
Collective Intelligence for Smarter API
Recommendations in Python

Andrea Renika D’Souza, Di Yang, Cristina V. Lopes
Department of Informatics,

University of California, Irvine
{ardsouza, diy, lopes}@uci.edu

Abstract—Software developers use Application Programming
Interfaces (APIs) of libraries and frameworks extensively while
writing programs. In this context, the recommendations provided
in code completion pop-ups help developers choose the desired
methods. The candidate lists recommended by these tools, how-
ever, tend to be large, ordered alphabetically and sometimes even
incomplete. A fair amount of work has been done recently to
improve the relevance of these code completion results, especially
for statically typed languages like Java. However, these proposed
techniques rely on the static type of the object and are therefore
inapplicable for a dynamically typed language like Python.

In this paper, we present PyReco, an intelligent code comple-
tion system for Python which uses the mined API usages from
open source repositories to order the results based on relevance
rather than the conventional alphabetic order. To recommend
suggestions that are relevant for a working context, a nearest
neighbor classifier is used to identify the best matching usage
among all the extracted usage patterns.

To evaluate the effectiveness of our system, the code completion
queries are automatically extracted from projects and tested
quantitatively using a ten-fold cross validation technique. The
evaluation shows that our approach outperforms the alphabet-
ically ordered API recommendation systems in recommending
APIs for standard, as well as, third-party libraries.

I. INTRODUCTION

Programming language ecosystems include several Appli-
cation Programming Interfaces (APIs), some of which are
part of standard libraries, while others come from third-party
developers. These APIs help software developers extend the
functionality of their programs and improve software quality
with very little additional code. However, learning how to use
these APIs can sometimes take a lot of time. In a study with
Microsoft developers, Robillard notes that most participants
attribute this difficulty of learning APIs with the scarce amount
of learning resources available [1].

Code completion is one of the most widely used features in
Integrated Development Environments (IDEs) [2]. Stylos and
Clarke observed that developers use this feature with the main
objective of writing code faster, more correctly and to explore
APIs [3].

The first generation code auto-complete tools in IDEs use
the static type of an object to list out all possible attributes or
methods that can be invoked or triggered when a user types
a “.” character. However, Mărăoiu et al. [4] observed that
a large fraction of the recommendations produced by these
early recommenders were not being accepted by the users
and were being used more frequently for debugging purposes.

Hence, recent research focuses towards building “intelligent”
code completion tools which order the recommendations based
on relevance rather than the conventional alphabetical order.
These tools aim to improve the developer’s productivity and
software quality by capturing the intent of a user for generating
the completion lists.

With its rapid development features, and simple and read-
able syntax, and powerful libraries, Python’s popularity has
been growing. Being a dynamic language, the traditional
intelligent techniques for code completion cannot be used for
recommending APIs in Python. Variables in Python are not
given a type; instead, they take the type of whichever object
is assigned to them during run-time.

Current code completion tools in Python have been ineffec-
tive for API recommendations due to the following reasons:
• Long alphabetic lists of recommendations

Most code completion tools in Python display all the
possible methods and attributes which can be invoked
by an object, and these lists tend to be long. Some of the
recommendations are rarely or never used by developers.
For example, auto-complete invoked for a String object in
Python retrieves around 85 results by JEDI [6]. This large
alphabetically ordered list makes it hard to navigate to the
correct candidate, sometimes making it even slower than
typing the full name of a method directly. Developers tend
to rely more on prefix filtering than scrolling to reduce
the number of choices [4].

• Scarce or ambiguous documentation of APIs
API documentation can be ambiguous, especially in ex-
plaining the type of the object returned by these APIs.
This problem is complicated even further in Python since
the language does not have static types. For instance,
the documentation for urllib.open states that this method
would return a file-like object. Developers may find this
description confusing since it does not give a clear
indication of what methods or attributes can be invoked
on the object returned.

• Incomplete static analysis of libraries
Static analysis tools generate stubs for libraries which are
used to assist the development tools in recommending
and approximating the return types of API methods.
PyCharm [7] uses python skeletons [8] whereas Mypy [9]
is an optional static analysis tool that uses typeshed [10]
for the stubs. These skeletons contain definitions for some

ar
X

iv
:1

60
8.

