
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Semantic Versioning
versus Breaking Changes:

A Study of the Maven Repository

Steven Raemaekers, Arie van Deursen, and Joost Visser

Report TUD-SERG-2014-016

SERG

TUD-SERG-2014-016

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication by the 14th IEEE International Working Conference on Source Code Anal-
ysis and Manipulation (SCAM 2014).

Accepted for publication by the IEEE. c© 2014 IEEE. Personal use of this material is permitted. Per-
mission from IEEE must be obtained for all other uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

Semantic Versioning versus Breaking Changes:
A Study of the Maven Repository

Steven Raemaekers
Software Improvement Group
Amsterdam, The Netherlands
Email: s.raemaekers@sig.eu

Arie van Deursen
Technical University Delft

Delft, The Netherlands
Email: arie.vandeursen@tudelft.nl

Joost Visser
Software Improvement Group
Amsterdam, The Netherlands

Email: j.visser@sig.eu

Abstract—For API users, backward compatibility of new
releases is important, as it permits safe and fast upgrading when
the new release becomes available. To signal safe upgrading,
version naming schemes such as semantic versioning provide strict
rules on major (breaking changes permitted) versus minor and
patch (no breaking changes permitted) releases. In this paper, we
analyze seven years of library release history in Maven Central,
and contrast version identifiers with actual incompatibilities. We
find that around one third of all releases introduce at least one
breaking change, and that this figure is the same for minor and
major releases. Furthermore, we find that deprecation tags that
could signal breaking changes are hardly used. We explore the
wider implications of our findings, concerning education, tool
support, versioning principles, and repository mining research.

Keywords—Semantic versioning, Software libraries

I. INTRODUCTION

For users of software libraries or public programming
interfaces (APIs), backward compatibility is a desirable trait.
Without compatibility, library users will face increased risk
and cost when upgrading their dependencies. In spite of these
costs and risks, library upgrades may be desirable or even
necessary, for example if the newer version contains required
additional functionality or critical security fixes. To conduct
the upgrade, the library user will need to know whether there
are incompatibilities, and, if so, which ones.

Determining whether there are incompatibilities, however,
is hard to do for the library user (it is, in fact, undecidable
in general). Therefore, it is the library creator’s responsibility
to indicate the level of compatibility of a library update.
One way to inform library users about incompatibilities is
through version numbers. As an example, semantic versioning1

(semver) suggests a versioning scheme in which three digit
version numbers MAJOR.MINOR.PATCH have the following
semantics:

MAJOR:This number should be incremented when incom-
patible API changes are made;

MINOR:This number should be incremented when func-
tionality is added in a backward-compatible man-
ner;

PATCH: This number should be incremented when
backward-compatible bug fixes are made.

These principles were formulated in 2010 by (GitHub founder)

1http://semver.org

Tom Preston-Werner.2 As argued in the semantic versioning
specification, “these rules are based on but not necessarily
limited to pre-existing widespread common practices in use in
both closed and open-source software.”

Similarly, Microsoft .NET suggests the following distinc-
tion between major and minor releases3:

Major: “A higher version number might indicate a major
rewrite of a product where backward compatibility
cannot be assumed.”

Minor: “If the name and major version number on two
assemblies are the same, but the minor version
number is different, this indicates significant en-
hancement with the intention of backward com-
patibility.”

But how common are these practices in reality? Are such
changes just harmless, or do they actually hurt by causing
rework? Do breaking changes mostly occur in major releases,
or do they occur in minor releases as well? Do major and
minor releases differ in terms of typical size? Furthermore,
for the breaking changes that do occur, to what extent are
they signalled through, e.g., deprecation tags? Finally, does the
presence of breaking changes affect the time (delay) between
library version release and actual adoption of the new release
in clients?

In this paper, we seek to answer questions like these. To do
so, we make use of seven years of versioning history as present
in the collection of Java libraries available through Maven’s
central repository.4 Our dataset comprises around 150,000
binary jar files, corresponding to around 22,000 different li-
braries for which we have 7 versions on average. Furthermore,
our dataset includes cross-usage of libraries (libraries use other
libraries in the dataset), permitting us to study the impact of
incompatibilities in concrete clients as well.

As an approximation of the (undecidable) notion of back-
ward compatbility, we use binary compatibility as defined in
the Java language specification. This is an underestimation,
since binary incompatibilities are certainly breaking, but there
are likely to be different (semantic) incompatibilities as well.
As a measurement for the amount of changed functionality in a

2Github actively promotes semver and encourages all 10,000,000 projects
hosted by GitHub to adopt it.

3http://msdn.microsoft.com/en-us/library/system.version%28v=vs.110%29.
aspx

4http://search.maven.org/

SERG Semantic Versioning versus Breaking Changes: A Study of the Maven Repository

TUD-SERG-2014-016 1

release, we will use the edit script size between two subsequent
releases. Equipped with this, we will study versioning practices
in the Maven dataset, and contrast them with the idealized
guidelines as expressed in the semver specification.

This paper is structured as follows. We start out, in
Section II, by sketching related work in the area of version
analysis. In Section III, we formulate the research questions we
seek to answer. Then, in Section IV, we describe our approach
to answer these questions, and how we measure, e.g., breaking
changes, changed functionality, and deprecation. In Section V
we start our analysis with descriptive statistics of the Maven
dataset. In Sections VI–IX we present our analysis in full
detail. We discuss the wider implications and the threats to
the validity of our findings in Sections X and XI, after which
we conclude the paper in Section XII.

II. RELATED WORK

To the best of our knowledge, our work is the first
systematic study of versioning principles in a large collection
of Java libraries. However, several case studies on backward
compatible and incompatible changes in public interfaces as
appearing in these libraries have been performed [3], [8], [10],
[14], [19]. For instance, Cossette et al. [3] investigate binary
incompatibilities introduced in five different libraries and aim
to detect the correct adaptations to upgrade to the newer
version of the library. Similarly, Dig et al. [10] investigate
binary incompatibilities in five other libraries and conclude that
most of the backward incompatible API changes are behavior-
preserving refactorings. Dietrich et al. [8] have performed
an empirical study into evolution problems caused by library
upgrades. They manually detect different kinds of source and
binary incompatibilities, and conclude that although incom-
patibility issues do occur in practice, the selected set of issues
does not appear very often.

