
Studying Fine-Grained Co-Evolution
Patterns of Production and Test Code

Master’s Thesis

Cosmin Marsavina

Studying Fine-Grained Co-Evolution
Patterns of Production and Test Code

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Cosmin Marsavina
born in Resita, Romania

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

c© 2014 Cosmin Marsavina.

Studying Fine-Grained Co-Evolution
Patterns of Production and Test Code

Author: Cosmin Marsavina
Student id: 4259734
Email: cmarsavina@student.tudelft.nl

Abstract

Numerous software development practices suggest updating the test code when-
ever the production code is changed. However, previous studies have shown that co-
evolving test and production code is generally a difficult task that needs to be thor-
oughly investigated.

In this thesis we perform a study that, following a mixed methods approach, inves-
tigates fine-grained co-evolution patterns of production and test code. First, we mine
fine-grained changes from the evolution of 5 open-source systems. Then, we use an
association rule mining algorithm to generate the co-evolution patterns. Finally, we
interpret the obtained patterns by performing a qualitative analysis.

The results show 6 co-evolution patterns and provide insights into their appear-
ance along the history of the analyzed software systems. Besides providing a better
understanding of how test code evolves, these findings also help identify gaps in the
test code thereby assisting both researchers and developers.

Thesis Committee:

Chair: Dr. A. Zaidman, Faculty EEMCS, TU Delft
University supervisor: D. Romano, Faculty EEMCS, TU Delft
Committee Member: Prof. Dr. D. H. J. Epema, Faculty EEMCS, TU Delft
Committee Member: Dr. G. Wachsmuth, Faculty EEMCS, TU Delft

Preface

The thesis was written as part of my Master of Science degree at Delft University of Tech-
nology. Before I began working on this master’s thesis I was unaware of the effects that it
will have on my personal and professional development. While working on it I have learned
a lot of things both in terms of software evolution and regarding the specific requirements
of working in an academic environment. Even though there where times when I struggled,
they proved to be just small parts of an experience that was very enjoyable overall. At the
start of the thesis I was just pondering the idea of pursuing a career in research. However,
after finishing the work, I am quite certain that I want to continue along this path. This is
why I would like to thank a number of people for helping me through this process.

First of all, I want to express my gratitude to Dr. Andy Zaidman for allowing me to
work on this project as part of the Software Engineering Research Group. He has provided
me with invaluable feedback both on the thesis and on the paper that was written based on
it. I have appreciated the fact that he was always available for discussion no matter how
serious the problem was. The second person to whom I owe a big thank you is Daniele
Romano. He has been my daily supervisor and has guided me all throughout the thesis. It
was very reassuring to know that I could rely on his expertise whenever I encountered an
issue. Both of them have spent a lot of time aiding me in completing this thesis.

Next I would like to thank the anonymous reviewers from the International Working
Conference on Source Code Analysis and Manipulation for appreciating my work and pro-
viding me with additional feedback that was integrated in the thesis. I also want to thank
the conference’s organizing committee for awarding me a travel grant so that I can attend
the conference and present the work.

My thanks also go to Dr. Radu Marinescu who has taken the time to proofread the
thesis, thus providing an external opinion on my work. I would also like to thank my
friends, Mircea Voda and Mircea Cadariu, for allowing me to consult with them on thesis
related subjects while also supplying me with insightful ideas. Finally, I want to thank my
family and especially my parents, Liviu and Dalila, as their continuous support has helped
me achieve my goals.

Cosmin Marsavina
Delft, the Netherlands

August 19, 2014

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Research Questions . 2
1.3 Relevance . 3
1.4 Outline . 3

2 Approach 5
2.1 Data collection procedure . 5
2.2 Implementation . 7
2.3 Dataset structure . 8

3 Design of Empirical Study 11
3.1 Goal of Experiment . 11
3.2 Formulated Hypotheses . 11
3.3 Independent and Dependent Variables . 12
3.4 Project Selection . 16
3.5 Analyses performed . 17

4 Quantitative Analysis 19
4.1 Association rules . 19
4.2 Co-evolution patterns . 21

5 Qualitative Analysis 27
5.1 How Co-Evolution Happens . 27
5.2 Interpretation of the fine-grained co-evolution patterns 33

v

CONTENTS

6 Discussion 37
6.1 Revisiting the research questions . 37
6.2 Threats to validity . 40

7 Related Work 43
7.1 Production and test code co-evolution . 43
7.2 Source code evolution . 45
7.3 Source code change extraction . 49
7.4 Software repository mining . 51

8 Conclusions and Future Work 55
8.1 Contributions . 55
8.2 Conclusions . 56
8.3 Reflection . 56
8.4 Future work . 57

Bibliography 59

A Association rules 63

vi

List of Figures

2.1 Overview of the data collection process. 7
2.2 Dataset structure production code changes. 8
2.3 Dataset structure production and test code links. 9

3.1 Testing effort measurements per aspect. 14
3.2 Project growth statistics. 16

4.1 Association rule format. 19

7.1 CVSscan overview [43]. 47
7.2 TestEvol summary report [32]. 48
7.3 Initial source code change taxonomy [16]. 50

vii

Chapter 1

Introduction

This chapters provides an introduction to the work that will be presented in the following
chapters of the thesis. It first discusses the problem at hand and the research questions
formulated in order to address it. Afterwards, the relevance of our work is explained. The
last part of the chapter presents an outline of the remainder of this document.

1.1 Problem Statement

Lehman has taught us that a software system must evolve, or it becomes progressively less
useful [22]. During this evolution, the system’s source code continuously changes to cope
with new requirements or possible issues that might arise. However, software is multi-
dimensional, because in order to develop high-quality systems other artifacts need to be
taken into account, such as requirements, tests and documentation [25]. Therefore, these
artifacts should co-evolve gracefully alongside the production code that is being written.

One of the artifacts that is of particular importance in the software development pro-
cess is the developer test, which was defined by [26] as “a codified unit or integration test
written by developers”. Unit tests have become increasingly popular over the last years, as
many programming languages support their creation through testing frameworks (e.g., JU-
nit for Java or NUnit for C#). The importance of these tests resides in the fact that they can
provide immediate feedback to the developers [37] and aid in identifying bugs [1], while
also increasing program comprehension [24]. In addition to these aspects, the tests can be
used to pinpoint the exact location where a defect occurs [27]. They also increase the con-
fidence of developers in modifying the production code without causing any kinds of issues
within the developed software system [4]. Moreover, when a software system evolves (e.g.,
through refactoring), developers should run them as persistence tests to verify whether the
external behavior is preserved [10]. In this context, Moonen et al. have shown that even
though refactorings are behavior preserving, they can invalidate tests [28]. In the same
vein, Elbaum et al. have concluded that even minor changes in the production code can
significantly affect test coverage [11].

Based on these findings, there clearly is a need for tests to evolve alongside the pro-
duction code they are covering in order to obtain high-quality systems. However, creating

1

1. INTRODUCTION

and maintaining tests are expensive tasks. Previous studies have shown that 30 to 50% of
the effort spent on a project is dedicated to testing [12]. On the same note, Zaidman et al.
have shown that developing test code that co-evolves gracefully with the production classes
it addresses is generally a difficult endeavour [47].

1.2 Research Questions

In this study we try to identify fine-grained co-evolution patterns between production and
test code. These patterns consist of changes that occur in the test code when changes are
made to the production code. It is also likely that some co-evolution patterns appear more
frequently for particular software systems. Hence, besides identifying these patterns, we
aim at correlating them with the testing effort spent for each of the analyzed systems. Fi-
nally, we want to understand how the co-evolution between production and test code takes
place and to find the reasons why co-evolution does not happen in some specific cases. This
leads us to our research questions:

RQ1 What kind of fine-grained co-evolution patterns between production and test code can
be identified?

RQ2 Does the testing effort have an impact on the observed co-evolution patterns?

RQ3 How does the co-evolution between production and test code happen?

The first research question directly addresses production and test code co-evolution. It
is concerned with identifying specific patterns that can be observed as the production and
test classes evolve. Such patterns consist of changes that are made in the test code when a
particular change occurs in a production class. Unlike previous work that has been done thus
far in this area of the software engineering field, the source code changes are studied at a
fine-grained level, thereby allowing for a deeper understanding of the co-evolution between
the production and the test code of a software project.

For RQ2 we want to compare the patterns observed for multiple projects (with differ-
ent testing efforts) in order to determined whether or not this factor has an influence on
the co-evolution of production and test code. More specifically, we try to prove that differ-
ent patterns are encountered for projects that are extensively tested compared to the ones
obtained for projects with low testing effort.

The third research question is aimed at understanding the way in which this co-evolution
occurs. We are interested in determining whether the production and the test code of a soft-
ware system evolve synchronous or if the tests are updated at a later point in time (several
versions after the production classes they are addressing are changed). In addition to this,
in the cases when the test code does not co-evolve alongside the production code it covers,
we would like to identify the reasons why such situations are encountered. This allows for a
thorough understanding of the nature of the co-evolution between production and test code.

We answer our research questions by following a mixed methods approach [9] that com-
bines quantitative and qualitative analyses. First, we use an association rule mining algo-
rithm to identify co-evolution patterns. Then, we refine these quantitative results through a

2

Relevance

qualitative analysis aimed at manually interpreting the patterns obtained. The results show:
(1) 6 co-evolution patterns mined for 5 case study systems, (2) how they occur, and (3)
whether the testing effort has an impact on them.

1.3 Relevance

From a research perspective, getting insight into these co-evolution patterns is particularly
useful to check whether specific changes in the production code should also have conse-
quences in the test code of a software system. By identifying the test changes that have to
be done when a specific production change is performed we can determine the parts of the
production code that still need to be addressed. This would also allow for an assessment
of the gravity of the situation when certain changes are not made in the test code in order
to cover a specific change in a production class. Furthermore, by inspecting the moments
when the test changes are made, we can uncover cases in which they should have been
done earlier (e.g., in the same commit as the production change that triggered them). This
might lead to better tool support, thereby assisting developers in designing higher quality
test code.

The main contributions of this thesis are as follows:

1. A method to collect and relate fine-grained source code changes that co-occur in the
production and the test code of a software system; this method can be utilized to: (1)
extract the fine-grained production and test code changes and (2) link the test cases
in which changes occur with the production classes where the changes that triggered
them were made.

2. An empirical study to investigate the co-evolution between production and test code
for 5 open-source systems; the study comprises a quantitative analysis during which a
number of co-evolution patterns have been uncovered and a more in-depth qualitative
analysis with anecdotal evidence on each of the patterns.

3. We enrich the software engineering body of knowledge with regard to production
and test code co-evolution; by studying this topic we gain a deeper understanding of:
the co-evolution patters observed for a specific project, how production and test code
co-evolution happens, and whether or not the testing effort spent on a project has an
impact on the co-evolution patterns. In addition to this, we provide explanations as to
why co-evolution occurs in a specific way and reasons why sometimes co-evolution
is absent.

1.4 Outline

The remainder of this document is structured as follows. In Chapter 2 we describe the
approach adopted to collect the data for our analyses. Chapter 3 discusses the design of
the studies that were conducted. Results are reported in Chapters 4 and 5 that present
respectively the quantitative and qualitative analyses. In Chapter 6 we revisit the research

3

1. INTRODUCTION

questions and discuss threats to validity. Chapter 7 details on related work. Finally, we
conclude the document and present future work direction in Chapter 8.

4

Chapter 2

Approach

This chapter describes the approach developed in order to be able to collect the data nec-
essary for studying the co-evolution between production and test code. We first present the
approach at a conceptual level. Then, we provide the concrete implementation details. The
structure of the obtained dataset is discussed in the last part of the chapter.

2.1 Data collection procedure

As discussed in the previous chapter, there is a need within the scientific community to
examine and understand the co-evolution between the production and the test code of a
software project. The main goal of this study is to identify a series of patterns consisting
of changes that occur in the test code when the production code evolves. We expect these
co-evolution patterns to vary from one project to another, because of the different working
styles of the development teams or due to different priorities with regards to testing activ-
ities. Therefore, while performing our analyses, we also assess the testing effort put into
each of the projects under study. Furthermore, besides uncovering the patterns, we also
inspect the source code to find and understand concrete examples that help in interpreting
the obtained co-evolution patterns.

In the following subsections we describe the approach adopted to: (1) extract fine-
grained changes and (2) link production and test code.

2.1.1 Change Extraction

In order to collect relevant data for studying the co-evolution of production and test code,
we first obtain all the versions of a project. We mine Git as this facilitates the access to the
repositories of a large variety of software projects. Moreover, it provides functionalities to
compute high-level differences (e.g., addition and deletion of classes) between one version
of a project and another.

However, these differences are not detailed enough to allow for an in-depth analysis
of the co-evolution between production and test code. For this reason we extract fine-
grained source code changes between different versions using ChangeDistiller [13]. Ta-
ble 2.1 details all the change categories along with the specific changes that ChangeDis-

5

2. APPROACH

Change category Change

ADDED CLASS ADDITIONAL CLASS
REMOVED CLASS REMOVED CLASS
CLASS DECLARATION CLASS RENAMING,

PARENT CLASS CHANGE,
PARENT CLASS DELETE,
PARENT CLASS INSERT,
PARENT INTERFACE CHANGE,
PARENT INTERFACE DELETE,
PARENT INTERFACE INSERT,
REMOVED FUNCTIONALITY,
ADDITIONAL FUNCTIONALITY

METHOD DECLARATION RETURN TYPE CHANGE,
RETURN TYPE DELETE,
RETURN TYPE INSERT,
METHOD RENAMING,
PARAMETER DELETE,
PARAMETER INSERT,
PARAMETER ORDERING CHANGE,
PARAMETER RENAMING,
PARAMETER TYPE CHANGE

ATTRIBUTE DECLARATION ATTRIBUTE RENAMING,
ATTRIBUTE TYPE CHANGE,
ADDING ATTRIBUTE MODIFIABILITY,
REMOVING ATTRIBUTE MODIFIABILITY,
ADDITIONAL OBJECT STATE,
REMOVED OBJECT STATE

BODY STATEMENTS STATEMENT DELETE,
STATEMENT INSERT,
STATEMENT ORDERING CHANGE,
STATEMENT PARENT CHANGE,
STATEMENT UPDATE

BODY CONDITIONS CONDITION EXPRESSION CHANGE,
ALTERNATIVE PART DELETE,
ALTERNATIVE PART INSERT

COMMENTS COMMENT DELETE,
COMMENT INSERT,
COMMENT MOVE,
COMMENT UPDATE

DOCUMENTATION DOC DELETE,
DOC INSERT,
DOC UPDATE

OTHERS UNCLASSIFIED CHANGE,
DECREASING ACCESSIBILITY CHANGE,
INCREASING ACCESSIBILITY CHANGE,
ADDING CLASS DERIVABILITY,
ADDING METHOD OVERRIDABILITY,
REMOVING CLASS DERIVABILITY,
REMOVING METHOD OVERRIDABILITY

Table 2.1: Categories of changes retrieved with ChangeDistiller.

6

Implementation

tiller can detect. For example, the METHOD DECLARATION category is comprised of
9 separate changes, namely: RETURN TYPE CHANGE, RETURN TYPE DELETER,
RETURN TYPE INSERT, METHOD RENAMING, PARAMETER DELETE, PARAM-
ETER INSERT, PARAMETER ORDER CHANGE, PARAMETER RENAMING, PARAM-
ETER TYPE CHANGE.

We have extracted these source code changes both from the production and from the
test code. In order to make the dataset as comprehensive as possible, we have included
additional information such as: the class in which the change occurred, the version when
the change was made along with its timestamp, and the exact source code entity that was
modified.

2.1.2 Linking production and test code

Once we have the fine-grained changes, we link the test cases to the production code they
cover. We prefer a dynamic solution over a static analysis approach because it is more pre-
cise as pointed out by Van Rompaey and Demeyer [42]. The key idea behind our approach is
to run each test case separately, thereby identifying all the entities from the production code
addressed by the test, similarly to the approach used in [19]. To retrieve the covered entities
(e.g., Java classes) we process test coverage information gathered with Cobertura1. Cober-
tura is utilized because it produces more accurate results compared to other code coverage
tools, such as EMMA or Clover [6].

Figure 2.1: Overview of the data collection process.

2.2 Implementation

To implement our approach we use a process consisting of two steps that is described in
Figure 2.1.

As a first step (see Figure 2.1(a)), we use the jGit API2 to retrieve the software project’s
source code from the corresponding Git repository. Then, we compute the differences be-

1http://cobertura.github.io/cobertura/ — last visited June 13th, 2014.
2http://eclipse.org/jgit/ — last visited June 19th, 2014

7

2. APPROACH

tween two consecutive versions of the system using the same API. Based on the types of
the changes retrieved between versions, one of the following two approaches is selected:

1. When entire Java classes are added or deleted, the names of the fields and the methods
declared in those classes are recorded. A specialized parser3 is used to extract these
names from the corresponding class files.

2. Otherwise, ChangeDistiller is utilized to extract the fine-grained changes.

A specific procedure is applied to each project version for which the test code has been
modified (shown in Figure 2.1(b)). We first compile the production code using Maven in
order to ensure that it does not contain any errors. If the compilation is successful, the test
cases of that version are run separately. For each test case, we let Cobertura generate a
coverage report file. This file is then parsed with the jDom API4 to identify the methods
from the production code covered by the respective test method. We record these results
which are used afterwards to determine the links between production classes and test cases.

2.3 Dataset structure

The obtained dataset consists of two main parts. The first one is related to the source code
changes that are extracted. Figure 2.2 illustrates the structure of the data files containing
production code changes. The data files with test changes have exactly the same structure.
For each change, we record: (1) the class in which it occurs; (2) the commit during which
the change is done along with its timestamp; (3) the type of the change; (4) the name and
the type of the source code entity that is modified. We have made the dataset so extensive
in order to obtain as much information as possible. For example, we have included the
timestamp of each commit to be able to group commits together (e.g., between two releases
of a system). We have also added the exact code entity that is changed, thereby allowing for
an easier identification of the parts of the source code in which a production change and its
associated test changes occur.

Figure 2.2: Dataset structure production code changes.

3http://code.google.com/p/javaparser/wiki/UsingThisParseris — Last visited June 19th,
2014.

4http://www.jdom.org/ — Last visited June 19th, 2014.

8

Dataset structure

The second part of the dataset comprises the methods from the production code that are
covered by a specific test case. For each test case that was modified during the lifespan of
the project, the following data is collected: (1) the name of the test case; (2) the test class
of which it is part of; (3) the commit during which it was changed; (4) all the production
methods and constructors that are addressed by the test case. This information can easily be
used to establish links between the respective test case and the production code it covers. A
sample of the data gathered for this part of the dataset is presented in Figure 2.3.

Figure 2.3: Dataset structure production and test code links.

9

Chapter 3

Design of Empirical Study

This chapter describes the design of the empirical study that was conducted. It first discusses
the goal of the study and the hypotheses that were formulated. Afterwards, the independent
and dependent variables considered are explained, along with the procedures that were used
to measure them. In the second part of the chapter, we present the approach taken when
performing the quantitative and qualitative analyses.

3.1 Goal of Experiment

As explained in Chapter 2, the goal of this thesis is to study the co-evolution between the
production and the test code of a software system. In order to achieve it, a series of research
questions were formulated, namely:

• RQ1: What kind of fine-grained co-evolution patterns between production and test
code can be identified?

• RQ2: Does the testing effort have an impact on the observed co-evolution patterns?

• RQ3: How does the co-evolution between production and test code happen?

The main goal of the experiment is to provide answers to these research questions. In
order to do this, a mixed methods approach is followed [9]. First, we use an association rule
mining algorithm to identify the co-evolution patterns of production and test code. Then,
we interpret the obtained patterns by performing a qualitative analysis. The exact steps that
were followed for each of the analyses are presented in the last two sections of this chapter.

3.2 Formulated Hypotheses

As discussed in Section 1.2, we made a series of assumptions with regard to production and
test code co-evolution. The first major assumption was that there is a correlation between
a change in a production class and one or more specific changes in the test code. If this
assumption holds, then a number of fine-grained co-evolution patterns can be identified for

11

3. DESIGN OF EMPIRICAL STUDY

a software system. The second assumption states that the effort put into testing for a project
has an effect on the observed patterns. In order to determine whether these two assumptions
are true or not, hypotheses corresponding to each of them were formulated:

Hypothesis 1

• Null hypothesis (H1null): There is no correlation between a change in the production
code and any of the changes in the test classes.

• Alternative hypothesis (H1alt): A change in the production code triggers one or
more specific changes in the test classes.

Hypothesis 2

• Null hypothesis (H2null): The testing effort put into a project has no impact on the
co-evolution patterns.

• Alternative hypothesis (H2alt): Different co-evolution patterns can be observed for
the projects that are thoroughly tested compared to the ones found for projects for
which the testing effort is low.

The first hypothesis addresses RQ1, while the second one covers RQ2. These two
hypotheses are the main focus of the empirical study. Determining whether the null or the
alternative hypothesis holds in each of the cases is the primary objective of the experiments
that are described in the following sections.

3.3 Independent and Dependent Variables

We have identified the independent and dependent variables for each of the hypotheses and
developed methods through which they can be measured. Table 3.1 contains an overview
of these two types of variables per hypothesis, along with their measurement procedures.

Hypothesis Independent Variable Procedure Dependent Variable Procedure

H1 Production change Section 2.1.1 Test changes Section 2.1.1
H2 Testing effort Section 3.3.2 Observed co-evolution Section 3.3.2

patterns

Table 3.1: Independent and dependent variables.

3.3.1 Hypothesis 1

For H1 the independent variables are the changes from the production code. We want to
establish if they have an impact on the dependent variables, the test code changes. Both
variables were measured following the procedure discussed in Section 2.1.1. For each pro-
duction class from a version of the system, the changes that occur in that class and the spe-
cific changes they trigger in the corresponding test cases are recorded. These changes are

12

Independent and Dependent Variables

part of one of the 7 categories of source code changes considered, as discussed in Section
2.1.1. Therefore, the outcome of the procedure is represented by the number of produc-
tion changes from one category along with the number of changes that are triggered in the
test code from each category of test changes; this is reported per production class for each
version of the system.

3.3.2 Hypothesis 2

The independent variable for H2 is the testing effort spent on a software project. The effort
is estimated by combining a number of metrics that were collected for each of the projects
under study. This can be regarded as a preliminary analysis of the systems included in
the experiment. Four perspectives have been considered: (1) changes that occurred in the
production / test code, (2) branch coverage obtained during the lifespan of the project, (3)
number of versions that did not compile because of test failures, and (4) ratio between the
amount of test code and production code. An overview of this preliminary analysis is shown
in Table 3.2.

Project Branch Number of Non- Σ∀vi LOCtest
Coverage Building Versions /

due to Test Failures Σ∀vi LOCprod

PMD 0.51418 369 0.130
CommonsLang 0.90678 54 0.442
CommonsMath 0.80254 131 0.366

JFreeChart 0.49274 17 0.219
Gson 0.66233 12 0.287

Table 3.2: Testing effort measurements.

The reported branch coverage has been recorded for the last version that we have con-
sidered (column Branch Coverage) and it was determined with Cobertura. We have also
collected coverage information for each release of a project and observed that the overall
branch coverage remains relatively stable.

The table also includes the number of versions that raised problems during compilation
because of test failures (column Number of Non-Building Versions due to Test Failures).
We have relied on Maven to compile the projects and recorded all the situations in which not
every test from a version passed. Finally, we have calculated the ratio between the lines of
test code and production code lines (globally, for all versions combined) as a measurement
for quantifying the volume of testing that has been done for a system (column Σ∀viLOCtest /
Σ∀viLOCprod).