08
73

6v
1

 [
cs

.S
E

]
 3

1
A

ug
 2

01
6

(a) Monkey Patching[5] (b) Union Types in PyCharm

Fig. 1: Examples of Dynamic behavior in Python

of the most commonly used libraries especially the third-
party ones. The list of libraries, however, is not complete
since the generation of these stubs is highly dependent
on the ability to perform static analysis on the source
code of these libraries. According to Madsen [11], it
is complicated to statically analyze libraries due to the
following reasons: (a) Software libraries may be partially
or fully implemented in another programming language;
(b) The source code for libraries may be large and not
available for static analysis; and (c) Dynamic features
may be used in the source code of these libraries. An
absence of recommendations can, however, cause devel-
opers to suspect the presence of an error in the program
or to check the additional documentation available and
thus negatively impact their productivity [4].

(4) Failure to detect dynamic behavior
In a dynamic language, it is possible that a variable
can have a set of values at a particular point in the
program. For example, using Monkey Patching [12], APIs
of modules can be extended or modified using dynamic
binding. In Figure 1a, the built-in function str is modified
to return a string object of type unicode instead of str.
Some code completion systems may fail to recognize
these “union types” for an object. For example, in the
code snippet shown in Figure 1b, the type of object
named a is guessed correctly to be both int and str in
PyCharm [7].

These issues that exist in current code completion systems
for Python sparks the need for new recommenders that have
a greater understanding of developers’ goals and of Python’s
dynamic behavior in order to suggest APIs that are more suited
to the programming task.

In this paper, we present PyReco1, an API recommender
that uses the extracted API call sequences from open source
repositories instead of conventional type inference techniques
for the purpose of code completion. The intuition behind our
approach is that a large number of extracted API usage patterns
present in these projects should be able to capture all the
diverse scenarios in which APIs are currently being used by
developers.

The salient features of PyReco are as follows:

(1) A maximum of ten methods or attributes are recom-
mended for each completion query, and they are ranked
based on relevance using our Nearest Neighbor classifier,
Best Matching Object.

(2) Code recommendations become possible for all libraries
and APIs that were used in the mined open source
projects. Thus, the completeness of this list is based on
the popularity of libraries among developers rather than
the ability to do static analysis on library code.

(3) Our approach for extracting the API usages leverages
the semantics of the Python language and control flow
information present in program to predict the dynamic
behavior more accurately and capture the current working
context of the developer.

The rest of the paper is organized as follows. In Section II,
we discuss the related work done to improve code completion
results. In Section III, we describe our approach to extract API
usage patterns and the Best Matching Object algorithm used
for ordering the auto-complete proposals. In Section IV, the
evaluation procedure and metrics are described. In Section V,
we present and discuss our experiment results and we conclude
in Section VI.

1https://github.com/Mondego/pyreco

II. RELATED WORK

In the past few years, there has been fair amount of research
done to improve the relevance of API recommendations by
using context information, machine learning and statistical
approaches.

Robbes and Lanza [13] propose a code completion tool
that uses temporal information like the program history to
provide more relevant completions. On similar lines, Lee et
al. [14] have an additional temporal dimension for evolutionary
information on the code. In a collaborative work environment,
they propose that such information could make development
tasks easier.

The semantic or structural information in programs is most
commonly used for context in recommenders. Heinemann et
al. [15] claim that the identifier could be a good indicator for
the methods that can be called for the development task. For
instance, an object named angle could indicate the relevance
of suggesting sine and cosine operations. A context sensitive
completion approach by Asaduzzaman et al. [16] tokenizes
semantic information like keywords, method, class or interface
names from the preceding lines as part of the context to
improve the relevance of the code completion results.

Hou et al. [17] use a combination of grouping, sorting and
filtering techniques to improve code completion. In grouping,
the APIs are grouped on the basis of their functionality. Sorting
is done based on type hierarchy and popularity, whereas
filtering is done to filter out APIs that aren’t public. However,
these approaches require prior knowledge on the usage of each
API which is unfeasible due to the drastic increase in the
number of APIs in the past few years.

Raychev et al. [18] model the extracted method call se-
quences into statistical language models like N-Gram and
recurrent neural networks to predict recommendations. This
approach has been proven to be fast and efficient in determin-
ing the likelihood of the next method call for Android APIs.

Bruch et al. [19] propose a Best Matching Neighbor (BMN)
algorithm which is used to identify the nearest neighbors
among the examples of API usages. These identified neighbors
are then used for recommendations.

Bayesian networks is another machine learning model that
has been used to predict the next most likely method for code
completion. Proksch et al.[20] use a Bayesian networks classi-
fier along with context information to determine the likelihood
of a method being invoked. These Pattern Based Bayesian
Networks also incorporate clustering techniques to reduce the
model size and increase efficiency. These Bayesian networks
were more effective than BMN for the SWT framework
in Java. McCarey et al. [21] also analyze the effectiveness
of using a Bayesian techniques for recommending library
methods. However, the experiments show that a Vector Space
Model outperforms the Naive Bayes, Bayesian Network, Tree
Augmented Naive Bayes based classifiers.