Another area of active research is to automatically detect
refactorings based on changes in public interfaces [1], [4],
[5], [9], [12], [13], [20]. The idea behind these approaches
is that these refactorings can automatically be “replayed” to
update to a newer version of a library. This way, an adaptation
layer between the old and the new version of the library can
automatically be created, thus shielding the system using that
library from backward incompatible changes.

While our work investigates backward incompatibilities
for given version string changes, Bauml et al. [2] take the
opposite approach, in the sense that they propose a method to
generate version number changes based on changes in OSGi
bundles. A comparable approach in the Maven repository
would be to create a plugin that automatically determines
the correct subsequent version number based on backward
incompatibilities and the amount of new functionality present
in the new release as compared to the previous one.

The Maven repository has been used in other work as
well. Davies et al. [6] use the same dataset to investigate the
provenance of a software library, for instance, if the source
code was copied from another library. They deploy several
different techniques to uniquely identify a library, and find out
its history, much like a crime scene containing a fingerprint.
Ossher et al. [15] also use the Maven repository to reconstruct
a repository structure with directories and version based on

a collection of libraries of which the groupId, artifactId and
version are not known.

Issues with backward incompatibilities can also be found
in web interfaces. Romano et al. [18] investigate changes in
the context of service oriented architectures, in which a web
interface is considered to be a contract between subscribers and
providers. These interfaces are shown to suffer from the same
type of problems as investigated in this paper, which leads to
rework on the side of the subscribers of these interfaces. The
authors propose a tool that compares subsequent versions of
these web interfaces to automatically extract changes.

Developer reactions to API deprecations has been inves-
tigated for the Smalltalk language and ecosystem by Robbes
et al. [17]. They have investigated a set of more than 2,600
distinct Smalltalk systems which contained 577 deprecated
methods and 186 deprecated classes, and found that API
changes caused by deprecation can have a large impact on
developers using that API.

III. RESEARCH QUESTIONS

The overall goal of this paper is to understand to what de-
gree versioning conventions are adhered to in the development
of software libraries. This leads to a better understanding of
how developers use versioning schemes to identify expected
amounts of rework for users of the interfaces they offer.

We regard semver as a formalization of principles that
developers already implicitly embraced, even before the man-
ifesto was released in 2010. We use the explicit rules of
semver as a way to formally test these principles. We want
to find out if developers actually mean to give a signal, for
instance, that a library contains only backward-compatible bug
fixes when releasing a new patch version, or that a library
introduces a substantial number of backward-incompatible
changes to its public interface when releasing a new major
version.

To achieve our overal goal, we seek to answer the following
research questions in this paper:

• RQ1: How are semantic versioning principles applied
in practice in the Maven repository in terms of binary
(in)compatible changes?

• RQ2: Has the adherence to semantic versioning prin-
ciples increased over time?

• RQ3: How are dependencies to newer versions up-
dated, and what are factors causing systems not to
include the latest versions of dependencies?

• RQ4: How are deprecation tags applied to methods in
the Maven repository?

In the next section, we discuss our research method.

IV. METHOD

In this paper, we analyze a snapshot of the Maven’s Central
Repository, dated July 11, 2011.5 Maven is an automated
build system that manages the entire “build cycle” of software

5Obtained from http://juliusdavies.ca/2013/j.emse/bertillonage/maven.tar.gz
based on [6], [7]

Semantic Versioning versus Breaking Changes: A Study of the Maven Repository SERG

2 TUD-SERG-2014-016

projects. To use Maven in a software project, a pom.xml
file is created that specifies the project structure, settings for
different build steps (e.g. compile, package, test) as well as
libraries that the project depends on. These libraries are auto-
matically downloaded by maven, from specified repositories.
These repositories can be private as well as public. For open
source systems, the Central Repository is typically used, which
contains jar files and sources for the most widely used open
source Java libraries.

Our dataset extracted from this central repository contains
148,253 Java binary jar files and 101,413 Java source jar files
for a total of 22,205 different libraries. This gives an average of
6.7 releases per library. For more information on our dataset,
which includes resolved and versioned dependencies at the
method level, we refer to [16].

A. Determining backward incompatible API changes

Determining full backward compatibility amounts to deter-
mining equivalence of functions, which in general is undecid-
able. Instead of such semantic compatiblity, we will rely on
binary incompatibilities.

Binary incompatible changes, in this paper also called
breaking changes, are formally defined by the Java Language
specification as follows: “a change to a type is binary com-
patible with (equivalently, does not break binary compatibility
with) pre-existing binaries if pre-existing binaries that previ-
ously linked without error will continue to link without error.”6

In this paper, we will use the following working definition:
breaking changes are any changes to a library interface that
require recompilation of systems using the changed function-
ality. Examples of breaking changes are method removals and
return type changes7.

To detect breaking changes between each subsequent pair
of library versions, we use Clirr8. Clirr is a tool that takes two
jar files as input and returns a list of changes in the public
API. Clirr is capable of detecting 43 API changes in total, of
which 23 are considered breaking and 20 are considered non-
breaking. Clirr does not detect all binary incompatibilities that
exist, but it does detect the most common ones (see Table 2).
We executed Clirr on the complete set of all subsequent
versions of releases in the Maven repository. The approach
to determine subsequent versions is described next.

Whenever Clirr finds a binary incompatibility between two
releases, those releases are certainly not compatible. However,
if Clirr fails to find a binary incompatibility, the releases can
still be semantically incompatible. As such, our reports on e.g.,
the percentage of releases introducing breaking changes is an
underestimation: The actual situation may be worse, but not
better.

B. Determining subsequent versions and update types

In the Maven repository, each library version (a single jar
file) is uniquely identified by its groupId, artifactId,
and version, for instance “org.springframework”,

6http://docs.oracle.com/javase/specs/jls/se7/html/jls-13.html
7For an overview of different types of binary incompatibilities and a detailed

explanation, see http://wiki.eclipse.org/Evolving Java-based APIs
8http://clirr.sourceforge.net

“spring-core” and “2.5.6”. To determine subsequent
version pairs, we sort all versions with the same groupId
and artifactId based on their version string. We used
the Maven Artifact API9 to compare version strings with each
other, taking into account the proper sorting given the major,
minor, patch and prerelease in a given version string. For each
subsequent pair of releases from this sorted list, the release
type is determined according to the change in version number.
For instance, a change in version number from “1.0” to “1.1”
was marked as a minor release. We do not check whether
version numbers are incremented properly, i.e. if there are no
gaps in version numbers.

