
1

ORBS and the Limits of Static Slicing
David Binkley†, Nicolas Gold∗, Mark Harman∗, Syed Islam∗, Jens Krinke∗, and Shin Yoo∗
†Loyola University Maryland, 4501 N. Charles St., Baltimore, MD 21210-2699, USA

∗University College London, Gower Street, London, WC1E 6BT, UK

Abstract—Observation-based slicing is a recently-introduced,
language-independent, slicing technique based on the depen-
dencies observable from program behaviour. Due to the well-
known limits of dynamic analysis, we may only compute an
under-approximation of the true observation-based slice. How-
ever, because the observation-based slice captures all possible
dependence that can be observed, even such approximations can
yield insight into the limitations of static slicing. For example,
a static slice, S that is strictly smaller than the corresponding
observation based slice is guaranteed to be unsafe. We present
the results of three sets of experiments on 12 different programs,
including benchmarks and larger programs, which investigate
the relationship between static and observation-based slicing. We
show that, in extreme cases, observation-based slices can find
the true static minimal slice, where static techniques cannot.
For more typical cases, our results illustrate the potential for
observation-based slicing to highlight unsafe static slices. Finally,
we report on the sensitivity of observation-based slicing to test
quality.

I. INTRODUCTION

One of the foundational scientific principles of source code
analysis is the dichotomy between static and dynamic program
analysis. Underpinning much of the work on static analysis
is the concept of a ‘safe’ (conservative) over-approximation
to static truth; by over-approximating statically determinable
information, a (safe) static analysis seeks to provide safe
technical conclusions to its end user (usually a software
engineer). In this paper we seek to question this foundational
assumption of static analysis, and to provide one technical
approach for investigating the limits of static analysis.

We believe it is important to question whether there can ever
exist a truly conservative and safe approximation to static truth
about computation; observation based dynamic analysis is one
potential way in which this important foundational scientific
question can be investigated. Specifically, we study dependence
analysis as realised by program slicing.

It is known to be a challenge to construct a safe conservative
static slicing technique, since the slicer has to take account of
the full semantics of the programming language. Much work
has focused on the theoretical foundations of slicing, including
correctness proofs of safe slicing algorithms and the source
code analysis upon which they rest [24], [33], [40], [45].

Unfortunately, program language semantics are necessary
but insufficient to capture all the possible dependencies that
can arise during computation, because dependencies may arise
through various interactions only partially under the control
of the program itself. For example, a program p may output
to some device, the state of which subsequently affects some
subsequent computation in some entirely different program,
which, transitively, affects p.

It seems unlikely that any static analysis, no matter how
powerful, could capture all such dependencies. However, an
observation-based analysis can, in principle and by definition,
capture any and all observable dependencies, no matter how
subtle, no matter how platform and context dependent and no
matter how convoluted their transitive chain of causes may
be. As such, an observation-based analysis makes a natural
complementary counterpart to static analysis.

We focus on program slicing, because it has many applica-
tions, including re-engineering [11], maintenance [19], [21],
debugging [32], [49], testing [8], [23], refactoring [17], re-
use [4], [12], and comprehension [15], [30], [43]. Static slicing
also illustrates many issues that affect attempts to construct
a ‘safe’ static analysis. However, the possibility of using
observation-based analysis as a complement to static analysis
could be extended and applied to other static analyses, not
merely program slicing.

We also chose program slicing because it has mature,
safe, over-approximation algorithms, that are widely-used
and implemented in both commercial and prototype research
software tools. We also have available a recently-produced
implementation, ORBS [9], of an observation-based slicing
tool. ORBS speculatively deletes lines of code as part of its
computation algorithm, attempting to remove one or more
statements (lexically), compiling the result (if possible), and
then executing using a suite of inputs (taken from test cases).
If the execution is successful (the slice produces the same
output as the original), then the reduced (sliced) program is a
valid observation-based slice with respect to the criteria and
input suite. Further reduction is then attempted until it is not
possible to remove any further statements (technical details are
provided in section II-E).

Observation-based slices are related to dynamic slices, but
there is a critical difference: Observation based slices are
based on observed dependencies, rather than the statically
determined but dynamically occurring dependencies used by
dynamic slicing. That is, a dynamic slice contains a statement
if a (statically determined) dependence occurs during some
execution. By contrast, an observation-based slice contains a
statement, s, if a dependence is observed in which statement
s affects the slicing criterion.

Although dynamic slicing only considers a dependence
important if it occurs during some execution, because that
dependence is, itself, computed statically, it may be one that
simply cannot be observed. Furthermore, a dependence that
can be observed in some execution may not correspond to
any statically determined dependence. Such ‘observation only’
dependencies will be (wrongly) ignored by both dynamic and
static slicing, potentially leading to incorrect slices.

2

In the case of dynamic slicing this under-approximation is
not a problem, because dynamic slices are inherently under-
approximations in any case. However, one of the primary virtues
of static slicing is that the slices it produces are supposed to
be safe, conservative (over) approximations to the true slice:
if a statement is deleted by a static slicer then it is claimed
that no possible execution could cause that statement to affect
the slicing criterion. This is what it means to be ‘safe’ in the
context of static slicing.

As we shall see in this paper, this belief in safe conservative
static slicing, rests on extremely shaky foundations; we will give
examples where observation-based slicing highlights unsafe
static slices (constructed using a supposedly conservative over-
approximating algorithm). This is one of the primary contribu-
tions of the paper. It illustrates, succinctly, the way in which
observation-based analysis has the potential to highlight issues
in existing static analysis. The other primary contributions
are an investigation of the potential for observation-based
techniques to produce minimal slices (in special circumstances),
and the impact of test suite size on the quality of observation-
based dependence analysis.

The remainder of the paper is structured as follows. Section II
presents basic definitions, including the ORBS algorithm [9],
section III presents the research questions followed by the
results in section IV. Related work is discussed in section V
and section VI concludes.

II. SLICING DEFINITIONS
Traditional program slicing can be classified as either static

or dynamic. This section describes how observation-based
slicing differs from the traditional forms of static and dynamic
slicing.

A. Static Slicing

Static slicing [48] seeks to find an executable subset of
program statements that will exhibit the same behaviour for a
specified variable at a specified location (i.e. a slicing criterion)
as for the original program for all possible inputs. Weiser’s
formal definition [48] is as follows:

Static Slice: A static slice S of a program P on a slicing
criterion C is any executable program with the following two
properties:

1) S can be obtained from P by deleting zero or more
statements from P .

2) Whenever P halts on input I with state trajectory T ,
then S also halts on input I with state trajectory T ′,
and PROJC(T) = PROJC(T ′), where PROJC is the
projection function associated with criterion C.