However, all of the above proposed improvements have been
implemented for a static typed language, specifically Java. The
main objective of these approaches is to order the methods or
attributes for an object of a particular type.

f i l e = ‘ samples / sample . t x t ’
temp = ‘ samples / temp . t x t ’
f i = open (f i l e)
fo = open (temp , ‘w ’)
f o r s i n f i . r ead l i nes () :

i f s . s t r i p () :
fo . w r i t e (s)

e lse :
fo . w r i t e (‘\ n ’)
break

fo . c lose ()
f i . c lose ()

Fig. 2: Example code snippet

Schäfer et al. [22] describe an approach based on static
pointer analysis for smarter code completion results in
JavaScript, a dynamic language. However, this analysis is flow-
insensitive and thus, may not be able to detect some of the
dynamic behavior noticed in Python like union types. Also,
the APIs models used in this static pointer analysis method are
generated after applying dynamic analysis on the framework’s
test suite that is not available for most frameworks or libraries
for Python.

Franks et al. [23] propose CACHECA that captures the
localized regularities in a program by using its recent token
usage frequency. This could, however could lead to some
false positives in the code suggestions for a dynamic language
which is not backed by types.

Our approach for ranking the recommendations is based
on the BMN algorithm since it outperforms techniques which
incorporated association-rule mining [24] and statistical tech-
niques based on usage frequency.

III. APPROACH

In PyReco, we extract object usages from several GitHub
projects and use a nearest neighbor classifier on the extracted
usage patterns to order our recommendations based on rele-
vance.

The first phase of our implementation involves extracting
the library object usages by applying static analysis on the
abstract syntax trees of the python source files. Our AST
Parser uses the abstract syntax trees generated by the ast [25]
module in Python’s standard library. For the second phase, we
propose a Best Matching Object algorithm which is based on
Best Matching Neighbor (BMN) algorithm [19], to predict and
order the next most likely methods by using the mined usage
information.

To illustrate our approach, we will use the code snippet
described in Figure 2. The file handling example consists of
two file objects, fi and fo, which are created using the builtin
function, open. The example depicted shows a usage scenario
wherein fo, a temporary file is created to dump the data present
in fi.

Fig. 3: Program Graph generated for code snippet in Figure 2

A. Data Extraction

We used the advanced search API [26] of GitHub to extract
open source projects rated with the most number of stars in
Python. The number of stars in GitHub refers to the number of
people watching the project. Since APIs and software libraries
are prone to change or become deprecated with time, the
choice of such popular projects would be advantageous as they
would be more likely to be updated with API changes than
a less starred one. For our experiments, we extracted around
20,000 projects from GitHub [27].

B. Analysis of Python source files

In this part, we recursively walk through the nodes of the
AST tree generated to analyze the python source files present
in the GitHub projects.

Some of the salient features of our analysis are as follows:
(1) The python source code files are parsed in a top-down

fashion. The top-down parsing emulates the way forward-
directed completion is done in an IDE.

(2) The library and module information is extracted from the
Import nodes in the AST tree generated.

(3) An object assignment is added to the program’s graph if
it has been created using a library function.

(4) An API method or attribute is recorded in the graph if the
receiver object’s assignment has been previously recorded
and the object is still alive in the current scope.

(5) The object’s death is marked when it is reassigned or
when its scope ends.

No Node Entry Pts Exit Pts Reaching Defs
1 fi becomes open 2 fi:open
2 fo becomes open 1 3 fo:open, fi:open
3 fi calls readlines 2 4,5 fo:open, fi:open
4 fo calls write 3 6 fo:open, fi:open
5 fo calls write 3 6 fo:open, fi:open
6 fo calls close 3,4,5 7 fo:open, fi:open
7 fi calls close 6 8 fo:open, fi:open
8 fo dies 7 9 fo:open
9 fi dies 8

TABLE I: Reaching Definitions and extracted context infor-
mation stored in Nodes

We use graphs in our program analysis approach since it can
be used to describe the assignments and calls in terms of the
control flow of a program. The program’s graph splits when
a branching or looping construct is encountered and merges
on exiting that block. This splitting and merging of flows are
depicted in the graph as shown in Figure 3. In the example
shown, the graph splits on encountering the if-else block and
the for loop in the program. These flows join after exiting the
scope of these blocks.

