317-326.

J. Brauer, R. Huuck, and B. Schlich, “Interprocedural Pointer Analysis
in Goanna,” Electronic Notes in Theoretical Computer Science, vol. 254,
pp. 65-83, 20009.

R. Wilhelm, M. Sagiv, and T. Reps, “Shape Analysis,” in Compiler
Construction, D. Watt, Ed. Springer Berlin Heidelberg, 2000, vol. 1781,
pp. 1-17.

H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and
P. W. O’Hearn, “Scalable Shape Analysis for Systems Code,” in Computer
Aided Verification (CAV), 2008, pp. 385-398.

M. Bradley, F. Cassez, A. Fehnker, T. Given-Wilson, and R. Huuck,
“High Performance Static Analysis for Industry,” Electronic Notes in
Theoretical Computer Science, vol. 289, pp. 3—14, 2012.

M. Junker, R. Huuck, A. Fehnker, and A. Knapp, “SMT-based false pos-
itive elimination in static program analysis,” in International Conference
on Formal Engineering Methods (ICFEM), 2012, pp. 316-331.


http://git-scm.com

	Introduction
	Preliminaries and the Existing Goanna Architecture
	PtrTracker: Pointer Analysis with Heap Graphs
	Pointer Operations in C
	Heap Graphs
	Inter-procedural Analysis

	Integrating PtrTracker and Goanna
	Implementation Details
	Arrays and Pointer Arithmetic
	Re-Using Existing Checks
	Path-Sensitive Checks

	Case Study
	Conclusion & Lessons Learned
	References