It is interesting to note that, while Weiser’s original definition
of program slicing is based on statement deletion, most work
on static slicing focus on dependency analysis to determine
which statements can not be deleted.

B. Dynamic Slicing

Dynamic slicing [28] preserves the behaviour of the program
only with respect to a specific input. Most work on dynamic
slicing (e.g., the work of Agrawal and Horgan [1]) only
describes their approach towards implementing dynamic slicing

instead of giving a formal definition of what dynamic slicing
is. Here, we present a generalized definition of dynamic slicing
that extends Weiser’s definition of static slicing with specific
inputs. This definition is similar to Korel and Laski’s [28]
definition:

Dynamic Slice: A dynamic slice S of a program P on a slicing
criterion C and for inputs I is any executable program with
the following two properties:

1) S can be obtained from P by deleting zero or more
statements from P .

2) Whenever P halts on input I from I with state trajectory
T , then S also halts on input I with state trajectory
T ′, and PROJC(T) = PROJC(T ′), where PROJC is the
projection function associated with criterion C.

The criterion for a dynamic slice can concern either the value
of variable v at location l only for the ith occurrence in the
trajectory, denoted (vi, l, I), or all occurrences of v in the
trajectory, denoted (v, l, I).

While dynamic slicing introduces a specific program input
to slicing, its computation still relies on statically computed
dependency between variables and statements (so that the
influence of a statement on a variable can be determined).

C. Observation-Based Slicing

Observation-Based Slicing is a recently introduced alternative
to program slicing [9]: rather than relying on dependency
analysis to only perform the allowed deletions, observation-
based slicing deletes a statement in a file of interest, executes
the program with a given input suite, and observes whether
the projected trajectory of the criterion variable changes. If
the trajectory changes, the statement cannot be deleted; if it
does not change, the statement can be deleted. Consequently,
it preserves the relevant part of the state trajectory from the
execution of the original program P . The formal definition of
observation-based slicing is as follows:

Observation-Based Slice: An observation-based slice S of
a program P on a slicing criterion C = (v, l, I) composed
of variable v, line l, and set of inputs I, is any executable
program with the following properties:

1) The execution of P for every input I in I halts and
produces a sequence of values V (P, I, v, l) for variable
v at line l.

2) S can be obtained from P by deleting zero or more
statements from P .

3) The execution of S for every input I in I halts and
produces a sequence of values V (S, I, v, l) for variable
v at line l.

4) ∀I∈IV (P, I, v, l) = V (S, I, v, l).
Sequences V are called trajectories for the criterion (v, l, I).

This can be produced by injecting a statement that records the
value of v to a file, just before line l. These values should
be comparable across attempts to delete different statements,
somewhat limiting the scope of what is observable (e.g. objects
should be serialisable). On the other hand, note that the concept
of ‘statement’ can be entirely language independent. Previous
work has shown that, by deleting ‘lines’ in source files rather
than program statements, it is possible to slice multi-language
systems [9].

3

D. Minimal Slices

According to the definitions, the original program is a static,
dynamic, and observation-based slice of itself. The aim for any
implementation is to produce slices that are as small as possible
but still a valid slice. A slice is considered to be minimal, if
it is not possible to remove any number of statements from
the slice so that the result is still a slice. If the input set I
is the set of all possible inputs, then the minimal static slice,
the minimal dynamic slice and the minimal observation-based
slice are all the same. An implementation for observation-based
slicing will therefore compute static-equivalent slices for an
input set consisting of all possible inputs.

Almost all implementations for static and dynamic slicing
do not conform to the above definitions. The reason is that
they usually identify statements that should be in the slice but
they don’t actually produce executable programs.

E. ORBS

The current implementation of observation-based slicing,
ORBS, continuously attempts to delete increasingly longer
sequences of lines, starting from each line in the source file [9].
It increases the number of lines to be deleted together, up to
the size of the so called ‘deletion window’. This is because
certain lines can only be deleted simultaneously (e.g. opening
and closing brackets on successive lines). If the attempt results
in an observation-based slice, the lines in the deletion window
are deleted, and kept otherwise, after which ORBS moves the
starting position of the deletion window by one line and repeats
until it reaches the end of the source file. This forms a single
iteration of ORBS.

As long as the previous iteration deleted some lines, ORBS
starts a new iteration. this is because certain lines become
deletable only after other lines have been deleted (e.g. a
loop predicate can only be deleted after the loop body is
emptied). When no lines are deleted from the last iteration,
ORBS terminates. The result is a 1-minimal slice, i.e., it is not
possible to delete any other line from the slice. It may still be
possible to delete a combination of n lines, i.e., the result is
not necessarily n-minimal.

To validate deletion of a set of lines, ORBS attempts to
compile and execute the slice candidate with deletion in
question applied. If the deletion results in compilation errors,
it cannot produce a correct executable slice. Similarly, if the
deletion produces an executable slice that produces a different
trajectory from the original program, it cannot be a correct
observation-based slice.

III. RESEARCH QUESTIONS

In prior work [9], we demonstrated that the ORBS approach
to computing multi-language slices was feasible. We also
compared the resulting slices with various forms of dynamic
slices, all of which are ‘algorithmic cousins’ of observation-
based slicing, because all share roots in dynamic analysis. In
this paper, we study the relationship between observation based
slicing and static slicing.

Our experiments concern 12 programs, split into three sets,
each of which is specifically chosen to help us address each
of the three research questions. The first research question

concerns the performance of observation based slicing on
benchmarks that have previously been used to exemplify static
slicing challenges in the literature. For this research question
we use three widely studied (tiny) benchmark programs.

Our second research question focuses on the way observation-
based slicing can highlight unsafe static slices. For this research
question, we use seven programs from the Siemens Suite of
(relatively small) C programs, which have been widely-studied
in program analysis and testing research. These programs are
large enough to be non-trivial, yet small enough to allow us to
establish the ground truth for dependence, thereby facilitating
the comparison between observation-based and static slicing.

Finally, our third research question concerns the inherent
sensitivity of observation based slicing to the test cases used.
For this research question we used two larger programs, since
we do not need to establish the ground truth dependence, but
merely the effect of test adequacy on dependence observations.
More specifically, we address the following three research
questions:

RQ1: Subtleties and surprises: Can ORBS find minimal
slices for known challenging benchmarks?
Although considering all possible inputs will usually be
infeasible, the resulting slice would be a correct static slice
because it will have the same behaviour as the original program
on the slicing criterion for all possible inputs — the semantic
requirement of a static slice. Because ORBS uses observation
and deletion, such an observation-based slice would also be a
minimal static slice. Of course exhaustive testing is infeasible
for all but the smallest programs.