To describe the control flow of the program, each node
contains information on its entry and exit nodes as shown
in Table I. These entry and exit nodes help in the traversing
across all the execution flows of the program and could be used
to approximate the set of values an object can have at different
points of the program using Reaching Definition Analysis [28].

Reaching Definitions analysis is done to determine all the
definitions that reach a particular point in the program. At a
node S in the graph, the reaching definitions S is the union of
the reaching definitions from the entry nodes minus the ones
killed at S (if an object dies at S) plus the definitions that are
added in S (if an object is reassigned at S) [29]. For instance,
at node 6 (fo calls close) in Figure 3, the reaching definition
is a union of the definitions at 3, 4 and 5. No definition is
added or subtracted at this node since the node at 6 marks a
close call, not the death or assignment of an object.

These reaching definitions can be used to detect “union
types”. For instance, if fo was assigned to os.path(file) in the
else block, the reaching definitions at 6 for object fo would be
a set of values containing os.path and open. Thus, we could
recommend methods that are invoked on os.path as well as
open.

Currently, our approach tracks assignments made using
the assignment operator (‘=’) or using ‘with’ construct. An
assignment node is added to the graph by evaluating the
right side of the assignment expression for a library call.
Certain assignments such as that of the iterator in for loops
is ignored since there is no substantial information on the
type of the object. For instance, the object s in the for loop
shown in Figure 2 shows that it is a part of the iterator object
fi.readlines() but the statement does not clearly indicate the
type of s.

We are able to check “monkey patching” in most cases, by
evaluating the left side of the assignment expression to check if

Fig. 4: Encoding the file objects as frequency vectors

Fig. 5: Best Matching Objects from extracted Object Usages

a library method has been modified or overridden. Such calls
are tracked and ignored while adding nodes to the program
graph.

The program graph created after parsing the syntax trees is
then used to extract call sequences for training the recommen-
dation models. In the Figure 3, the extracted call sequence for
fo consists of write and close methods, whereas for fi, the call
sequence consists of readlines and close methods.

C. Best Matching Object Algorithm

After extracting the object usages from all the GitHub
[27] projects, we train our models using a nearest neighbor
classifier, which is based on the Best Matching Neighbor
Algorithm [19]. We name this algorithm as Best Matching
Object since it uses the contextual information specific to the
object to recognize the nearest neighbors.

Our tailorings in this approach are as follows:
(1) Vectors are created for the training objects and query

based on their invoking method-call frequency.
(2) Manhattan distance is used as the distance criteria to

select the nearest neighbors.
The basic approach involves creating vectors for the object

usages extracted from the projects, computing the Manhattan

distance with the frequency vector created for the query, and
selecting the objects with the minimum distance from the
query vector as the Nearest Neighbors. The recommendations
are then presented based on the decreasing order of frequencies
of methods invoked by the nearest neighbors.

The calls to different methods tend to follow patterns or
chain sequences in a programming task. The object’s call
sequence is always present in these frequency vectors gen-
erated since they indicate about an object’s usage pattern. The
call sequences for each object are recorded from the object’s
assignment nodes to the nodes marking its death through a
traversal of the program graphs generated.

As part of additional context, all the other methods that were
invoked in the period between the creation and death of the
object are recorded. These method calls are labeled as “other
calls” in the frequency vectors shown in Figure 4.

A similar approach is followed while creating the frequency
vector for the query during the evaluation process. A backward
traversal of the graph is done to retrieve all the information
related to the query object.

To identify the nearest neighbors for the completion query,
we compute the Manhattan distance between the query vector
and other similarly defined objects found in our training

Fig. 6: Code Recommendations using Nearest Neighbors

Fig. 7: Evaluation using Cross Validation [20]

dataset. The distance measure is calculated by taking the sum
of the absolute values of the differences between the variables
of the two vectors as shown in the following formula:

d =
∑n

i=1 |xi − yi|
Manhattan Distance [30] was selected as the distance mea-

sure for measuring the similarity between the feature vectors
since it performed much better than other measures like
Euclidean distance in our initial experiments.

To calculate the Manhattan distance we considered only the
difference in frequency between variables present in the query
vector. For instance, in the example shown in Figure 5, only
the difference in the frequency of readlines is computed for
the open objects. Thus, n in the distance equation refers to
the number of methods in the query’s frequency vector with
a usage frequency greater than 0.

Unlike the Best Matching Algorithm described by Bruch
et al. [19], we kept the original frequency values instead of
reducing them to boolean factors since some methods tend to
be called more frequently than others.