Subsequently, we have analyzed the software projects to determine which types of
changes occur in their production and test code. Table 3.3 contains an overview of these
changes grouped into 10 categories corresponding to the 10 major types of changes identi-
fied by ChangeDistiller. For our analyses we only consider the first 7 categories of changes,
as the last 3 are not related to the source code of a system. The total number of production
and test code changes per software project has been calculated. In order to get an indication
of testing “effort”, we have also determined the percentage of test code changes from the

13

3. DESIGN OF EMPIRICAL STUDY

ChangeDistiller category PMD CommonsLang CommonsMath JFreeChart Gson
Prod Test Prod Test Prod Test Prod Test Prod Test

ADDED CLASS 4690 599 679 410 3074 1172 929 1128 130 124
REMOVED CLASS 4993 9 591 2 1605 39 1339 0 108 11
CLASS DECLAR 8742 1207 2396 2179 7379 4007 1777 847 542 460

METHOD DECLAR 3038 169 1146 376 2730 709 641 399 286 64
ATTRIBUTE DECLAR 7558 307 795 198 2787 746 890 33 330 27
BODY STATEMENTS 107831 8179 12933 15924 44098 28260 16266 17705 4947 1134
BODY CONDITIONS 16507 58 1466 85 2365 284 774 1 500 9

COMMENTS 2285 99 709 527 2762 1015 406 224 70 10
DOCUMENTATION 2363 88 3534 513 9145 468 449 401 212 15

OTHERS 1621 136 246 101 1051 236 14 394 114 97

TOTAL 159628 10851 24495 20315 76996 36936 23485 21132 7239 1961

TotalTest /TotalTest+Prod 6.37% 45.33% 41.10% 47.36% 21.32%

Table 3.3: Total number of changes in the production / test code per ChangeDistiller change
category.

total number of changes. This is depicted in the final row of Table 3.3. A visual represen-
tation of the data from Tables 3.2 and 3.3 is provided in Figure 3.1. A separate chart was
created for each of the aspects considered when measuring testing effort. Figures a, b and c
correspond to the columns of Table 3.2 while Figure d addresses the last row from Table 3.3.

Figure 3.1: Testing effort measurements per aspect.

14

Independent and Dependent Variables

The following thresholds have been selected: 1) percentage of test changes - over 33%;
2) branch coverage - over 0.67; 3) percentage of non-building versions - less than 2.5%;
4) test code lines - over 0.25. A system is considered properly tested if at least 3 of the
thresholds are met. Based on the above information which can be considered an indicator
of testing effort, we classify the projects as extensively tested (CommonsLang), relatively
well tested (CommonsMath, Gson) and rather poorly tested (PMD, JFreeChart).

The dependent variables in this case are the types of co-evolution patterns observed.
Depending on the testing effort spent on a project, we expect different types of co-evolution
patterns to appear. Therefore, based on the 3 categories of projects mentioned above, the co-
evolution between production and test code can either be observed (e.g., for the thoroughly
and adequately tested projects) or not. For example, for the systems that are properly tested
we anticipate that the creation of a production method will often trigger the addition of at
least one test case, thus obtaining a pattern between the insertion of methods in the produc-
tion code and test cases in the test classes. For the projects that are poorly tested we expect
that this situation will not occur.

Confounding factors

For the second hypothesis, we want to determine whether different co-evolution patterns
appear for systems with high testing effort compared to the ones encountered for poorly
tested systems. It is clear however that testing effort is not the only factor that has an impact
on the co-evolution patterns. There are a series of other factors that influence they way in
which production and test code co-evolve. Even though it is difficult to identify and control
all of them, we have tried to take into account a number of factors when conducting our
analyses. The following two categories of confounding factors are considered:

• Development practices: The co-evolution patterns may differ depending on the
development practices followed by the programmers that are working on a system.
For example, there might be cases in which production code development happens for
long periods of time which are immediately followed by sprints dedicated to testing.
Distinct patterns are also obtained if integration testing is being done instead of unit
testing; different association rules are generated if each of the methods added in a
production class is covered by a separate test case compared to a case in which a
single integration test is created to address all the production methods.

• Project characteristics: The specific characteristics of a software system also have
an impact on the co-evolution between production and test code. As an example, the
popularity of a particular project can have an influence on the way in which testing
is done. If a project is popular more users provide feedback on the issues encounter
while utilizing the system, thereby determining the developers to address them faster
and create tests to ensure that they are fixed. Another confounding factor from this
category is the specific type of the project. Different patterns might be observed for
open-source systems compared to the ones encountered in commercial ones.

15

3. DESIGN OF EMPIRICAL STUDY

Project First version Final version considered
Prod. # Test Release # # Prod. # Test Release

Versions Classes Methods Methods Classes Methods Methods

PMD 7165 316 1846 340 11/2002 822 4418 1340 12/2013
CommonsLang 3856 31 373 318 12/2002 177 2442 2851 02/2014
CommonsMath 5174 83 758 501 12/2004 985 6548 6201 02/2014

JFreeChart 519 423 5790 1297 11/2006 701 7776 2403 03/2014
Gson 322 73 414 131 05/2008 142 719 1010 08/2012

Table 3.4: Overview of selected projects.

3.4 Project Selection

We have chosen 5 projects on which we conduct our empirical study. We rely on the criteria
set by Pinto et al. in [33] to select the projects, namely:

• (1) a large number of versions

• (2) considerable size (in terms of production classes and methods)

• (3) an extensive JUnit test suite

• (4) be in active maintenance

Figure 3.2: Project growth statistics.

16

Analyses performed

For each of the systems, all their versions were included in the analysis. To the best
of our knowledge, no study of this magnitude has ever been performed regarding the fine-
grained co-evolution of production and test code.

An overview of the main characteristics of the 5 projects is presented in Table 3.4; it
contains the total number of versions studied and shows metrics gathered for the first version
of a project and the last version considered. The metrics collected are represented graph-
ically in Figure 3.2. Besides the initial and the final version of a system, an intermediate
version was also included when trying to illustrate how the 5 systems have grown in terms
of number of classes, methods and test cases.

3.5 Analyses performed

We have performed our study following a mixed methods approach [9] that combines quan-
titative and qualitative analyses as described in the following subsections.

3.5.1 Quantitative Analysis

We first identify frequently occurring fine-grained co-evolution patterns between production
and test code. The spmf1 tool is used to generate a series of association rules. We have
configured the Apriori algorithm with support and confidence values of 50% and 60%,
respectively.

The following steps have been applied to obtain the rules. For each version of a system,
all the changes that occur in the production code and in the associated tests are recorded
per production class using a bucket list representation. Instead of the actual values, we use
discrete values to quantify the number of changes that occur from each of the categories.
We did this in order to facilitate the generation of the association rules, as it would not
be possible to obtain rules with the specified support and confidence if numerical values
were used. In the cases of class additions and removals, only YES and NO values have
been utilized, as these kinds of changes can either happen or not. For the other types of
changes, one of the following 5 values is assigned: NONE, LOW, MED LOW, MED HIGH
or HIGH. In order to assign these values, the set containing the number of occurrences of the
respective change in each class in which it was made (for all the versions of a system) has
been constructed; extreme values have been filtered out, to prevent the results from being
skewed. The last 4 discrete values (LOW, MED LOW, MED HIGH and HIGH) correspond
to the (0%-25%], (25%-50%], (50%-75%], [75%-100%] intervals of values from this set.
After we put the data in the appropriate format (version — production class — changes in
class / associated test classes = value), the association rules are computed.

3.5.2 Qualitative Analysis

To refine the results from the quantitative analysis, we perform a qualitative study in order to
better understand some of the co-evolution patterns that have been obtained during the pre-
vious analysis. We concentrate on the following 5 categories of production code changes:

1http://www.philippe-fournier-viger.com/spmf/ — Last visited June 19th, 2014

17

3. DESIGN OF EMPIRICAL STUDY

added class, removed class, class declaration change, attribute declaration change, and body
condition change. We disregard the other 2 categories because (1) a large variety of fine-
grained changes are part of the METHOD DECLARATION category, therefore it was diffi-
cult to find a substantial number of examples for each of them and (2) BODY STATEMENT
changes occur in almost every commit, thus making it hard to separate them from the other
types of changes.

We carry out this qualitative analysis by studying concrete examples of test code changes
that occur as a result of a particular change in the production code. From each category of
production changes (see Table 2.1), we investigate every type of change in depth. For each
occurrence of the change in a production class, all the changes it has triggered in the test
code are recorded and analyzed. In order to ensure that there is indeed a connection be-
tween the production and the test code changes, the links between the respective production
class and the corresponding test cases are inspected, along with the actual source code and
the commit message of the project version under consideration. After gathering these ex-
amples, we make a series of observations based on them regarding (1) how co-evolution
happens together with (2) an interpretation of the co-evolution patterns identified during the
quantitative analysis.

18

Chapter 4

Quantitative Analysis

This chapter presents the results of the quantitative analysis. First, we discuss the obtained
association rules. Afterwards, we explain the co-evolution patterns that can be inferred from
these association rules for each project under analysis.

4.1 Association rules

A number of association rules have been generated for each category of production code
changes. Figure 4.1 illustrates the structure of these rules. The antecedent is represented
by the production change category that is addressed by the respective association rule along
with the number of changes that occurred from that category. The consequent consists of
a category of test code changes that is correlated with that particular production change
category and the number of test changes encountered. The last part of the rule contains the
support and confidence values obtained.

Figure 4.1: Association rule format.

Table 4.2 provides an overview of the association rules for each of the 5 systems along
with their support and confidence values. The second column (i.e., Association Rule) con-

19

4. QUANTITATIVE ANALYSIS

tains the retrieved association rule; however, the value of the consequent is missing in this
column. This value can be found in the subsequent columns that are specific to each project
under analysis. These columns contain the support and the confidence of the rule together
with the value of the consequent (e.g, YES, NO, SOMETHING). For instance, for rule 1, the
column PMD shows that no test classes are added (i.e., NO) when new production classes
are created; the rule has a support value of 4161 and a confidence value of 0.906 for the
respective project. Therefore, the complete set of association rules for a project is obtained
by concatenating the second column with the specific column for that project.

In some cases an association rule has not been generated between a production and a test
code change. This is caused by the fact that the changes in the production code are dispersed
over a number of intervals, i.e. (LOW, MED-LOW, MED-HIGH, or HIGH), see for example
the antecedents of rules 7 through 9 for CommonsLang. Because of this dispersion the
threshold value for confidence might not be met, which in turn means that an association
rule is not generated. However, if there was no link between the production and the test
code change, we would expect that an association rule containing NONE as the value of the
consequent would have been generated, thus indicating the lack of connection. The fact that
this association rule with NONE is not produced suggests that there might still be a (weak)
link, thing that we marked with the keyword SOMETHING in the consequent.

Table 4.2 also has some empty cells. This happens for some of the rules that have
MED LOW as the value for the production change. It is caused by the fact that the respec-
tive production changes generally occur only once for a class in a commit, therefore the
intervals corresponding to (0%-25%] (LOW) and (25%-50%] (MED LOW) of the values
are identical (contain only 1 values).

As an example of mined association rules, consider the following two rules that address
the addition of production classes for the CommonsLang project:
Association rule 1.1

ADDED CLASS PRODUCTION=YES→ ADDED CLASS TEST=YES

support: 412, confidence: 0.64375

This first association rule indicates that for CommonsLang, a project that has been cate-
gorized as extensively tested, the creation of a new production class leads to the addition of
a corresponding test class in around 64% of the cases.
Association rule 1.2

ADDED CLASS PRODUCTION=YES→ CLASS DECLARATION TEST=NONE

support: 557, confidence: 0.87031

The second rule reveals that sometimes when a production class is created additional
test cases are developed in the already existing test classes in order to cover it. Even though
the value of CLASS DECLARATION TEST is NONE, the confidence of this rule indicates
that in roughly 13% of the cases a different value than NONE was registered; therefore, in
these situations at least one test case is created when the new production class is added.

The rest of the association rules are discussed in Appendix A, at the end of this doc-
ument. That section contains a detailed analysis of each of the association rules and also

20

Co-evolution patterns

goes more in depth with regard to their implications. Furthermore, several association rules
that have not materialized into patterns are also included.

4.2 Co-evolution patterns

By inspecting the association rules from Table 4.2 we have noticed a number of interesting
differences between the systems under analysis. We have identified 6 co-evolution patterns
(shown in Table 4.1) that we distilled from Table 4.2 by generalizing what has been observed
for the 5 projects. These 6 co-evolution patterns are further subdivided into two categories:
positive, marked by the a suffix, and negative as exemplified by the b suffix. The positive
patterns reflect co-evolution, while the negative ones point towards a lack of co-evolution.

Pattern Explanation CommonsLang CommonsMath PMD Gson JFreeChart

1a When a new production class is added, an associated
test class is also created

√ √ √

1b When a production class is created, no new class is
added in the test code

√ √

2a Upon the deletion of a production class, its associated
test class is also removed

√ √ √ √ √

2b When a class from the production code is removed,
the test class covering it is not deleted

3a When a production method is created / deleted, one
or more test cases addressing it are also developed /
discarded

√ √ √

3b Upon the addition / removal of a method in the pro-
duction code, no test cases are created / deleted

√ √

4a When method-related changes occur in the produc-
tion code, the tests are updated accordingly

√ √ √

4b When changes are made to the signature or return type
of a production method, no changes occur in the test
code

√ √

5a When a field is added / removed in the production
code, the existing test cases are updated in order to
address this change

√ √ √

5b When a new production field is added / removed, no
modifications occur in the test code

√ √

6a Upon modifying conditional statements in methods
from the production code, test cases are created /
deleted to cover each possible path throughout the re-
spective method

√ √ √ √

6b When conditions are changed in production methods,
no test cases are added / removed

√

Table 4.1: Co-evolution patterns for each system under study.

We will now discuss these co-evolution patterns per project.

CommonsLang

In the case of CommonsLang, an extensively tested project, a series of co-evolution patterns
(we are referring to the numbering of Table 4.1) have been observed, namely:

21

4. QUANTITATIVE ANALYSIS

Pattern 1a The generated association rule shows that corresponding test classes are indeed
created when new production classes are developed (confer rule 1 in Table 4.2, CONF =
0.643), suggesting that the developers actually test the production code they write.

Pattern 2a Another rule has uncovered that in most of the cases test classes are removed
(rule 2, CONF = 0.998) when the production classes they cover are deleted, indicating
that the programmers are careful not to leave non-compiling test classes in the system.

Pattern 3a The rules highlight that when a certain number of methods are added / removed
from production classes corresponding test cases are also created / deleted (rules 4–6).

Patterns 4a and 5a They also show that test cases are updated accordingly when attribute
or method related changes are made in the production code (rules 7-14).

Pattern 6a Finally, the association rules uncovered that test cases are created / removed
when conditional statements are changed in the production classes (rules 16-18).

The patterns presented above indicate that thorough testing has been done for Common-
sLang, which is in concordance with the initial observations that we made regarding this
system.

CommonsMath

In general, the association rules generated for CommonsMath resemble the ones obtained
for CommonsLang; however, from the confidence values retrieved, it can be observed that
less emphasis has been put on testing for this project.

Patterns 1a and 3a For example, when new production classes / methods are developed
corresponding test classes / cases are created, but their number is slightly lower than in
the CommonsLang case (rules 1 and 4–6 respectively).

Pattern 2a Associated test classes are removed when production classes are deleted (rule
2, CONF=0.974).

Patterns 4a and 5a Test cases are altered accordingly in situations when the attributes /
methods of a production class are modified (rules 9–10 and 13–14).

Pattern 6a Tests are written / dropped when conditions are changed in the production code
(rules 15–18).

Even though CommonsMath is not tested in such detail as CommonsLang, the project
can still be considered adequately tested as only positive co-evolution patterns occur.

PMD

Most of the association rules that were generated for PMD are negative (i.e., have NONE
as the value for the test related changes).

22

Co-evolution patterns

Pattern 1b We see strong indication that for PMD test classes are not developed when
production classes are created (rule 1, CONF=0.906).

Patterns 2a In the few cases in which a production class has an associated test class, the
two classes are deleted together (rule 2, CONF=0.998).

Patterns 3b Test cases are rarely created when production methods are added (rules 3 and
5-6). In about 80% of the cases the development / removal of a method from a production
class does not trigger any changes in the test code.

Pattern 4b and 5b In the cases when attributes or methods from the production classes are
modified tests are rarely changed; only a limited amount of updating is done in the test
code to ensure that the test cases still compile (rules 7, 9-10, 11, and 13-14).

Pattern 6b Also, test cases are not created / deleted when conditional statements are mod-
ified in production methods (rules 15 and 17-18).

From the patterns that were inferred, it is clear that PMD does not have a structured
approach to co-evolving production and test code. This observation is in-line with our
initial assessment that PMD is a poorly tested project.

Gson

In most cases, the rules generated for Gson are similar to the ones obtained for Common-
sLang and CommonsMath.

Patterns 1a The creation of a new production class is strongly correlated with the addition
of an associated class in the test code (rule 1, CONF=0.772).

Patterns 2a Similarly, the deletion of a production class is immediately followed by the
removal of its associated test class (rule 2, CONF=0.936).

Pattern 3a In contrast to the aforementioned CommonsLang and CommonsMath, for Gson
we have found that when methods are added / removed from production classes, the num-
ber of test cases created / deleted is significantly lower in comparison to the other two
projects (rules 5-6); nevertheless, a positive sub-pattern was still detected.

Patterns 4a and 5a In terms of changes concerning production methods or attributes, the
appropriate updates are made to the existing test cases (rules 9-10 and 13-14).

Pattern 6a Also contrasting CommonsLang and CommonsMath, only when numerous con-
dition related changes are made in the production methods, test cases are created / deleted
in order to address the additional / removed branches (rule 18).

We conclude that Gson can be regarded as a well-tested project as most of the changes in
the production code are accompanied by changes in the test classes.

23

4. QUANTITATIVE ANALYSIS

JFreeChart

JFreeChart is a project that is not tested as extensively as CommonsLang, CommonsMath
or Gson. Generally, the association rules that have been obtained in this case resemble the
ones that were generated for PMD.

Patterns 1b and 3b Even though new production classes / methods are not backed up by
additional test classes (rule 1) / cases (rules 3 and 5–6), we still see that the testing effort
put into JFreeChart is higher compared to PMD’s case, because the negative association
rules have a lower value for confidence.

Patterns 2a As for all the other analyzed projects, the removal of a production class trig-
gers the deletion of its associated test class if such a class exists (rule 2, CONF=0.954).

Patterns 4b and 5b We observe that test cases are rarely updated when changes related to
attributes or methods are made in the production code (rules 7, 9–10, 11, 13–14).

Pattern 6a In several cases we have noticed that test methods are created / deleted when
conditional statements are altered in the production classes (rule 18).

The amount of testing that has been done while developing JFreeChart is on the low side,
as indicated by the numerous negative association rules that were obtained. However, the
testing effort is still considerably higher compared to the PMD case; in some situations the
positive sub-patterns were encountered, and even when the negative ones were detected the
confidence values of the association rules are lower than for the PMD rules.

24

Co-evolution patterns

Id Association Rule PMD CommonsLang CommonsMath JFreeChart Gson

1 ADDED CLASS PRODUCTION=YES →
ADDED CLASS TEST

NO YES SOMETHING NO YES

4161/0.906 412/0.643 -/- 832/0.805 85/0.772
2 REMOVED CLASS PRODUCTION=YES →

REMOVED CLASS TEST
YES YES YES YES YES

4926/0.998 569/0.998 1554/0.974 1331/0.954 89/0.936

3 CLASS DECLARATION PRODUCTION=LOW
→ CLASS DECLARATION TEST

NONE NONE NONE NONE NONE

1767/0.998 244/0.953 1129/0.981 360/0.954 159/0.975
4 CLASS DECLARATION PRODUCTION

=MED LOW→ CLASS DECLARATION TEST
- LOW SOMETHING - -

132/0.8 -/-
5 CLASS DECLARATION PRODUCTION

=MED HIGH→ CLASS DECLARATION TEST
NONE SOMETHING SOMETHING NONE LOW

855/0.808 -/- -/- 174/0.754 43/0.651
6 CLASS DECLARATION PRODUCTION

=HIGH→ CLASS DECLARATION TEST
NONE HIGH SOMETHING NONE SOMETHING

503/0.797 85/0.658 -/- 102/0.743 -/-

7 METHOD DECLARATION PRODUCTION
=LOW→ BODY STATEMENTS TEST

NONE SOMETHING NONE NONE NONE

634/0.725 -/- 331/0.614 134/0.814 60/0.833
8 METHOD DECLARATION PRODUCTION

=MED LOW→ BODY STATEMENTS TEST
- SOMETHING - - -

-/-
9 METHOD DECLARATION PRODUCTION

=MED HIGH→ BODY STATEMENTS TEST
NONE SOMETHING SOMETHING NONE SOMETHING

309/0.887 -/- -/- 65/0.893 -/-
10 METHOD DECLARATION PRODUCTION

=HIGH→ BODY STATEMENTS TEST
NONE MED-HIGH SOMETHING NONE SOMETHING

234/0.823 37/0.616 -/- 49/0.871 -/-

11 ATTRIBUTE DECLARATION=LOW →
BODY STATEMENTS TEST

NONE SOMETHING NONE NONE NONE

1244/0.737 -/- 558/0.722 148/0.833 82/0.828
12 ATTRIBUTE DECLARATION=MED LOW →

BODY STATEMENTS TEST
- SOMETHING - - -

-/-
13 ATTRIBUTE DECLARATION=MED HIGH →

BODY STATEMENTS TEST
NONE SOMETHING SOMETHING NONE SOMETHING

528/0.907 -/- -/- 62/0.853 -/-
14 ATTRIBUTE DECLARATION=HIGH →

BODY STATEMENTS TEST
NONE SOMETHING SOMETHING NONE SOMETHING

628/0.834 -/- -/- 74/0.822 -/-

15 BODY CONDITIONS PRODUCTION=LOW →
CLASS DECLARATION TEST

NONE NONE SOMETHING NONE NONE

1044/0.976 126/0.670 -/- 94/0.853 72/0.9
16 BODY CONDITIONS PRODUCTION

=MED LOW→ CLASS DECLARATION TEST
- SOMETHING - - -

-/-
17 BODY CONDITIONS PRODUCTION

=MED HIGH→ CLASS DECLARATION TEST
NONE SOMETHING SOMETHING NONE NONE

357/0.952 -/- -/- 134/0.763 37/0.822
18 BODY CONDITIONS PRODUCTION=HIGH→

CLASS DECLARATION TEST
NONE SOMETHING SOMETHING SOMETHING SOMETHING

430/0.926 -/- -/- -/- -/-

Table 4.2: Associations rules mined from the evolution of the analyzed projects.

25

Chapter 5

Qualitative Analysis

The quantitative analysis has provided insight into the co-evolution of production and test
code: we have identified 6 fine-grained co-evolution patterns for the 5 projects under anal-
ysis. We now turn towards a qualitative analysis that is aimed at 1) manually investigating
how co-evolution happens and 2) interpreting the observed co-evolution patterns. Exam-
ples of test code changes that occur when specific changes are made in the production code
have been manually analyzed. They provide in depth knowledge on the way in which co-
evolution takes place and also aid in understanding the reasons why co-evolution is lacking
in some cases.

5.1 How Co-Evolution Happens

This part of the qualitative analysis is concerned with determining whether the production
and test code co-evolve simultaneously, if the test code is modified at a later time, or if no
changes occur in the test classes. This aspect has been studied for all 5 production changes
considered for the qualitative study, and different observations have been made for each of
them. We have focused on the projects for which positive co-evolution patterns have been
obtained (CommonsLang, CommonsMath, Gson), as they offer more information to study
in comparison to the other two systems. Nonetheless, a series of insightful facts have been
recorded for the poorly tested projects as well. In the following subsections, we present how
co-evolution happens when a particular change is made in the production code. We discuss
this in detail (with examples) for CommonsLang and summarize our findings for the other
systems.