Given the key role the inputs play, the relationship between
inputs and slices raises interesting questions. First, for small
programs that can be tested by test suites that approach
exhaustive testing, can ORBS yield minimal static slices? Of
course, we can only ask such a question where we know the
ground truth; the identities of all minimal slices. Furthermore,
even if ORBS can yield such minimal slices, this will only be
interesting if the slicing problems are, themselves, interesting
and challenging in some way. Therefore, we select three
programs widely used for understanding and explaining the
limits of static slicing: wc, (scam) mug, and mbe.

For all three tiny benchmark programs, it is possible to
construct a input suite that approximates exhaustive testing
(though, we cannot, of course, test exhaustively, even in these
cases). That is, there is a (small and finite) input set I such
that for all supersets I ′ ⊇ I, the slice, ORBS(v, l, I) is
the same as ORBS(v, l, I ′). In such cases, by the definition
of observation-based slicing, ORBS(v, l, I) must also be a
minimal static slice. In general finding such an input set is
intractable; however, for the tiny programs, it is possible, even
(relatively) straightforward.

The word count program, wc, (shown in Figure 1), computes
the number of lines, words, and characters in an input text file.
This makes it a good starting point, because its slices are used
in so many papers on slicing [20], [41], as trivial examples
of static slices. It is implicit in all treatments of this example,
that the slices are trivial, and present a few interesting issues,
hence its widespread use as an illustrative example. As we

4

1 word_count()
2 {
3 while (scanf("%c", &c) == 1)
4 {
5 characters = characters + 1;
6

7 if (c == ’\n’)
8 {
9 lines = lines + 1;

10 }
11

12 if (isletter(c))
13 {
14 if (inword == 0)
15 {
16 words = words + 1;
17 inword = 1;
18 }
19 }
20 else
21 {
22 inword = 0;
23 }
24 }
25 }
26

27 int isletter(char c)
28 {
29 printf("%c ", c); // slice here
30 if (((c >= ’A’) && (c <= ’Z’))
31 || ((c >= ’a’) && (c <= ’z’)))
32 {
33 return 1;
34 }
35 else
36 {
37 return 0;
38 }
39 }

Fig. 1. The word count program with a printf added to slice on variable c.

1 int mug(int i, int c, int x)
2 {
3 while (p(i))
4 {
5 if (q(c))
6 {
7 x = f();
8 c = g();
9 }

10 i = h(i);
11 }
12 printf("@%d\n", x); // slice here
13 }

Fig. 2. The SCAM’01 Mug Example. Predicates p and q, and function h
depend only on their single parameter while functions f and g return (unknown)
constant values. The key point in this code is that in any terminating execution
the final value of x is independent of Line 8: if q(c) is always false, then x
retains its initial value. On the other hand, if q(c) is true one or more times
then x will have the value assigned at Line 7. In the latter case, it does not
matter how often q(c) is true and thus the assignment at Line 8 does not
impact the value of x at Line 12.

shall see, observation-based slicing reveals that there are, in
fact, subtleties, even in this simplest of examples.

The SCAM mug example, mug, shown in Figure 2, appeared
on the souvenir mug given to delegates of the first incarnation
of the SCAM conference (SCAM 2001) in Florence. It has
subsequently being used as a ‘challenge’ example for slicing
algorithms [44], due to its subtle semantics and the difficulty
in obtaining a minimal slice, even with very sophisticated
algorithmic techniques.

The Montréal Boat Example, mbe, shown in Figure 3, was
formulated by Sebastian Danicic and John Howroyd during a
boat excursion at the 2nd incarnation of the SCAM conference

1 int mbe(int j, int k)
2 {
3 while (p(j))
4 {
5 if (q(k))
6 {
7 k = f1(k);
8 }
9 else

10 {
11 k = f2(k);
12 j = f3(j);
13 }
14 }
15 printf("%d\n", j); // slice here
16 }

Fig. 3. The Montréal Boat Example. predicates p and q, and functions f1,
f2, and f3 are unshown. They depend only on their formal parameter. The
relevant observation is that in any terminating execution, the computation of k
is irrelevant to the computation of j.

(SCAM 2002) in Montréal. It was discussed at length at the
conference as an example of the subtleties of minimal static
slicing [14].

We use these three simple examples to illustrate both the
subtleties of minimal slicing, and also the power of observation-
based techniques for finding slices in those special extreme
cases where testing can be particularly extensive.
RQ2: Highlighting Unsafe Static Slices. RQ2 uses the small
programs shown in Table I, known as the Siemens Suite which
have been widely-studied in previous work on analysis and
manipulation [50]. Each of the seven programs comes with its
own pre-defined test suite. We can use these to investigate how
observation-based slicing differs from traditional static slicing
for a set of non-trivial programs using test suites designed by
other researchers.

Where the (claimed) static slice fails to contain a statement
that is included in the observation based slice produced
by ORBS then, ipso facto, the static slice must be unsafe
(irrespective of the test suite). This is because a statement is
only contained in the observation-based slice if there exists an
observation of behaviour for which the slicing criterion depends
upon it. Therefore, even if the test suite is inadequate (which
is the case in all but the most trivial situations), it will have
contained at least one test case that exercises the dependence
observed. Such a test suite, although not necessarily adequate,
will thereby raise a counter example to the safety claim made
by the static slice.

We wish to experiment with the potential for observation-
based slicing to expose unsafe static slices. However, it would
not be reasonable of us to use specially-constructed test suites
(as we have done for RQ1), since the effort required to construct
such test suites may not justify the potential for exposing unsafe
slices. This motivates our choice of the Siemens Suite. Since its
test suites are designed without any knowledge of observation-
based slicing, they are free from any bias in the selection of
test cases. Therefore, they allow us to investigate the kinds
of observation that can be made from ‘standard’ test suites,
widely used in other research.

The Siemens Suite programs are also sufficiently small that a
human can understand and investigate the underlying semantic
cause for any differences in the slices constructed by traditional
static slicing and those constructed by observation. However,

5

TABLE I
SIEMENS SUITE: THE SET OF SMALL PROGRAMS USED TO ANSWER RQ2

Program LoC Slices
printtokens 733 81
printtokens2 579 75
replace 658 309
schedule 465 58
schedule2 392 78
tcas 185 43
totinfo 415 54

TABLE II
SIZE OF THE PROGRAMS CONSIDERED FOR RESEARCH QUESTION 2

ed byacc
Files 8 13
Lines 2 836 7 320

they are also sufficiently large that they denote nontrivial
computation, thereby making these differences interesting and
worthy of study.
RQ3: Observational Sensitivity to Inadequate Testing. RQ3
studies the impact of the sets of inputs used as test cases to
compute an ORBS slice. One interest here is the question of
how varying the set of inputs can provide a lower-bound for
the corresponding static slice, in much the way that union
slicing can [5].