In Figure 5, open obj1 and open obj2 are selected as the
nearest neighbors since they have the minimum Manhattan
distance among the extracted open objects. The nearest neigh-

bors then vote based on their method frequencies. This vote
is done subtracting the method frequencies already present in
the query vector. The methods that are recommended in the
example query shown in the Figure 6 are readline, read and
close.

IV. EVALUATION

In this section, we will describe the process, metrics and
the dataset that were used for measuring the effectiveness of
the code recommenders.

A. Experiment Procedure

To compare the prediction quality of PyReco to other
Python code recommenders, we propose an evaluation pro-
cedure consisting of automated case studies that are extracted
from the GitHub projects and manual case studies from the
library’s official documentation and examples.

Most IDE tools depend on qualitative techniques and user
studies to evaluate their effectiveness. However, it is very
hard to find a representative set of users, and the approach
could be time-consuming, costly and could result in subjec-
tive judgments [31], [32]. Automating this evaluation process
could give a more objective idea of the performance of code
completion systems.

Our automated evaluation approach is based on the hold-
out validation process proposed by Bruch et. al [32]. The
automated cases were tested using a 10-fold cross-validation
that consists of the following main features:
(1) In each fold, 10% of the library objects are kept aside

as the validation set while the other 90% are used for
training.

(2) The validation set varies with each fold of the cross-
validation and queries for each fold are selected ran-
domly. The intra-project completion queries were as-
signed the same fold to avoid the positive bias and strong
correlation among the completion queries noticed in our
initial experiments and prior research [31].

(3) The recommenders were queried for every method call
made by these library objects by calling their code
completion API, thus making the process completely
automated. The program snippet till the ”.” character at
which the method invoked is passed as input to the API.

(4) After each query, the evaluation metrics were calculated
with the relevant set containing the method the user had
originally used in the program. Thus, the relevant set in
our approach contains only one method.

JEDI [6], provides an API that can be used for retrieving
the code completion results. This API is ideal for testing code
completion using the above-mentioned automated approach.
JEDI is a static analysis tool for Python which has been
integrated into IDEs such as Atom. It has also been provided as
a plugin for text editors such as Sublime. The code completion
results by JEDI are alphabetically ordered.

Manual case studies to test code recommenders usually
consist of a few code completion scenarios that are identified
and validated by experts [31]. However, in the absence of such
expert validated scenarios for Python, we tested each library
with a code example found in its official documentation or
learning resources 2.

In these manual cases, we evaluated how PyReco fares
in comparison to PyCharm [7], IntelliJ’s plugin for Python,
which has a much more popular and powerful code completion
feature than JEDI; however since their implementation is
closed and it cannot be used for our automated experiments.

B. Experiment Dataset

In the experiments proposed, the recommenders were eval-
uated for 20 Python libraries: 11 standard and 9 third-party.
These libraries were chosen due to their popularity in Python’s
development community and the large numbers of library
objects found in our dataset of software projects.

C. Evaluation Metrics

To measure the quality of predictions made by the code
recommenders, we used Mean Reciprocal Rank(MRR) and
Recall.

Mean Reciprocal Rank is calculated by averaging the re-
ciprocal of the rank at which the first relevant document was

2https://github.com/Mondego/pyreco/tree/master/manual queries

found across all the information needs [33]. For a set of code
completion queries Q, the Mean Reciprocal Rank is defined
as:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

Since this measure captures the rank of the relevant result,
it does not penalize the systems that retrieve long lists as
Precision does. MRR is also more effective in measuring the
prediction quality in a ranked retrieval scenario as compared
to the other set-based measures. In our case, this measure
becomes equivalent to Mean Average Precision (MAP)
since our relevant set contains only one element, the method
that the developer used in the program from which the query
was generated.

We use Recall to estimate the “completeness” of our results.
It gives us an idea of the number of times the recommendation
list did contain the method that the user was looking for.
Recall [28] is calculated using the following formula:

Recall =
|{relevant documents}

⋂
{retrieved documents}|

|{relevant documents}|
Among the measures described, we considered MRR as

the main criteria to decide the quality of the results when the
metrics have contrasting values.

To illustrate the way these metrics are calculated, consider
the code recommendations (readline, read, close) made in
Figure 6. If read was the method the user used for the query
shown in Figure 5, then the values of the metrics will be as
follows:

(1) MRR = 0.5 since the rank at which read was found is
2.

(2) The Recall for this query is 1.0 since read was in the
set of retrieved recommendations.

V. RESULTS AND FINDINGS

In this section, we will discuss the results and findings of our
experiments conducted to assess the effectiveness of PyReco
as a code recommender.

