Tree-Oriented vs. Line-Oriented Observation-Based
Slicing

David Binkley*, Nicolas GoldT, Syed Islam*, Jens Krinke, and Shin Yoo®
*Loyola University Maryland, 4501 N. Charles St., Baltimore, MD 21210-2699, USA
TUniversity College London, Gower Street, London, WCI1E 6BT, UK
j5University of East London, University Way, London E16 2RD
§KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea

Abstract—Observation-based slicing is a recently-introduced,
language-independent slicing technique based on the dependen-
cies observable from program behavior. The original algorithm
processed traditional source code at the line-of-text level. A recent
variation was developed to slice the tree-based XML representa-
tion of executable models. We ported the model slicer to source
code using srcML to construct a tree-based representation of
traditional source code. We present the results of a comparison
of the two slicers using four experiments involving seventeen
different programs, including classic benchmarks and larger
production systems. The resulting slices had essentially the same
size and quite often the same content. Where they differ, the
use of tree structure traded an ability to remove unnecessary
parts of a statement for the requirement of maintaining aspect
of the code structure. Comparing the slicers finds that each has its
advantages. For example, when the tree representation facilitates
the deletion of large chunks of code, the tree slicer was over eight
times faster. In contrast, when slicing C++ code it was over nine
times slower because of the multitude of small trees created to
support C++ syntax. Given the pros and cons of the two, the
results suggest the value of their hybrid combination.

I. INTRODUCTION

Observation-based slicing is a recently introduced technique
that handles two long-standing slicing challenges: slicing
systems consisting of components written in different pro-
gramming languages and slicing systems that include binary
components or libraries [1]. In addition, observation-based
slicing obviates the need to replicate much of the compiler’s
infrastructure (e.g., parsing the code). Instead the approach
leverages the existing build tool-chain and thus provides a way
to construct a slicer out of the existing build tools. Doing so
circumvents the need for costly development of new language-
specific toolsets. Operationally, it speculatively deletes part of
the code and then observes the program’s behavior, committing
to the deletion if a desired behavior is still observed.

While similar to dynamic slices, in their reliance on a
selected set of inputs, observation-based slices are based on
observed dependencies, rather than the statically determined but
dynamically witnessed dependencies used by dynamic slicers.
That is, a dynamic slice contains a statement if a (statically
determined) dependence is witnessed during some execution.
By contrast, an observation-based slice contains a statement if
its deletion has an observable effect on the slicing criterion.

The original implementation of observation-based slicing
processed traditional source code at the line-of-text level. Its

direct application to executable models, which are widely used
in software engineering as well as other engineering domains to
prototype, communicate, reason about, and simulate complex
systems, was hampered by the tree-based XML representation
of model source code. This led to the creation of an algorithm
for observation-based slicing of tree-represented modeling
languages [2]. The initial experiment considered executable
models written using Mathworks’ Simulink [3], which is part
of the MATLAB software suite.

This paper compares and contrasts implementations of the
two algorithms in the domain of the original algorithm. This is
done by transforming traditional source code from lines of text
into XML using srcML [4]. Doing so should retain the slicers’
language independence (within the limits of the languages
supported by srcML) while allowing it to exploit the more
natural organization of the source code; for example, deleting
the entire body of a function in a single step rather than having
to consider each of the function’s lines. The remainder of the
paper is structured as follows. Section II provides basic slicing
definitions including that of observation-based slicing, while
Section IIT describes the two implementations of observation-
based slicing. The results are then setup by Section IV, which
states the three research questions considered, and Section V,
which provides demographics for the systems studied. Results
of the empirical comparison are presented in Section VI. Finally,
related work is discussed in Section VII and Section VIII
summarizes the contributions of the paper.

IT. SLICING DEFINITIONS

Informally, Weiser defined a slice as a subset of a program
that preserves the behavior of the program for a specific slicing
criterion. This section briefly describes traditional static and
dynamic slicing before considering observation-based slicing.

Static [5] and Dynamic [6] slicing seek to find an executable
subset of a program’s statements that exhibits the same behavior
as the original program for a specified variable at a specified
location (referred to as a slicing criterion). A static slice does
so for all possible inputs, while a dynamic slice does so for a
selected set of inputs.

It is interesting to note that while Weiser’s original definition
of program slicing [5] is based on statement deletion, static and
dynamic slicers tend to use dependency analysis to determine
which statements cannot be deleted. In contrast observation-

based slicing actually deletes statements and then observes the
behavior at the slicing criterion.

Static and Dynamic Slice: A slice S of program P taken
with respect to slicing criterion C' (composed of variable v and
line /) and set of inputs Z is any executable program with the
following two properties:

1) S can be obtained from P by deleting zero or more
statements from P.