For example, if I1 ⊆ I2 then ORBS(v, l, I1) is likely1

a subset of ORBS(v, l, I2). However, for larger sets, the
difference is expected to be smaller because it becomes
increasingly more difficult to execute previously unexecuted
code. Thus the expected impact of an additional input case
diminishes as the input set grows in size.

In this case the slices produced using an ever increasing
input suite should approach an asymptotic limit. Furthermore,
this asymptote provides a prediction for the lower bound of
the corresponding minimal static slice. Observing how slice
size monotonically approaches this asymptotic limit allows us
to investigate the impact of inadequate testing on observation-
based slicing.

For RQ3 we performed a set of experiments on the two
larger programs, ed and byacc, which each come with a test
suite. Table II shows some properties of the two systems: ed
is a line-oriented text editor and byacc is Berkeley Yacc.

IV. RESULTS

In this section we present results, based on slices of each
of the three sets of programs, to answer the three research
questions.

We constructed all static slices using the widely available tool
CodeSurfer, which implements the standard SDG algorithm for
(safe) static slice computation [26]. We constructed observation
based slices is using our tool ORBS [9], for observation-based
slicing, using the test suites provided in (with the Siemens
Suite programs and the two larger programs for RQ2 and RQ3
respectively).

1ORBS produces 1-minimal slices, but there may be multiple 1-
minimal slices for the same criterion. Therefore, it may be the case that
ORBS(v, l, I1) 6⊆ ORBS(v, l, I2).

1 word_count()
2 {
3 while (scanf("%c", &c) == 1)
4 {
5 printf("%c\n", c); // slice here
6 }
7 }

Fig. 4. A slice of the word count program.

1 while (scanf("%c", &c) == 1)
2 {
3 if (isletter(c))
4 {
5 inword = 1;
6 }
7 else
8 {
9 inword = 0;

10 }
11

12 printf("%d\n", inword); // slice here
13 }

Fig. 5. Excerpt of a second slice of the word count program

A. RQ1: Subtleties and Surprises

Several ORBS slices show interesting aspects of observation
based slicing on the wc benchmark program. In the first, ORBS
discovers that it is possible to merge code from two functions.
This slice was taken with respect to the value of c at the top
of the function isletter. In this case it just so happens that
the same variable name is used in the calling function. The
resulting slice, shown in Figure 4, includes three lines from
the function word count and three from isletter.

As a second example, consider the slice taken with respect
to the values of inword just after Line 23 of Figure 1. This use
of the variable inword is reached by the definition at Lines 17
and 22. The first of these definitions is control dependent on
the predicate inword == 0 and thus this predicate is included
in the CodeSurfer static slice. However, one can observe that
this predicate does not influence the value of inword, which is
either already 1 at Line 14 or set to 1 by Line 17. Thus, as
ORBS correctly determines, the slice on inword at Line 23 can
omit the predicate inword == 0 as shown in Figure 5.

For mug (Figure 2), the slice of interest is the slice taken
with respect to x at Line 12. For this slice, the key observation
is that because “x = f()” assigns x a constant value there are
really only two interesting executions. One in which q(c) is
always false and one in which it is true at least once. These two
are sufficient because x=f() assigns x an (unknown) constant
value and thus execution of the assignment is idempotent.

To compute ORBS slices of this code requires values for
the unspecified functions and constants. For the experiment p(i)
returns i % 5 != 0 and h(i) the value i+1; thus the while loop
will execute up to five times depending on the initial value of
i. This is sufficient to cover the possible cases.

The test suite includes two input cases. The first executes
the while loop zero times. This vacuously covers the q(c) is
always false case. The second input executes the loop twice
where q(c) is true the first iteration and false the second. This
covers the q(c) is true at least once case. To do so c’s initial
value is set to 50, the function q(c) returns c > 42, and the
function g() returns 10. For completeness, x is initialized to 10
and the function f() returns the value 20.

6

1 int mug(int i, int c, int x)
2 {
3 while (p(i))
4 {
5 if (q(c))
6 {
7 x = f();
8 }
9 i = h(i);

10 }
11 printf("@%d\n", x); // slice here
12 }

Fig. 6. The key slice of the SCAM’01 Mug Example.

The reason that two iterations are used to achieve the second
case, is to illustrate differences with dynamic slicing, which
include the dependence of q(c) on c=g() and that of x=f() on
q(c) and thus include c=g() in the slice. In contrast the ORBS
slice correctly omits c=g().

Using these two input cases produces the slice shown in
Figure 6. The static slice for this example as computed by
CodeSurfer, is the entire original program. The SDG for mug
includes a (loop-carried) flow dependence edge from c=g()
to q(c) as well as a control dependence edge from predicate
q(c) to x=f(); thus while traversing these dependence edges
(backwards) the slices include Line 7, then Line 5, and finally
Line 8. In contrast the ORBS slice correctly omits Line 8
(c=g()).

It is illustrative to consider the slices that ORBS produced
when using each of the two input cases independently. In
the first case, when p(j) is always false, the empty program
is returned. On the other hand, the second input case alone
generates the single line program x = f(), which correctly omits
the unnecessary control structures.

Finally, consider the program mbe. Similar to mug, the code
includes a path of dependence edges that causes the slice
to be larger than strictly necessary. In this case, the control
dependence of j=f3(j) on q(k) causes CodeSurfer to include the
computation of k in the slice taken with respect to j at Line
15.

However, careful inspection of the program’s semantics
reveals that the value of k has no impact on the final value
of j in any terminating execution of the program. To see this,
consider the iterations of the program’s single loop. During a
given iteration, if q(k) is true then j remains unchanged. Thus
only when q(k) is false is progress made towards a value of
j that makes p(j) false. Thus in any terminating execution the
following pattern is repeated: there are zero of more execution
of Line 7 followed by an execution of Lines 11 and 12. Only
the execution of Line 12 impact the eventual termination and
thus the final value of j.

For this example, there is no finite set of inputs that covers
all possible executions because arriving at the final value of j
may take an unbounded number of loop iterations. However,
a single input case is sufficient to exercise all the possible
dependence patterns. (The reason a single input is insufficient
for the mug example is that two inputs are needed to cause x
to take on both of its two possible values.) This single input
exercises both assignment to k and also the assignment to j
multiple times. While multiple executions force the retention
of the while loop.

1 int mbe(int j, int k)
2 {
3 while (p(j))
4 {
5 j = f3(j);
6 }
7 printf("%d\n", j); // slice here
8 }

Fig. 7. The key slice of the Montréal Boat Example.

Using any instantiation functions for the unbound functions,
the ORBS slice of mbe is shown in Figure 7. This slice
correctly separates and then omits the computation of k. As
with mug the static slice for mbe computed by standard static
slicing algorithms, such as the SDG algorithm include the
entire program.