A. Automated Queries

In order to compare the performance of PyReco with JEDI,
we sent the same set of completion queries for the standard
and third-party libraries using the 10 fold cross validation
technique described in Section IV. Each recommender is tested
with an average of 30, 000 code completion queries sent across
ten different splits for cross-validation. The evaluation metrics
were averaged across the queries and are listed out in Table
II and Table III.

For standard libraries, PyReco has an average MRR value of
0.5 which means that on an average, the relevant result appears
in the second position, whereas, JEDI has an average MRR
value of 0.11, which indicates that the relevant result appears
in the ninth position most of the times. The recall values show
that the relevant result does not appear in more than half of

Library PyReco-MRR JEDI-MRR PyReco-Recall JEDI-Recall
os 0.592 0.037 0.943 0.356
re 0.727 0.196 0.967 0.853

ctypes 0.369 0.146 0.565 0.161
logging 0.425 0.080 0.730 0.615
datetime 0.485 0.040 0.845 0.429

time 0.516 0.0068 0.951 0.068
json 0.632 0.0137 0.950 0.068

collections 0.418 0.161 0.776 0.665
struct 0.646 0.237 0.927 0.843

subprocess 0.560 0.260 0.925 0.741
argparse 0.306 0.424 0.422 0.518

TABLE II: Results for Python Standard Libraries

Library PyReco-MRR JEDI-MRR PyReco-Recall JEDI-Recall
django 0.467 0.001 0.687 0.003
numpy 0.424 0.009 0.783 0.006
mock 0.252 0.000 0.472 0.000

sqlalchemy 0.551 0.092 0.871 0.419
PyQt4 0.559 0.000 0.896 0.000
theano 0.674 0.000 0.930 0.000

wx 0.568 0.000 0.842 0.000
google 0.638 0.001 0.910 0.002
flask 0.481 0.000 0.819 0.000

TABLE III: Results for Third-Party Libraries

the code completion queries for JEDI. Thus, in addition to the
alphabetic order, the low recall value could also explain the
JEDI’s low MRR value since the MRR value is 0 in half the
queries tested.

Among the standard libraries, we notice that the recall and
MRR values for PyReco are low for mock and argparse.
Since our static analysis captures the data-flow and call
sequences concerning only the library objects, we find that
these extracted sequences were not sufficient to capture the
developer’s working context for these libraries. For instance,
predicting the relevant method for an object returned by the
library function ArgumentParser.parse args in the argparse,
would require more information on the iterator value being
passed to this function. A mock library object is usually used
for unit-testing, thus it could have variable methods that are
based on the function being tested.

These experiments also show the ineffectiveness of JEDI to
recommend methods for third-party library objects. JEDI fails
to propose auto-complete suggestions for the code completion
queries in most cases. This fact is corroborated by low MRR
and Recall values nearing 0. PyReco, on the other hand, has
an average Recall value of 0.84 which means that the relevant
result is in the ten recommendations in 84% cases. The average
MRR value for PyReco, like the standard libraries, is around
0.5.

Among the results for the third-party libraries, we notice
that the library, ctypes has a comparatively lower recall and
MRR value. In ctypes, a CDLL object is created using a string
containing the name of C library. Since our static analysis does
not capture this string, the relevant result could be absent from
the recommendations made by PyReco.

The low values for JEDI could be due to its inability to
recognize “union types” and recommend for library objects

that are not documented. This can be observed in the high
recall values for re, struct and subprocess as compared to the
third-party libraries.

The results for standard and third-party libraries show that
PyReco does outperform JEDI in terms of prediction quality
and completeness of recommendations by a huge margin.
However, the results of this experiment can not be used to ex-
plain the impact of a relevance based ordering since JEDI fails
to recommend methods for most of the completion queries.
The results, however, does indicate that PyReco captures the
developer’s context and approximates the query object’s type
much more effectively than JEDI does.

B. Manual Queries

Since JEDI was not very effective in predicting methods for
third-party libraries, we conducted experiments with PyCharm
to assess the effectiveness of a relevance-based ranking as
compared to the conventional alphabetic order.

For each of the above-mentioned 20 libraries, we tested
recommender with an example found in the library’s online
documentation or learning resources. The rank at which the
relevant method was found in completion pop-up was recorded
as shown in Table IV.

In 16 of the 20 cases tested, the ordering of the recommen-
dations by PyReco was found to be better than PyCharm. Since
recommendations made by PyReco are on the first page of the
pop-up, it could positively impact a developer’s productivity.