Since semver applies only to version numbers containing
a major, minor and patch version number, we only investigate
pairs of library versions which are both structured according to
the format “MAJOR.MINOR.PATCH” or “MAJOR.MINOR”.
In the latter case, we assume an implicit patch version number
of 0.

Semantic versioning also permits prereleases, such as
1.2.3-beta1 or (as commonly used in a maven setting)
1.2.3-SNAPSHOT. We exclude prereleases from our anal-
ysis since semver does not provide any rules regarding
breaking changes or new functionality in these release types.

C. Detecting changed functionality

In order to compare major, minor, and patch releases in
terms of size, we look at the amount of changed functionality
between releases. To do so, we look at the edit script between
each pair of subsequent versions, and measure the size of these
scripts. We do so by calculating differences between abstract
syntax trees (ASTs) of the two versions. Hence, we can see,
for example, the total number of statements that needs to be
inserted, deleted, updated or moved to convert the first version
of the library into the second. We use the static code analysis
tool ChangeDistiller 10 to calculate edit scripts between library
versions. For more information on ChangeDistiller, we refer
to [11].

D. Obtaining release intervals and dependencies

To calculate release intervals, we collect upload dates for
each jar file in the Maven Central Repository. Unfortunately,
not for all libraries a valid upload date is available. Ultimately,
for 129,183 out of 144,934 (89.1%) libraries we could identify
a valid release date.

E. Obtaining deprecation patterns

For API developers, the Java language offers the possi-
bility to warn about future incompatibilities by means of the
“@Deprecated” annotation.11 Old methods can be marked
as deprecated, but as they are not removed backward compati-
bility is retained. Also in semver, the use of such annotations
is required, before methods are actually removed.

We detect deprecated methods in the following way. We
extract the source code from source jar files for each library

9http://maven.apache.org/ref/3.1.1/maven-artifact
10https://bitbucket.org/sealuzh/tools-changedistiller
11http://docs.oracle.com/javase/1.5.0/docs/guide/javadoc/deprecation/

deprecation.html

SERG Semantic Versioning versus Breaking Changes: A Study of the Maven Repository

TUD-SERG-2014-016 3

Pattern Example #Single #Pairs Incl.
1 MAJOR.MINOR 2.0 20,680 11,559 yes
2 MAJOR.MINOR.PATCH 2.0.1 65,515 50,020 yes
3 #1 or #2 with nonnum. chars 2.0.D1 3,269 2,150 yes
4 MAJOR.MINOR-prerelease 2.0-beta1 16,115 10,756 no
5 MAJOR.MINOR.PATCH-pre. 2.0.1-beta1 12,674 8,939 no
6 Other versioning scheme 2.0.1.5.4 10,930 8,307 no

Total 129,138 91,731

Table 1. Version string patterns and frequencies of occurrence in the Maven
repository.

and, for performance reasons, textually search for occurrences
of the string “@Deprecated” first. Only when at least one
deprecated tag is found, we parse the complete source code
of the library using the JDT (Java Development Tools) Core
library12.

Using JDT, we create an abstract syntax tree for each
source file, and apply a visitor to find out which methods
have deprecation tags. Next versions of the same method
are connected using method header (name and parameters)
matching. Combining this information with the update types
from Section IV-B makes it possible to distinguish between
different types of deprecation patterns.

V. DESCRIPTIVE STATISTICS

Before answering our research questions, we provide an
overview of the actual use of version strings that comply with
semver, and of the most common types of breaking changes
in the Maven dataset.

A. Version string patterns

Table 1 shows the six most common version string patterns
that occur in the Maven repository. For each pattern, the table
shows the number of libraries with version strings that match
that pattern (#Single) and the number of subsequent versions
that both follow the same pattern (#Pairs) – we will use
the latter to identify breaking changes between subsequent
releases.

The first three versioning schemes correspond to actual
semver releases, whereas the remaining ones correspond to
prereleases. Since prerleases can be more tolerant in terms
of breaking changes (semver does not state what the re-
lationship between prereleases and non-prereleases in terms
of breaking changes and new functionality is)13 we exclude
prereleases from our analysis.

The table shows that the majority of the version strings
(69.3%) is formatted according to the first two schemes,
and 22.3% of the version strings contains a prerelease label
(patterns 4 and 5). The difference between the single and the
pair frequency is due to two reasons: (1) the second version
string of an update can follow a different pattern than the first;
and (2) a large number of libraries only has a single release
(6,442 out of 22,205 libraries, 29%).

12http://www.eclipse.org/jdt/core
13Pre-releases in maven correspond to -SNAPSHOT releases, which should

not be distributed via Maven’s Central Repository (see https://docs.sonatype.
org/display/Repository/Sonatype+OSS+Maven+Repository+Usage+Guide)

Breaking changes
Change type Frequency
1 Method has been removed 177,480
2 Class has been removed 168,743
3 Field has been removed 126,334
4 Parameter type change 69,335
5 Method return type change 54,742
6 Interface has been removed 46,852
7 Number of arguments changed 42,286
8 Method added to interface 28,833
9 Field type change 27,306

10 Field removed, previously constant 12,979

Non-breaking changes
Change type Frequency
1 Method has been added 518,690
2 Class has been added 216,117
3 Field has been added 206,851
4 Interface has been added 32,569
5 Method removed, inherited still exists 25,170
6 Field accessibility increased 24,954
7 Value of compile-time constant changed 16,768
8 Method accessibility increased 14,630
9 Addition to list of superclasses 13,497

10 Method no longer final 9,202

Table 2. The most common breaking and non-beaking changes in the Maven
repository as detected by Clirr.

Contains at least 1 breaking change
Update type Yes % No % Total

Major 4,268 35.8% 7,624 64.2% 11,892
Minor 10,690 35.7% 19,267 64.3% 29,957
Patch 9,239 23.8% 29,501 76.2% 38,740
Total 24,197 30.0% 56,392 70.0% 80,589

Table 3. The number of major, minor and patch releases that contain breaking
changes.