In summary, for RQ1, for all three programs, ORBS extracts
a precise (minimal) static slice, illustrating the potential power
of an observation-based approach to slicing. Although small,
mug and mbe show just how subtle slicing can be and how
ORBS offers a complementary alternative to traditional static
slicing when attacking this subtlety.

B. RQ2: Highlighting Unsafe Static Slices

Research question RQ2 considers how ORBS slices compare
to static slices on a set of small programs (the Siemens
Suite) where the ground truth can be (manually) determined
by examining slice differences. We constructed 743 slices in
total. 698 of these are taken from the Siemens Suite programs
shown in Table I. For ‘backwards compatibility’ with RQ1 and
completeness, we also include the tiny benchmark programs,
from which we constructed 45 slices.

Fig. 8. Slice Size Differences

The overall size difference for these 753 slices of the
programs are graphed in Figure 8. Each point is the percent
reduction using ORBS minus the percent reduction using
CodeSurfer. The slice granularity effect illustrated above causes
the 66 negative differences (where the CodeSurfer slice is
smaller than the ORBS slice).

Most of the differences come from ORBS removing unreach-
able or untested code and from CodeSurfer’s finer granularity
when handling parameters where, for example, it can replace
function declarations such as int main(int argc, char** argv) with
int main(int argc) and functions calls such as change(pat, sub)
with change(pat). A similar granularity issue is seen when
the slicer encounters the line *prio = *command = -1. While
CodeSurfer sees this as two separate assignments, ORBS does

7

not and thus must also retain the computation of a valid address
for the pointer prio, to avoid the premature termination of the
program. Finally, this pattern occurs as CodeSurfer is able to
slice alt sep test() out of fprintf(stdout, ”%d\n”, alt sep test())
while ORBS is not.

In a similar example, the program tcas includes
need upward RA = Non Crossing Biased Climb() &&
Own Below Threat() on a single line, which forces ORBS
to include the function definition bool Own Below Threat()
with an empty body because otherwise the program does not
compile. Operating at a finer level of granularity, CodeSurfer
is able to omit the call to Own Below Threat(). In this case
the cost of the inclusion is only the three lines of the empty
function definition. However in the case of the call change(pat,
sub) the unwanted retention of sub forces its computation to
be retained, which involves more then three lines.

These differences are interesting because they illustrate the
way in which ORBS can be used as a sanity check on the
static slice. ORBS can be used to suggest instances where the
static slice can be refined further. For example, where static
conservatism leads to an unnecessarily large slice.

However, of particular interest, and perhaps concern, is the
area of Figure 8 which lies in the negative portion of the
horizontal axis; cases where the SDG slice is smaller than
the observation based slice. In the situation, observation based
slicing may have highlighted an unsafe static slice.

An example of one such unsafe static slice is shown in
Figure 9. Static slices that include the variable ‘command’
will (incorrectly) omit the while loop. The lack of safety, in
this case, come from the way the conservative ‘safe’ SDG
algorithm does not model dependences induced by I/O streams.
Fixing this problem is more challenging than simply updating
the dependence model for fgets. Correctly slicing input (and
output) streams is subtle and challenging [3], and observation-
based slicing has merely highlighted one such instance.

As discussed in the introduction, it is questionable whether
any purely static analysis technique could ever account for all
dependencies between input and output streams, since these
may involve arbitrary ‘real’ communications as a source of
dependence. However, this example from our experiments
highlights the realisation that these issues arise even where the
input–output dependence does not involve complex interactions,
beyond the reach of any conceivable tool.

C. RQ3: Observational Sensitivity to Inadequate Testing

For both systems chosen for RQ3 (ed and byacc), we
experimented with four slicing criteria. For ed, they are:

(A): The value of *addr_cnt in line 186 of file
main_loop.c

(B): The value of s in line 263 of file io.c
(C): The value of s in line 28 of file signal.c
(D): The value of *s in line 71 of file re.c
For byacc, the criteria are:

(A): The value of k in line 25 of file symtab.c
(B): The value of c in line 25 of file output.c
(C): The value of state in line 252 in file lalr.c
(D): The value of symbol in line 252 in file lalr.c

1 get_command(int *command, int *prio, float* ratio)

2 {
3 char buf[CMDSIZE];
4

5 if(fgets(buf, CMDSIZE, stdin))
6 {
7 *prio = *command = -1;
8 sscanf(buf, "%d", command);
9

10 while(buf[strlen(buf)-1] != ’\n’ && fgets(
buf, CMDSIZE, stdin))

11 {
12 }
13 }
14 }

Fig. 9. When slicing this code, the static slice incorrectly omits the while
loop because it does not account for the implicit dependences caused by the
input stream. This is just one example of an unsafe static slice highlighted by
observation based slicing.

TABLE III
NUMBER OF DELETED LINES FOR BYACC AND SIZE OF THE STATIC AND

FINAL ORBS SLICE IN SDG NODES

Input Ik Size (A) (B) (C) (D)
error 211 7124 7177 7303 7303
code_error 211 7124 7177 7303 7303
pure_error 233 7124 7177 7303 7303
code_calc 1824 6923 6846 5944 6311
calc 1824 6923 6846 6233 6350
pure_calc 1834 6923 6846 6233 6350
calc2 1950 6881 6828 6192 6304
calc3 1964 6881 6828 6192 6306
ftp 23819 6857 6804 6161 6294
grammar 27120 6828 6644 6033 6088
SDG Nodes 9556 9556 9556 9556
Static Slice 1429 3927 2817 2817
ORBS Slice 729 1120 1953 1874

All eight criteria have been chosen in a way that they are points
a maintainer may be interested in.

The test suite of byacc consists of 10 different grammar files
that are used to test the functionality of byacc. The test suite of
ed consists of 80 different command sequences as input to ed.
From the 80 inputs, we have selected 52 and added three more
(smaller) inputs: (1) an empty command sequence, (2) a single
command to enable error explanations, and (3) a command to
read a file.

For the experiments, we have sorted the inputs by size so
that the sequence of inputs T = 〈I1, ..., In〉 is increasing in
size. For each k = 1...n and for each criteria (A)...(D) we have
computed an observation-based slice for the k smallest inputs:
Ik = {I1, ..., Ik} (n is 10 for byacc and 33 for ed).

Table III shows the resulting sizes for byacc for the 10
different inputs and the number of nodes in the System
Dependence Graph as generated by CodeSurfer for the complete
program, for the static slice computed by CodeSurfer, and the
number of nodes in the System Dependence Graph as generated
by CodeSurfer for the generated ORBS Slice for all ten inputs.

It is no surprise that for the first three smallest input sets the
number of deleted lines does not change: two of the inputs are
identical and the third input is only slightly changed. Running
ORBS with just one of the inputs or with all three inputs will
therefore not change the exercised dependencies.