5.1.1 Class addition

In terms of production class additions, distinct things have been observed for the 5 projects
under study. In particular, for CommonsLang we have determined that in most cases a new
test class is indeed created when a production class is developed. We have come across the
following 4 scenarios:
1) Occurs in the same commit: The test class is generally added during the same com-
mit (in roughly 90% of the cases), thus suggesting that the developers actually test the

27

5. QUALITATIVE ANALYSIS

new production code before committing it. It has also been observed that the produc-
tion class and its associated test class follow a specific naming pattern. As an example,
in commit d23b22c78078ee7468e797e80188ae9508c0eee0 we have found that the classes
NumberRange and NumberRangeTest are added together. Most of the examples gathered
for this system are similar to the one illustrated above.
2) Occurs in a following commit: We have noticed situations in which the corresponding
test class is developed during a following commit. This indicates that even though the pro-
duction class was not tested at the time of its creation, the respective production code is still
covered (at a later time). For example, we have determined that the addition of the produc-
tion class HashCodeUtils was done in commit 7459257c3cd0f8dbc066520e825d995af332
5f6e on August 1st, 2002 at 22:15:43, while the corresponding unit test class was commit-
ted on August 10th, 2002 at 14:12:49.
3) Does not occur, but a different type of change is made in the test code: We have also
identified cases in which a multitude of different types of test changes occur when a new
production class is created. This corresponds to a scenario in which the developers update
the already existing tests instead of developing a separate test class to address the produc-
tion class that was added. We have observed the following changes in the test classes: the
creation of test cases (corresponding to association rule 1a2), the insertion of statements
containing method calls and the addition of catch blocks. A concrete example is the ad-
dition of the TypeUtils class in the production code, which triggers the creation of a test
case called testParameterize() in the UtilsTest test class during the same commit
(26d158fb242f45af145c43a70af01ded8673f5f4).
4) Does not occur: In some cases we have witnessed that a test class is not added when
a production class is developed (in about 35% of the total number of cases). When such a
situation occurs, the production code corresponds to either a mock class, an abstract class /
an interface, or a class that is reimplemented (for which a test class does exist). For example,
the creation of the AnotherChildmock class in commit d96fe035d3ac4df9a8aaef99124bd0
eff6430927 does not cause any changes in the test code. Cases in which important produc-
tion classes were not covered by tests have rarely been seen for CommonsLang.
CommonsMath and Gson: For these two systems, when production classes are added
the co-evolution takes place similarly to the CommonsLang case. The corresponding test
classes are usually added during the same commit. In most of the cases in which a test class
is not created, other types of changes are observed in the test code, including additional
test cases and statement inserts. Situations in which important production classes are not
covered by tests have rarely been encountered. However, they do appear more frequently
for these two projects than for CommonsLang.
PMD and JFreeChart: On the other hand, for the systems that are tested less extensively,
corresponding test classes are not added when production classes are created. In the cases
in which new test classes are developed, they cover either a single production class or con-
tain a number of integration tests. There are more situations in which these test classes are
added in subsequent commits compared to the 3 projects that were previously discussed.

28

How Co-Evolution Happens

5.1.2 Class removal

1) Occurs in the same commit: In most of the cases (association rule 2a1) the removal of
a production class triggers the deletion of its associated test class. This generally occurs in
the same commit because otherwise the respective test class would produce errors during
compilation.
2) Occurs in a following commit: Cases in which a test class is removed in a subsequent
commit are rare. However, this is normal considering that the tests get invalidated if the pro-
duction class they address is deleted. As an example, HashCodeBuilder was removed in
commit c89cc3761f7ae49da9a6376923bd4913c7658563, while its corresponding test class
was discarded in the following commit, 3aaf286c8ad87695b9f24e923ef5729d02dbce2e,
several hours later.
3) Does not occur, but a different type of change is made in the test code: A production
class deletion can also determine other types of test code changes. For example, a number of
test cases from multiple test classes might be removed (2a2) or method-level changes (e.g.,
statement deletions) can occur. The deletion of class ExtendedMessageFormatBaseline
in commit 0b83f28c839deefe76a23131d0763900948527e7 for instance determines the re-
moval of two test cases from TextTestSuite during the same commit.
4) Does not occur: For the situations in which no test classes were deleted, it was estab-
lished that the removed production classes were either: (1) mock classes; (2) created and
deleted after a few commits, therefore no tests were ever developed for them; or (3) removed
and immediately reimplemented afterwards, so the corresponding test class is still valid. For
example, the deletion of the ClassUtils class from commit ce1598398f55d046b02c26cf8b
f15e47cc48639f is not correlated with any class removals in the test code.
CommonsMath and Gson: As for CommonsLang, a production class and its associated
test class are removed simultaneously. The developers are careful not to leave a test class in
the system after its corresponding production class was removed, thus avoiding compilation
errors. Other types of test code changes were also identified, such as the removal of test
cases or statement-level deletions and updates. These kinds of changes were made in test
classes that do not address a specific production class, but rather cover a number of produc-
tion classes.
PMD and JFreeChart: This is the only production change for which co-evolution happens
similarly for these two projects as for the ones with a higher testing effort. If a correspond-
ing test class does exist, it is removed in the same commit as the production class it covers.
Few cases in which a test class is deleted in a following commit have been encountered.
However, more cases in which other types of changes (e.g., test case deletions or statement-
level changes) were made in the test code have been identified compared to CommonsLang,
CommonsMath or Gson. This is normal considering the fact that PMD and JFreeChart have
more classes that contain integration tests than the other 3 systems studied.

5.1.3 Method addition

1) Occurs in the same commit: Most of the times (association rules 3a2-3a4), when new
methods are added to production classes, additional test cases that address them are created

29

5. QUALITATIVE ANALYSIS

in the same commit. This type of situation occurred most frequently in the case of Com-
monsLang.
2) Occurs in a following commit: There are cases in which the corresponding test methods
were created in a following commit. However, they rarely occur for CommonsLang, as test
cases are generally added in the same commit as the production methods they cover. As
an example, the addition of the removeFinalModifier(Field,boolean) method to class
FieldUtils during commit edd0e3b9e294789421872f4d0b59901e1c401608 triggered the
creation of the associated test case testRemoveFinalModifierWithAccess() in class
FieldUtilsTest two commits after (in commit f241d34ad4a3e06abd3112928102c99c89b
bf0e3).
3) Does not occur, but a different type of change is made in the test code: It was also deter-
mined that other types of test code changes can occur when production methods are added.
For example, there are cases (association rules 3a6-3a8) in which a STATEMENT INSERT
type of change (corresponding to a method call) was made in an already existing test
method. For instance, the creation of the isAccessible(Class<?>) method in produc-
tion class ConstructorUtils (commit 832a250c0d9eba74c2f1d23a127c68ca28bab18b)
causes the insertion of a statement (containing a method call to the respective production
method) in one of the test cases from class ConstructorUtilsTest during the same com-
mit. Also, an entire test class might be created if none of the existing test classes cover the
production class in which the new methods were added.
4) Does not occur: It was difficult to identify cases in which newly created production
methods where not addressed by test cases. For CommonsLang, this situation rarely hap-
pens, and when it does the added functionalities in the production code correspond to auxil-
iary methods or are part of a mock class, therefore the fact that they were not covered does
not represent a serious issue. For example, when the doIt() method was added to mock
class Bar (commit 7b86e4e054ab4507709795b6f63410ff03aeac92), no changes were ob-
served in the test code.
CommonsMath and Gson: The general impression is that the co-evolution take place
similarly as for the CommonsLang project, even though more cases in which an added pro-
duction method was not addressed by at least one test case have been identified for these two
projects. As for entire class additions, the corresponding test methods are usually developed
in the same commit. The addition of production methods also determines other types of test
code changes, especially statement-level inserts and updates (corresponding to calls to the
respective production methods).
PMD and JFreeChart: For the two systems that have been labelled as poorly tested there
are numerous cases in which the addition of a new production method does not trigger any
changes in the test classes. For situations when corresponding test cases were created it
has been found that they do not necessarily cover a single production method, but rather
several production methods from more than one class. Therefore, for these projects, the
JUnit guidelines that state that a test case should address a single functionality from the
production code are disregarded. Furthermore, more situations in which other kinds of test
code changes were made in the already existing test cases have been identified compared to
the 3 systems discussed above.

30

How Co-Evolution Happens

5.1.4 Field addition

1) adding test cases: It has been established that the new test case does not specifically
target the additional field from the production class. In general, it addresses one of the pro-
duction methods that uses that respective field, thereby implicitly covering the field as well.
For example, when the fieldSeparatorAtStart field was inserted in the ToStringStyle
production class (commit 78c146100c9ba7f0454769e42e60ef7b523b572c) the testAppend
Super() test case was added to the SimpleToStringStyleTest class in the same commit.
A deeper inspection revealed that the test case addresses the appendSuper() production
method that uses the respective field.
2) updating existing test cases: Statement changes are the types of changes that have
been the most commonly (association rules 5a1-5a3) observed when fields are added in
the production code; this suggests that the developers update the tests classes accordingly
when this type of change is made in production classes. Statement inserts, containing
assignments or method calls, are the fine-grained changes that occurred the most. The
addition of the production field reflectionRegistry in class ToStringBuilder (com-
mit b0be90e86c346b320f52ad7b7065f110a7e1d272) triggers the immediate insertion of a
statement containing an assignment to the respective field in the ToStringBuilderTest
class.
3) no changes are made in the tests: For CommonsLang, case in which the addition of a
field to a production class determines no changes in the tests were rarely (association rules
5a1-5a5) encountered. This shows that the developers have put a lot of effort into testing
the project, thus resulting in a thoroughly tested system. The production fields that were not
addressed by tests are either constants or auxiliary fields, so there was no pressing need to
test them. For instance the debug field that is added in the production class MethodUtils
during commit 1a6b33077c93f5d901788c6cc0df8eca89cc45c3 has remained untested.
CommonsMath and Gson: The addition of a field in a production class determines two
types of changes in the test classes. Either one or more tests are modified so that the re-
spective field is covered by the already existing test cases, or new test cases are created.
However, for the second scenario, it was established that the new test cases do not explic-
itly address that field, but rather cover recently added production methods that use the field
(e.g., getters and setters). Cases in which no test changes occur as a result of the insertion
of a production field have been observed more frequently than for other production changes
(such as method additions). The test code changes mentioned above generally occur in the
same commit as the production change that triggered them.
PMD and JFreeChart: For these two projects, the insertion of a production field is rarely
backed up by changes in the test classes. When test changes are made, they correspond to
statement inserts (in the existing test cases) in which the respective field is utilized. These
changes usually happen in the same commit in which the production field is added.

5.1.5 Alternative condition block addition

1) adding test cases: Creating a new test case when an alternative block gets added to a con-
dition in the production code is an action that is commonly (association rules 7a2-7a4) taken

31

5. QUALITATIVE ANALYSIS

for this project. This shows that CommonsLang’s developers adhere to the guidelines speci-
fied for JUnit testing, thereby obtaining a system that is properly tested. As an example, the
insertion of an additional condition block in the getReflectionArrayCycleLevel() pro-
duction method from class ToStringBuilder (commit b0be90e86c346b320f52ad7b7065f
110a7e1d272) co-occurs with the creation of a new test case, testReflectionArrayCycle
Level2(), in the ToStringBuilderTest test class.
2) updating existing test cases: There are also situations in which changes are made to
test cases that were created in previous commits. Upon further inspection it was observed
that these test cases are actually integration tests. The changes that occurred most fre-
quently (association rules 7a5-7a8) were at a statement-level (inserts and updates). For
instance, when an alternative condition block is added in the formatDate() method from
class FastDateFormat (commit c2003e4aa91120db3b91cdc659aded992bc68f58) a state-
ment containing a method invocation to the respective production method is immediately
inserted in the testFormat() test case from class FastDateFormatTest.
3) no changes are made in the tests: In some occasions, the developers do not make any
kinds of changes in the tests when alternative blocks are added to conditional statements in
the production code. Even though these situations occur rarely (association rules 7a2-7a4),
the production changes still need to be addressed in order to avoid any types of problems
that might arise. When alternative condition blocks were inserted in the production methods
from classes RandomStringUtils (commit 11a540bcf9dcf08b238917e4fd0fb843c34f1f56)
and StringEscapeUtils (commit 7eba6afba9a9e1c934985a494725f9470d34c9ec) no changes
were done in the corresponding test cases.
CommonsMath: For this project, the situations observed are similar to the ones from the
CommonsLang case. New tests are indeed developed when alternative condition blocks are
added in the production code. There are also cases in which the developers updated the
existing test cases instead of creating new ones when this type of production change occurs.
PMD, JFreeChart and Gson: For the other 3 systems, the introduction of an alternative
condition block in a production method does not correlate with any types of changes in
the test classes (especially for PMD). In the cases of JFreeChart and Gson there are some
situations in which the respective production change triggered either the addition of new
test cases or updates in the already existing ones. However, these situations rarely occur
compared to the other two projects that were discussed above, CommonsLang and Com-
monsMath.

The examples listed above show that different things can happen in the test classes as
a result of a change in the production code. They also demonstrate that in the cases when
a change is made in the tests, it does not necessarily happen in the same commit as the
production change that triggered it; therefore, a number of subsequent commits have to be
inspected in order to ensure that all the test changes that occur due to a specific produc-
tion change have been identified. Furthermore, this qualitative analysis has lead to other
insightful findings; for example, if no changes are observed in the tests when a production
class is created, the analysis uncovered examples of reasons why changes are not necessar-
ily needed in those particular situations. The following section details more on the reasons
why co-evolution does not happen in some specific cases.

32

Interpretation of the fine-grained co-evolution patterns

5.2 Interpretation of the fine-grained co-evolution patterns

As explained in Chapter 3, for 5 of the changes that occur more frequently in the production
code, we investigate the associated changes that are made in the test classes in greater detail.
The considered changes are: (1) class addition, (2) method addition, (3) class removal,
(4) field addition and (5) alternative condition block addition. For each of these types of
changes, we collect examples of test changes that they trigger and study them.

5.2.1 Class addition

In terms of entire production class additions, we observe a number of interesting facts. First
of all, we see that the addition of a production class causes the creation of a correspond-
ing test class for the projects that are adequately tested (rule 1 in Table 4.1). When this
does not happen, we have determined that the new production classes are either auxiliary
classes or abstract classes / interfaces for which the classes that extend / implement them
are tested. Another situation that we have witnessed is that production classes are removed
and subsequently added again (therefore a test class already exists for them). For the other
two projects, PMD and JFreeChart, the development of corresponding test classes was
observed less frequently; the developers seem to prefer adding test classes that contain inte-
gration tests which cover multiple production classes that were recently created. For all the
systems that we have analyzed, the new test class is generally developed in the same commit
as the production class it addresses. Additionally, we have found other types of changes in
the test code when production classes are created. The most commonly observed ones are
(1) the addition of new test cases in the already existing test classes and (2) statement-level
changes in some of the test methods. For the two systems that are tested less, these kinds of
changes occur more frequently than the insertion of test classes.

5.2.2 Method addition

We also zoom in on the changes that are made in the test code when production methods are
added. Intuitively we understand that the creation of a method in the production code should
trigger the addition of at least one new test case. However, this expectation is fulfilled by
only 3 of the analyzed projects, CommonsLang, CommonsMath and Gson; for the other
two, this was rarely the case (rules 3-6). Even for the adequately tested projects, there are
situations in which no changes are made in the test code when this type of change occurs
in a production class. Upon further investigation we have established that the production
methods that are not backed up by additional test cases are generally part of abstract or
mock classes; therefore, the fact that they are not addressed does not represent a serious
issue. Nevertheless, in some cases new utility methods have not been tested, thing that
could prove problematic. In general, we see that the corresponding test cases are added in
the same commit as the production methods they cover. There are few cases in which they
are developed in a following commit. We have also found other types of test code changes,
most of which are at a statement-level, corresponding to updates to the already existing test
cases by inserting or modifying a number of statements.

33

5. QUALITATIVE ANALYSIS

5.2.3 Class removal

With regard to production class removals, we have determined for all the 5 projects that if
an associated test class exists, it is also deleted (rule 2). However, we did find situations in
which the test class is not removed in the same commit as the production class it covers.
For example, in the case of PMD, the TokenSetTest class is discarded two commits after
TokenSet is deleted. This is particularly interesting considering the fact that compilation
errors arise because the production class that is being tested was already removed. Changes
from other categories have also been identified in the test code. For example, statement
deletions and updates have been encountered in the tests, suggesting that test cases that
address more than one production class are modified accordingly. In some cases we have
noticed that methods from multiple test classes are removed, indicating that the respective
production class was covered by more than one test class.

5.2.4 Field addition

We have also inspected the addition of fields in production classes. We have observed
several types of changes in the test code in this case, especially for the systems with a
higher testing effort. In a number of cases adding a field in the production code co-occurs
with the creation of a new test case. A deeper inspection revealed that the test case does
not specifically address the respective field, but rather a production method that uses it.
We have also noticed statements being inserted in the existing tests, with which the field
from the production class is covered. In some cases, a field is added in a test class as well; it
corresponds to one of the fields introduced in the production code and is used all throughout
the tests. For the projects that are tested less, PMD and JFreeChart, all the test changes
mentioned above occur less frequently compared to the other 3 systems. Especially in the
case of PMD, the developers seem to completely disregard this type of production change
when it comes to testing, as generally no changes can be observed in the test classes.

5.2.5 Alternative condition block addition

Finally, we have studied the insertion of alternative condition blocks. For the adequately
tested projects we have seen two types of changes in the tests. First and foremost, new
test cases are usually created when alternative condition blocks are added in the production
code (rules 15-18). This indicates that the developers adhere to the guidelines specified for
unit testing which state that a test case should be created for each independent path through
the tested method. However, there are situations in which they altered existing test cases
instead of adding new ones. Through code inspections we have determined that various
statement-level changes are done in the tests, such as modifying the values of the parameters
with which a production method is called in order to trigger a different path through the
respective method. We have rarely observed cases in which no changes are made in the test
code for two of the systems, CommonsLang and CommonsMath. For the other 3 projects,
Gson, PMD and JFreeChart, our findings are significantly different. Although there are
some situations in which the existing test cases are changed when alternative condition
blocks are inserted in production methods, in general new test cases are not created. Most

34

Interpretation of the fine-grained co-evolution patterns

of the times the developers do not make any kinds of changes in the test code for these
projects.

35

Chapter 6

Discussion

In this chapter we first summarize our findings with regard to the 3 research questions
addressed by this thesis, while also examining the hypotheses that have been confirmed.
Then we discuss threats to validity that might affect our study.

6.1 Revisiting the research questions

RQ1. What kind of fine-grained co-evolution patterns between production and test
code can be identified? By using association rule mining we have observed 6 fine-grained
co-evolution patterns in our 5 case study systems (see Table 4.1). These 6 patterns can be
summarized as follows:

• Patterns 1a and 1b - simultaneous introduction of production and test class

• Patterns 2a and 2b - simultaneous deletion of production class and associated test
class

• Patterns 3a and 3b - introduction / deletion of production method leads to the addi-
tion / removal of one or more test cases

• Patterns 4a and 4b - modification of production method leads to statement-level
changes in the test cases

• Patterns 5a and 5b - production field changes lead to statement-level changes in the
test cases

• Patterns 6a and 6b - conditional statement changes in the production code lead to
the addition / deletion of test cases

In Chapter 3, we have formulated two hypotheses concerning this research question,
namely:

• Null hypothesis (H1null): There is no correlation between a change in the production
code and any of the changes in the test classes.

37

6. DISCUSSION

• Alternative hypothesis (H1alt): A change in the production code triggers one or
more specific changes in the test classes.

Considering the fact that a number of co-evolution patterns have been obtained, it is clear
that a change in a production class determines specific types of changes in the test code.
This observation is further supported by the results of the qualitative analysis. For the 5
production changes that have been investigated in detail, a series of concrete examples of
changes that they trigger in the tests were collected. As an example, for the addition of
production methods, we have witnessed the creation of new test cases and the insertion
of statements corresponding to method calls in the already existing tests. These kinds of
examples have been found for all the projects considered, therefore we can safely reject
H1null and conclude that there is a correlation between a change in the production code and
several specific changes in the test classes.

RQ2. Does the testing effort have an impact on the observed co-evolution patterns?
As a first step, we have evaluated the testing effort put into each of the 5 case study projects.
This has been done on the basis of 4 criteria: (1) the ratio between the number of lines of
test code and the number of production code lines, (2) the number of versions that did not
compile because of test failures, (3) branch coverage, and (4) the ratio between the number
of changes in the test code and the total number of changes for the respective project. Based
on these measurements, the systems have been classified as: extensively tested (Common-
sLang), adequately covered (CommonsMath, Gson) and poorly tested (PMD, JFreeChart).

For each of the 6 patterns that we observed, we have distinguished a positive and a neg-
ative sub-pattern, namely the positive or “a” pattern in which co-evolution does occur and
the negative or “b” pattern in which case the co-evolution was absent. From this classifi-
cation, our main observation is that for the software projects for which we have seen high
testing effort, i.e. CommonsLang, CommonsMath and Gson, the positive patterns are more
likely to occur. Similarly, for the two systems for which we have observed a less intense
testing effort (PMD and JFreeChart), the negative patterns are more common. However,
there are cases in which a pattern from the a group can be found in a project with a lower
testing effort; for example, for JFreeChart we have established that test cases are sometimes
created / removed when conditional statements are modified in the production code.

Class removal is the only production change for which the same pattern has been iden-
tified for all the 5 projects; in this case, the associated test class is deleted as well, which is
unsurprising considering the fact that it would cause errors during compilation if it was left
in the code.

For the second research question, the following two hypothesis were considered:

• Null hypothesis (H2null): The testing effort put into a project has no impact on the
co-evolution patterns.

• Alternative hypothesis (H2alt): Different co-evolution patterns can be observed for
the projects that are thoroughly tested compared to the ones found for projects for
which the testing effort is low.

38

Revisiting the research questions

We have evaluated the testing effort spent on the systems and distinguished between prop-
erly tested projects (CommonsLang, CommonsMath and Gson) and poorly tested ones
(PMD and JFreeChart). We have also refined each of the co-evolution patterns observed
into a positive and negative sub-pattern. Considering that in most cases the positive sub-
patterns were encountered in adequately tested projects while the negative ones were found
for projects with low testing effort, we are able to reject H2null. In conclusion, H2alt holds,
the testing effort put into a project does have an impact on the co-evolution between pro-
duction and test code.

RQ3: How does the co-evolution between production and test code take place? An
investigation into the way in which production and test code co-evolve has been carried out
as part of the qualitative analysis. It uncovered 3 co-evolution scenarios: 1) the production
change and the associated test code change are made simultaneously; 2) the test change is
done in a subsequent commit; 3) a series of other types of test code changes are identified
when the respective production change is made or no changes are observed in the test code.
The frequency with which each of these scenarios occur depends on the system under study.
As shown before, the testing effort put into a software project has an influence on the co-
evolution between production and test code, therefore it implicitly affects these scenarios.

Another factor that determines the moment when a test change happens is the specific
type of the production change that triggered it. While for some production changes the
associated test changes occur either in the same or in a following commit, there are others
for which the production and the test code always evolve simultaneously. In general, the
addition of new source code entities (i.e., classes, methods, attributes or conditional blocks)
in the production code does not necessarily correlate with immediate changes in the test
classes. Numerous cases have been identified in which the corresponding test changes are
made in subsequent commits. For example, entire commits dedicated to testing have been
found (especially for PMD) when a series of new test classes were developed and additional
test cases were created in the existing classes. On the other hand, for the removal of source
code entities, the second co-evolution scenario is rarely observed. This is normal consid-
ering that these changes would cause compilation errors in the test code if they were not
immediately addressed. In the case of production code updates, co-evolution takes place
differently depending on the specific type of the update. For example, when the signature
of a production method is changed, the test cases are updated accordingly during the same
commit. However, when a change is made to a conditional statement from a production
method, the associated changes (e.g., addition / removal of test cases) in the test classes
might occur in a following commit.

Additionally, this in-depth analysis also goes into the reasons why sometimes the pat-
terns are not upheld. For example, a test class is not added for a mock class (pattern 1b).
Many other examples have been identified: test cases are not created when auxiliary meth-
ods are added in production classes (pattern 3b); no changes are made in the test code
when production fields corresponding to constants are inserted (pattern 5b); when a condi-
tional statement change occurs in a production method it might not trigger any types of test
changes because the respective production method is not covered by tests (pattern 6b).

39

6. DISCUSSION

All in all, the 3 research questions addressed by this study have been answered success-
fully. The two analyses have provided meaningful insight into the co-evolution between
production and test code: (1) 6 co-evolution patterns have been identified; (2) it was estab-
lished that the testing effort put into a project has an impact on these patterns; (3) a series of
co-evolution scenarios have been uncovered; and (4) reasons as to why co-evolution does
not happen in some specific situations are provided.

6.2 Threats to validity

This section presents the factors that might be considered threats to the validity of the ob-
tained results and explains how we tried to mitigate each of them. The guidelines intro-
duced by Perry et al. in [31] have been followed, therefore the factors are grouped into 3
categories: construct, internal and external validity. The following threats to validity have
been identified:

Construction threats

Assessing whether or not the independent and dependent variables chosen accurately model
the hypotheses that were formulated.
Fine-grained production and test code changes: In order to study the co-evolution between
production and test code we have decided to investigate the changes that occur in the test
classes as a result of changes in the production code. A specific procedure was utilized to
gather these fine-grained changes and to link the test cases in which they appear with the
addressed production classes, which is discussed in Chapter 2. Construction threats might
arise because of issues with the implementation of this procedure. In order to mitigate
these threats, our approach has been thoroughly tested using a number of small examples to
ensure that it works properly. Additionally, we have performed a manual inspection of the
data obtained for each of the projects in order to be certain that the changes extracted and
the coverage information inferred are correct.
Testing effort measurements: A series of metrics have been considered when assessing the
testing effort put into each of the projects under study. However, this set is by no means
complete; other metrics could have also been used to measure testing effort. Nonetheless,
the metrics were selected based on specific criteria (as discussed in Chapter 3), therefore we
believe that they provide a good indication of the amount of testing that has been done for
each of the projects.