2) Whenever P halts on input I from Z with state trajectory
T, then S also halts on input I with state trajectory 7"
and PROJ(T) = PROJ-(T).

The projection function PROJ(T') [5] returns the elements
of trajectory T produced at C'. For a static slice the set 7
is the set of all possible inputs to the program, while for a
dynamic slice it is a subset of this set. Usually, the criterion
for a dynamic slice explicitly includes Z and is thus given as
(v,1,7) denoting variable v at location [for all occurrences in
the trajectory, or as (v;,1,Z) where v; is the ith occurrence of
variable v in the trajectory.

Observation-Based Slicing is a recently-introduced alter-
native to dependence-based program slicing [1]: rather than
relying on dependency analysis to identify allowed deletions,
observation-based slicing uses observation to preserve the
relevant part of the state trajectory. Operationally, it does this
by tentatively deleting some portion of the program. Only
if the result of the deletion compiles and yields the correct
output is the deletion made permanent. Because certain lines
are only deletable after other lines have been deleted, multiple
passes are performed until a pass performs no deletions. One
advantage that observation-based slicing brings is the ability
to slice any system where it is possible to delete components
and then observe the computation at the criterion.

While similar, the definition of static and dynamic slicing
projects elements from the complete state trajectory. In con-
trast observation-based slicing does not require the complete
trajectory. Instead it observes only the relevant values [1]:

Observation-Based Slice: An observation-based slice S of a
program P taken with respect to slicing criterion C' = (v,1,7)
composed of variable v, line [/, and set of inputs Z, is any
executable program with the following properties:

1) S can be obtained from P by deleting zero or more

components from P.
2) The execution of P for every input I in Z halts and

produces a sequence of values V (P, I,v,l) for variable

v at line [.
3) The execution of S for every input [in Z halts and

produces a sequence of values V' (S, I, v,1) for variable
v at line [.
4) Vi V(P 1,0,1) =V (S,1,v,1).
In practice, the sequence of values produced is observed by
injecting a statement that outputs the value of v, just before
line [. Furthermore, while the definition of the components
deleted can simply be “statements” to match the definition
used with static and dynamic slicing, it can also be entirely
language independent. For example, by deleting lines of text or

Algorithm 1: Core of the ORBS slicer

ORBS_CORE(S, cl,Z, mazx_ws)

Input: Current slice S, input set Z, and maximum deletion
window size, max_ws

Output: Updated slice, S

(1) ¢l < 1 // for each current line

(2) while ¢l < length(S)

3) if sq ¢S /e, if s, has been deleted
4 cl+—cl+1

(@) continue

(6) builds < False

7 for ws =1 to mazr_ws

3 S 85— {Sch ceey Smin(length(S),cl-i-ws—l)}
) B’ < BUILD(Y’)

(10) if B’ built successfully

(11 builds < True

(12) break

(13) if builds

(14) V'’ + EXECUTE(B',T)

(15) itV =V

(16) S« 9

(17) cl + cl +ws

(18) return S

white-space-delimited tokens, it is possible to effectively slice
multi-language systems [1].

III. TWO OBSERVATION-BASED SLICERS

This section describes two implementations of observation-
based slicing: the original text-line based slicer and the more
recent tree-based slicer. The components considered by the
original observation-based slicer, ORBS, are lines of text [1].
If source files are formatted with one statement per line, then
ORBS can produce 1-minimal statement slices from which
it is not possible to delete any single statement, however,
it may be possible to delete a combination of multiple
statements; consequently the slices are not necessarily n-
minimal. Unfortunately, finding such slices is computationally
intractable.

The core of the ORBS algorithm, shown as Algorithm 1,
loops through each undeleted line in S. For each current line
cl, the algorithm attempts to delete a sequence of lines up
to the maximum windows size, max_ws [1]. This enables
mutually dependent lines (e.g., opening and closing braces on
successive lines) to be deleted. The maximum deletion window
size places an upper bound on the number of lines that can be
deleted together in one deletion. Higher values offer potentially
smaller slices at the cost of increased slicing time. To improve
efficiency, ORBS caches results from previous BUILD and
EXECUTE steps. If a subsequent build or execution produces
a cache hit then the cached result is used.