The addition of the next three inputs causes a drop in the
number of deleted lines as the inputs are different and larger

8

TABLE IV
NUMBER OF DELETED LINES FOR ED AND SIZE OF THE STATIC AND FINAL

ORBS SLICE IN SDG NODES

Input Ik (A) (B) (C) (D)
Size 2836 2836 2836 2836
final deletions 1954 69% 864 30% 1943 69% 2654 94%
SDG Nodes 6605 6606 6628 6628
Static Slice 5025 76% 5025 76% 5025 76% 5025 76%
ORBS Slice 2594 39% 5722 87% 2644 40% 505 8%

than the first three. The next two inputs are again only slightly

different to the previous ones and only a small drop in deletions

can be observed.

The last two inputs are much larger than all the previous

ones, however, the drop of deletions is very small. Despite

the much large size, the added inputs will only exercise a few

more dependencies and it can be assumed that the minimal

static slice has been approximated by running all inputs.

For the next part of the experiment, the original program has

been sliced by CodeSurfer for the four criteria. In addition, the

observation-based slices as computed by ORBS over all inputs

have been analysed (but not sliced by CodeSurfer). Table III

shows the resulting number of nodes in the SDGs. For example,

byacc has an SDG consisting of 9556 nodes and the CodeSurfer

slice for criterion (A) only has 1429 nodes. However, the SDG

for the ORBS slice has only 729 nodes! It can be seen that

the ORBS slices are much smaller than the CodeSurfer slices,

a confirmation that static slices as computed by typical tools

are not very precise.

The same experiment has been done for the set of 55 inputs

for ed. Figure 10 shows the number of deleted lines for the

increasing number of k inputs. It can be seen that for the four

criteria the increasing number of inputs causes fewer and fewer

lines to be deleted. As the first input is empty, the ORBS Slice

deletes almost all of the 2836 lines of the program. Most inputs

do not cause an execution of the criterion (D) and therefore

the ORBS Slice stays empty. Input 24 (g2.ed) is the first

that causes an execution of (D) and produces a small slice.

As the next nine inputs do not cause an execution of criterion

(D), the slice does not change. ORBS produces very similar

slices for criteria (A) and (C) where the increasing number

of inputs cause a steady decrease in the number of deleted

lines. The slices for criterion (B) are initially empty (for the

first six inputs), but most of the following inputs cause large

ORBS slices, resulting in a large reduction in deleted lines

for input 7 (r2.ed). From there on, the increasing number

of inputs causes a steady decrease in the number of deleted

lines. Overall, adding more inputs at the end only causes a

slight decrease in deleted lines and it can be assumed that the

input space is covered sufficiently. Note that the graph shows

some situations where adding an input increases the number

of deleted lines instead of decreasing them, which is due to

ORBS finding a different 1-minimal slice which is slightly

larger than the one before.

Again, a comparison with static slices as produced by

CodeSurfer has been made. Table IV shows the results. Due

to the instrumentation for the criteria, the number of SDG

Nodes for the original, unsliced, program are slightly different

0

700

1400

2100

2800

1 7 13 19 25 31 37 43 49 55

A B C D

Fig. 10. Effects of Reduced Test Suites on Slicing Observations

for the four criteria (6605 – 6628). The static slices as

produced by CodeSurfer is the same four all four criteria,

they contain around 76% nodes of the original program. The

final ORBS slices over all 53 inputs, however, are quite

different. Criteria (A) and (C) produce slices of a typical

size (39%/40% nodes of the original program), criterion (D)

produces a very small slice of only 8% nodes. For criterion (B)

something interesting happened: The ORBS slice is actually

larger than the CodeSurfer slice, which, according to our

argument, should not happen. However, CodeSurfer has a

limited model of input/output and therefore does not identify

dependences via input/output, e.g., via files. As ed is mainly

about input/output, a large number of dependences are not

identified by CodeSurfer and the resulting slice will not only be

imprecise, but incorrect! ORBS does not suffer such problems:

As the inputs exercise dependencies via input/output, ORBS

will not delete the corresponding lines and therefore produces

correct slices, which, as in this case, can be larger than static

slices which are produced by tools. This is a typical problem

of static analysis which can only be correct within the assumed

model which is typically limited. Dynamic analyses have a

similar problem, they are also only correct within the assumed

model. However, the assumed model is not as limited as the

model for static analyses.

Overall, the above experiments have clearly shown that static

slices as produced by tools are not only far away in terms

of precision from minimal static analyses, but they can also

be incorrect. ORBS, on the other hand, can produce slices

much nearer to minimal static slices if the input domain is

sufficiently covered.

V. RELATED WORK

Static slicing was introduced by Weiser [46], [47]. Ottenstein

and Ottenstein [38] proposed that program slicing can be

viewed as a graph reachability problem and noted that the

program dependence graph (PDG) was the ideal structure for

program slicing. Horwitz et al. [25] introduced an algorithm

which extended the idea to slice entire programs (represented

as System Dependence Graphs) and later [26] introduced a

two-pass static slicing algorithm. This approach remains the

most pre-dominantly used and variants are widely researched.

There are many other flavours of static slicing that attempt

the reduce the size of the slice. Incremental Slicing [37] allows

selection of the type of data dependencies that are to be

9

included in a slice, by considering that all data dependencies
are not of the same importance. Stop-list slicing [18] allows
the programmer to define variables that are not of interest. The
stop-list variable set is used to purge the dependence graph
before computing slices with the standard graph reachability
algorithm, causing the slice to be smaller. Barrier Slicing [31]
allows the programmer to specify which parts of the program
can be traversed when constructing the slice and which parts
cannot. A barrier is specified with a set of nodes (or edges) of
the PDG that cannot be passed during the graph traversal, also
resulting in focused and smaller slices. Results presented here
concerning the safety (or otherwise) of supposedly ‘safe’ static
slices apply to all these (and other) forms of static slicing.

Amorphous Slicing [22] is an approach to slicing that
aims to preserve the semantics of the program but not
the syntax. Amorphous slices are constructed using some
program transformation which simplifies the program and
which preserves the semantics of the program with respect
to the slicing criterion. Although ORBS only deletes lines of
code, this may cause merging and this could be regarded as a
form of (very slightly) amorphous slicing (depending on the
precise interpretation of the phrase ‘syntax preserving’).

To the best of our knowledge no other slicing approach
follows the observation-based statement-deletion approach used
by our ORBS algorithm. The ORBS algorithm [10], is a
dynamic form of slicing, but it constructs slices based on
dynamically observed dependencies, rather than dynamically
occurring (but statically determined) dependence (used in all
previous dynamic slicing approaches).