Internal threats

Establishing whether the changes in the dependent variables can safely be attributed to
changes in the independent variables.
Confounding factors: Even though in Chapter 3 we tried to discuss all the factors that have
an impact on the dependent variables, the list obtained might not be complete. There may
be other factors that influence the results, but it is very difficult to identify and control all of
them. We have taken into account as many factors as possible and tried to minimize their

40

Threats to validity

influence on our findings.
Association rule generation: The support and confidence values used when generating the
association rules might also represent an internal threat to validity. Different association
rules would be obtained if different values for support and confidence were utilized, there-
fore the resulted patterns might also be different. We aim for the rules to be as reliable as
possible, therefore we decided not to lower these thresholds.

External threats

Determining if the results are generalizable to settings outside the study.
Industrial systems: The biggest threat from this category is that our observations might
not apply for other projects. More specifically, all 5 projects are open-source, therefore the
results may not be generalizable for commercial systems. In particular, different patterns
might be uncovered for industrial projects compared to the ones gathered for the 5 systems
included in the analysis. As discussed in Chapter 3, the investigated projects have been
chosen based on several criteria, therefore our findings should be valid for a wide range of
software systems. Future replications of the study should rule out this threat to validity.
Granularity of study: Another threat may arise because of the granularity at which the
systems have been studied. The results might be different if only a subset of versions were
analyzed, e.g. official releases. However, considering that we tried to study the co-evolution
as in depth as possible, the results are in concordance with our initial expectations for this
empirical study. The proposed approach can easily be refined so that the systems are studied
at a different level of granularity.
Development technology: The fact that all the analyzed projects have been developed in
Java may also represent an external threat to validity. When creating each of these systems
object-oriented principles were followed, therefore the obtained results might not be valid
for projects developed using other programming paradigms, such as imperative or functional
programming. However, the approach should apply for other development technologies that
are based on object-oriented concepts (e.g., C++ or C#). Additional experiments are needed
in order to generalize the observations that were made to systems developed in these pro-
gramming languages.
Project selection: Another external threat could concern the projects that were selected
for the empirical study. For example, none of the chosen systems follow a different devel-
opment methodology (e.g., Test Driven Development). It is clear that for TDD completely
different co-evolution patterns would be obtained as tests are written before production code
development takes place and updated afterwards.
All in all, the proposed approach was applied to projects with different characteristics, all
the versions of each system have been considered, the analyzed test suites contain a large
number of test cases, and hundreds of thousands of production and test code changes have
been gathered. Even though further investigation is needed in order to confirm the results,
these initial findings can provide a strong basis on which new research can be conducted.

41

Chapter 7

Related Work

Studying the co-evolution between the production and the test code of a software system
is a complex problem that can be decomposed into a number of tasks, namely: (1) data
collection through repository mining, (2) fine-grained source code change extraction, and
(3) linking test cases to production code. This chapter covers similar work that fellow
researchers have done along these directions. It is divided into four sections: co-evolution of
production and test code, source code evolution, source code change extraction and software
repository mining.

7.1 Production and test code co-evolution

This section discusses publications that address the same topic as we do, the co-evolution
between production and test code. Few papers have been identified from this category, as
the particular topic has not been thoroughly investigated thus far.

Zaidman et al. have proposed a set of visualizations that aid in understanding how
production code and (developer) test code co-evolve [47]. Their analysis is coarse-grained,
as they only inspect whether a production / test file is added or changed, while our analysis
is much more fine-grained. The authors have observed that the co-evolution does not always
happen in a synchronized way, i.e., sometimes there are periods of development followed
by periods of testing. Three views were created by combining information extracted from
versioning systems with data regarding the size of the system’s components and with the test
coverage reports that accompany the system. The Change History View depicts the commit
behaviour of developers over time, both for production and for test code. The Growth
History View presents the evolution of these two artifacts in terms of size. Finally, the Test
Coverage Evolution View shows the test coverage of a system at specific moments in time.
Two open-source (CheckStyle and ArgoUML) and one industrial project were used in order
to determine different types of co-evolution scenarios and infer various development and test
practices based on them. The results obtained were validated both internally, by inspecting
the source code and the log messages created during development, and externally, by relying
on the knowledge of the original developers of the systems.

43

7. RELATED WORK

Lubsen et al. have a similar goal, however they use association rule mining to determine
co-evolution [23]. Their work is particularly close to ours, albeit they study the co-evolution
at a file level, while we focus on more fine-grained changes. In particular, the authors
use association rules in order to determine whether or not production and test code evolve
simultaneously. Their main contribution is an approach that can be utilized to analyze the
co-evolution between the production and the test code of a software system by inspecting the
transactions obtained from version control. Additionally, they propose a set of co-evolution
metrics including standard interest and strength that can be used to assess the extent to
which the two software artifacts co-evolve. They validate the proposed approach with two
software systems, one of which is open-source (Checkstyle), while the other is from industry
(the SIG software system). Their results show that the distribution of programming effort
can be either on both artifacts or strictly on one of the two. Furthermore, cases in which
a more test-driven-like practice has been followed were also identified. By comparing the
results for the two systems, it was established that the testing approaches followed when
developing them are very different. For the open-source system it was determined that
most of the commits contain only production code changes. This is caused by: 1) the
development methodology used in which testing is generally done in phases outside of
regular development; 2) a series of large commits during which the production code is
beautified, therefore no changes are made in the test code. On the other hand, the system
from industry employed a test-driven approach to development, therefore the co-evolution
takes place differently compared to the previous case. The most notable weakness of the
proposed approach is that if changes in testing practices occur over small periods of time
they will not produce significant differences in the results because the approach always takes
the entire history into account.

In response to observations on the lack of co-evolution, Hurdugaci and Zaidman [19]
and Soetens et al. [39] proposed ways to stimulate developers to co-evolve their production
and test code by offering specialized tool support. For example, in [19] the authors introduce
TestNForce, a tool that aids developers in finding the unit tests that have to be modified
and executed after a change in production code occurs. This tool was implemented as
a plug-in for Microsoft Visual Studio 2010 and its main role is to create awareness and
assist developers in identifying and remembering which tests address the specific part of
the source code that is changed. TestNForce was created so that it can support 3 scenarios:
showing covering tests, determining the test cases that need to be run after a production
code change is done, and enforcing self-contained commits.

Soetens et al. [39] investigate whether or not fine-grained method-level changes in the
base-code can be utilized to identify the subset of regression tests that have to be rerun.
More specifically, their work is aimed at re-examining the existing test selection techniques
in the context of developer tests. The authors created a prototype and applied it on two sys-
tems, PMD and CruiseControl, in order to evaluate the feasibility of the proposed approach.
They use mutation testing and compare the selected subset of tests against the one obtained
by using a “retest all” approach. The results prove that a considerable reduction in size is
reached, while still killing a number of mutants that is comparable to the one reached by the
entire test suite.

Previous studies have also investigated how other types of software artifacts evolve

44

Source code evolution

alongside one another. Fluri et al. [14] analyze the co-evolution between the source code
of a software system and the developer comments. An approach is presented that can be
utilized to link the comments to the corresponding source code entities, thereby being able
to study the co-evolution between the two. The usefulness of the approach is proved by
performing an empirical study on 8 software project, both open-source and from industry.
The main findings are that: 1) the amounts of comments and source code grow at similar
rates as the system evolves; 2) the type of a source code entity has an impact on whether or
not a comment addressing it is added; 3) for 6 of the inspected projects the comments and the
source code co-evolve in roughly 90% of the cases; 4) API changes do not trigger comments
immediately, but they are nonetheless documented in following commits. This work is
similar to ours in the sense that it studies the evolution of the production code of a software
system in connection with another artifact that is part of the development process. However,
there are also two main differences: 1) they try to correlate changes in the production code
with the comments that are created, while we associated them with changes made in the test
classes; 2) they have only performed a quantitative analysis based on which some results
were inferred, while we went more in depth and also conducted a qualitative analysis in
order to better understand the knowledge obtained through the quantitative analysis.

7.2 Source code evolution

Source code evolution is one of the main areas of research in the field of software engi-
neering. We have identified several topics of interest within this area and gathered relevant
publications for each of them. The following topics have been considered:

7.2.1 Evolution in open-source software systems

This topic is directly related to our work as we have used open-source systems in our anal-
yses. Therefore, we are interested in understanding the particular characteristics of these
types of systems and whether or not they are similar to the ones of commercial systems.

[30] is one of the first articles to study the evolution of open-source systems. Besides
analyzing the way in which a system grows, the paper also studies how the corresponding
OSS community evolves alongside it. Through a series of case studies performed on 4
open-source projects it was uncovered that different collaboration models exist which cause
different evolution patterns to be observed for open-source systems and communities. The
authors also propose a classification for OSS projects. They divide them into 3 categories:
Exploration-Oriented, Utility-Oriented and Service-Oriented. This proves that even though
these types of systems are developed following collaborative principles, the resulted projects
differ in a number of ways. This observation is very important for us considering the fact
that we have used 5 open-source systems in our analyses.

Until now, we have only discussed the evolution of software systems created in Java,
thus following object-oriented principles. However, this evolution can be studied for project
developed in other languages or using different programming paradigms (i.e., imperative
or functional principles). Godfre et al. [18] analyze the evolution of the source code of
open-source systems developed in C. More specifically, they try to determine whether these

45

7. RELATED WORK

systems evolve in the same way as commercially developed ones. The observations made
are relevant for us, as we want to extend our study by including projects from industry. In
order to investigate these aspects, a case study is performed on one of the most well-known
open-source systems, the Linux kernel. The project’s evolution was examined both at a
system level and within its major subsystems, thus obtaining a series of interesting facts.
The most notable one was that, contrary to initial expectations (that it would grow slower
as it got more complex), the Linux kernel was evolving at super-linear rates for the last
couple of years. Another insightful finding was that examining the growth patterns of the
composing subsystems can provide an in depth understanding of why a system has evolved
in a specific way.

In [15], a tool is introduced that can be utilized to compare the source code of different
versions of a system developed in C. The presented approach uses partial abstract syntax
tree matching in order to identify the changes that are made to global variables, types or
functions from one version of a system to another. The authors used the tool to analyze
the evolution history of a number of popular open-source programs, including Apache,
OpenSSH, Vsftpd, Bind and the Linux kernel. A series of statistics were computed based
on the information extracted. Some of the main findings were that: 1) function and global
variable additions are more likely to occur that deletions to these source code entities; 2)
function bodies are modified frequently over time, but the prototypes of the functions are
rarely changed; 3) type definitions are rarely modified and when they are only small changes
are made. The tool was also extended to calculate several evolution metrics, such as com-
mon coupling or cohesion. These findings are relevant to our work because we plan to
extend the empirical study with projects developed in other programming languages or us-
ing different programming paradigms.

7.2.2 Software evolution visualization

Visualizing the changes that occur between two versions of a system is also an important
topic in the area of software evolution. We are pondering the possibility of extending our
approach by providing a visualization component. A number of articles have already ad-
dressed this topic and presented tools that were developed in order to facilitate the visual
representation of software evolution data.

Telea et al. [40] propose Code Flows, a set of techniques that can be used to visualize
fine-grained source code evolution. These rendering and layout techniques were designed
to: 1) illustrate how source code entities evolve over a specific period of time; 2) track a
code fragment throughout its entire history; 3) identify and highlight complex events (e.g.,
code swaps, splits or merges) in the lifespan of a software system. They aid developers in
a number of activities, such as understanding low-level source code changes or identifying
small-scale code patterns. However, more information could have been added to these vi-
sualizations by extracting additional data from code repositories. For example, code quality
metrics, bug information or programmer IDs represent important evolutionary data that has
not been integrated into the visualization model proposed in this paper.

In [43] the authors introduce CVSscan, an integrated multi-view environment for visu-
alizing the way in which a system evolves. It utilizes a line-oriented display to show the

46

Source code evolution

changing code, with a column for each version of the project and a horizontal direction for
representing time. Additionally, CVSscan provides a series of linked displays containing
various metrics and numerous options that can be used to visualize several different aspects
of a system. An overview of the tool is illustrated in Figure 7.1. One of the most innovative
concepts described in this paper is the bi-level code display that shows both the content
of a source code fragment and its evolution during a specified period of commits. The re-
searchers demonstrate the usefulness of this tool by conducting informal user studies on a
number of real-world use cases. The results obtained prove that the line-based visualization
introduced facilitates a quick assessment of the artifacts created during development.

Figure 7.1: CVSscan overview [43].

7.2.3 Test suite evolution

Test suite evolution is another topic that has been investigated extensively in the context of
software evolution. Evaluating how a test suite evolves is a first step towards understanding
the nature of the co-evolution between production and test code.

47

7. RELATED WORK

Pinto et al. [33] examine how unit test suite evolution occurs. Their main finding is that
test repairing is an often occurring phenomenon during evolution, indicating for example
that assertions are fixed. The study also shows that test suite augmentation is another im-
portant activity during evolution aimed at making the test suite more adequate. One of the
most striking observations that they make is that failing tests are more often deleted than re-
paired. Among these deleted test cases, tests fail predominantly (over 92% of the time) with
compilation errors, whereas the remaining ones fail with assertion or runtime errors. In a
controlled experiment on refactoring in connection with developer tests, Vonken and Zaid-
man also note that participants often deleted failing assertions instead of trying to address
them [44].

In the follow-up paper [32], Pinto et al. present the architecture of the tool that was
implemented based on the proposed approach, TestEvol, in greater detail compared to the
previously discussed paper ([33]). The system was developed as a Java-based web applica-
tion that runs on an Apache Tomcat server. For two versions of a software project, TestEvol
generates a detailed summary report on how the test cases changed while also providing
coverage information gathered for the respective versions. The structure of the summary
report is depicted in Figure 7.2.

Figure 7.2: TestEvol summary report [32].

As we are aiming to integrate test code quality into our study, we now turn towards pa-
pers that describe methods to measure this aspect. In [2], the author proposes a model that
can be utilized to assess test code quality. This model combines source code metrics related
to 3 main quality aspects (completeness, effectiveness and maintainability) and aggregates
them into a quality rating based on benchmarking. The model was used to examine the
correlation between test code quality and issue handling performance. An empirical study
was conducted using 18 open-source systems which shows that there is indeed a correlation
between the quality of the test code and issue handling indicators mined from issue repos-
itories. Additionally, 3 case studies have been done using commercial systems in which
the quality ratings obtained were compared with the evaluations provided by experts. Sev-
eral other papers discuss ways through which test code quality aspects can be measured.
For example, [29] introduces a tool that provides feedback on the testing effort put into a

48

Source code change extraction

project. By doing this, it aids in identifying weaknesses and determining the completeness
of a specific test suite.

7.2.4 Other topics

There are many other topics in the area of software evolution. In the context of test-suite
augmentation, Santelices et al. [38] present an enhanced methodology for improving exist-
ing tests as a result of evolving software. The proposed technique uses dependence analysis,
partial symbolic execution, symbolic state differencing, and runtime monitoring in order to:
1) asses the adequacy of a regression test suite when changes are made in the production
code; 2) facilitate the generation of new test cases that cover the untested behaviours in-
troduced by the production changes. The authors also describe a toolset that implements
the technique and perform two empirical studies with it. The results from the first study
highlight that the proposed technique can successfully identify test cases with high fault-
detection capabilities. The second study proves that, unlike any other approach that was
developed before it, the technique can handle multiple production changes.

Impact analysis (determining the effects of changes on a software system) is also a rele-
vant topic in the area of software evolution. Getgers et al. [17] discuss an adaptive approach
that can be used to perform impact analysis for a source code change request. Based on
a textual change request (e.g., a bug report), an indexed release of the software project is
utilized to estimate the impact set. The approach can also produce an improved impact set
by determining the best-fit combination if additional contextual information, such as the
execution trace or an initial source code entity that was verified for change, is available. In
order to obtain this improved set, the approach combines techniques from information re-
trieval, dynamic analysis and data mining of past source code commits; therefore, this work
is similar to ours, as we also use data mining to obtain the information necessary for the
two analyses and dynamic analysis to link test cases to the production entities they cover.
The authors conduct an empirical study on 4 open-source systems in order to validate the
proposed approach. The data for this study is represented by a benchmark consisting of a set
of maintenance issues, such as bug fixes or feature requests, and the corresponding source
code changes that generated them; the benchmark was obtained by manually examining the
systems and their change histories. The empirical study has shown that combining the 3
techniques mentioned above helps produce better results in terms of precision and recall
compared to any of the 3 used independently while also improving accuracy.

7.3 Source code change extraction

Determining the changes that occur from one version of a system to another is important in
the context of co-evolution. In [41], Toth et al. present an algorithm that is able to identify
changes in source code entities (e.g., classes or methods) by examining changes in source
files. Additionally, they evaluated the algorithm on the WebKit system. The algorithm
uses static analysis in order to determine the positions of the changed source code entities
only for a limited number of revisions. For the rest of the revisions, elementary change
blocks are determined by computing the differences between the positions of the entities

49

7. RELATED WORK

in the respective revision and their position in the last revision on which static analysis
was performed. In this way, all the revisions of a project are addressed without having to
perform expensive computations for each revision. However, there are situation in which the
implications of an elementary change block cannot be identified clearly. These situations
occur when the change blocks overlap the beginning or the end of a source code entity.

Figure 7.3: Initial source code change taxonomy [16].

50

Software repository mining

in the respective revision and their position in the last revision on which static analysis
was performed. In this way, all the revisions of a project are addressed without having to
perform expensive computations for each revision. However, there are situation in which the
implications of an elementary change block cannot be identified clearly. These situations
occur when the change blocks overlap the beginning or the end of a source code entity.

Gall et al. reported on analyzing the information obtained by mining software reposito-
ries [16]. Two tools are introduced: Evolizer, which is a platform for mining software repos-
itories, and ChangeDistiler [13], a change extraction and analysis tool that can be used to
investigate fine-grained source code changes. Of particular interest to us is ChangeDistiller,
which extracts source code changes from the different versions of a Java class gathered with
Evolizer. The source code of each analyzed version is represented as an abstract syntax tree
(AST) and the changes between two versions are determined by computing the differences
between their corresponding ASTs. A taxonomy for source code changes was also defined
along with the significance level of each type of change. Figure 7.3 illustrates the initial
taxonomy which was refined over time into the categorization that we used (discussed in
Chapter 2). We rely on the work described in this article for our study. Other research prob-
lems have been investigated using the two tools mentioned above. For example, Romano
et al. have utilized them to study both the feasibility of predicting change-prone Java inter-
faces using source code metrics [35] and the impact of antipatterns on the change-proneness
of Java classes [36].

An alternative for extracting source code changes is discussed in [34]. The authors
propose a different approach to collect and process data for software evolution. Instead of
relying on versioning systems, this data is gathered directly from the integrated development
environment used by the developers. Robbes and Lanza state that the source code changes
should be regarded as first-class entities (entities that can be referenced, queried or passed
along in a program) in order to obtain accurate information about the evolution of a software
system. They also implemented the approach into a prototype called SpyWare. The results
obtained by using this prototype show that it captures meaningful information, both at a
high level and on a session-by-session basis.

7.4 Software repository mining

A first step in analyzing the co-evolution between production code and associated test cases
is gathering relevant data through software repository mining. An investigation into the
early approaches for repository mining is presented in [21]. The techniques were classi-
fied along 4 directions: the types of the repositories mined, the purpose for doing it, the
methodology used and the evaluation method employed. An evaluation of the resulted tax-
onomy proved that it is both expressive and effective. The results showed that there is little
variation in terms of types of repositories analyzed and evaluation methods used. However,
the methodology and the purpose vary significantly. A number of threats to the validity of
the discussed repository mining techniques were also presented. The most notable threat
is the lack of standardization of the methodologies that can be utilized to mine software
repositories and of the methods that are selected to evaluate them.

51

7. RELATED WORK

Information for a large variety of tasks can be gathered by mining software repositories.
There are multiple types of repositories from which data can be collected. In this section
we detail on two of these types, CVS and Git.

7.4.1 Concurrent Versions System (CVS)

Many of the studies that employ repository mining techniques extract the necessary in-
formation from CVS repositories. One of the first tools to leverage version histories is
presented in [49]. Zimmermann et al. apply data mining techniques in order to determine
related changes in the source code of a software system. Based on a change, they are able
to identify other changes that were done by the same developer. Furthermore, given a set
of changes, the proposed approach can: 1) suggest and predict future changes; 2) identify
item coupling that is difficult to detect through program analysis; 3) prevent errors caused
by incomplete changes. The approach was developed into a prototype, ROSE, that is able to
predict entities that need to be changed based on an initial change by analyzing data gath-
ered from CVS. The authors evaluate the tool on 8 open-source systems, thus proving that
ROSE can successfully identify the locations where changes have to be made in more than
70% of the cases.

Ying et al. [46] describe an approach that uses data mining techniques to detect change
patterns (groups of files that were frequently changed together in the past) in the change
history of a software system. The paper brings two main contributions: 1) it proves the
utility of change pattern mining; 2) it introduces a set of interestingness criteria that can be
utilized to assess the usefulness of change pattern recommendations. The feasibility of the
proposed approach was evaluated by applying it to two open-source systems, Eclipse and
Mozilla, and demonstrating that it can recommend changes that need to be made when a
specific change occurs. The biggest issue with this work is that the precision and the recall
of the recommender are not very high, therefore not all the recommendations might be valid
or some items might be missing.

In [20], Kagdi et al. propose a method for discovering traceability links between the
artifacts of a software system by examining its version history. It is a heuristic-based ap-
proach that utilizes sequential-pattern mining and is applied to commits in order to uncover
frequently occurring co-changing sets of software artifacts (e.g., source code and documen-
tation). This approach was evaluated on an open-source system called K Desktop Environ-
ment (KDE). The obtained links were used afterwards to predict similar types of changes in
new commits.

The data mined from source code repositories can also help improve static analysis
tools. Williams et al. [45] introduce a method that utilizes the change history of a software
system to improve the search for bugs within the respective system. They developed a static
source code checker that identifies commonly fixed bugs and uses data extracted from the
source code repository in order to refine this search. The feasibility and performance of
the approach were demonstrated by performing case studies on two systems, Apache Web
Server and Wine. The results showed that the bugs that are catalogued in bug databases
and the ones identified by studying code repositories differ in terms of type and level of
abstraction. This is not surprising considering the fact that the bugs from the databases

52

Software repository mining

are reported by the users of a software system while the others are recorded by developers
upon fixing them. The results have also proven that the approach is significantly better
than a similar one that does not use data mined from source code repositories, therefore the
usefulness of this kind of information was demonstrated once again.

In [48] Zimmerman et al. utilize the data extracted from CVS archives to identify fix-
inducing changes (changes in production code that cause problems within the respective
software system). They propose a methodology that can be used to automatically locate
these types of changes by linking a version archive to a bug database (i.e, Bugzilla). This
work is related to ours for the following reasons: 1) it is one of the first studies to investigate
the impact of changes that occur in the production code of a software project; 2) it tries
to relate these changes to defects that appear within the system, a thing that we are also
considering as a future work direction. In order to detect these problematic changes, a 3
step procedure is followed: 1) it starts from a bug report that describes a fixed problem;
2) the corresponding change is extracted from the CVS, thus obtaining the location of the
fix; 3) the earlier change that was made at that location and introduced the bug is retrieved.
By investigating this research problem, a series of insightful facts have been uncovered,
such as: 1) the specific properties (e.g., the day in which they were made or the group of
developers that introduced them) of the changes that raised issues; 2) an assessment of the
error-proneness of the respective software system; 3) functionalities for filtering out the fix-
inducing changes when performing other types of analyses on the evolution of a software
system as they might lead to erroneous observations; 4) support for avoiding these kinds of
changes when suggesting related changes to developers through recommenders.