We noticed that in 7 examples, the relevant result was not
found on the first page of PyCharm’s auto-complete pop-up.
On the other hand, PyReco places the relevant result in the
first or second position in these seven examples.

3no recommendations were made for the completion query

Library PyReco PyCharm
django 1 25

os 1 7
numpy 1 51

re 1 4
mock 0 03

ctypes 2 03

logging 8 3
sqlalchemy 5 3

datetime 1 22
time 7 0

PyQt4 8 0
theano 3 7

wx 1 57
json 2 9

collections 1 7
struct 2 6

subprocess 1 28
google 2 03

flask 3 95
argparse 2 55

TABLE IV: Ranks for the relevant method in PyReco and
PyCharm

For libraries like mock, ctypes and google, PyCharm fails
to provide any recommendations. This inability could be due
to the absence of stubs or skeletons for these libraries.

The results from these manual cases studies do indicate that
a relevance based ordering like the one in PyReco could be
more useful for recommending APIs.

C. Threats to Validity

We identified the following threats in our described
approach:

(1) Generalization based on tested libraries
Our results are summarized based on our experiments
using 20 library methods. However, these findings could
be challenged when other libraries are used. Our choice
of the libraries was based on the high frequency of
usage patterns detected in our dataset of projects and
its popularity in the Python development community.

(2) Generalization based on manual evaluation
Our results for the manual queries are summarized
based on a single query. A single query may not be
representative of the performance of a library. These
queries were only used to evaluate how PyReco fares
against PyCharm since an automated evaluation was not
feasible in the latter.

(3) Presence of bugs in repositories
There is a possibility that some of the source code files
used for training may contain bugs and thus may lead to
some false positives in the recommendations. However,
since the projects extracted are the top starred ones, the
presence of these bugs is expected to be negligible.

VI. CONCLUSION AND FUTURE WORK

In this paper, we described PyReco, a code recommender,
to help software developers explore APIs of libraries and
frameworks more effectively and efficiently in Python.

The proposed recommender addresses the challenge of
recommending APIs in a dynamic language by reusing the
intelligence found in open source repositories on API usages
and suggests method calls that are ordered by relevance, unlike
the other code completion tools currently available for Python.

Our experimental results show that the predictions made by
PyReco are much more precise and complete than those made
by JEDI [6]. They also show promise when compared with
PyCharm [7] for the standard and third party libraries tested.

In our experiments, we noticed capturing the call sequences
was not sufficient to capture the developer’s working context
for libraries like ctypes, mock and argparse. To improve the
auto-complete predictions for these libraries, we could extract
more information on the values of the primitive objects present
in the program.

We plan to integrate PyReco as a plugin in the Integrated
Development Tools (IDEs) for Python. However, in order to do
that, we need to conduct user studies with software developers
to assess the usefulness of such a plugin and for directions in
its design.

ACKNOWLEDGMENTS

This work was partly supported by a grant from the DARPA
MUSE program.

REFERENCES

[1] M. P. Robillard, “What makes apis hard to learn? answers from devel-
opers,” Software, IEEE, vol. 26, no. 6, pp. 27–34, 2009.

[2] G. C. Murphy, M. Kersten, and L. Findlater, “How are java software
developers using the elipse ide?” Software, IEEE, vol. 23, no. 4, pp.
76–83, 2006.

[3] J. Stylos and S. Clarke, “Usability implications of requiring parameters
in objects’ constructors,” in Proceedings of the 29th international
conference on Software Engineering. IEEE Computer Society, 2007,
pp. 529–539.

[4] M. Mărăoiu, L. Church, and A. Blackwell, “An empirical investigation
of code completion usage by professional software developers.”

[5] “monkeypatching - monkey patching in python: When we need
it? - stack overflow,” http://stackoverflow.com/questions/11977270/
monkey-patching-in-python-when-we-need-it, (Accessed on
05/17/2016).

[6] “Jedi - an awesome autocompletion/static analysis library for python
jedi 0.9.0 documentation,” http://jedi.jedidjah.ch/en/latest/, (Accessed on
05/17/2016).

[7] “Pycharm,” https://www.jetbrains.com/pycharm/, (Accessed on
05/17/2016).

[8] “Jetbrains/python-skeletons: Collection of python files that contain api
definitions of third-party libraries extended for python static analy-
sis tools,” https://github.com/JetBrains/python-skeletons, (Accessed on
05/17/2016).

[9] “python/mypy: Optional static typing for python,” https://github.com/
python/mypy, (Accessed on 05/17/2016).