B. Breaking and non-breaking changes

Table 2 shows the top 10 breaking and non-breaking
changes in the Maven repository as detected by Clirr. The most
frequently occurring breaking change is the method removal,
with 177,480 occurrences. A method removal is considered to
be a breaking change because the removal of a method leads to
compilation errors in all places where this method is used. The
most frequently occurring non-breaking change as detected by
Clirr is the method addition, with 518,690 occurrences.

Table 3 shows the number of major, minor and patch
releases containing at least one breaking change. The table
shows that 35.8% of major releases contains at least one
breaking change, which in accordance with guidelines such
as semver. We also see that 35.7% of minor releases and
23.8% of patch releases contain at least one breaking change.
This is in sharp contrast to the requirement that minor and
patch releases should be backward compatible. The overall
number of releases that contain at least one breaking change
is 30.0%.

The table shows that there does not exist a large difference
between the percentage of major and minor releases that
contain breaking changes. This indicates that semver is not
adhered to in practice with respect to breaking changes. If
this were the case, the number of minor and patch releases
containing breaking changes would be 0 in the table. The total
number of updates in Table 3 (80,589) differs from the total
number of pairs in Table 1 because of missing or corrupt jar
files, which have a version string but cannot be analyzed by
Clirr.

Semantic Versioning versus Breaking Changes: A Study of the Maven Repository SERG

4 TUD-SERG-2014-016

#Breaking #Non-break. Edit script Days
Type µ σ2 µ σ2 µ σ2 µ σ2

Major 58.3 337.3 90.7 582.1 50.0 173.0 59.8 169.8
Minor 27.4 284.7 52.2 255.5 52.7 190.5 76.5 138.3
Patch 30.1 204.6 42.8 217.8 22.7 106.5 62.8 94.4
Total 32.0 264.3 52.2 293.3 37.2 152.3 67.4 122.9

Table 4. Analysis of the number of breaking and non-breaking changes, edit
script size, and release intervals of major, minor, and patch releases.

VI. RQ1: MAJOR VS MINOR VS PATCH RELEASES

To understand the adherence of semantic versioning prin-
ciples for major, minor, and patch releases, Table 4 shows the
average number of breaking changes, non-breaking changes,
edit script size and number of days for the different release
types. Each release is compared to its immediate previous
release, regardless of the release type of this previous release.

As the table shows, on average there are 58 breaking
changes in a major release. Minor and patch releases introduce
fewer breaking changes (around half as many as the major
releases), but 27 and 30 on average is still a substantial
number (and clearly not 0 as semantic versioning requires).
The differences between the three update types are significant
with F = 7.31 and p = 0, tested with a nonparametric Kruskall-
Wallis test, since the data is not normally distributed14.

In terms of size, major releases are somewhat smaller
than minor releases (average edit script size of 50 and 52,
respectively), with patch releases substantially smaller (22),
with F = 117.49 and p = 0. This provides support for the rule
in semver stating that patch releases should contain only bug
fixes, which overall would lead to smaller edit script sizes than
new functionality.

With respect to release intervals, these are on average 2 (for
major and patch releases) to 2.5 months (for minor releases),
with F = 115.47 and p = 0. It is interesting to see that minor,
and not major updates take the longest time to release.

Care must be taken when interpreting the mean for skewed
data. All data in this table follows a strong power law, in
which the most observations are closer to 0 and there are a
relative small amount of large outliers. Nonetheless, a larger
mean indicates that there are more large outliers present in the
data.

Thus, to answer RQ1: The strict principles of semantic
versioning regarding breaking changes are not adhered to in
practice. Instead of being free of breaking changes, minor and
patch releases include 30 breaking changes on average.

In Section X we will get back to these results and try to
provide explanations. We first continue with an analysis of
adherence to semver through time.

VII. RQ2: SEMANTIC VERSIONING ADHERENCE OVER
TIME

To find out if the adherence to semver has changed over
time, we plot the number of major, minor and patch releases
through time and the number of releases containing breaking
changes over time. This plot is shown in Figure 5.

14Even if the data is not normally distributed, we still summarize the data
with a mean and standard deviation to provide insight in the data.

1
0%

10
%

20
%

30
%

40
%

50
%

60
%

Pe
rc

en
ta

ge

2006 2007 2008 2009 2010 2011
Year

Major Minor
Patch Breaking
Breaking if non-major

Figure 5. The percentage of major, minor, patch, breaking, and breaking if
non-major releases through time.

The figure shows that the ratio of major, minor and patch
releases is relatively stable and around 15%, 30% and 50%,
respectively. The percentage of major releases per year seems
to decrease slightly in later years.

Regardless of release type, one in every three releases
contains breaking changes. This percentage is relatively stable
but slightly decreasing in later years. One out of every four
releases violates semver (“breaking if non-major”), but this
percentage also slightly decreases in later years: from 28.4%
in 2006 to 23.7% in 2011.

To answer RQ2: The adherence to semantic versioning
principles has increased over time with a moderate decrease
of breaking changes in non-major releases from 28.4% in 2006
to 23.7% in 2011.

VIII. RQ3: UPDATE BEHAVIOR

The key reason to investigate breaking changes is that they
complicate upgrading a library to its latest version. To what
extent is this visible in the maven dataset? What delay is there
typically between a library release and the usage of that release
by other systems? Is this delay affected by breaking changes?

To investigate the actual update behavior of systems using
libraries, we collected all updates from the Maven repository
that update one of their dependencies. Thus, we investigate
usage scenarios within the maven dataset.

We obtained a list of 2,984 updates from the Maven
repository of the form 〈Sx, Sx+1, Ly, Ly+1〉, where L is a
dependency of S which was updated from version y to version
y + 1 in the update of S from x to x + 1. For example,
when the Spring framework included version 3.8.1 of JUnit in
version 2.0, but included version 3.8.2 in version 2.1, Spring
framework performed a minor update of JUnit in a patch
release.