7.4.2 Git

For our analyses, we have used data extracted from Git repositories. Bird et al. [5] discuss
the promises and perils of mining Git. They start by providing statistical data which shows
that Git usage has increased drastically over the last couple of years and it continues to
grow. Afterwards, the promises and perils are explained in great detail. The first promise
identified is that Git allows access to more information (e.g., work in progress or work
that does not get integrated into the stable code base) in comparison to CVS because any
developer of a Git project can make this information publicly accessible. Another promise
is that Git facilitates the recovery of a richer project history by providing access to a wide
variety of data including commit, branch and merge information. Other important promises
are that: 1) Git records authorship information for the contributors that are not part of the
core developers; 2) for Git all metadata is local; 3) Git tracks content, therefore it is able to
tack the history of lines as they are copied or moved; 4) Git is faster and generally uses less
space than CVS. However, there are also a series of perils of using Git, the most notable
ones being: 1) issues with implicit branches; 2) the absence of a mainline, therefore the
analysis methods have to take into account the dependency acyclic graph (DAG); 3) the
fact that Git history is revisionist (the owner of the repository can rewrite it); 4) it is not
always possible to identify the branch on which a commit was made or to track the source
of a merge; 5) the data that is accessible includes only the commits that were successful.
All in all, the authors concluded that Git offers new and useful data that can be utilized for

53

7. RELATED WORK

all kinds of analyses. The most notable improvements are accurate authorship information,
the clear distinction between roles (e.g., author, commiter, reviewer) and merge tracking
facilities.

[7] is one of the first papers to examine data extracted from a Git-based project. The
article presents the results obtained by analyzing information gathered from the Linux Git
repository. The authors investigated how kernel development is done by studying changel-
ogs and provided a series of statistical measurements. Similar to the previous article, in [8]
Cobert et al. use data mined from Git in order to determine the way in which patches get
into the mainline for the Linux kernel.

54

Chapter 8

Conclusions and Future Work

Testing has become an important part of the software development process. The developer
tests aid in detecting possible issues in the implemented production code, while also facil-
itating program comprehension. Therefore, understanding how they evolve alongside the
production classes they are addressing is clearly worth investigating. We propose an ap-
proach that can be used to analyze the co-evolution between production and test code. We
utilize this approach to conduct an empirical study on 5 open-source systems in order to
understand the nature of this co-evolution. This chapter first provides an overview of the
scientific contributions made through our work. After this overview, the obtained results
are summarized and a series of conclusion are drawn from them. Finally, we reflect on our
work and present future research directions that are being considered.

8.1 Contributions

In this thesis we have investigated the fine-grained co-evolution of production and test code.
We did this in order to: (1) gain a deeper understanding of the way in which tests evolve as
a result of changes in the production classes, (2) identify possible gaps in the test base, thus
signalling to the developers the parts of the production code that have not been adequately
covered by tests.
In doing so, we make the following contributions:

• We present an approach to study the fine-grained co-evolution between produc-
tion and test code. The approach consists of two steps: (1) extracting fine-grained
source code changes from the production and the test code of a software system and
(2) identifying links between the test cases in which changes are made and the pro-
duction classes they cover. By using this approach we have been able to collect large
amounts of data consisting of source code changes and links between the code entities
in which these changes occur. The data has been utilized to analyze the co-evolution
between these two main parts of a software system.

• We enrich the software engineering body of knowledge with regard to produc-
tion and test code co-evolution. We have performed an empirical study on 5 open-

55

8. CONCLUSIONS AND FUTURE WORK

source software projects, thereby gaining insight into the nature of this co-evolution.
Additionally, we have investigated how the co-evolution between production and test
code happens and whether it can be correlated with the testing effort put into a system.

• We identify 6 co-evolution patterns based on the empirical study. We also prove
that the obtained patterns differ depending on how thoroughly the studied project
is tested. Finally, we establish that for some production changes co-evolution always
occurs simultaneously, while for others the corresponding test changes might be done
in subsequent commits.

8.2 Conclusions

We are now in a position to answer our research questions.
For RQ1, “What kind of fine-grained co-evolution patterns between production and

test code can be identified?”, we have uncovered 6 fine-grained co-evolution patterns by
using an association rule mining technique. For each of these patterns, a positive and a
negative sub-pattern have been identified. The positive patterns reflect co-evolution, while
the negative ones point towards a lack of co-evolution.

For RQ2, “Does the testing effort have an impact on the observed co-evolution pat-
terns?”, we first determine the testing effort put into each of the 5 projects. Afterwards, we
have established that positive patterns are more likely to be encountered in thoroughly tested
software systems (i.e., CommonsLang, CommonsMath, Gson), while the negative ones are
generally seen in projects for which the testing effort is low, such as PMD or JFreeChart.
The qualitative evaluation that we have performed allowed us to gain a more in depth un-
derstanding of how the co-evolution takes place. In particular, we have found reasons why
negative co-evolution patterns have been obtained. For example, we now have insight as
to why sometimes new test classes are not added when production classes are created (e.g.,
because the later is a mock class).

For RQ3, “How does the co-evolution between production and test code happen?”,
we have seen that the moment when a test code change is made varies depending on the
production change that triggered it. More specifically, some changes occur synchronously
in a production class and associated test cases, while in other cases the corresponding test
changes are made in a following commit. For example, in the case of production class ad-
ditions, the associated test class is created in the same or in a subsequent commit. However,
for production class deletions, the corresponding test class is always removed simultane-
ously. This is unsurprising considering the fact that it would cause compilation errors if it
was left in the code.

8.3 Reflection

In general, no major issues were encountered while implementing the proposed approach
or when the empirical study was conducted. We have successfully managed to extract fine-
grained source code changes from the production and the test code of software systems.

56

Future work

Additionally, following a dynamic solution, we have been able to link the entities in which
these changes were made, namely the production classes and the associated test cases. We
have thereby obtained a large dataset that was used in the analyses that followed. An em-
pirical study was conducted using the information gathered that allows for a deeper under-
standing of how production and test code co-evolve. Both when developing the approach
and while conducting the study we had to take a number of decisions on how to proceed.
When such situations occurred, we tried to explain the reasoning behind each of the de-
cisions that was made. As for any scientific work, there are several ways in which the
performed study can be improved, on which we will detail in the following section.

8.4 Future work

Extend the empirical study
Additional Java projects: A first direction for future work entails extending the empirical
study by analyzing the co-evolution between the production and the test code of new Java
projects. Commercial systems in particular might show different co-evolution patterns as
more or less testing effort may have been put into them. Nevertheless, adding new open-
source projects with different characteristics than the ones that were already studied is also
worth doing.
New development technologies or programming paradigms: The development technology
is a limiting factor for our study, as all the analyzed projects are implemented in Java. We
plan to address this issue in the future by extending the study to projects developed in other
object-oriented programming languages, such as C++ or C#. Even though a new implemen-
tation is needed, the proposed approach will still be valid. Besides the development tech-
nology, analyzing projects that are created following other programming paradigms, such
as imperative or functional programming, is also a direction that seems worth investigating.
It would be interesting to observe whether the co-evolution patterns for these projects re-
semble the ones obtained for the object-oriented systems.
Other development methodologies: Another area to concentrate on is studying whether
specific development methodologies (e.g., Test-Driven Development) show different co-
evolution strategies. For TDD test cases are written before the production code is created,
therefore we expect that co-evolution happens differently compared to what was observed
thus far.

Add quality into the equation
Until now we have only evaluated the co-evolution between production and test code in
terms of number of changes. An interesting research direction would be analyzing this co-
evolution in connection with the quality of the production and the test code. More specif-
ically, determining if the quality of the test code has an impact on the quality of the pro-
duction classes that are developed. This would entail constructing a set of metrics for each
of these two parts of the source code and trying to identify correlations between the values
obtained for the metrics.
We also aim to improve the characterization of testing effort by making use of the recent
test code quality model presented by Athanasiou et al. [3].

57

8. CONCLUSIONS AND FUTURE WORK

Improve existing test repair techniques
Finally, we want to use the knowledge that has been gained through this empirical study
to look into test repair techniques. Of particular interest are intent-preserving repair tech-
niques, assuring that the repaired test cases address the same production functionalities as
before they were broken. This can be easily achieved considering that the second part of
the proposed approach is used to link test cases to the production classes they cover. There-
fore, it can be utilized to establish these links both before and after a test repair is done.
By comparing the retrieved results it can be determined whether or not the intent has been
preserved.

58

Bibliography

[1] Andrea Arcuri. On the automation of fixing software bugs. ACM, pages 1003–1006,
2008.

[2] Dimitrios Athanasiou. Constructing a test code quality model and empirically assess-
ing its relation to issue handling performance. Dissertation Masters Thesis, University
of Delft, The Netherlands, 2011.

[3] Dimitrios Athanasiou, Ariadi Nugroho, Joost Visser, and Andy Zaidman. Test code
quality and its relation to issue handling performance. Transactions on Software En-
gineering. To appear.

[4] Kent Beck. Test-Driven Development: By Example. Addison-Wesley, Reading, MA,
USA, 2003.

[5] Christian Bird, Peter C Rigby, Earl T Barr, David J Hamilton, Daniel M German, and
Prem Devanbu. The promises and perils of mining git. Mining Software Repositories,
pages 1–10, 2009.

[6] Tom Borthwick. Java code coverage: Cobertura vs. emma vs clover.
http://www.copperykeenclaws.com/notes-on-cobertura-vs-emma-vs-clover/, 23 Octo-
ber 2010. Web. 30 April 2014.

[7] Tim Chen, Leonid I Ananiev, and Alexander V Tikhonov. Keeping kernel performance
from regressions. Proceedings of the Linux Symposium, 1:93–102, 2007.

[8] Jonathan Corbet. How patches get into the mainline. Linux Weekly News, February
10, 2009.

[9] J.W. Creswell and V.L.P. Clark. Designing and Conducting Mixed Methods Research.
SAGE Publications, 2010.

[10] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-Oriented Reengi-
neering Patterns. Morgan Kaufmann, 2002.

59

BIBLIOGRAPHY

[11] Sebastian Elbaum, Dabid Gable, and Gregg Rothermel. The impact of software evo-
lution on code coverage information. In Proc. Int’l Conf. on Software Maintenance
(ICSM), pages 170–179. IEEE CS, 2001.

[12] Michael Ellims, James Bridges, and Darrel C. Ince. The economics of unit testing.
Empirical Software Engineering, 11(1):5–31, 2006.

[13] Beat Fluri, Michael Würsch, Martin Pinzger, and Harald Gall. Change distilling: Tree
differencing for fine-grained source code change extraction. IEEE Trans. Software
Eng., 33(11):725–743, 2007.

[14] Beat Fluri, Michael Wrsch, Emanuel Giger, and Harald C Gall. Analyzing the co-
evolution of comments and source code, volume 17. 2009.

[15] Jeffrey S Foster, Iulian Neamtiu, and Michael Hicks. Understanding source code
evolution using abstract syntax tree matching. ACM SIGSOFT Software Engineering
Notes, 30(4):1–5, 2005.

[16] Harald Gall, Beat Fluri, and Martin Pinzger. Change analysis with evolizer and
changedistiller. IEEE Software, 26(1):26–33, 2009.

[17] Malcom Gethers, Bogdan Dit, Huzefa Kagdi, and Denys Poshyvanyk. Integrated im-
pact analysis for managing software changes. IEEE, 34(11):430–440, 2012.

[18] Michael W Godfrey and Qiang Tu. Evolution in open source software : A case study.
Software Maintenance, pages 131–142, 2000.

[19] Victor Hurdugaci and Andy Zaidman. Aiding software developers to maintain de-
veloper tests. In Proc. of the European Conference on Software Maintenance and
Reengineering (CSMR), pages 11–20. IEEE, 2012.

[20] H. Kagdi, J. Maletic, and B. Sharif. Mining software repositories for traceability links.
In Proceedings of the International Conference on Program Comprehension (ICPC),
pages 145–154, Washington, DC, USA, 2007. IEEE Computer Society.

[21] Huzefa Kagdi, Michael L Collard, and Jonathan I Maletic. A survey and taxonomy
of approaches for mining software repositories in the context of software evolution.
Software Maintenance and Evolution: Research and Practice, 19(2):77–131, 2007.

[22] Meir Lehman. On understanding laws, evolution and conservation in the large program
life cycle. Journal of Systems and Software, 1(3):213–221, 1980.

[23] Zeeger Lubsen, Andy Zaidman, and Martin Pinzger. Using association rules to study
the co-evolution of production & test code. In Int’l Working Conf. on Mining Software
Repositories (MSR), pages 151–154. IEEE, 2009.

[24] A Von Mayrhauser and A M Vans. Program comprehension during software mainte-
nance and evolution. Computer, 28(8):44–55, 1995.

60

[25] Tom Mens, Michel Wermelinger, Stéphane Ducasse, Serge Demeyer, Robert
Hirschfeld, and Mehdi Jazayeri. Challenges in software evolution. In Proc. Int’l
Workshop on Principles of Software Evolution (IWPSE), pages 13–22. IEEE, 2005.

[26] Gerard Meszaros. xUnit Test Patterns: Refactoring Test Code. Addison-Wesley, 2007.

[27] Gerard Meszaros. xUnit test patterns: Refactoring test code. Pearson Education,
2007.

[28] Leon Moonen, Arie van Deursen, Andy Zaidman, and Magiel Bruntink. The interplay
between software testing and software evolution. In Software Evolution, pages 173–
202. Springer, 2008.

[29] Nachiappan Nagappan, Laurie Williams, Jason Osborne, Mladen Vouk, and Pekka
Abrahamsson. Providing test quality feedback using static source code and automatic
test suite metrics. Software Reliability Engineering, pages 1–10, 2005.

[30] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi Kishida, and
Yunwen Ye. Evolution patterns of open-source software systems and communities.
Proceedings of the international workshop on Principles of software evolution. ACM,
pages 76–85, 2002.

[31] Dewayne E Perry, Adam A Porter, and Lawrence G Votta. Empirical studies of soft-
ware engineering : A roadmap. The future of Software engineering, pages 345–355,
2000.

[32] Leandro Sales Pinto and Alessandro Orso. Testevol : A tool for analyzing test-
suite evolution. International Conference on Software Engineering, pages 1303–1306,
2013.

[33] Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. Understanding myths and
realities of test-suite evolution. In Symposium on the Foundations of Software Engi-
neering (FSE), page 33. ACM, 2012.

[34] Romain Robbes and Michele Lanza. A change-based approach to software evolution.
Electronic Notes in Theoretical Computer Science, 166:93–109, January 2007.

[35] Daniele Romano and Martin Pinzger. Using source code metrics to predict change-
prone java interfaces. Software Maintenance (ICSM), pages 303–312, 2011.

[36] Daniele Romano, Paulius Raila, and Martin Pinzger. Analyzing the impact of antipat-
terns on change-proneness using fine-grained source code changes. Reverse Engineer-
ing (WCRE), pages 437–446, 2012.

[37] P. Runeson. A survey of unit testing practices. IEEE Software, 25(4):22–29, 2006.

[38] Raul Santelices, Pavan Kumar Chittimalli, Taweesup Apiwattanapong, Alessandro
Orso, and Mary Jean Harrold. Test-suite augmentation for evolving software. Pro-
ceedings ASE, pages 218–227, 2008.

61

BIBLIOGRAPHY

[39] Quinten David Soetens, Serge Demeyer, and Andy Zaidman. Change-based test selec-
tion in the presence of developer tests. In Proc. Conf. on Software Maintenance and
Reengineering (CSMR), pages 101–110. IEEE, 2013.

[40] Alexandru Telea and David Auber. Code flows: Visualizing structural evolution of
source code. Computer Graphics Forum, 27(3):831–838, 2008.

[41] Zoltan Toth, Gabor Novak, Rudolf Ferenc, and István Siket. Using version control
history to follow the changes of source code elements. In Proc. Conf. on Softw. Main-
tenance and Reengineering (CSMR), pages 319–322. IEEE, 2013.

[42] Bart Van Rompaey and Serge Demeyer. Establishing traceability links between unit
test cases and units under test. In Proc. Conf. on Software Maintenance and Reengi-
neering (CSMR), pages 209–218. IEEE, 2009.

[43] Lucian Voinea and Alex Telea. Cvsscan : Visualization of code evolution. ACM
symposium on Software visualization, pages 47–56, 2005.

[44] Frens Vonken and Andy Zaidman. Refactoring with unit testing: A match made in
heaven? In Proc. of the Working Conf. on Reverse Engineering (WCRE), pages 29–
38. IEEE Computer Society, 2012.

[45] Chadd C Williams and Jeffrey K Hollingsworth. Automatic mining of source code
repositories to improve bug finding techniques. IEEE Transactions, 31(6):466–480,
2005.

[46] Annie T T Ying, Gail C Murphy, Raymond Ng, and Mark C Chu-Carroll. Predicting
source code changes by mining change history. IEEE Transactions, 30(9):574–586,
2004.

[47] Andy Zaidman, Bart Van Rompaey, Arie van Deursen, and Serge Demeyer. Studying
the co-evolution of production and test code in open source and industrial developer
test processes through repository mining. Empirical Software Engineering, 16(3):325–
364, 2011.

[48] Thomas Zimmermann. When do changes induce fixes? ACM sigsoft software engi-
neering notes, 30(4):24–28, 2005.

[49] Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, and Andreas Zeller. Mining
version histories to guide software changes. IEEE Transactions, 31(6):429–445, 2005.

62

Appendix A

Association rules

In this appendix we explain the generated association rules in greater detail. For each of the
rules we discuss the correlation that can be inferred between the production change from
the antecedent of the rule and the test code change from the consequent. We also refer to the
support and confidence values obtained as they provide further insight into the co-evolution.
Furthermore, the implications of each association rule are analyzed as well.

Added class

a. CommonsLang
Association rule 1a1

ADDED CLASS PRODUCTION=YES→ ADDED CLASS TEST=YES , support: 412, confidence: 0.64375

This first association rule indicates that for CommonsLang, a project that has been catego-
rized as extensively tested, the creation of a new production class leads to the addition of a
corresponding test class in around 64% of the cases.
Association rule 1a2

ADDED CLASS PRODUCTION=YES→ CLASS DECLARATION TEST=NONE, support: 557, confidence: 0.87031

The second rule reveals that sometimes when a production class is created additional test
cases are developed in the already existing test classes in order to cover it. Even though the
value of CLASS DECLARATION TEST is NONE, the confidence of this rule indicates
that in roughly 13% of the cases a different value than NONE was registered; therefore, in
these situations at least one test case is created when the new production class is added.

b. CommonsMath
Association rule 1b1

ADDED CLASS PRODUCTION=YES→ ADDED CLASS TEST=SOMETHING

The fact that an association rule was not generated when the value of ADDED CLASS
PRODUCTION is YES suggests that in the case of CommonsMath entire test classes are

sometimes added when production classes are created. This observation is also supported
by the ratio between added classes in the production code and added test classes which is
roughly two to one.

63

A. ASSOCIATION RULES

Association rule 1b2

ADDED CLASS PRODUCTION=YES→ CLASS DECLARATION TEST=NONE , support: 2595, confidence: 0.84776

The second association rule indicates that the developers rarely create additional test cases
in the already existing test classes when a new production class is added. This supports
the fact that even though considerable testing effort has been put into CommonsMath, the
project cannot be classified as extensively tested.

c. PMD
Association rule 1c1

ADDED CLASS PRODUCTION=YES→ ADDED CLASS TEST=NO , support: 4161, confidence: 0.90654

Association rule 1c2

ADDED CLASS PRODUCTION=YES→ CLASS DECLARATION TEST=NONE , support: 4483, confidence: 0.97669

The two rules prove that in the case of PMD neither new test classes nor additional test
cases are created in order to cover the production class that is added. This is in concordance
with PMD’s classification as a poorly tested project.

d. Gson
Association rule 1d1

ADDED CLASS PRODUCTION=YES→ ADDED CLASS TEST=YES , support: 85, confidence: 0.77273

Association rule 1d2

ADDED CLASS PRODUCTION=YES→ CLASS DECLARATION TEST=NONE , support: 100, confidence: 0.90909

Similar to the case of CommonsLang, corresponding test classes are added when new pro-
duction classes are developed (rule 1d1). In some situations additional test cases are also
created in the already existing test classes in order to cover newly added production classes
(rule 1d2). These two rules support the initial observation that Gson is a relatively well-
tested project.

e. JFreeChart
Association rule 1e1

ADDED CLASS PRODUCTION=YES→ ADDED CLASS TEST=NO , support: 832, confidence: 0.80543

Association rule 1e2

ADDED CLASS PRODUCTION=YES→ CLASS DECLARATION TEST=NO , support: 855, confidence: 0.87996

The situations is the same as for PMD, just that the number of test classes / cases that are
added when additional classes are created in the production code is a bit higher than in the
PMD case, as observed from the confidence values that were obtained.

Removed class

a. CommonsLang
Association rule 2a1

REMOVED CLASS PRODUCTION=YES→ REMOVED CLASS TEST=YES , support: 568, confidence: 0.99824

This rule clearly suggests that the removal of a production class triggers the deletion of its
associated test class (if such a test class exists). Situations in which this does not happen
are rare, fact proven by the retrieved confidence value.

64

Association rule 2a2

REMOVED CLASS PRODUCTION=YES→CLASS DECLARATION TEST=NONE , support: 517, confidence: 0.90861

The association rule indicates that in some cases a number of methods from one or more
test classes are removed when a production class is deleted. This shows that sometimes the
developers are doing integration testing instead of unit testing.

b. CommonsMath
Association rule 2b1

REMOVED CLASS PRODUCTION=YES→ REMOVED CLASS TEST=YES , support: 1554, confidence: 0.97429

When production classes are deleted the situation is similar to the CommonsLang case, the
corresponding test classes are generally removed as well.
Association rule 2b2

REMOVED CLASS PRODUCTION=YES→CLASS DECLARATION TEST=NONE , support: 1333, confidence: 0.83574

There are also situations in which test cases that cover the discarded production class are
deleted. This proves that a series of integration tests are part of the test code and they are
removed once the production classes they address are dropped.

c. PMD
Association rule 2c1

REMOVED CLASS PRODUCTION=YES→ REMOVED CLASS TEST=YES , support: 4926, confidence: 0.99838

Like for the previous two projects, a test class is removed when the production class it cov-
ers is deleted. The confidence value of 0.99838 shows that cases in which this observation
does not hold almost never appear.
Association rule 2c2

REMOVED CLASS PRODUCTION=YES→CLASS DECLARATION TEST=NONE , support: 4813, confidence: 0.97548

However, situations in which test cases are discarded when a production class is deleted oc-
cur less frequently than for CommonsLang and CommonsMath. This is unsurprising con-
sidering the fact that less testing effort has been spent on this system compared to the first
two projects.

d. Gson
Association rule 2d1

REMOVED CLASS PRODUCTION=YES→ REMOVED CLASS TEST=YES , support: 89, confidence: 0.93684

As for the 3 systems discussed above, the deletion of a production class is correlated with
the removal of its associated test class. Even though more cases in which this does not
happen have been identified, the observation still holds most of the times (confidence of
0.93684).
Association rule 2d2

REMOVED CLASS PRODUCTION=YES→ CLASS DECLARATION TEST=NONE , support: 83, confidence: 0.87368

There are also some situations in which test case deletions are triggered by the removal of a
production class. This demonstrates that there are a number of classes that contain integra-
tion tests within the system which are updated accordingly.

e. JFreeChart
Association rule 2e1

REMOVED CLASS PRODUCTION=YES→ REMOVED CLASS TEST=YES , support: 1331, confidence: 0.95419

65

A. ASSOCIATION RULES

Similar to all the other projects included in the study, if a removed production class has an
associated test class, then this class is discarded as well. This happens in a vast majority of
cases; a value of 0.95419 was obtained as confidence for this rule.
Association rule 2e2

REMOVED CLASS PRODUCTION=YES→CLASS DECLARATION TEST=NONE , support: 802, confidence: 0.93274

Few test cases from the other test classes are deleted when a production class is removed.
This is probably because no test cases addressing the respective production class exist in
these test classes in the first place.