For example, consider the code segment shown in Figure 1.
ORBS cannot produce the minimal slice (i.e., Line 4) by
attempting to delete only a single line at a time. While deleting
Line 2 alone is a legitimate slicing action, Lines 1 and 3
can only be deleted in tandem because deleting only one of

if (x < 0) {
print x;

}
y = 42; // Slice taken w.r.t. y

Fig. 1. Deletion Window Motivation

Algorithm 2: Core of the Tree-ORBS Slicer
T-ORBS_CoRE(T,0,1)

Input: Current Tree T, the criterion consisting of observer O,
and input set 7

Output: Updated Tree, T’

(1) ¢ < APPEND(empty_queue, start_node(T))

(2) while — EMPTY(q)

3) ¢ < DEQUEUE(q)

4) T’ < DELETE(T, ¢)

) V'« O(T",1)

(6) if V=1

(7 T+ T

(8) else

) ¢ < APPEND(q, CHILDREN(c))

(10) return T

them results in a syntax error. ORBS avoids this issue by
increasing the deletion window until the result compiles. Using
a maximum deletion window size max_ws of two or more,
ORBS produces the desired slice.

T-ORBS, the second implementation of observation-based
slicing, was built to slice Simulink models including any
embedded Stateflow, both of which are stored using XML [2].
In the same paper, observation-based slicing was generalized
to observational slicing. The original definition as given in
Section II compared sequences of values observed during
execution. Observational slicing generalizes this comparison
by introducing an observer O and a matching relation R as part
of the criterion. In this paper, only traditional observations and
matching are used, and therefore, the term observation-based
is used. It also permits the simplified version of T-ORBS core
shown as Algorithm 2. Rather than line-by-line, the loop on
Line (2) performs a breadth-first tree traversal. During each
iteration, T-ORBS attempts to delete the subtree rooted at
current node, c. If the resulting system produces the correct
sequence of values then c is permanently deleted. Otherwise
¢’s children are placed on the worklist.

The T-ORBS implementation was constructed to slice
MATLAB’s Simulink models, which are stored using XML [2].
Thus to slice traditional source code such as C or Java code,
the code must first be transformed into XML. For this we
use srcML [4]. In theory, T-ORBS should be able to slice the
resulting XML tree-based source code representation without
modification. In practice, this came close to being true. Unlike
Simulink’s XML representation srcML includes XML name
spaces. Thus it was necessary to generalize T-ORBS’ command-
line arguments to include a name-space specification. The only
other change necessary was to transform srcML’s output from
mixed content, where (source) text is intermixed with tags,
to element content. In greater detail, the output from srcML
uses mixed content (much like HTML) where an element may

contain text and other elements. For example, the <if> tag
includes the fext “if” and several elements including the element
for the (boolean) condition: <if>if <condition> ... </condition>
... </ift>. The transformation to element content moves the
“free” text “if”” to be an attribute of an element, resulting in
the XML <if text="if"> <condition> ... </condition> ... </if>. This
transformation avoids ambiguities concerning to which element
the intermixed text belongs. The resulting T-ORBS slicer is
capable of slicing any language supported by srcML or any other
XML creation tool. For example, it was initially developed
using C code, but was able to slice C++ and Java code without
the need for a single modification.

IV. RESEARCH QUESTIONS

Prior work [1] compared ORBS with various forms of
dynamic slicing, all of which are its ‘algorithmic cousins’
because they all have common roots in dynamic analysis.
Subsequently, ORBS slices were compared to static slices in
order to explore the subtleties and limits of static analysis [7].
This paper studies the two implementations of observation-
based slicing, ORBS, and T-ORBS, using the following research
questions.

RQI: How do ORBS and T-ORBS slices compare quanti-
tatively? This quantitative question considers the sizes of the
slices produced by the two implementations.

RQ2: How do the slices produced by ORBS and T-ORBS
compare qualitatively? This qualitative question considers
differences in the slices produced by the two implementations.

RQ3: What impact does implementation have on the time
taken to compute a slice? This quantitative question asks if
T-ORBS’ ability to delete large sub-trees pays for its having to
consider a multitude of small subtrees (e.g., each token of an
expression such as a*b +c). It also compares the scalability of
the two implementations by slicing three production systems
as well as the impact of programming language on the slicers.

V. SUBJECT DEMOGRAPHICS

Our experiments concern the seventeen programs shown
in Table 1. These are split into four sets, each of which
is specifically chosen to help address various aspects of
the comparison. The first set includes four widely-studied
(tiny) benchmark programs taken from the literature because
they have been used to exemplify slicing challenges and
techniques. While not large, the programs of the second set
are small enough that it is feasible to compute all slices for
all computations of scalar values (e.g., values of types int, char,
double). The third set includes the three production systems
(byacc, ed, and the shell bash) and is used to study the scalability
of observation-based slicing. Finally, the fourth set includes
two Java programs and one C++ program. It is used to consider
the impact of programming language by slicing non-C code.