Table 6 shows the number of updates of different types
of S and L in the Maven repository. The table shows that
most major updates of dependencies (543) are performed in
major updates of S, and most minor updates of dependencies

SERG Semantic Versioning versus Breaking Changes: A Study of the Maven Repository

TUD-SERG-2014-016 5

Update L
Update S Major Minor Patch Total

Major 543 189 82 814
Minor 651 791 227 1,669
Patch 150 54 297 501
Total 1,344 1,034 606 2,984

Table 6. The number of updates of different types of S and simultaneous
updates of dependency L.

L1

uses

Jan 1 May 1Feb 1 Mar 1 Apr 1

S1

L2

S2 S3
next ver.

L3

Aug 1
S3-L Update lag

patch major minor

One minor
release lagging

Figure 7. An example of a timeline with a system S updating library L.

(791) are performed in minor updates of S. The same is true
for patch updates of dependencies, which are most frequently
updated in patch updates of S (297).

To further investigate update behavior of dependencies, we
calculate the number of versions of L that S lags behind, as
illustrated in Figure 7. The figure shows an example of three
versions of S, and a dependency L of S. On January 1, L1, a
patch update, is released. S1 decides to use this version in its
system. On March 1, a major update of L is released, L2. The
next release of S, S2, happens on April 1. This release still
includes L1, although L2 was already available to include in
S2. The same is true for S3, which could have included L3 but
still includes L2. The period that S has been using L1 is from
February 1, to April 1. The total time that S has a dependency
on L is from February 1 to August 1.

This example illustrates that there can exist a lag between
the release of a new version of L and the inclusion in S. In
this example, S3 lags one minor release behind, and could have
included L3. The time S3 theoretically could update to L3 is
between May, 1 and August, 1.

For each system S and each of its dependencies L, we
calculate the number of major, minor and patch releases that
version of S lags behind. The release dates of Sx and Ly
are used to determine the number of releases after Ly but
before Sx.

Table 8 shows percentiles for the number of major, minor
and patch versions that dependencies L of system S are lagging
as compared to the latest releases of L at the release date
of S. For instance, when a system released a new version
at January 1, 2013 and that release included a library with
version 4.0.1 but there have been 10 minor releases of that
library before January 1 and after the release date of version
4.0.1 that could have been included in that release of S, the
number of minor releases lagging is 10 for that system-library
combination. These numbers are calculated for each system-
library combination separately.

min p25 p50 p75 p90 p95 p99 max
Major 0 0 0 0 1 1 4 22
Minor 0 0 0 1 2 4 6 101
Patch 0 0 0 1 5 6 13 46

Table 8. Percentiles for the number of major, minor and patch dependency
versions lagging.

Breaking changes Edit script size
Major versions lagging 0.0772 -0.0701
Minor versions lagging 0.1440 0.1272
Patch versions lagging 0.0190 0.0199

Table 9. Spearman correlations between the size of the update lag of L and
breaking changes and the edit script size in the next version of L.

The table shows that the number of major releases that
S lags on average tends to be smaller than the number of
minor and patch releases lagging. The distributions are highly
skewed, with a median of 0 for all three release types and a
75th percentile of 1 for minor and patch releases, indicating
that the majority of library developers include the latest
releases of dependencies in their own libraries. The numbers
also indicate that developers tend to better keep up with the
latest major releases than with minor and patch releases, as
indicated by the 90th percentile of 1 for major releases and a
90th percentile of 5 for patch releases.

To better understand the reasons underlying the update lag,
we investigate two properties of libraries that could influence
the number of releases that systems are lagging: the edit
script size and the number of breaking changes of these
dependencies. We hypothesize that people are reluctant to
update to a newer version of a dependency when it introduces a
large number of breaking changes or introduces a large amount
of new or changed functionality. To test this, we investigate
whether a positive correlation exists between the number of
major, minor and patch releases lagging in libraries using a
dependency and the number of breaking changes and changed
functionality in new releases of that dependency. We calculate
Spearman correlations between the number of versions lagging
and the number of breaking changes and edit script size in
these versions.

The results are shown in Table 9. The table shows Spear-
man correlations, which are calculated on 13,945 observations
and all have a p-value of 0. The correlations are generally very
weak, with the maximum correlation being 0.1440 between the
number of minor versions lagging and the number of breaking
changes in these dependencies.

The results indicate that although the number of breaking
changes and the edit script size of a library does seem to have
some influence on the number of library releases systems are
lagging, the influence generally is not very large.

To answer RQ3: updates of dependencies to major releases
are most often performed in major library updates. There exists
a lag between the latest versions of dependencies and the
versions actually included, with the gap being the largest for
patch releases and the smallest for major releases. There exists
a small influence of the number of backward incompatibilities
and of the amount of change in new versions on this lag.

IX. RQ4: DEPRECATION PATTERNS

As we have seen, breaking changes are common. To deal
with breaking changes, the Java language offers deprecation

Semantic Versioning versus Breaking Changes: A Study of the Maven Repository SERG

6 TUD-SERG-2014-016

annotations. For the use of such annotations, semantic version-
ing provides the following rules for deprecation of methods
in public interfaces: “a new minor release should be issued
when a new deprecation tag is added. Before the functionality
is removed completely in a new major release, there should
be at least one minor release that contains the deprecation
so that users can smoothly transition to the new API.”15 Thus,
whenever there is a breaking change (which must be in a major
release), this should be preceded by a deprecation (which can
be in a minor release).

In this section, we investigate whether this principle is
adhered to in practice. We investigate how many libraries
actually deprecate methods, and if they do, how many releases
it takes before these methods get deleted, if at all. We also find
out if there is indeed at least one minor change in between
before the method is removed, as semver prescribes.

In total, 1196 out of 22,205 artifacts (5.4%) contain at least
one method deprecation tag. Given our observation that 1 in 3
releases introduces breaking changes, this number immediately
appears to be too low.

Table 10 shows different possible deprecation patterns. The
table uses a typical library with 4 releases (two major, two
minor). For each pattern in the table, we count its frequency
in the maven data set. As the table shows, there are a couple
of different ways to deprecate and delete methods in major
or minor releases, some of which are correct according to
semver (column c).