Class declaration changes

a. CommonsLang
Association rules 3a1-3a4

CLASS DECLARATION PRODUCTION=LOW→ CLASS DECLARATION TEST=NONE , support: 244, confidence:

0.95312

CLASS DECLARATION PRODUCTION=MED-LOW → CLASS DECLARATION TEST=LOW , support: 132, confi-

dence: 0.8

CLASS DECLARATION PRODUCTION=MED-HIGH→ CLASS DECLARATION TEST=SOMETHING

CLASS DECLARATION PRODUCTION=HIGH → CLASS DECLARATION TEST=HIGH , support: 85, confidence:

0.65891

The association rules indicate that to some extent there is a correlation between the number
of class-level changes in the production code and similar types of changes in the corre-
sponding test classes. When the amount of CLASS DECLARATION changes is LOW in
the production classes, the same types of changes are generally not encountered in the test
code (rule 3a1). However, when the number of CLASS DECLARATION PRODUCTION
changes grows (MED-LOW to HIGH), CLASS DECLARATION changes are also ob-
served in the test classes. One of the most probable scenarios would be that the developers
add / remove methods from a production class while also adding / removing a number of
test cases that cover them. An interesting aspect can be observed for the third rule (3a3) for
which the exact amount of CLASS DECLARATION changes from the test code was not
determined. It suggests that when a MED-HIGH number of changes are performed in the
production code, a series of similar types of changes are done in the test classes. However,
the exact number of test changes could not be established; this situation is caused by the
fact that the values for CLASS DECLARATION changes in the tests vary from LOW to
HIGH when a MED-HIGH amount of changes of the same type are made in the production
code, thereby the corresponding association rule was not generated.
Association rules 3a5-3a8

CLASS DECLARATION PRODUCTION=LOW → BODY STATEMENTS TEST=NONE , support: 185, confidence:

0.72266

CLASS DECLARATION PRODUCTION=MED-LOW→ BODY STATEMENTS TEST=SOMETHING

CLASS DECLARATION PRODUCTION=MED-HIGH→ BODY STATEMENTS TEST=SOMETHING

CLASS DECLARATION PRODUCTION=HIGH→ BODY STATEMENTS TEST=SOMETHING

66

These 4 association rules show that when the number of CLASS DECLARATION changes
is larger (MED-LOW to HIGH) in the production classes, BODY STATEMENTS changes
are performed in the test code. This corresponds to situations in which production meth-
ods are added / removed and the test cases are updated accordingly. Similar as for one of
the previous rules from this category (3a3), the exact number of BODY STATEMENTS
changes that occurred could not be pinpointed.

b. CommonsMath
Association rules 3b1-3b4

CLASS DECLARATION PRODUCTION=LOW→ CLASS DECLARATION TEST=NONE , support: 1129, confidence:

0.98174

CLASS DECLARATION PRODUCTION=MED-LOW→ CLASS DECLARATION TEST=SOMETHING

CLASS DECLARATION PRODUCTION=MED-HIGH→ CLASS DECLARATION TEST=SOMETHING

CLASS DECLARATION PRODUCTION=HIGH→ CLASS DECLARATION TEST=SOMETHING

The 4 association rules are similar to the ones generated for CommonsLang. They suggest
that there is indeed a link between CLASS DECLARATION changes in the production
code and the same types of changes in the test classes. However, these rules are not as pre-
cise as the ones for CommonsLang; the exact amount of CLASS DECLARATION changes
in the test code was not determined.
Association rules 3a5-3a8

CLASS DECLARATION PRODUCTION=LOW → BODY STATEMENTS TEST=NONE , support: 930, confidence:

0.8087

CLASS DECLARATION PRODUCTION=MED-LOW → BODY STATEMENTS TEST=NONE, support: 510, confi-

dence: 0.74671

CLASS DECLARATION PRODUCTION=MED-HIGH → BODY STATEMENTS TEST=NONE, support: 159, confi-

dence: 0.6824

CLASS DECLARATION PRODUCTION=HIGH→ BODY STATEMENTS TEST=SOMETHING

The above rules indicate that a large number (HIGH) of CLASS DECLARATION changes
in the production classes cause BODY STATEMENTS changes in the tests. For the Com-
monsLang case this occurred even when the amount of CLASS DECLARATION produc-
tion changes was smaller (MED-LOW and MED-HIGH). This is a clear indication that less
effort has been put into testing CommonsMath in comparison to CommonsLang, a fact that
is also supported by the observations made in Chapter 3 of this document.

c. PMD
Association rules 3c1-3c3

CLASS DECLARATION PRODUCTION=LOW→ CLASS DECLARATION TEST=NONE , support: 1767, confidence:

0.99887

CLASS DECLARATION PRODUCTION=MED-HIGH→ CLASS DECLARATION TEST=NONE , support: 855, con-

fidence: 0.80813

CLASS DECLARATION PRODUCTION=HIGH→ CLASS DECLARATION TEST=NONE , support: 503, confidence:

0.79715

Association rules 3c4-3c6

CLASS DECLARATION PRODUCTION=LOW → BODY STATEMENTS TEST=NONE , support: 1588, confidence:

0.89768

67

A. ASSOCIATION RULES

CLASS DECLARATION PRODUCTION=MED-HIGH → BODY STATEMENTS TEST=NONE , support: 924, confi-

dence: 0.87335

CLASS DECLARATION PRODUCTION=HIGH → BODY STATEMENTS TEST=NONE , support: 532, confidence:

0.84311

The 6 association rules show that for PMD a CLASS DECLARATION change in the pro-
duction classes does not trigger any changes in the test code, unlike the cases of Common-
sLang or CommonsMath. PMD has already been classified as a poorly tested project, the
association rules just confirm the fact that no changes occur in the tests due to CLASS
DECLARATION changes in the production code.

d. Gson
Association rules 3d1-3d3

CLASS DECLARATION PRODUCTION=LOW→ CLASS DECLARATION TEST=NONE , support: 159, confidence:

0.97546

CLASS DECLARATION PRODUCTION=MED-HIGH → CLASS DECLARATION TEST=LOW , support: 43, confi-

dence: 0.65152

CLASS DECLARATION PRODUCTION=HIGH→ CLASS DECLARATION TEST=SOMETHING

The 3 rules suggest a correlation between CLASS DECLARATION changes in the produc-
tion classes and CLASS DECLARATION changes in tests when the number of production
changes is high (MED-HIGH and HIGH). For the MED-HIGH values it was established
that the amount of test changes is LOW, while for the HIGH values the exact number of
test class changes was not pinpointed. Therefore, similar to CommonsLangs and Common-
sMath, test cases are created / deleted when production methods are added / removed.
Association rules 3d4-3d6

CLASS DECLARATION PRODUCTION=LOW → BODY STATEMENTS TEST=NONE , support: 138, confidence:

0.84663

CLASS DECLARATION PRODUCTION=MED-HIGH → BODY STATEMENTS TEST=NONE , support: 51, confi-

dence: 0.77273

CLASS DECLARATION PRODUCTION=HIGH → BODY STATEMENTS TEST=NONE , support: 27, confidence:

0.72973

The association rules indicate that, unlike the cases of CommonsLangs and Commons-
Math, for Gson CLASS DECLARATION changes in the production code do not determine
BODY STATEMENTS changes in the test classes. Considering that BODY STATEMENTS
changes in tests can be triggered by different types of changes (e.g., BODY STATEMENTS,
ATTRIBUTE DECLARATION or METHOD DECLARATION) in the production classes
and that the number of BODY STATEMENTS TEST changes for Gson is relatively small,
it would appear that these types of test code changes are not performed when appropriate in
Gson’s case.

e. JFreeChart
Association rules 3e1-3e3

CLASS DECLARATION PRODUCTION=LOW→ CLASS DECLARATION TEST=NONE , support: 360, confidence:

0.95443

CLASS DECLARATION PRODUCTION=MED-HIGH→ CLASS DECLARATION TEST=NONE , support: 174, con-

fidence: 0.75407

68

CLASS DECLARATION PRODUCTION=HIGH→ CLASS DECLARATION TEST=NONE , support: 102, confidence:

0.74358

The generated association rules show that, similar to the PMD case, no changes occur in
the test code when CLASS DECLARATION changes are made in the production classes.
However, considering the values for confidence, it seems that situations in which the test
code is modified appear more frequently than for PMD.

Method declaration changes

a. CommonsLang
Association rules 4a1-4a4

METHOD DECLARATION PRODUCTION=LOW→ BODY STATEMENTS TEST=SOMETHING

METHOD DECLARATION PRODUCTION=MED-LOW→ BODY STATEMENTS TEST=SOMETHIG

METHOD DECLARATION PRODUCTION=MED-HIGH→ BODY STATEMENTS TEST=SOMETHING

METHOD DECLARATION PRODUCTION=HIGH→ BODY STATEMENTS TEST=MED-HIGH , support: 37, confi-

dence: 0.61667

The 4 association rules suggest that when a method is modified in the production code (e.g.,,
by adding a parameter or by changing the type of its return value), the test cases that cover
the respective method are updated as well. With the exception of the fourth association
rule (4a4), the exact amount of BODY STATEMENTS changes was not determined; for
4a4 however, it was established that when a HIGH number of METHOD DECLARATION
changes take place in the production classes, a MED-HIGH number of BODY STATEMENTS
changes are made in the test code.

b. CommonsMath
Association rules 4b1-4b3

METHOD DECLARATION PRODUCTION=LOW→ BODY STATEMENTS TEST=NONE , support: 331, confidence:

0.6141

METHOD DECLARATION PRODUCTION=MED-HIGH→ BODY STATEMENTS TEST=SOMETHING

METHOD DECLARATION PRODUCTION=HIGH→ BODY STATEMENTS TEST=SOMETHING

The association rules are similar to those which were generated for CommonsLang. How-
ever, a correlation between BODY STATEMENTS changes in the tests and METHOD
DECLARATION changes in the production code was identified only when the number of

production changes is high (MED-HIGH and HIGH).

c. PMD
Association rules 4c1-4c3

METHOD DECLARATION PRODUCTION=LOW→ BODY STATEMENTS TEST=NONE , support: 634, confidence:

0.7254

METHOD DECLARATION PRODUCTION=MED-HIGH→ BODY STATEMENTS TEST=NONE , support: 309, con-

fidence: 0.88793

METHOD DECLARATION PRODUCTION=HIGH→ BODY STATEMENTS TEST=NONE , support: 234, confidence:

0.82394

Similar to the other types of production changes, a METHOD DECLARATION change in

69

A. ASSOCIATION RULES

one of PMD’s production classes rarely determines any kinds of changes in the test code. In
some situations it triggers BODY STATEMENTS changes in the test cases; however, these
situations occur sporadically, fact proven by the association rules that were generated in
which the value for BODY STATEMENTS changes is NONE and the confidence is quite
high.

d. Gson
Association rules 4d1-4d3

METHOD DECLARATION PRODUCTION=LOW → BODY STATEMENTS TEST=NONE , support: 60, confidence:

0.83333

METHOD DECLARATION PRODUCTION=MED-HIGH→ BODY STATEMENTS TEST=SOMETHING

METHOD DECLARATION PRODUCTION=HIGH→ BODY STATEMENTS TEST=SOMETHING

As in the case of CommonsMath, a large amount (MED-HIGH and HIGH) of METHOD
DECLARATION changes in the production classes cause BODY STATEMENTS changes

in the tests. However, when only a few (LOW) of this type of changes occur in the produc-
tion code, the test classes are generally not updated to reflect them (4d1).

e. JFreeChart
Association rules 4e1-4e3

METHOD DECLARATION PRODUCTION=LOW→ BODY STATEMENTS TEST=NONE , support: 134, confidence:

0.8143

METHOD DECLARATION PRODUCTION=MED-HIGH→ BODY STATEMENTS TEST=NONE , support: 65, confi-

dence: 0.89391

METHOD DECLARATION PRODUCTION=HIGH→ BODY STATEMENTS TEST=NONE , support: 49, confidence:

0.87191

The situation is the same as for PMD in terms of values obtained both for the consequent
(NONE) and for the confidence of the rules.

Attribute declaration changes

a. CommonsLang
Association rules 5a1-5a3

ATTRIBUTE DECLARATION PRODUCTION=LOW→ BODY STATEMENTS TEST=SOMETHING

ATTRIBUTE DECLARATION PRODUCTION=MED-HIGH→ BODY STATEMENTS TEST=SOMETHING

ATTRIBUTE DECLARATION PRODUCTION=HIGH→ BODY STATEMENTS TEST=SOMETHING

Association rules 5a4-5a6

ATTRIBUTE DECLARATION PRODUCTION=LOW→ CLASS DECLARATION TEST=NONE , support: 558, confi-

dence: 0.7228

ATTRIBUTE DECLARATION PRODUCTION=MED-HIGH→ CLASS DECLARATION TEST=SOMETHING

ATTRIBUTE DECLARATION PRODUCTION=HIGH→ CLASS DECLARATION TEST=SOMETHING

Like in the case of METHOD DECLARATION changes for CommonsLang, ATTRIBUTE
DECLARATION changes in the production classes trigger BODY STATEMENTS and

CLASS DECLARATION changes in the tests. The exact number of test code changes was
not established; nevertheless, the association rules suggest that when field-related changes

70

are made in the production code, the existing test cases are updated accordingly and even
new test methods are added. This is in concordance with the initial observation that Com-
monsLang is an extensively tested system.

b. CommonsMath
Association rules 5b1-5b3

ATTRIBUTE DECLARATION PRODUCTION=LOW → BODY STATEMENTS TEST=NONE , support: 558, confi-

dence: 0.7228

ATTRIBUTE DECLARATION PRODUCTION=MED-HIGH→ BODY STATEMENTS TEST=SOMETHING

ATTRIBUTE DECLARATION PRODUCTION=HIGH→ BODY STATEMENTS TEST=SOMETHING

The 3 association rules are similar to the ones generated for METHOD DECLARATION
changes in the case of CommonsMath. They suggest that when attributes are added / re-
moved / modified in production classes the test cases that cover them are generally updated.
The precise number of BODY STATEMENTS changes was again not determined. This is
caused by the fact that each ATTRIBUTE DECLARATION change can trigger multiple
BODY STATEMENTS changes in the test code; therefore, the number of test changes can
vary significantly (from LOW to HIGH) for each production change. Because of this, the
threshold value for confidence was not met.

c. PMD
Association rules 5c1-5c3

ATTRIBUTE DECLARATION PRODUCTION=LOW → BODY STATEMENTS TEST=NONE , support: 1244, confi-

dence: 0.7374

ATTRIBUTE DECLARATION PRODUCTION=MED-HIGH→BODY STATEMENTS TEST=NONE , support: 528, con-

fidence: 0.90722

ATTRIBUTE DECLARATION PRODUCTION=HIGH → BODY STATEMENTS TEST=NONE , support: 628, confi-

dence: 0.834

Similar to METHOD DECLARATION changes, for PMD an ATTRIBUTE DECLARATION
change in the production code usually does not cause any kinds of changes in the test
classes.

d. Gson
Association rules 5d1-5d3

ATTRIBUTE DECLARATION PRODUCTION=LOW→BODY STATEMENTS TEST=NONE , support: 82, confidence:

0.82828

ATTRIBUTE DECLARATION PRODUCTION=MED-HIGH→ BODY STATEMENTS TEST=SOMETHING

ATTRIBUTE DECLARATION PRODUCTION=HIGH→ BODY STATEMENTS TEST=SOMETHING

Just as in the case of METHOD DECLARATION changes, there is a correlation between
ATTRIBUTE DECLARATION changes in the production classes and BODY STATEMENTS
changes in the tests when the values for the first are high (MED-HIGH and HIGH). This
confirms the fact that when the attributes and the methods of a production class are altered,
the associated test cases are also updated.

e. JFreeChart
Association rules 5e1-5e3

ATTRIBUTE DECLARATION PRODUCTION=LOW → BODY STATEMENTS TEST=NONE , support: 148, confi-

71

A. ASSOCIATION RULES

dence: 0.8337

ATTRIBUTE DECLARATION PRODUCTION=MED-HIGH→BODY STATEMENTS TEST=NONE , support: 62, con-

fidence: 0.85361

ATTRIBUTE DECLARATION PRODUCTION=HIGH → BODY STATEMENTS TEST=NONE , support: 74, confi-

dence: 0.822

The situation is the same as for PMD, little updating is done in the test cases when AT-
TRIBUTE DECLARATION changes are made in the production code.

Body statement changes

a. CommonsLang
Association rules 6a1-6a4

BODY STATEMENTS PRODUCTION=LOW→ BODY STATEMENTS TEST=SOMETHING

BODY STATEMENTS PRODUCTION=MED-LOW→ BODY STATEMENTS TEST=SOMETHIG

BODY STATEMENTS PRODUCTION=MED-HIGH→ BODY STATEMENTS TEST=SOMETHING

BODY STATEMENTS PRODUCTION=HIGH→BODY STATEMENTS TEST=HIGH , support: 177, confidence: 0.61458

The 4 association rules indicate that BODY STATEMENTS changes in the production code
trigger similar types of changes in the tests. This might correspond to a scenario in which a
large number of changes (including BODY STATEMENTS, but METHOD DECLARATION
and ATTRIBUTE DECLARATION as well) are made in the production classes and there-
fore the test cases are updated accordingly. The precise amount of BODY STATEMENTS
changes that occurred in the test code was only established for the fourth rule (6a4) which
states that a HIGH number of BODY STATEMENTS changes in the production classes de-
termine numerous BODY STATEMENTS changes in the tests.

b. CommonsMath
Association rules 6b1-6b4

BODY STATEMENTS PRODUCTION=LOW→BODY STATEMENTS TEST=NONE , support: 1449, confidence: 0.82096

BODY STATEMENTS PRODUCTION=MED-LOW→ BODY STATEMENTS TEST=SOMETHIG

BODY STATEMENTS PRODUCTION=MED-HIGH→ BODY STATEMENTS TEST=SOMETHING

BODY STATEMENTS PRODUCTION=HIGH→ BODY STATEMENTS TEST=SOMETHING

Like in the case of CommonsLang, the rules show that BODY STATEMENTS changes in
the production classes trigger BODY STATEMENTS changes in the test code. The only
exception is when a small amount (LOW) of changes occur in the production code; then,
no changes are observed in the test classes. However, considering the different types of
production changes (e.g., METHOD DECLARATION or ATTRIBUTE DECLARATION)
that cause BODY STATEMENTS changes in the tests, these rules might not be as straight-
forward as they appear.

c. PMD
Association rules 6c1-6c4

BODY STATEMENTS PRODUCTION=LOW→BODY STATEMENTS TEST=NONE , support: 2050, confidence: 0.81804

BODY STATEMENTS PRODUCTION=MED-LOW → BODY STATEMENTS TEST=NONE , support: 2031, confi-

dence: 0.95532

72

BODY STATEMENTS PRODUCTION=MED-HIGH → BODY STATEMENTS TEST=NONE , support: 1344, confi-

dence: 0.86822

BODY STATEMENTS PRODUCTION=HIGH → BODY STATEMENTS TEST=NONE , support: 1649, confidence:

0.81755

No changes occur in the test code when changes from the BODY STATEMENTS category
are made in the production classes. The most significant correlation for this kind of produc-
tion change is with BODY STATEMENTS changes in the tests; however, these situations
occur rarely, thereby the generated association rules have NONE as the value for the conse-
quent.

d. Gson
Association rules 6d1-6d4

BODY STATEMENTS PRODUCTION=LOW→BODY STATEMENTS TEST=NONE , support: 140, confidence: 0.95238

BODY STATEMENTS PRODUCTION=MED-LOW→ BODY STATEMENTS TEST=NONE , support: 140, confidence:

0.7234

BODY STATEMENTS PRODUCTION=MED-HIGH→ BODY STATEMENTS TEST=SOMETHING

BODY STATEMENTS PRODUCTION=HIGH→ BODY STATEMENTS TEST=SOMETHING

These rules indicate that BODY STATEMENTS changes are triggered in the test code only
when a high (MED-HIGH and HIGH) number of BODY STATEMENTS changes are made
in the production classes. Considering that the ratio between the two is 1 to 5 for Gson and
that BODY STATEMENTS changes can occur in the tests due to multiple reasons, the gen-
erated association rules were to be expected.

e. JFreeChart
Association rules 6e1-6e4

BODY STATEMENTS PRODUCTION=LOW→BODY STATEMENTS TEST=NONE , support: 592, confidence: 0.93123

BODY STATEMENTS PRODUCTION=MED-LOW→ BODY STATEMENTS TEST=NONE , support: 306, confidence:

0.90124

BODY STATEMENTS PRODUCTION=MED-HIGH→BODY STATEMENTS TEST=NONE , support: 187, confidence:

0.7198

BODY STATEMENTS PRODUCTION=HIGH→ BODY STATEMENTS TEST=SOMETHING

Surprisingly, BODY STATEMENTS changes in the production code determine BODY
STATEMENTS changes in the test classes (6e4), similar as for the projects that are tested

more thoroughly (i.e CommonsLang, CommonsMath and Gson). This situation resembles
the Gson case, where a large (MED-HIGH and HIGH) number of BODY STATEMENTS
changes in the production classes trigger the same type of changes in the tests.

Body condition changes

a. CommonsLang
Association rules 7a1-7a4

BODY CONDITIONS PRODUCTION=LOW → CLASS DECLARATION TEST=NONE , support: 126, confidence:

0.67021

BODY CONDITIONS PRODUCTION=MED-LOW→ CLASS DECLARATION TEST=SOMETHIG

73

A. ASSOCIATION RULES

BODY CONDITIONS PRODUCTION=MED-HIGH→ CLASS DECLARATION TEST=SOMETHING

BODY CONDITIONS PRODUCTION=HIGH→ CLASS DECLARATION TEST=SOMETHING

The 4 association rules show that when a certain amount (MED-LOW to HIGH) of BODY
CONDITIONS changes occur in the production code CLASS DECLARATION changes

are performed in the test classes. A logical explanation would be that test cases are added
/ deleted when a condition in a production method becomes more / less complex. This ob-
servation is also supported by the fact that CommonsLang has a very high value for branch
coverage, as shown in Chapter 3 of this document.
Association rules 7a5-7a8

BODY CONDITIONS PRODUCTION=LOW→ BODY STATEMENTS TEST=SOMETHING

BODY CONDITIONS PRODUCTION=MED-LOW→ BODY STATEMENTS TEST=SOMETHIG

BODY CONDITIONS PRODUCTION=MED-HIGH→ BODY STATEMENTS TEST=SOMETHING

BODY CONDITIONS PRODUCTION=HIGH→ BODY STATEMENTS TEST=SOMETHING

The rules suggest that in this case BODY STATEMENTS changes are also made in the
test code. In general, when a condition is changed in a production method, a series of
BODY STATEMENTS changes are made as well. Upon further investigation, it was ob-
served that most of the lines from the dataset that contain BODY CONDITIONS production
changes also have BODY STATEMENTS changes for the respective production classes.
This is the reason why we obtained rules that have BODY STATEMENTS TEST as the
consequent (7a5 - 7a8).

b. CommonsMath
Association rules 7b1-7b3

BODY CONDITIONS PRODUCTION=LOW→ CLASS DECLARATION TEST=SOMETHING

BODY CONDITIONS PRODUCTION=MED-HIGH→ CLASS DECLARATION TEST=SOMETHING

BODY CONDITIONS PRODUCTION=HIGH→ CLASS DECLARATION TEST=SOMETHING

The fact that association rules with BODY CONDITIONS PRODUCTION on the left side
and CLASS DECLARATION TEST on the right were not generated indicates that there
is a somewhat weak correlation between the two. This occurs because of the different val-
ues that CLASS DECLARATION TEST takes (NONE, LOW, MED-LOW, MED-HIGH or
HIGH) for each value of BODY CONDITIONS PRODUCTION, which causes the confi-
dence of the rules to be below the threshold value. This correlation suggests that test cases
are added / removed when conditions are modified in the production code, a fact which is
supported by the high values that were obtained for branch coverage in the case of Com-
monsMath.

c. PMD
Association rules 7c1-7c3

BODY CONDITIONS PRODUCTION=LOW → CLASS DECLARATION TEST=NONE , support: 1044, confidence:

0.97661

BODY CONDITIONS PRODUCTION=MED-HIGH → CLASS DECLARATION TEST=NONE , support: 357, confi-

dence: 0.952

BODY CONDITIONS PRODUCTION=HIGH → CLASS DECLARATION TEST=NONE , support: 430, confidence:

0.92672

As in most cases for PMD, a BODY CONDITIONS change in the production code does

74

not determine any types of changes in the test classes. The closest connection inferred was
with changes from the CLASS DECLARATION category for the tests, implying that when
a condition is changed in a production class at least one test is added / removed. However,
there was not enough evidence to support this, therefore the generated association rules have
CLASS DECLARATION TEST=NONE as the consequent.

d. Gson
Association rules 7d1-7d3

BODY CONDITIONS PRODUCTION=LOW→ CLASS DECLARATION TEST=NONE , support: 72, confidence: 0.9

BODY CONDITIONS PRODUCTION=MED-HIGH → CLASS DECLARATION TEST=NONE , support: 37, confi-

dence: 0.82222

BODY CONDITIONS PRODUCTION=HIGH→ CLASS DECLARATION TEST=SOMETHING

These rules indicate that only when a large amount (HIGH) of BODY CONDITIONS
changes occur in the production code CLASS DECLARATION changes are made in the
test classes. This is reflected in the relatively low values that were obtained for branch cov-
erage for Gson’s revisions.

e. JFreeChart
Association rules 7d1-7d3

BODY CONDITIONS PRODUCTION=LOW → CLASS DECLARATION TEST=NONE , support: 141, confidence:

0.853

BODY CONDITIONS PRODUCTION=MED-HIGH → CLASS DECLARATION TEST=NONE , support: 214, confi-

dence: 0.76324

BODY CONDITIONS PRODUCTION=HIGH→ CLASS DECLARATION TEST=SOMETHING

Similar to the Gson case, BODY CONDITIONS changes in the production classes deter-
mine CLASS DECLARATION changes in the test code, but only when the number of
BODY CONDITIONS changes is high (HIGH). This fact is also supported by the values
that were recorded for branch coverage for JFreeChart, which are low compared to the ones
gathered for some of the other analyzed systems, such as CommonsLang or CommonsMath.