[10] “python/typeshed: Collection of library stubs for python, with static
types,” https://github.com/python/typeshed, (Accessed on 05/17/2016).

[11] M. Madsen, “Static analysis of dynamic languages,” Ph.D. dissertation,
Aarhus UniversitetAarhus University, Science and TechnologyScience
and Technology, Institut for DatalogiDepartment of Computer Science,
2015.

[12] “Monkey patch - wikipedia, the free encyclopedia,” https://en.wikipedia.
org/wiki/Monkey\ patch, (Accessed on 05/17/2016).

[13] R. Robbes and M. Lanza, “How program history can improve code
completion,” in Automated Software Engineering, 2008. ASE 2008. 23rd
IEEE/ACM International Conference on. IEEE, 2008, pp. 317–326.

[14] Y. Y. Lee, S. Harwell, S. Khurshid, and D. Marinov, “Temporal code
completion and navigation,” in Proceedings of the 2013 International
Conference on Software Engineering. IEEE Press, 2013, pp. 1181–
1184.

[15] L. Heinemann and B. Hummel, “Recommending api methods based on
identifier contexts,” in Proceedings of the 3rd International Workshop
on Search-Driven Development: Users, Infrastructure, Tools, and Eval-
uation. ACM, 2011, pp. 1–4.

[16] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and D. Hou, “Cscc:
Simple, efficient, context sensitive code completion,” in 2014 IEEE
International Conference on Software Maintenance and Evolution (IC-
SME). IEEE, 2014, pp. 71–80.

[17] D. Hou and D. M. Pletcher, “Towards a better code completion system
by api grouping, filtering, and popularity-based ranking,” in Proceedings
of the 2nd International Workshop on Recommendation Systems for
Software Engineering. ACM, 2010, pp. 26–30.

[18] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical
language models,” in ACM SIGPLAN Notices, vol. 49, no. 6. ACM,
2014, pp. 419–428.

[19] M. Bruch, M. Monperrus, and Mezini, “Learning from examples to
improve code completion systems,” in Proceedings of the the 7th
joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering.
ACM, 2009, pp. 213–222.

[20] S. Proksch, J. Lerch, and M. Mezini, “Intelligent code completion with
bayesian networks,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 25, no. 1, p. 3, 2015.

[21] F. McCarey, M. O. Cinnéide, and N. Kushmerick, “Recommending
library methods: An evaluation of bayesian network classifiers,” Support-
ing Knowledge Collaboration in Software Development (KCSD2006),
p. 17, 2006.

[22] M. Schäfer, M. Sridharan, J. Dolby, and F. Tip, “Effective smart
completion for javascript,” Technical Report RC25359, IBM Research,
Tech. Rep., 2013.

[23] C. Franks, Z. Tu, P. Devanbu, and V. Hellendoorn, “Cacheca: A cache
language model based code suggestion tool,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, vol. 2. IEEE,
2015, pp. 705–708.

[24] M. Bruch, T. Schäfer, and M. Mezini, “Fruit: Ide support for framework
understanding,” in Proceedings of the 2006 OOPSLA workshop on
eclipse technology eXchange. ACM, 2006, pp. 55–59.

[25] “32.2. ast abstract syntax trees python 2.7.11 documentation,” https:
//docs.python.org/2/library/ast.html, (Accessed on 05/17/2016).

[26] “Search — github developer guide,” https://developer.github.com/v3/
search/, (Accessed on 05/17/2016).

[27] “Github,” https://github.com/, (Accessed on 05/18/2016).
[28] F. Nielson, H. R. Nielson, and C. Hankin, Principles of program

analysis. Springer, 2015.
[29] “Reaching definition - wikipedia, the free encyclopedia,” https://en.

wikipedia.org/wiki/Reaching definition, (Accessed on 06/27/2016).
[30] E. F. Krause, Taxicab geometry: An adventure in non-Euclidean geom-

etry. Courier Corporation, 2012.
[31] S. Proksch, S. Amann, and M. Mezini, “Towards standardized evalua-

tion of developer-assistance tools,” in Proceedings of the 4th Interna-
tional Workshop on Recommendation Systems for Software Engineering.
ACM, 2014, pp. 14–18.

[32] M. Bruch, T. Schäfer, and M. Mezini, “On evaluating recommender
systems for api usages,” in Proceedings of the 2008 international
workshop on Recommendation systems for software engineering. ACM,
2008, pp. 16–20.

[33] N. Craswell, “Mean reciprocal rank,” in Encyclopedia of Database
Systems. Springer, 2009, pp. 1703–1703.