Cases 1 and 2 in Table 10 show an example of a private
method with and without deprecation tags. As the table shows,
the first case occurs in 24.24% of all methods. Since semver
is only about versioning and changes in public interfaces, these
cases are therefore not investigated further. Case 3 shows a
public method that is neither deleted nor deprecated, which
is the most common life cycle for a method (42% of the
cases). Case 4 shows a public method that is deprecated, but
is never removed in later versions. According to the principles
regarding deprecation as stated in semver, this is correct
behavior. As the table shows, this is the most common use of
the deprecation tag, even though it is used in just 793 methods.
Case 5 shows a public method that is removed from the
interface but never declared deprecated, which is not correct:
This is the typical case of introducing a breaking change in a
minor release. Case 6 deprecates the method, but deletes it in
a minor release, which would not be correct. This case does
not occur. Case 7 declares the method deprecated in a major
release, which would also be incorrect (and which does not
occur). Case 8 shows an example of deprecation by the book,
exactly as prescribed by semver. The method is declared
deprecated in a minor release, there is another minor release
that also declares the method deprecated and in the next major
release, the method is removed. This correct pattern does not
occur at all in the maven data set. Case 9 shows a method
that is undeprecated, about which semver does not explicitly
contain a statement.

As the table further shows, public methods without a
deprecated tag in their entire history are in the majority with
42.27%. Surprisingly, the number of public methods that ever

15http://semver.org/spec/v2.0.0.html

get deprecated in their entire history is only 793, or 0.30%. The
number of public methods that get deleted without a deprecated
tag is 86,449, or 33.03%. The number of methods that get
deleted after adding a deprecated tag to an earlier version is
0 (cases 6 and 8). Finally, the number of methods that get
“undeprecated” is 0.01%.

These results are surprising since they suggest that develop-
ers do not apply deprecation patterns in the way that semver
proposes. In fact, developers do not seem to use the deprecated
tag for methods very often at all. Most public methods get
deleted without applying a deprecated tag first (case 5), and
methods that do get a deprecated tag are almost never deleted
(case 4). This suggests that developers are reluctant to remove
deprecated functionality from new releases, possibly because
they are afraid to break backward compatibility. Case 8 is,
according to semver, the only proper way to deprecate and
delete methods. However, the pattern was not found in the
entire Maven repository.

To answer RQ4: Developers do not follow deprecation
guidelines as suggested by semantic versioning. Most public
methods are deleted without applying a deprecated tag first,
and when these tags are applied to methods, these methods
are never deleted in later versions.

X. DISCUSSION

The results of this study indicate that the stability of inter-
faces and mechanisms to signal this instability to developers
leaves much to be desired. One in every three interfaces con-
tains breaking changes, and additionally, one in three interfaces
that should not contain breaking changes actually does. The
usage of the deprecation tag and the deletion of methods in
the Maven repository show that the average developer tends to
disregard the effects his actions have on clients of a library.

A. Low adherence explained

Even though the used versioning schemes on itself of a
large number of libraries conforms to the versioning scheme as
endorsed by semver, developers apparently do not conform
to the actual rules as set out by this standard. If developers
would adhere completely to these principles and their releases
contain the same amount of breaking changes as found in
the Maven repository, the number of major releases should
be much larger than is currently the case. This low adherence
is surprising since there are no other mechanisms available,
except versioning schemes and deprecation tags, which signal
interface instability. We argue that the principles set out by
semver should be followed by every developer of software
libraries, or any piece of software that is used by external
developers.

We argue that ultimately, better designed and more stable
interfaces leads to a lower maintenance burden of software
in general. When a library user, or a user of any piece of
publicly available functionality knows that there are expected
changes when upgrading to a newer version, the developer can
anticipate this and choose to postpone or include the update.
Strict adherence to semantic versioning principles also forces
librar developers to think hard about the functionality they
release, and about the design of the public interface they
are releasing. It is increasingly hard for library developers

SERG Semantic Versioning versus Breaking Changes: A Study of the Maven Repository

TUD-SERG-2014-016 7

v1 (maj.) v2 (min.) v3 (min.) v4 (maj.) c i Freq. %
1 pr m1 pr m1 pr m1 pr m1 y n 63,698 24.34
2 pr m2 pr m2 pr @d m2 pr @d m2 y n 113 0.04
3 pu m3 pu m3 pu m3 pu m3 y n 110,613 42.27
4 pu m4 pu @d m4 pu @d m4 pu @d m4 y y 793 0.30
5 pu m5 pu m5 - - n y 86,449 33.03
6 pu m6 pu @d m6 - - n y 0 0
7 pu m7 pu m7 pu m7 pu @d m7 n y 0 0
8 pu m8 pu @d m8 pu @d m8 - y y 0 0
9 pu m9 pu @d m9 pu m9 pu m9 n y 16 0.01

Table 10. Possible method deprecation patterns. @d = deprecated tag, c = correct, i = interesting; pr = private; pu = public; – = method deleted.

to change their overall design of their interface after it has
been published. This problem becomes worse the more users
actually use the interface. Releasing a new major release can
effectively signal that continuity of the old interface should not
be expected and that radical changes may be present. However,
when this mechanism is only partially used, which we have
shown is the case in the Maven repository, it becomes unclear
what exactly a major release means.

The concept of an interface can be best thought of as
a set of mathematical functions, which are by definition
immutable. Daily software engineering practice, however, is
different, since changes to these functions are common. By
using semantic versioning principles, interface consumers are
signaled that the normal expectation that they might have
regarding the stability of interface functions does not hold in
a particular case.

A possible explanation for the low adherence to semver is
that the Java modularization mechanism is not suited to provide
all visibility levels as desired by developers. For instance,
developers sometimes release “internal” packages. These are
packages that should be hidden from outside developers and
are only meant to be used by the developers themselves. The
problem with internal packages is that they are publicly visible,
meaning that outside developers have complete access to these
packages, just like regular packages. What is missing from the
Java language is another layer of visibility, which hides internal
packages from outside users. An example of a mechanism
that does provide this level of visibility is the modularization
structure of the OSGi framework. Additionally, entire libraries
are sometimes released that are only meant to be used by
the developers themselves, even without the use of internal
packages. Java or the Maven repository also do not provide
support to prevent external users from using these libraries.
In fact, these libraries should have never been released in the
Maven repository to begin with.