75

Studying Fine-Grained Co-Evolution Patterns
of Production and Test Code

Cosmin Marsavina
Delft University of Technology

The Netherlands
c.marsavina@student.tudelft.nl

Daniele Romano
Delft University of Technology

The Netherlands
daniele.romano@tudelft.nl

Andy Zaidman
Delft University of Technology

The Netherlands
a.e.zaidman@tudelft.nl

Abstract—Numerous software development practices suggest
updating the test code whenever the production code is changed.
However, previous studies have shown that co-evolving test and
production code is generally a difficult task that needs to be
thoroughly investigated.

In this paper we perform a study that, following a mixed
methods approach, investigates fine-grained co-evolution patterns
of production and test code. First, we mine fine-grained changes
from the evolution of 5 open-source systems. Then, we use an
association rule mining algorithm to generate the co-evolution
patterns. Finally, we interpret the obtained patterns by perform-
ing a qualitative analysis.

The results show 6 co-evolution patterns and provide insights
into their appearance along the history of the analyzed software
systems. Besides providing a better understanding of how test
code evolves, these findings also help identify gaps in the test
code thereby assisting both researchers and developers.

I. INTRODUCTION

Lehman has taught us that a software system must evolve, or
it becomes progressively less useful [1]. During this evolution,
the system’s source code continuously changes to cope with
new requirements or possible issues that might arise. However,
software is multi-dimensional, because in order to develop
high-quality systems other artifacts need to be taken into
account, such as requirements, tests and documentation [2].
Therefore, these artifacts should co-evolve gracefully along-
side the production code that is being written.

One of the artifacts that is of particular importance in the
software development process is the developer test, which was
defined by [3] as “a codified unit or integration test written
by developers”. Its importance resides in the fact that it can
provide immediate feedback to the developers [4] and identify
bugs. Moreover, when a software system evolves (e.g., through
refactoring), developers should run the persistent tests to verify
whether the external behavior is preserved [5]. In this context,
Moonen et al. have shown that even though refactorings are
behavior preserving, they can invalidate tests [6]. In the same
vein, Elbaum et al. have concluded that even minor changes in
the production code can significantly affect test coverage [7].

Based on these findings, there clearly is a need for tests
to evolve alongside the production code they are covering in
order to obtain high-quality systems. However, creating and
maintaining tests are expensive tasks. Zaidman et al. have
shown that developing test code that co-evolves gracefully

with the production classes it addresses is generally a difficult
endeavour [8].

In this paper we try to identify fine-grained co-evolution
patterns between production and test code. These patterns
consist of changes that occur in the test code when changes
are made to the production code. It is also likely that some
co-evolution patterns appear more frequently in particular
software systems. Hence, besides identifying these patterns,
we aim at correlating them with the testing effort spent for
each of the analyzed systems. This leads us to our research
questions:

RQ1 What kind of fine-grained co-evolution patterns between
production and test code can be identified?

RQ2 Does the testing effort have an impact on the observed
co-evolution patterns?

We answer the research questions by following a mixed
methods approach [9] that combines quantitative and qual-
itative analyses. First, we use an association rule mining
algorithm to identify co-evolution patterns. Then, we refine
these quantitative results through a qualitative analysis aimed
at manually interpreting the patterns that have been obtained.
The results show: 1) 6 co-evolution patterns mined for 5 case
study systems, 2) how they occur, and 3) whether the testing
effort has an impact on them.

From a research perspective, getting insight into these co-
evolution patterns is particularly useful to check whether
specific changes in the production code should also have
consequences in the test code of a software system. This might
lead to better tool support, thereby assisting developers in
designing higher quality test code.

The main contributions of this paper are as follows:
1) a method to collect and relate fine-grained source code

changes that co-occur in the production and the test code
of a software system;

2) an empirical study to investigate the co-evolution between
production and test code for 5 open-source systems; the
study comprises a quantitative analysis during which a
number of co-evolution patterns have been uncovered
and a more in-depth qualitative analysis with anecdotal
evidence on each of the patterns.

The remainder of the paper is structured as follows. Sec-
tion II presents the approach adopted to collect the data for our

analyses, while Section III illustrates the experimental setup.
Results are described in Sections IV and V that present respec-
tively the quantitative and qualitative analyses. In Section VI
we revisit the research questions and discuss threats to validity.
Related work is presented in Section VII and we conclude the
paper and mention future work in Section VIII.

II. APPROACH

As discussed in the previous section, there is a need within
the scientific community to examine and understand the co-
evolution between the production and the test code of a
software project. The main goal of this study is to identify
a series of patterns consisting of changes that occur in the test
code when the production code evolves. We expect these co-
evolution patterns to vary from one project to another, because
of the different working styles of the development teams or
due to different priorities with regards to testing activities.
Therefore, while performing our analyses, we also assess
the testing effort put into each of the projects under study.
Furthermore, besides uncovering the patterns, we also inspect
the source code to find and understand concrete examples that
help in interpreting the obtained co-evolution patterns.

In the following subsections we describe: (1) the approach
adopted to extract the fine-grained changes and to link pro-
duction and test code; (2) its implementation.

A. Change Extraction

In order to collect relevant data for studying the co-evolution
of production and test code, we first obtain all the versions of
a project. We mine Git as this facilitates the access to the
repositories of a large variety of software projects. Moreover,
it provides functionalities to compute high-level differences
(e.g., addition and deletion of classes) between one version of
a project and another.

However, these differences are not detailed enough to
allow for an in-depth analysis of the co-evolution between
production and test code. For this reason we extract fine-
grained source code changes between different versions using
ChangeDistiller [10]. Table I details the change categories
along with the specific changes that ChangeDistiller can detect
which are related to the source code.

We have extracted these source code changes both from
the production and from the test code. In order to make
the dataset as comprehensive as possible, we have included
additional information such as: the class in which the change
occurred, the version when the change was made along with its
timestamp, and the exact source code entity that was modified.

B. Linking production and test code

Once we have the fine-grained changes, we link the test
cases to the production code they cover. We prefer a dynamic
solution over a static analysis approach because it is more
precise as pointed out by Van Rompaey and Demeyer [11].
The key idea behind our approach is to run each test case
separately, thereby identifying all the entities from the produc-
tion code addressed by the test, similarly to the approach used

Change category Change

ADDED CLASS ADDITIONAL CLASS
REMOVED CLASS REMOVED CLASS
CLASS DECLARATION CLASS RENAMING,

PARENT CLASS CHANGE,
PARENT CLASS DELETE,
PARENT CLASS INSERT,
PARENT INTERFACE CHANGE,
PARENT INTERFACE DELETE,
PARENT INTERFACE INSERT,
REMOVED FUNCTIONALITY,
ADDITIONAL FUNCTIONALITY

METHOD DECLARATION RETURN TYPE CHANGE,
RETURN TYPE DELETE,
RETURN TYPE INSERT,
METHOD RENAMING,
PARAMETER DELETE,
PARAMETER INSERT,
PARAMETER ORDERING CHANGE,
PARAMETER RENAMING,
PARAMETER TYPE CHANGE

ATTRIBUTE DECLARATION ATTRIBUTE RENAMING,
ATTRIBUTE TYPE CHANGE,
ADDING ATTRIBUTE MODIFIABILITY,
REMOVING ATTRIBUTE MODIFIABILITY,
ADDITIONAL OBJECT STATE,
REMOVED OBJECT STATE

BODY STATEMENTS STATEMENT DELETE,
STATEMENT INSERT,
STATEMENT ORDERING CHANGE,
STATEMENT PARENT CHANGE,
STATEMENT UPDATE

BODY CONDITIONS CONDITION EXPRESSION CHANGE,
ALTERNATIVE PART DELETE,
ALTERNATIVE PART INSERT

TABLE I: Categories of changes retrieved with ChangeDis-
tiller.

in [12]. To retrieve the covered entities (e.g., Java classes) we
process test coverage information gathered with Cobertura1.

C. Implementation

To implement our approach we use a process consisting of
two steps that is described in Figure 1.

As a first step (see Figure 1(a)), we use the jGit API2

to retrieve the software project’s source code from the cor-
responding Git repository. Then, we compute the differences
between two consecutive versions of the system using the same
API. Based on the types of the changes retrieved between
versions, one of the following two approaches is selected:

1) When entire Java classes are added or deleted, the names
of the fields and the methods declared in those classes
are recorded.

2) Otherwise, ChangeDistiller is utilized to extract the fine-
grained changes.

A specific procedure is applied to each project version for
which the test code has been modified (shown in Figure 1(b)).
We first compile the production code using Maven in order to
ensure that it does not contain any errors. If the compilation
is successful, the test cases of that version are run separately.
For each test case, we let Cobertura generate a coverage report
file. This file is then parsed with the jDom API3 to identify the
methods from the production code covered by the respective

1http://cobertura.github.io/cobertura/ — last visited June 13th, 2014.
2http://eclipse.org/jgit/ — last visited June 19th, 2014
3http://www.jdom.org/ — Last visited June 19th, 2014.

Project Git
Repository

Type of
Change

Change
Recorder

File
Retriever

diff
Extract fine-

grained changes

Project Version w.
Additional Tests

Built
Project coverage.xml coverage.xml coverage.xml

for each
test method

generate
coverage report

Production / test
correlations build with

Maven
process

XML

(a)

(b)

Fig. 1: Overview of the data collection process.

test method. We record these results which are used afterwards
to determine the links between production classes and test
cases.

III. EXPERIMENTAL SETUP

This section describes how the empirical study has been
conducted, including: project selection, the initial analysis that
was performed to determine testing effort, and the process
through which the quantitative and qualitative studies have
been carried out.

A. Project Selection

We have chosen 5 projects on which we conduct our
empirical study. We rely on the criteria set by Pinto et al.
in [13] to select the projects, namely: (1) a large number
of versions, (2) considerable size (in terms of production
classes and methods), (3) an extensive JUnit test suite, and
(4) be in active maintenance. For each of the systems, all
their versions have been included in the analysis. An overview
of the main characteristics of the 5 projects is presented in
Table II; it contains the total number of versions studied and
shows metrics collected for the first version of a project and
the last version considered.

B. Preliminary Analysis

As a preliminary analysis, we have studied the 5 systems
in order to understand how well they are tested. Four perspec-
tives have been considered: (1) changes that occurred in the
production / test code, (2) branch coverage obtained during
the lifespan of the project, (3) number of versions that did
not compile because of test failures, and (4) ratio between the
amount of test code and production code. An overview of this
preliminary analysis is shown in Table II.

The reported branch coverage has been recorded for the last
version that we have considered (column Branch Coverage)
and it was determined with Cobertura. We have also col-
lected coverage information for each release of a project and
observed that the overall branch coverage remains relatively
stable.

The table also includes the number of versions that raised
problems during compilation because of test failures (column
Number of Non-Compiling Versions Test Failures). We have
relied on Maven to compile the projects and recorded all
the situations in which not every test from a version passed.

Finally, we have calculated the ratio between the lines of
test code and production code lines (globally, for all versions
combined) as a measurement for quantifying the volume of
testing that has been done for a system (column Σ∀viLOCtest

/ Σ∀viLOCprod).
Subsequently, we have analyzed the 5 software projects to

determine which types of changes occur in their production
and test code. Table III contains an overview of these changes
grouped into 10 categories corresponding to the 10 major types
of changes identified by ChangeDistiller. For our analyses we
only consider the first 7 categories of changes, as the last 3
are not related to the source code of the system. The total
number of production and test code changes per software
project has been calculated. In order to get an indication of
testing “effort”, we have also determined the percentage of
test code changes from to the total number of changes. This
is depicted in the final row of Table III.

The following thresholds have been selected: 1) percentage
of test changes - over 33%; 2) branch coverage - over 0.67;
3) percentage of non-building versions - less than 2.5%; 4)
test code lines - over 0.25. A system is considered properly
tested if at least 3 of the thresholds are met. Based on the
above information which can be considered an indicator of
testing effort, we classify the projects as extensively tested
(CommonsLang), relatively well tested (CommonsMath, Gson)
and rather poorly tested (PMD, JFreeChart).

C. Analyses performed

We have performed our study following a mixed methods
approach [9] that combines quantitative and qualitative analy-
ses as described in the following subsections.

1) Quantitative Analysis: We first identify frequently oc-
curring fine-grained co-evolution patterns between production
and test code. The spmf4 tool is used to generate a series of as-
sociation rules. We have configured the Apriori algorithm with
support and confidence values of 50% and 60%, respectively.

The following steps have been applied to obtain the rules.
For each version of a system, all the changes that occur in
the production code and in the associated tests are recorded
per production class using a bucket list representation. Instead
of the actual values, we use discrete values to quantify the

4http://www.philippe-fournier-viger.com/spmf/ — Last visited June 19th,
2014

Project First version Final version considered Number of Non- Σ∀vi
LOCtest

Prod. # Test Release # # Prod. # Test Release Branch Building Versions /
Versions Classes Methods Methods Classes Methods Methods Coverage due to Test Failures Σ∀vi

LOCprod

PMD 7165 316 1846 340 11/2002 822 4418 1340 12/2013 0.51418 369 0.130
CommonsLang 3856 31 373 318 12/2002 177 2442 2851 02/2014 0.90678 54 0.442
CommonsMath 5174 83 758 501 12/2004 985 6548 6201 02/2014 0.80254 131 0.366

JFreeChart 519 423 5790 1297 11/2006 701 7776 2403 03/2014 0.49274 17 0.219
Gson 322 73 414 131 05/2008 142 719 1010 08/2012 0.66233 12 0.287

TABLE II: Overview of selected projects.

ChangeDistiller category PMD CommonsLang CommonsMath JFreeChart Gson
Prod Test Prod Test Prod Test Prod Test Prod Test

ADDED CLASS 4690 599 679 410 3074 1172 929 1128 130 124
REMOVED CLASS 4269 733 306 287 905 739 1154 185 84 35

CLASS DECLARATION 8742 1207 2396 2179 7379 4007 1777 847 542 460
METHOD DECLARATION 3038 169 1146 376 2730 709 641 399 286 64

ATTRIBUTE DECLARATION 7558 307 795 198 2787 746 890 33 330 27
BODY STATEMENTS 107831 8179 12933 15924 44098 28260 16266 17705 4947 1134
BODY CONDITIONS 16507 58 1466 85 2365 284 774 1 500 9

COMMENTS 2285 99 709 527 2762 1015 406 224 70 10
DOCUMENTATION 2363 88 3534 513 9145 468 449 401 212 15

OTHERS 1621 136 246 101 1051 236 14 394 114 97

TOTAL 159628 10851 24495 20315 76996 36936 23485 21132 7239 1961

TotalTest/(TotalTest+TotalProd) 6.37% 45.33% 41.10% 47.36% 21.32%

TABLE III: Total number of changes in the production / test code per ChangeDistiller change category.

number of changes that occur from each of the categories. We
did this in order to facilitate the generation of the association
rules, as it would not be possible to obtain rules with the
specified support and confidence if numerical values were
used. In the cases of class additions and removals, only YES
and NO values have been utilized, as these kinds of changes
can either happen or not. For the other types of changes, one of
the following 5 values is assigned: NONE, LOW, MED LOW,
MED HIGH or HIGH. In order to assign these values, the
set containing the number of occurrences of the respective
change in each class in which it was made (for all the versions
of a system) has been constructed; extreme values have been
filtered out, to prevent the results from being skewed. The last
4 discrete values (LOW, MED LOW, MED HIGH and HIGH)
correspond to the (0%-25%], (25%-50%], (50%-75%], [75%-
100%] intervals of values from this set. After we put the data in
the appropriate format (version — production class — changes
in class / associated test classes = value), the association rules
are computed.

2) Qualitative Analysis: To refine the results from the
quantitative analysis, we perform a qualitative study in order to
better understand some of the co-evolution patterns that have
been obtained during the previous analysis. We concentrate
on the following 5 categories of production code changes:
added class, removed class, class declaration change, attribute
declaration change, and body condition change. We disregard
the other 2 categories because (1) a large variety of fine-
grained changes are part of the METHOD DECLARATION
category, therefore it was difficult to find a substantial number
of examples for each of them and (2) BODY STATEMENT
changes occur in almost every commit, thus making it hard to
separate them from the other types of changes.

We carry out this qualitative analysis by studying concrete
examples of test code changes that occur as a result of a

particular change in the production code. From each category
of production changes (see Table I), we investigate every type
of change in depth. For each occurrence of the change in a
production class, all the changes it has triggered in the test
code are recorded and analyzed. In order to ensure that there
is indeed a connection between the production and the test
code changes, the links between the respective production
class and the corresponding test cases are inspected, along with
the actual source code and the commit message of the project
version under consideration. After gathering these examples,
we make a series of observations based on them regarding (1)
how co-evolution happens together with (2) an interpretation
of the co-evolution patterns identified during the quantitative
analysis.

IV. QUANTITATIVE ANALYSIS

A number of association rules have been generated for each
category of production code changes. Table IV provides an
overview of these association rules for each of the 5 systems
along with the support and confidence values obtained. The
second column (i.e., Association Rule) contains the retrieved
association rule; however, the value of the consequent is miss-
ing in this column. This value can be found in the subsequent
columns that are specific to each project under analysis. These
columns contain the support and the confidence of the rule
together with the value of the consequent (e.g, YES, NO,
SOMETHING). For instance, for rule 1, the column PMD
shows that no test classes are added (i.e., NO) when new
production classes are created; the rule has a support value
of 4161 and a confidence value of 0.906 for the respective
project. Therefore, the complete set of association rules for a
project is obtained by concatenating the second column with
the specific column for that project.

In some cases an association rule has not been generated
between a production and a test code change. This is caused by
the fact that the changes in the production code are dispersed
over a number of intervals, i.e. (LOW, MED-LOW, MED-
HIGH, or HIGH), see for example the antecedents of rules
7 through 9 for CommonsLang. Because of this dispersion the
threshold value for confidence might not be met, which in turn
means that an association rule is not generated. However, if
there was no link between the production and the test code
change, we would expect that an association rule containing
NONE as the value of the consequent would have been
generated, thus indicating the lack of connection. The fact that
this association rule with NONE is not produced suggests that
there might still be a (weak) link, thing that we marked with
the keyword SOMETHING in the consequent.

Table IV also has some empty cells. This happens for
some of the rules that have MED LOW as the value for the
production change. It is caused by the fact that the respective
production changes generally occur only once for a class
in a commit, therefore the intervals corresponding to (0%-
25%] (LOW) and (25%-50%] (MED LOW) of the values are
identical (contain only 1 values).

As an example of mined association rules, consider the
following two rules that address the addition of production
classes for the CommonsLang project:
Association rule 1.1

ADDED CLASS PRODUCTION=YES → ADDED CLASS TEST=YES

support: 412, confidence: 0.643

This first association rule indicates that for CommonsLang,
a project that has been categorized as extensively tested, the
creation of a new production class leads to the addition of a
corresponding test class in around 64% of the cases.
Association rule 1.2

ADDED CLASS PRODUCTION=YES → CLASS DECLARATION TEST=NONE

support: 557, confidence: 0.871

The second rule reveals that sometimes when a production
class is created additional test cases are developed in the
already existing test classes in order to cover it. Even though
the value of CLASS DECLARATION TEST is NONE, the
confidence of this rule indicates that in roughly 13% of the
cases a different value than NONE was registered; therefore,
in these situations at least one test case is created when the
new production class is added.

A. Co-Evolution Patterns

By inspecting the association rules from Table IV we
have noticed a number of interesting differences between the
systems under analysis. We have identified 6 co-evolution
patterns (shown in Table V) that we distilled from Table IV
by generalizing what has been observed for the 5 projects.
These 6 co-evolution patterns are further subdivided into two
categories: positive, marked by the a suffix, and negative as
exemplified by the b suffix. The positive patterns reflect co-
evolution, while the negative ones point towards a lack of
co-evolution.

We will now discuss these co-evolution patterns per project.
1) CommonsLang: In the case of CommonsLang, an exten-

sively tested project, a series of co-evolution patterns (we are
referring to the numbering of Table V) have been observed,
namely:

Pattern 1a The generated association rule shows that corre-
sponding test classes are indeed created when new produc-
tion classes are developed (confer rule 1 in Table IV, CONF
= 0.643), suggesting that the developers actually test the
production code they write.

Pattern 2a Another rule has uncovered that in most of the
cases test classes are removed (rule 2, CONF = 0.998) when
the production classes they cover are deleted, indicating that
the programmers are careful not to leave non-compiling test
classes in the system.

Pattern 3a The rules highlight that when a certain number
of methods are added / removed from production classes
corresponding test cases are also created / deleted (rules 4–
6).

Patterns 4a and 5a They also show that test cases are up-
dated accordingly when attribute or method related changes
are made in the production code (rules 7-14).

Pattern 6a Finally, the association rules uncovered that test
cases are created / removed when conditional statements are
changed in the production classes (rules 16-18).

The patterns presented above indicate that thorough testing
has been done for CommonsLang, which is in concordance
with the initial observations that we made regarding this
system.

2) CommonsMath: In general, the association rules gen-
erated for CommonsMath resemble the ones obtained for
CommonsLang; however, from the confidence values retrieved,
it can be observed that less emphasis has been put on testing
for this project.

Patterns 1a and 3a For example, when new production
classes / methods are developed corresponding test classes
/ cases are created, but their number is slightly lower than
in the CommonsLang case (rules 1 and 4–6 respectively)

Pattern 2a Associated test classes are removed when produc-
tion classes are deleted (rule 2, CONF=0.974).

Patterns 4a and 5a Test cases are altered accordingly in
situations when the attributes / methods of a production class
are modified (rules 9–10 and 13–14).

Pattern 6a Tests are written / dropped when conditions are
changed in the production code (rules 15–18).

Even though CommonsMath is not tested in such detail as
CommonsLang, the project can still be considered adequately
tested as only positive co-evolution patterns occur.

3) PMD: Most of the association rules that were generated
for PMD are negative (i.e., have NONE as the value for the
test related changes).

Pattern 1b We see strong indication that for PMD test classes
are not developed when production classes are created (rule
1, CONF=0.906).