Dynamic slicing is a concept introduced by Korel and
Laski [28], [29]. They considered several algorithms to compute
dynamic slices based on their definition. In contrast, most later
work on dynamic slicing ‘defines’ dynamic slicing based on
the algorithms used to compute it (e.g., Agrawal et al. [1]
and Demillo et al. [16]). Although many research prototypes
and approaches exist [2], [6], [7], [36], [42], [53], [54], all
approaches are for a single specific programming language
whereas the observation based nature of ORBS allows it to
slice programs distracted from multiple programming languages
[10].

Of all previous dynamic slicing formulations, the closest to
our observation-based slicing is Critical Slicing [16]. However,
we have found that critical slices are significantly larger than
observation-based slices and are often incorrect [10].

The idea to delete parts of a program or test input is also
prominent in applications of delta debugging [13], [51], [52].
As delta debugging can be very expensive, a few approaches
have modified the original delta debugging formulation, so
that it exploits programming language syntax and semantics.
For example, Hierarchical Delta Debugging [35] exploits tree
structures in inputs for a tree-based delta debugging approach.
Delta [34] uses a separate tool to flatten tree structures found in
programs before applying delta debugging. Regehr et al. [39]
exploit the syntax and semantics of C for four delta-debugging
based algorithms to minimize C programs that trigger compiler
bugs.

Jiang et al. [27] presented a forward dynamic slicing
approach similar in spirit with ORBS. They mutate the value

of the variable at the location as given by the slicing criterion.
They then observe the computed values in the state trajectory
and the dynamic slice consist of all statements for which the
computed values have changed compared to the trajectory of
the original program. Jiang et al. compare their approach to
traditional dynamic and static slicing to establish the accuracy
of their approach.

Union slicing [5] is also related to observation based
slicing. Like ORBS, the union slicing algorithm of Beszédes
et al. [5] aims to approximate the static slice by dynamic
slices for a set of test inputs. It does so by producing the
union of the independently-computed dynamic slices for each
test case. However, since the union slice is the union of all
dynamic slices, it shares the critical difference between dynamic
and observation-based slicing: The dependencies considered
by union slicing are dynamically occurring (but statically
determined) dependencies, rather than dynamically observed
dependencies.

VI. CONCLUSION

Observation-based slicing is a new form of slicing in which
dependencies observed during execution are used to construct
slices. Previous work has compared observation-based slicing
to traditional dynamic slicing. This paper has extended that
analysis to compare observation-based slicing to static slicing.
We have shown that observation based techniques, when guided
by extremely high quality test cases can find static slices
inaccessible to traditional static techniques. These include
minimal slices of benchmark programs that have previously
been used in the slicing literature to highlight static slicing
challenges. We have also experimentally demonstrated the
potential of observation-based slicing to highlight unsafe static
slices. Finally, since the quality of an observation-based slice
depends critically on the quality of the test suite used to
guide its construction, we experimented to investigate the
connection between observation-based slice size and test suite
size. Overall, we believe that our results illustrate the way in
which observation-based slicing provides a natural complement
to traditional static slicing.

REFERENCES

[1] H. Agrawal and J. R. Horgan. Dynamic program slicing. In Proc. of the
ACM SIGPLAN’90 Conference on Programming Language Design and
Implementation (PLDI), pages 246–256, 1990.

[2] S. S. Barpanda and D. P. Mohapatra. Dynamic slicing of distributed
object-oriented programs. IET software, 5(5):425–433, 2011.

[3] S. Bates and S. Horwitz. Incremental program testing using program
dependence graphs. In Conference Record of the Twentieth ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 384–396, Charleston, South Carolina, Jan. 10–13, 1993. ACM
Press.

[4] J. Beck and D. Eichmann. Program and interface slicing for reverse
engineering. In Proc. of the 15th International Conference on Software
Engineering (ICSE), pages 509–518, 1993.

[5] Á. Beszédes, C. Faragó, Z. M. Szabó, J. Csirik, and T. Gyimóthy. Union
slices for program maintenance. In Proc. of the 18th International
Conference on Software Maintenance (ICSM), pages 12–21, 2002.

[6] A. Beszedes, T. Gergely, and T. Gyimóthy. Graph-less dynamic
dependence-based dynamic slicing algorithms. In Sixth IEEE Inter-
national Workshop on Source Code Analysis and Manipulation (SCAM),
pages 21–30, 2006.

[7] A. Beszedes, T. Gergely, Z. M. Szabó, J. Csirik, and T. Gyimothy.
Dynamic slicing method for maintenance of large C programs. In Proc.
of the 5th Conference on Software Maintenance and Reengineering,
pages 105–113, 2001.

10

[8] D. Binkley. The application of program slicing to regression testing.
Information and Software Technology, 40(11 and 12):583–594, 1998.

[9] D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, and S. Yoo. Orbs:
Language-independent program slicing. In Proc. FSE, pages 109–120.
ACM, 2014.

[10] D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, and S. Yoo. Orbs:
Language-independent program slicing. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 109–120. ACM, 2014.

[11] C. Cifuentes and A. Fraboulet. Intraprocedural static slicing of binary
executables. In Proc. of the International Conference on Software
Maintenance (ICSM), pages 188–195, 1997.

[12] A. Cimitile, A. De Lucia, and M. Munro. Identifying reusable functions
using specification driven program slicing: a case study. In Proc. of
the International Conference on Software Maintenance (ICSM), pages
124–133, 1995.

[13] H. Cleve and A. Zeller. Finding failure causes through automated testing.
In International Workshop on Automated Debugging, pages 254–259,
2000.

[14] S. Danicic and J. Howroyd. Montréal boat example. In Source Code
Analysis and Manipulation (SCAM 2002) conference resources web-
site (http://www.ieee-scam.org/2002/Slides_ct.html),
2002.

[15] A. De Lucia, A. R. Fasolino, and M. Munro. Understanding function
behaviours through program slicing. In 4th International Workshop on
Program Comprehension, pages 9–18, 1996.

[16] R. A. DeMillo, H. Pan, and E. H. Spafford. Critical slicing for software
fault localization. In Proceedings of the 1996 International Symposium
on Software Testing and Analysis (ISSTA), pages 121–134, 1996.

[17] R. Ettinger and M. Verbaere. Untangling: a slice extraction refactoring.
In Proc. of the 3rd International Conference on Aspect-Oriented Software
Development (AOSD), pages 93–101, 2004.

[18] K. B. Gallagher, D. Binkley, and M. Harman. Stop-list slicing. In
6th International Workshop on Source Code Analysis and Manipulation
(SCAM 06), pages 11–20, Philadelphia, Pennsylvania, USA, Sept. 2006.

[19] K. B. Gallagher and J. R. Lyle. Using program slicing in software
maintenance. IEEE Transactions on Software Engineering, 17(8):751–
761, 1991.

[20] K. B. Gallagher and J. R. Lyle. Using program slicing in software
maintenance. IEEE Transactions on Software Engineering, 17(8):751–
761, Aug. 1991.