The low number of methods that use the deprecation tag
in the entire Maven repository was surprising. A possible
explanation for this is that classes can also be deprecated
completely, without individually deprecating all methods in
that class. Our analysis will not detect these cases. Future work
could further investigate whether developers deprecate entire
classes instead of deprecating only single methods.

B. Actual usage frequencies

In our research, we do not take into account the difference
between internal and non-internal packages. We also do not
take into account the actual usage of packages, classes and
methods with breaking changes. It makes a difference whether

a public method in the interface of a library is used frequently
by other developers, such as AssertEquals in JUnit, or the
method is not used at all by other developers. We consider the
impact of breaking changes on libraries using that functionality
outside the scope of this paper. However, semver does not
state that breaking changes in major releases can only occur
in parts of the library that are never used, but instead states
that breaking changes should never be present in minor and
patch releases, regardless of actual usage.

Future work could investigate the difference in the occur-
rence of breaking changes in functionality that is actually used
by other developers and breaking changes in internal packages.
Also, the adherence to semver in libraries that use the OSGi
framework could be investigated. We expect that the adherence
to semver is higher in packages that use OSGi since OSGi
provides an additional layer of visibility which would prevent
counting breaking changes in internal packages.

C. Release interval and edit script size

Table 4 showed that major releases have smaller release
intervals and also contain less functional change. We expected
that major releases have larger release intervals instead. This
could be explained by the fact that developers often start
working on a major release alongside the minor or patch
release (by creating a branch) of the previous version, which
would decrease the actual release interval.

The table also shows that major releases generally contain
less changed functionality than minor releases, as measured
by edit script size. A possible explanation for this is that
developers create a new major release especially for backward
incompatible changes in its API, and new functionality is
added later. Seen this way, a major release can be interpreted
as a signal that gives information on significant changes in the
interface of a library, while saying nothing about the amount
of changed functionality in the release.

D. The birth of semantic versioning principles

The snapshot of the Maven repository that was analyzed
in this paper contained releases until July 11, 2011. The
commit history of the GitHub repository of semver.org16

showed that the first commit was performed on December 14,
2009. The question rises how widespread the knowledge about
semver was before the first version of semver was online.

It is unclear when semantic versioning principles were
started to be used by developers, but we believe that the prin-
ciples on semver.org are simply a summary of principles

16https://github.com/mojombo/semver.org/commits/gh-pages?page=5

Semantic Versioning versus Breaking Changes: A Study of the Maven Repository SERG

8 TUD-SERG-2014-016

that were already known in the developer community, but had
not been encoded in a comprehensive manifesto before. This
hypothesis is supported by the fact that comparable semantic
versioning principles have been encoded elsewhere, such as
the one by the OSGi alliance17, which released their semantic
versioning principles on may 6, 2010 and which contains
comparable guidelines as the ones by semver.

Furthermore, there exist several alternative versioning ap-
proaches18, but the versioning schemes described in these
approaches do not seem to be used in the Maven repository,
as can be seen in Table 1. For this reason, only adherence to
the principles stated by semver was checked in this paper.

E. Major version 0 releases

Semver states that “Major version zero (0.y.z) is for initial
development. Anything may change at any time. The public
API should not be considered stable.”. We did not consider
whether the effects as tested in this paper also hold for releases
with a major version of zero. The number of releases having
a major version of 0 is 10.44% (13,162 / 126,070), which is a
substantial part of all releases. Future work could investigate
whether the principles as tested in this paper are also visible in
releases with a major version of 0. We expect that the number
of breaking changes in these releases will be considerably
higher than other releases.

XI. THREATS TO VALIDITY

A. Internal validity

The release dates of libraries as obtained from the central
Maven repository are sometimes incorrect, as demonstrated by
the disproportionally large number of libraries with a release
date of November 5th, 2005 (2,321, 1.5%). These data points
were excluded from our analysis, but we do not have absolute
certainty of the correctness of the remaining release dates.
Another indication that release dates were not always correct is
the fact that an ordering based on release dates and an ordering
based on version numbers of a single artifact does not always
give the same rankings. In these cases, the ordering in version
numbers was assumed to be correct. These possibly invalid
data points do influence our analysis on the number of days
between releases, however, but we assume that on average,
our statistical analyses provides us with a robust average.
A manually checked sample of 50 random library versions
and their release dates on the corresponding websites were
all correct. This sample gives us confidence in the overall
reliability of the release dates in the repository.

We only investigated the changes in subsequent library ver-
sions which both have a “proper” version string, i.e. a specified
major and minor release number. When a prerelease string was
included in the version number, no analysis was performed on
the number of breaking changes since semver does not state
whether prereleases can contain breaking changes. This does
not introduce a bias in our study since we want to test whether
libraries that do have a proper versioning scheme adhere to
semver.

17http://www.osgi.org/wiki/uploads/Links/SemanticVersioning.pdf
18http://en.wikipedia.org/wiki/Software versioning

Not all subsequent versions of methods could be recog-
nized while scanning for the deprecation patterns in Section
IX. Library versions were parsed separately, leaving the prob-
lem that different objects representing the same method in
different versions should be connected with each other. For per-
formance reasons, this was done by text matching of method
names and the number of parameters. Overloaded methods
with the same number of parameters were not taken into
account in this analysis. Future work could further investigate
whether deprecation patterns are different for methods with
overloaded versions with the same number of parameters.

The low number of deprecation tags detected in the Maven
repository is surprising. However, we have confidence in our
methodology to detect these tags since deprecation patterns
were scanned in two different ways. First, a textual search
was performed to search for literal occurences of the string
“@Deprecated”. Second, when a deprecated tag was found
in a library, the complete library was parsed and and AST’s
were created. This approach therefore makes it impossible
to miss a deprecated tag. In future work, we could further
investigate causes for the low number of deprecated tags.

B. External validity

While our findings are directly based on an exploration
of semantic versioning principles in Maven, we believe many
of them will hold beyond this setting. For example, in other
eco-systems, such as .NET libraries, nuget19 packages (the
.NET counterpart of Maven), OSGi bundles, or Ruby gems20,
similar phenomena may be observed. In the domain of software
services, versioning and compatibility play a role not just at
compile time, but also at runtime, as services may be dynami-
cally replace with (hopefully compatible) updates. Here, again,
a need for dealing with breaking changes will occur, as well
as a need for managing this through deprecation tags.