Id Association Rule PMD CommonsLang CommonsMath JFreeChart Gson

1 ADDED CLASS PRODUCTION=YES → ADDED CLASS TEST NO YES SOMETHING NO YES
4161/0.906 412/0.643 -/- 832/0.805 85/0.772

2 REMOVED CLASS PRODUCTION=YES → REMOVED CLASS TEST YES YES YES YES YES
4926/0.998 569/0.998 1554/0.974 1331/0.954 89/0.936

3 CLASS DECLARATION PRODUCTION=LOW → CLASS DECLARATION TEST NONE NONE NONE NONE NONE
1767/0.998 244/0.953 1129/0.981 360/0.954 159/0.975

4 CLASS DECLARATION PRODUCTION=MED LOW → CLASS DECLARATION TEST - LOW SOMETHING - -
132/0.8 -/-

5 CLASS DECLARATION PRODUCTION=MED HIGH → CLASS DECLARATION TEST NONE SOMETHING SOMETHING NONE LOW
855/0.808 -/- -/- 174/0.754 43/0.651

6 CLASS DECLARATION PRODUCTION=HIGH → CLASS DECLARATION TEST NONE HIGH SOMETHING NONE SOMETHING
503/0.797 85/0.658 -/- 102/0.743 -/-

7 METHOD DECLARATION PRODUCTION=LOW → BODY STATEMENTS TEST NONE SOMETHING NONE NONE NONE
634/0.725 -/- 331/0.614 134/0.814 60/0.833

8 METHOD DECLARATION PRODUCTION=MED LOW → BODY STATEMENTS TEST - SOMETHING - - -
-/-

9 METHOD DECLARATION PRODUCTION=MED HIGH → BODY STATEMENTS TEST NONE SOMETHING SOMETHING NONE SOMETHING
309/0.887 -/- -/- 65/0.893 -/-

10 METHOD DECLARATION PRODUCTION=HIGH → BODY STATEMENTS TEST NONE MED-HIGH SOMETHING NONE SOMETHING
234/0.823 37/0.616 -/- 49/0.871 -/-

11 ATTRIBUTE DECLARATION=LOW → BODY STATEMENTS TEST NONE SOMETHING NONE NONE NONE
1244/0.737 -/- 558/0.722 148/0.833 82/0.828

12 ATTRIBUTE DECLARATION=MED LOW → BODY STATEMENTS TEST - SOMETHING - - -
-/-

13 ATTRIBUTE DECLARATION=MED HIGH → BODY STATEMENTS TEST NONE SOMETHING SOMETHING NONE SOMETHING
528/0.907 -/- -/- 62/0.853 -/-

14 ATTRIBUTE DECLARATION=HIGH → BODY STATEMENTS TEST NONE SOMETHING SOMETHING NONE SOMETHING
628/0.834 -/- -/- 74/0.822 -/-

15 BODY CONDITIONS PRODUCTION=LOW → CLASS DECLARATION TEST NONE NONE SOMETHING NONE NONE
1044/0.976 126/0.670 -/- 94/0.853 72/0.9

16 BODY CONDITIONS PRODUCTION=MED LOW → CLASS DECLARATION TEST - SOMETHING - - -
-/-

17 BODY CONDITIONS PRODUCTION=MED HIGH → CLASS DECLARATION TEST NONE SOMETHING SOMETHING NONE NONE
357/0.952 -/- -/- 134/0.763 37/0.822

18 BODY CONDITIONS PRODUCTION=HIGH → CLASS DECLARATION TEST NONE SOMETHING SOMETHING SOMETHING SOMETHING
430/0.926 -/- -/- -/- -/-

TABLE IV: Associations rules mined from the evolution of the analyzed projects.

Pattern Explanation CommonsLang CommonsMath PMD Gson JFreeChart

1a When a new production class is added, an associated test class is also created
√ √ √

1b When a production class is created, no new class is added in the test code
√ √

2a Upon the deletion of a production class, its associated test class is also removed
√ √ √ √ √

2b When a class from the production code is removed, the test class covering it is not deleted
3a When a new production method is created, one or more test cases addressing it are also developed

√ √ √
3b Upon the addition of a method in the production code, no new test cases are created

√ √
4a When method-related changes occur in the production code, the tests are updated accordingly

√ √ √
4b When modifications are made to the signature or return type of a production method, no changes

occur in the test code

√ √

5a When a field is added in the production code, the eisting test cases are updated in order to address
this change

√ √ √

5b When a new production field is added, no modifications occur in the test code
√ √

6a Upon modifying conditional statements in methods from the production code, new test cases are
created to cover each possible path throughout the respective method

√ √ √ √

6b When conditions are changed in production methods, no new test cases are added
√

TABLE V: Co-evolution patterns for each system under study.

Pattern 4b and 5b In the cases when attributes or methods
from the production classes are modified tests are rarely
changed; only a limited amount of updating is done in the
test code to ensure that the test cases still compile (rules 7,
9-10, 11, and 13-14).

Pattern 6b Also, test cases are not created / deleted when
conditional statements are modified in production methods
(rules 15 and 17-18).

From the patterns that were inferred, it is clear that PMD does
not have a structured approach to co-evolving production and
test code. This observation is in-line with our initial assessment
that PMD is a poorly tested project.

4) Gson: In most cases, the rules generated for Gson are
similar to the ones obtained for CommonsLang and Common-
sMath.

Pattern 3a In contrast to the aforementioned CommonsLang
and CommonsMath, for Gson we have found that when
methods are added / removed from production classes,
the number of test cases created / deleted is significantly
lower in comparison to the other two projects (rules 5-6);
nevertheless, a positive sub-pattern was still detected.

Pattern 6a Also contrasting CommonsLang and Commons-
Math, only when numerous condition related changes are
made in the production methods, test cases are created /

deleted in order to address the additional / removed branches
(rule 18).

We conclude that Gson can be regarded as a well-tested project
as most of the changes in the production code are accompanied
by changes in the test classes.

5) JFreeChart: JFreeChart is a project that is not tested
as extensively as CommonsLang, CommonsMath or Gson.
Generally, the association rules that have been obtained in this
case resemble the ones that were generated for PMD.
Patterns 1b and 3b Even though new production classes /

methods are not backed up by additional test classes (rule
1) / cases (rules 3 and 5–6), we still see that the testing
effort put into JFreeChart is higher compared to PMD’s
case, because the negative association rules have a lower
value for confidence.

Patterns 4b and 5b We observe that test cases are rarely
updated when changes related to attributes or methods are
made in the production code (rules 7, 9–10, 11, 13–14).

Pattern 6a In several cases we have noticed that test methods
are created / deleted when conditional statements are altered
in the production classes (rule 18).

The amount of testing that has been done while developing
JFreeChart is on the low side, as indicated by the numerous
negative association rules that were obtained.

V. QUALITATIVE ANALYSIS

The quantitative analysis has provided insight into the co-
evolution of production and test code: 6 fine-grained co-
evolution patterns have been identified for the 5 projects under
analysis. We now turn towards a qualitative analysis that is
aimed at 1) manually investigating how co-evolution happens
and 2) interpreting the observed co-evolution patterns.

A. How Co-Evolution Happens

Examples of test code changes that occur when specific
changes are made in the production code have been manually
analyzed. In particular, we consider the association rules 1.1
and 1.2 from the previous section.

For CommonsLang we have determined that in most cases
a new test class is indeed created when a production class is
developed. We have come across the following 4 scenarios:

1) Occurs in the same commit: The test class is generally
added during the same commit (in roughly 90% of the cases),
thus suggesting that the developers actually test the new
production code before committing it.

2) Occurs in a following commit: We have noticed sit-
uations in which the corresponding test class is developed
during a following commit. This indicates that even though
the production class was not tested at the time of its creation,
the respective production code is still covered (at a later time).

3) Does not occur, but a different type of change is made
in the test code: Cases in which a multitude of different types
of test changes occur when a new production class is created
have also been identified. This corresponds to a scenario in
which the developers update the already existing tests instead
of developing a separate test class to address the production

class that was added. We have observed the following changes
in the test classes: the creation of test cases (corresponding to
association rule 1.2), the insertion of statements containing
method calls, and the addition of catch blocks.

4) Does not occur: In some cases we have witnessed that
a test class is not added when a production class is developed
(in about 35% of the total number of cases). When such a
situation occurs, the production code corresponds to either a
mock class, an abstract class / an interface, or a class that is
reimplemented (for which a test class does exist). Cases in
which important production classes were not covered by tests
have rarely been seen for CommonsLang.

The examples listed above show that different things can
happen in the test classes as a result of a change in the
production code. They have also demonstrated that in the cases
when a change is made in the tests, it does not necessarily
happen in the same commit as the production change that
triggered it; therefore, a number of subsequent commits have
to be inspected in order to ensure that all the test changes
that occur due to a specific production change have been
identified. Furthermore, this qualitative analysis has lead to
other insightful findings; for example, if no changes are
observed in the tests when a production class is created, the
analysis uncovered examples of reasons why changes are not
necessarily needed in those particular situations.

B. Interpretation of the fine-grained co-evolution patterns

As explained in Section III, for 5 of the changes that occur
more frequently in the production code, we investigate the
associated changes that are made in the test classes in greater
detail. The considered changes are (1) class addition, (2)
method addition, (3) class removal, (4) field addition and (5)
alternative condition block addition. For each of these types of
changes, we collect examples of test changes that they trigger
and study them.

1) Class addition: In terms of entire production class
additions, we observe a number of interesting facts. First of
all, we see that the addition of a production class triggers the
creation of a corresponding test class for the projects that are
adequately tested (rule 1 in Table IV). When this does not
happen, we have determined that the new production classes
are either auxiliary classes or abstract classes / interfaces for
which the classes that extend / implement them are tested.
Another situation that we have witnessed is that production
classes are removed and subsequently added again (therefore
a test class already exists for them). For the other two projects,
PMD and JFreeChart, the development of corresponding test
classes was observed less frequently; the developers seem to
prefer adding test classes that contain integration tests which
cover multiple production classes that were recently created.
For all the systems that we have analyzed, the new test class
is generally developed in the same commit as the production
class it addresses. Additionally, we have found other types of
changes in the test code when production classes are created.
The most commonly observed ones are (1) the addition of
new test cases in the already existing test classes and (2)

statement-level changes in some of the test methods. For the
two systems that are tested less, these kinds of changes occur
more frequently than the insertion of test classes.

2) Method addition: We also zoom in on the changes that
are made in the test code when production methods are added.
Intuitively we understand that the creation of a method in the
production code should trigger the addition of at least one
new test case. However, this expectation is fulfilled by only 3
of the analyzed projects, CommonsLang, CommonsMath and
Gson; for the other two, this was rarely the case (rules 3–6).
Even for the adequately tested projects, there are situations in
which no changes are made in the test code when this type of
change occurs in a production class. Upon further investigation
we have established that the production methods that are not
backed up by additional test cases are generally part of abstract
or mock classes; therefore, the fact that they are not addressed
does not represent a serious issue. Nevertheless, in some cases
new utility methods have not been tested, thing that could
prove problematic. In general, we see that the corresponding
test cases are added in the same commit as the production
methods they cover. There are few cases in which they are
developed in a following commit. We have also found other
types of test code changes, most of which are at a statement-
level, corresponding to updates to the already existing test
cases by inserting or modifying a number of statements.

3) Class removal: With regard to production class re-
movals, we have determined for all the 5 projects that if an
associated test class exists, it is also deleted (rule 2). However,
we did find situations in which the test class is not removed
in the same commit as the production class it covers. For
example, in the case of PMD, the TokenSetTest class is
discarded two commits after TokenSet is deleted. This is
particularly interesting considering the fact that compilation
errors arise because the production class that is being tested
was already removed. Changes from other categories have
also been identified in the test code. For example, statement
deletions and updates have been encountered in the tests, sug-
gesting that test cases that address more than one production
class are modified accordingly. In some cases we have noticed
that methods from multiple test classes are removed, indicating
that the respective production class was covered by more than
one test class.

4) Field addition: The addition of fields in production
classes was also inspected. We have observed several types of
changes in the test code in this case, especially for the systems
with a higher testing effort. In a number of cases adding a field
in the production code co-occurs with the creation of a new test
case. A deeper inspection revealed that the test case does not
specifically address the respective field, but rather a production
method that uses it. We have also noticed statements being
inserted in the existing tests, with which the field from the
production class is covered. In some cases, a field is added in a
test class as well; it corresponds to one of the fields introduced
in the production code and is used all throughout the tests.
For the projects that are tested less, PMD and JFreeChart,
all the test changes mentioned above occur less frequently

compared to the other 3 systems. Especially in the case of
PMD, the developers seem to completely disregard this type
of production change when it comes to testing, as generally
no changes can be observed in the test classes.

5) Alternative condition block addition: Finally, we study
the insertion of alternative conditional blocks. For the ade-
quately tested projects we see two types of changes in the tests.
First and foremost, new test cases are usually created when
alternative conditional blocks are added in the production code
(rules 15–18). This indicates that the developers adhere to the
guidelines specified for unit testing which state that a test case
should be created for each independent path through the tested
method. However, there are situations in which they altered
existing test cases instead of adding new ones. Through code
inspections we have determined that various statement-level
changes are done in the tests, such as modifying the values of
the parameters with which a production method is called in
order to trigger a different path through the respective method.
We have rarely observed cases in which no changes are made
in the test code for two of the systems, CommonsLang and
CommonsMath. For the other 3 projects, Gson, PMD and
JFreeChart, our findings are significantly different. Although
there are some situations in which the existing test cases are
changed when alternative conditional blocks are inserted in
production methods, in general new test cases are not created.
Most of the times the developers do not make any kinds of
changes in the test code for these projects.

VI. DISCUSSION

In this section we first summarize our findings with regards
to the two research questions addressed by this paper. Then
we discuss threats to validity that might affect our study.

A. Revisiting the research questions

a) RQ1. What kind of fine-grained co-evolution patterns
between production and test code can be identified?: By using
association rule mining we have observed 6 fine-grained co-
evolution patterns in our 5 case study systems (see Table V).
These 6 patterns can be summarized as follows: (1) simulta-
neous introduction of production and test class (patterns 1a
and 1b), (2) simultaneous deletion of production class and
associated test class (2a and 2b), (3) introduction / deletion
of production method leads to the addition / removal of one
or more test cases (3a and 3b), (4) modification of production
method leads to statement-level changes in the test cases (4a
and 4b), (5) production field changes lead to statement-level
changes in the test cases (5a and 5b), (6) conditional statement
changes in the production code lead to the addition / deletion
of test cases (6a and 6b).

A more qualitative analysis revealed how the co-evolution
takes place, to be more precise, whether it happens simulta-
neously or not. Additionally, this in-depth analysis also goes
into the reasons why sometimes the patterns are not upheld,
e.g. a test class is not added for a mock class (pattern 1b).

b) RQ2. Does the testing effort have an impact on the
observed co-evolution patterns?: As a first step, we have
evaluated the testing effort put into each of the 5 case study
projects. This has been done on the basis of 4 criteria: (1) the
ratio between the number of lines of test code and the number
of production code lines, (2) the number of versions that did
not compile because of test failures, (3) branch coverage, and
(4) the ratio between the number of changes in the test code
and the total number of changes for the respective project.
Based on these measurements, the systems have been classified
as: extensively tested (CommonsLang), adequately covered
(CommonsMath, Gson) and poorly tested (PMD, JFreeChart).

For each of the 6 patterns that we observed, we have
distinguished a positive and a negative sub-pattern, namely
the positive or “a” pattern in which co-evolution does occur
and the negative or “b” pattern in which case the co-evolution
was absent. From this classification, our main observation is
that for the software projects for which we have seen high
testing effort, i.e. CommonsLang, CommonsMath and Gson,
the positive patterns are more likely to occur. Similarly, for the
two systems for which we have observed a less intense testing
effort (PMD and JFreeChart), the negative patterns are more
common. However, there are cases in which a pattern from
the a group can be found in a project with a lower testing
effort; for example, for JFreeChart we have established that
test cases are sometimes created / removed when conditional
statements are modified in the production code.

Class removal is the only production change for which the
same pattern has been identified for all the 5 projects; in this
case, the associated test class is deleted as well, which is
unsurprising considering the fact that it would cause errors
during compilation if it were to be left in the code.

B. Threats to validity

The following threats to validity have been identified:
Internal threats: Internal threats might be caused by issues

in the code that has been developed in order to collect the
information regarding production / test code changes and links
between tests and corresponding production classes. In order
to mitigate these threats, our approach has been thoroughly
tested using a number of small examples to ensure that it
works properly. Additionally, we have performed a manual
inspection of the data obtained for each of the projects in
order to be certain that the changes extracted and the coverage
information inferred are correct.

External threats: Our observations may not be generalizable
to other systems. More specifically, all 5 projects are open-
source, therefore the results that we have obtained might not
apply to commercial systems. In particular, different patterns
might be uncovered for industrial projects compared to the
ones gathered for the 5 systems included in the analysis.
As discussed in Section III, the investigated projects have
been chosen based on several criteria, therefore our findings
should be valid for a wide range of software systems. Future
replications of the study should rule out this threat to validity.

Finally, the support and confidence values that were used
when generating the association rules might also represent an
external threat to validity. Different association rules would
have been obtained if different values for support and confi-
dence were utilized. We aim for the rules to be as reliable as
possible, therefore we decided not to lower these thresholds.

VII. RELATED WORK

This section covers similar work from fellow researchers.
Gall et al. reported on analyzing the information obtained

by mining software repositories [14]. Two tools are introduced:
Evolizer, which is a platform for mining software repositories,
and ChangeDistiler [10], a change extraction and analysis
tool that can be used to investigate fine-grained source code
changes. Of particular interest to us is ChangeDistiller, which
extracts source code changes from the different versions of a
Java class gathered with Evolizer. The source code of each
analyzed version is represented as an abstract syntax tree
(AST) and the changes between two versions are determined
by computing the differences between their corresponding
ASTs. A taxonomy for source code changes has also been
defined along with the significance level of each type of
change. We rely on their work in this paper.

Pinto et al. [13] investigate how unit test suite evolution
occurs. Their main finding is that test repairing is an often oc-
curring phenomenon during evolution, indicating for example
that assertions are fixed. The study also shows that test suite
augmentation is another important activity during evolution
aimed at making the test suite more adequate. One of the
most striking observations that they make is that failing tests
are more often deleted than repaired. Among these deleted
test cases, tests fail predominantly (over 92% of the time)
with compilation errors, whereas the remaining ones fail with
assertion or runtime errors. In a controlled experiment on
refactoring in connection with developer tests, Vonken and
Zaidman also note that participants usually deleted failing
assertions instead of trying to address them [15].

In the context of test suite augmentation, Santelices et.
al. [16] present an enhanced methodology for improving
existing tests as a result of evolving software, that can be
used to (1) asses the adequacy of a regression test suite when
changes are made in the production code, and (2) facilitate the
generation of new test cases that cover the untested behaviours
introduced by the production changes.

Zaidman et al. have proposed a set of visualizations that
aid in understanding how production code and (developer)
test code co-evolve [8]. Their analysis is coarse-grained, as
they only inspect whether a production / test file is added
or changed, while our analysis is much more fine-grained.
The authors have observed that the co-evolution does not
always happen in a synchronized way, i.e., sometimes there
are periods of development followed by periods of testing.
Lubsen et al. have a similar goal, however they use association
rule mining to determine co-evolution [17]. Their work is
particularly close to ours, albeit they study the co-evolution
at a file level, while we focus on more fine-grained changes.

In response to observations on the lack of co-evolution,
Hurdugaci and Zaidman [12] and Soetens et al. [18] proposed
ways to stimulate developers to co-evolve their production and
test code by offering specialized tool support.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have investigated the fine-grained co-
evolution of production and test code. We did this in order
to: (1) gain a deeper understanding of the way in which tests
evolve as a result of changes in the production classes, (2)
identify possible gaps in the test base, thus signalling to the
developers the parts of the production code that have not been
adequately addressed by tests.

In doing so, we make the following contributions:
• We present an approach to study the fine-grained co-

evolution between production and test code.
• We perform an empirical study on 5 open-source software

projects, thereby gaining insight into how co-evolution
does (not) occur.

• We identify 6 co-evolution patterns based on this empir-
ical study.

We are now in a position to answer our research questions.
For RQ1, “What kind of fine-grained co-evolution patterns
between production and test code can be identified?”, we have
uncovered 6 fine-grained co-evolution patterns by using an
association rule mining technique. For each of these patterns,
a positive and a negative sub-pattern have been identified. The
positive patterns reflect co-evolution, while the negative ones
point towards a lack of co-evolution.

For RQ2, “Does the testing effort have an impact on
the observed co-evolution patterns?”, we first determine the
testing effort put into each of the 5 projects. Afterwards,
we have established that positive patterns are more likely to
be encountered in thoroughly tested software systems (i.e.,
CommonsLang, CommonsMath, Gson), while the negative
ones are generally seen in projects for which the testing
effort is low, such as PMD or JFreeChart. The qualitative
evaluation that we have performed allowed us to gain a more
in depth understanding of how the co-evolution takes place. In
particular, we have found reasons why negative co-evolution
patterns are obtained. For example, we now have insight
as to why sometimes new test classes are not added when
production classes are created (e.g., because the later is a mock
class).

Future work. A first direction for future work entails
extending the empirical study by analyzing the co-evolution
between the production and the test code of new projects,
especially from industry. Commercial systems in particular
might exhibit different co-evolution patterns as more or less
testing effort may have been put into them.

Another area to concentrate on is studying whether specific
development methodologies (e.g., Test-Driven Development)
shows different co-evolution strategies.

We also aim to improve the characterization of testing effort
by making use of the recent test code quality model presented
by Athanasiou et al. [19].

Finally, we want to use the knowledge that has been
obtained through this empirical study to look into test repair
techniques. Of particular interest are intent-preserving tech-
niques, assuring that the repaired test cases address the same
production functionalities as before they were broken.

ACKNOWLEDGMENT

This work was partly funded by the NWO TestRoots project
(project number 639.022.314).

REFERENCES

[1] M. Lehman, “On understanding laws, evolution and conservation in the
large program life cycle,” Journal of Systems and Software, vol. 1, no. 3,
pp. 213–221, 1980.

[2] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, and
M. Jazayeri, “Challenges in software evolution,” in Proc. Int’l Workshop
on Principles of Software Evolution (IWPSE). IEEE, 2005, pp. 13–22.

[3] G. Meszaros, xUnit Test Patterns: Refactoring Test Code. Addison-
Wesley, 2007.

[4] P. Runeson, “A survey of unit testing practices,” IEEE Software, vol. 25,
no. 4, pp. 22–29, 2006.

[5] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object-Oriented Reengi-
neering Patterns. Morgan Kaufmann, 2002.

[6] L. Moonen, A. van Deursen, A. Zaidman, and M. Bruntink, “The
interplay between software testing and software evolution,” in Software
Evolution. Springer, 2008, pp. 173–202.

[7] S. Elbaum, D. Gable, and G. Rothermel, “The impact of software
evolution on code coverage information,” in Proc. Int’l Conf. on Software
Maintenance (ICSM). IEEE CS, 2001, pp. 170–179.

[8] A. Zaidman, B. Van Rompaey, A. van Deursen, and S. Demeyer,
“Studying the co-evolution of production and test code in open source
and industrial developer test processes through repository mining,”
Empirical Software Engineering, vol. 16, no. 3, pp. 325–364, 2011.

[9] J. Creswell and V. Clark, Designing and Conducting Mixed Methods
Research. SAGE Publications, 2010.

[10] B. Fluri, M. Würsch, M. Pinzger, and H. Gall, “Change distilling:
Tree differencing for fine-grained source code change extraction,” IEEE
Trans. Software Eng., vol. 33, no. 11, pp. 725–743, 2007.

[11] B. Van Rompaey and S. Demeyer, “Establishing traceability links
between unit test cases and units under test,” in Proc. Conf. on Software
Maintenance and Reengineering (CSMR). IEEE, 2009, pp. 209–218.

[12] V. Hurdugaci and A. Zaidman, “Aiding software developers to maintain
developer tests,” in Proc. of the European Conference on Software
Maintenance and Reengineering (CSMR). IEEE, 2012, pp. 11–20.

[13] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths and realities
of test-suite evolution,” in Symposium on the Foundations of Software
Engineering (FSE). ACM, 2012, p. 33.

[14] H. Gall, B. Fluri, and M. Pinzger, “Change analysis with evolizer and
changedistiller,” IEEE Software, vol. 26, no. 1, pp. 26–33, 2009.

[15] F. Vonken and A. Zaidman, “Refactoring with unit testing: A match
made in heaven?” in Proc. of the Working Conf. on Reverse Engineering
(WCRE). IEEE Computer Society, 2012, pp. 29–38.

[16] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and M. J.
Harrold, “Test-suite augmentation for evolving software,” Proc. ASE, pp.
218–227, 2008.

[17] Z. Lubsen, A. Zaidman, and M. Pinzger, “Using association rules to
study the co-evolution of production & test code,” in Int’l Working Conf.
on Mining Software Repositories (MSR). IEEE, 2009, pp. 151–154.

[18] Q. D. Soetens, S. Demeyer, and A. Zaidman, “Change-based test
selection in the presence of developer tests,” in Proc. Conf. on Software
Maintenance and Reengineering (CSMR). IEEE, 2013, pp. 101–110.

[19] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test code
quality and its relation to issue handling performance,” Transactions
on Software Engineering, To appear.