[21] Á. Hajnal and I. Forgács. A demand-driven approach to slicing legacy
COBOL systems. Journal of Software: Evolution and Process, 24(1):67–
82, 2011.

[22] M. Harman and S. Danicic. Amorphous program slicing. In 5th IEEE
International Workshop on Program Comprenhesion (IWPC’97), pages
70–79. IEEE Computer Society Press, May 1997.

[23] R. M. Hierons, M. Harman, C. Fox, L. Ouarbya, and M. Daoudi. Con-
ditioned slicing supports partition testing. Software Testing, Verification
and Reliability, 12:23–28, Mar. 2002.

[24] S. Horwitz, J. Prins, and T. Reps. On the adequacy of program
dependence graphs for representing programs. In ACM, editor, Principles
of programming languages (POPL ’88), pages 146–157, New York, NY,
USA, 1988. ACM Press.

[25] S. Horwitz, T. Reps, and D. W. Binkley. Interprocedural slicing using
dependence graphs. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 25–46, Atlanta, Georgia,
June 1988. Proceedings in SIGPLAN Notices, 23(7), pp.35–46, 1988.

[26] S. Horwitz, T. Reps, and D. W. Binkley. Interprocedural slicing using
dependence graphs. ACM Transactions on Programming Languages and
Systems, 12(1):26–61, 1990.

[27] S. Jiang, R. Santelices, M. Grechanik, and H. Cai. On the accuracy
of forward dynamic slicing and its effects on software maintenance.
In International Working Conference on Source Code Analysis and
Manipulation (SCAM), pages 145–154, 2014.

[28] B. Korel and J. Laski. Dynamic program slicing. Information Processing
Letters, 29(3):155–163, 1988.

[29] B. Korel and J. Laski. Dynamic slicing in computer programs. Journal
of Systems and Software, 13(3):187–195, 1990.

[30] B. Korel and J. Rilling. Dynamic program slicing in understanding
of program execution. In Proc. of the 5th International Workshop on
Program Comprehension (IWPC), pages 80–89, 1997.

[31] J. Krinke. Barrier slicing and chopping. In IEEE International Workshop
on Source Code Analysis and Manipulation (SCAM 2003), pages 81–87,
Los Alamitos, California, USA, Sept. 2003. IEEE Computer Society
Press.

[32] S. Kusumoto, A. Nishimatsu, K. Nishie, and K. Inoue. Experimental
evaluation of program slicing for fault localization. Empirical Software
Engineering, 7:49–76, 2002.

[33] W. Landi and B. G. Ryder. A safe approximate algorithm for interpro-
cedural pointer aliasing. In SIGPLAN’92 Conference on Programming
Language Design and Implementation (PLDI’92), SIGPLAN Notices,
pages 235–248, July 1992. Published as SIGPLAN’92 Conference
on Programming Language Design and Implementation (PLDI’92),
SIGPLAN Notices, volume 27, number 7.

[34] S. McPeak, D. S. Wilkerson, and S. Goldsmith. Heuristically minimizes
interesting files. delta.tigris.org.

[35] G. Misherghi and Z. Su. HDD: hierarchical delta debugging. In Proc.
of the 28th International Conference on Software Engineering (ICSE),
pages 142–151, 2006.

[36] G. Mund and R. Mall. An efficient interprocedural dynamic slicing
method. Journal of Systems and Software, 79(6):791–806, 2006.

[37] A. Orso, S. Sinha, and M. J. Harrold. Incremental slicing based on data-
dependences types. In Proceedings of the IEEE International Conference
on Software Maintenance (ICSM 2001), pages 158–167. IEEE Computer
Society Press, Nov. 2001.

[38] K. J. Ottenstein and L. M. Ottenstein. The program dependence
graph in software development environments. Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environmt, SIGPLAN Notices, 19(5):177–184,
1984.

[39] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang. Test-case
reduction for C compiler bugs. In Proc. of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages
335–346, 2012.

[40] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding up slicing. In
ACM Foundations of Software Engineering, pages 11–20. ACM SIGSOFT
Software Engineering Notes 19, 5 (December 1994), Dec. 1994.

[41] T. Reps and T. Turnidge. Program specialization via program slicing.
In O. Danvy, R. Glück, and P. Thiemann, editors, Dagstuhl Seminar
on Partial Evaluation, volume 1110, pages 409–429, Schloss Dagstuhl,
Wadern, Germany, 12–16 Feb. 1996. Springer-Verlag, New York, NY.

[42] A. Szegedi and T. Gyimóthy. Dynamic slicing of Java bytecode programs.
In Proc. of the 5th IEEE International Workshop on Source Code Analysis
and Manipulation (SCAM), pages 35–44, 2005.

[43] P. Tonella. Using a concept lattice of decomposition slices for program
understanding and impact analysis. IEEE Transactions on Software
Engineering, 29(6):495–509, 2003.

[44] M. Ward. Slicing the SCAM mug: A case study in semantic slicing. In
IEEE International Workshop on Source Code Analysis and Manipulation
(SCAM 2003), pages 88–97, Los Alamitos, California, USA, Sept. 2003.
IEEE Computer Society Press.

[45] M. P. Ward and H. Zedan. Deriving a slicing algorithm via FermaT
transformations. IEEE Transactions on Software Engineering, page to
appear, 2010.

[46] M. Weiser. Program slices: Formal, psychological, and practical
investigations of an automatic program abstraction method. PhD thesis,
University of Michigan, Ann Arbor, MI, 1979.

[47] M. Weiser. Program slicing. In Proceedings of the 5th International
Conference on Software Engineering, pages 439–449, 1981.

[48] M. Weiser. Programmers use slices when debugging. Communications
of the ACM, 25(7):446–452, 1982.

[49] M. Weiser and J. Lyle. Experiments on slicing-based debugging aids.
In Empirical Studies of Programmers: First Workshop, pages 187–197,
1985.

[50] E. Wong and V. Debroy. A survey of software fault localization. Technical
Report Technical Report UTDCS-45-09, The University of Texas at
Dallas, November 2009.

[51] A. Zeller. Yesterday, my program worked. today, it does not. Why? In
European Software Engineering Conference and Foundations of Software
Engineering, pages 253–267, 1999.

[52] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing
input. IEEE Transactions on Software Engineering, 28(2):183–200, 2002.

[53] X. Zhang, N. Gupta, and R. Gupta. A study of effectiveness of dynamic
slicing in locating real faults. Empirical Software Engineering, 12(2),
2007.

[54] X. Zhang and R. Gupta. Cost effective dynamic program slicing. In
Proc. of the ACM SIGPLAN 2004 Conference on Programming Language
Design and Implementation, pages 94–106, 2004.