Future work could investigate to what degree the patterns
found in our dataset are representative for software libraries
outside the Maven repository, software libraries written in
other languages than Java or software systems in general. To
test our hypothesis that other library repositories also show the
same patterns, further research is needed. Future work could
also replicate the same patterns in a set of industrial software
systems.

C. Reproducability and reliability

There was substantial computing power involved to obtain
data for this paper: data was obtained on a supercomputer
with 100 processing nodes with an aggregated running time
of almost six months. Without access to the same amount of
computing power, the data will be very hard to reproduce.
We nevertheless provide our dataset and tools available for
download21.

XII. CONCLUSION

In this paper, we have looked versioning as adopted by
over 22,000 open source libraries distributed through Maven

19http://www.nuget.org
20http://www.rubygems.org
21Download link will be made available upon publication

SERG Semantic Versioning versus Breaking Changes: A Study of the Maven Repository

TUD-SERG-2014-016 9

Central. In particular, we investigated whether principles as
formulated by semantic versioning are adhered to, which
specifies rules about the introduction of breaking changes in
relation to version number increments.

Our findings are as follows:

• The introduction of breaking changes is widespread:
Around one third of all releases introduce at least one
breaking change.

• While semantic versioning prescribes that breaking
changes are only permitted in major releases, we see
little difference between these two: One third of the
major as well as one third of the minor releases
introduce at least one breaking change.

• The presence of breaking changes has little influence
on the actual delay between the availability of a library
and the use of the newer version of that library.

• Deprecation tags are used very little, and never in the
way as strictly suggested by semantic versioning.

The results indicate that the current mechanisms to signal
interface instability are not used properly.

REFERENCES

[1] Ittai Balaban, Frank Tip, and Robert Fuhrer. Refactoring support for
class library migration. SIGPLAN Not., 40(10):265–279, October 2005.

[2] Jaroslav Bauml and Premek Brada. Automated versioning in OSGi: A
mechanism for component software consistency guarantee. In Proceed-
ings of the 2009 35th Euromicro Conference on Software Engineering
and Advanced Applications, SEAA ’09, pages 428–435, 2009.

[3] Bradley E. Cossette and Robert J. Walker. Seeking the ground truth: a
retroactive study on the evolution and migration of software libraries.
In Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, FSE ’12, pages 55:1–55:11,
New York, NY, USA, 2012. ACM.

[4] Ilie Şavga and Michael Rudolf. Refactoring-based support for binary
compatibility in evolving frameworks. In Proceedings of the 6th
International Conference on Generative Programming and Component
Engineering, GPCE ’07, pages 175–184, 2007.

[5] Barthélémy Dagenais and Martin P. Robillard. Recommending adaptive
changes for framework evolution. In Proceedings of the 30th interna-
tional conference on Software engineering, ICSE ’08, pages 481–490,
2008.

[6] Julius Davies, Daniel M. German, Michael W. Godfrey, and Abram
Hindle. Software bertillonage: Finding the provenance of an entity.
In Proceedings of the 8th Working Conference on Mining Software
Repositories, MSR ’11, pages 183–192, 2011.

[7] Julius Davies, Daniel M. Germán, Michael W. Godfrey, and Abram
Hindle. Software bertillonage - determining the provenance of software
development artifacts. Empirical Software Engineering, 18(6):1195–
1237, 2013.

[8] J. Dietrich, K. Jezek, and P. Brada. Broken promises: An empirical study
into evolution problems in Java programs caused by library upgrades.
In CSMR-WCRE, pages 64–73. IEEE, 2014.

[9] Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. Auto-
mated detection of refactorings in evolving components. In Proceedings
of the 20th European conference on Object-Oriented Programming,
ECOOP’06, pages 404–428, 2006.

[10] Danny Dig and Ralph Johnson. How do APIs evolve? a story of
refactoring: Research articles. J. Softw. Maint. Evol., 18(2):83–107,
2006.

[11] Beat Fluri, Michael Wuersch, Martin Pinzger, and Harald Gall. Change
distilling: Tree differencing for fine-grained source code change extrac-
tion. IEEE Trans. Softw. Eng., 33(11):725–743, November 2007.

[12] Johannes Henkel and Amer Diwan. CatchUp!: capturing and replaying
refactorings to support API evolution. In Proceedings of the 27th
international conference on Software engineering, ICSE ’05, pages
274–283, 2005.

[13] Puneet Kapur, Brad Cossette, and Robert J. Walker. Refactoring
references for library migration. SIGPLAN Not., 45(10):726–738,
October 2010.

[14] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. An empirical
study of api stability and adoption in the android ecosystem. 2013 IEEE
International Conference on Software Maintenance, 0:70–79, 2013.

[15] Joel Ossher, Hitesh Sajnani, and Crista. Lopes. Astra: Bottom-up
construction of structured artifact repositories. In Reverse Engineering
(WCRE), 2012 19th Working Conference on, pages 41–50, 2012.

[16] Steven. Raemaekers, Arie van Deursen, and Joost Visser. The maven
repository dataset of metrics, changes, and dependencies. In Proceed-
ings of the 10th Working Conference on Mining Software Repositories,
MSR ’13, pages 221–224, 2013.

[17] Romain Robbes, Mircea Lungu, and David Röthlisberger. How do
developers react to api deprecation?: The case of a smalltalk ecosystem.
In Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, FSE ’12, pages 56:1–56:11,
2012.

[18] Daniele Romano and Martin Pinzger. Analyzing the evolution of web
services using fine-grained changes. In ICWS, pages 392–399, 2012.

[19] Ewan Tempero, Gavin Bierman, James Noble, and Matthew Parkinson.
From Java to UpgradeJ: An empirical study. In Proceedings of the 1st
International Workshop on Hot Topics in Software Upgrades, HotSWUp
’08, pages 1:1–1:5, 2008.

[20] Zhenchang Xing and Eleni Stroulia. API-evolution support with Diff-
CatchUp. IEEE Trans. Softw. Eng., 33(12):818–836, December 2007.

Semantic Versioning versus Breaking Changes: A Study of the Maven Repository SERG

10 TUD-SERG-2014-016

TUD-SERG-2014-016
ISSN 1872-5392 SERG