The first of the tiny programs, sumprod computes the sum
and product of the first ten integers. It is commonly used
to illustrate slicing’s ability to separate the computation of
the sum from that of the product. The second tiny program,
word count, is shown in Figure 2. It computes the number

TABLE I
SUBJECTS CONSIDERED IN THE EMPIRICAL INVESTIGATION

Program LoC SLoC Slices
Known Semantics
sumprod 20 16 8
wC 128 70 17
mug 73 62 16
mbe 82 62 12
Exhaustively Sliced
tcas 185 141 43
schedule2 368 291 78
schedule 465 313 58
totinfo 573 347 54
printtokens2 638 407 75
replace 658 541 309
printtokens 895 569 81
Production Systems
ed 3062 2393 1
byacc 7760 6615 1
bash 68230 48339 1
Non-C Systems
Hanoi.java 171 158 1
permutation.java 658 3091 1
concordance.c++ 1490 1033 1
1 word_count ()
2 {
3 while (scanf ("%c", &c) == 1)
4 {
5 characters = characters + 1;
6
7 if (¢ == '\n’)
8 {
9 lines = lines + 1;
10 }
11
12 if (isletter(c))
13 {
14 if (inword == 0)
15 {
16 words = words + 1;
17 inword = 1;
18 }
19 }
20 else
21 {
22 inword = 0;

23 }
%}
25}

27 int isletter (char c)

28 {

29 printf("\norbs: %c\n", c); //slice here
30 if (((c >='A") && (c <= "27Z"))

31 [l ((c >="Ta’) && (c <= "2z")))

32 {

33 return 1;

34 }

35 else

36 {

37 return O;

38 }
39 }

Fig. 2. The word count program with a printf added to slice with respect to
variable C at the top of the function isletter.

of lines, words, and characters in an input text. Its slices are
used in many papers on slicing [8], [9], as trivial examples
of static slices. It is implicit in all treatments of this example,
that the slices are trivial, and present few interesting issues,
hence its widespread use as an illustrative example. As we
shall see, observation-based slicing reveals that there are, in
fact, subtleties, even in this simplest of examples.

Third, the SCAM mug example, shown in Figure 3, appeared
on the souvenir mug given to delegates of the first incarnation
of the SCAM conference in Florence, 2001. It has subsequently
been used as a ‘challenge’ example for slicing algorithms [10],

int mug(int i, int c, int x)
{

1
2

3 while (p(i))

4 {

5 if (g(c))

6

7 x = f£();

8 c=9g0;

9 }

10 i = h(i);

11 }

12 printf ("\norbs:%d\n", x); //slice here

Fig. 3. The SCAM’01 Mug Example. Predicates p and g, and function h
depend only on their single formal parameter while functions f and g return
(unknown) constant values. The key point in this code is that in any terminating
execution the final value of X is independent of Line 8: if q(c) is initially
false, it remains false and thus X retains its initial value. On the other hand,
if g(c) is true one or more times then x will have the value assigned at Line
7. In the latter case, it does not matter how often q(c) is true and thus the
assignment at Line 8 does not impact the value of X at Line 12.

int mbe (int j, int k)

1
2 |

3 while (p(j))

4 {

5 if (q(k))

6

7 k £f1(k);

8 }

9 else

10 {

11 = f2(k);

12 j o= £3(3);

13 }

14 }

15 printf ("\norbs:%d\n", j); //slice here

Fig. 4. The Montréal Boat Example. Predicates p and g, and functions 1, 2,
and 3 are unshown. They depend only on their single formal parameter. The
relevant observation is that in any terminating execution, the computation of k
is irrelevant to the computation of j.

due to its subtle semantics and the difficulty in obtaining
a minimal slice, even using very sophisticated algorithmic
techniques.

The Montréal Boat Example, mbe, shown in Figure 4, was
formulated by Sebastian Danicic and John Howroyd during a
boat excursion at the 2" incarnation of the SCAM conference
in Montréal, 2002. It was discussed at length at the conference
as an example of the subtleties of producing minimal slices [11].

In addition to having been used in prior slicing research [1],
[12]-[14], the next set of programs was chosen because it is
possible to compute all slices for assignments involving basic
scalar types (e.g., ints). Doing so supports the comparison over
a large number of slices that have a wide range of complexity
(from slices taken with respect to variable initializations all
the way through to slices taking with respect to final outputs).

The six remaining systems include three larger systems that
are in production use and three systems written in programming
language other than C. For example, these include as a real-
world case study, the often-used non-trivial application: bash
(version 4.2), a Unix shell that is the default on Linux and Mac
OS X. The bash source package includes various tools and
libraries required to build the executable. The build is complex
from a slicing perspective because, during the build, source
code is generated from a grammar and the build itself is strongly
tied to the target operating system. Together with its size, this
makes bash a challenge to statically or dynamically slice (we

are not aware of any non-observational slicer that is capable of
slicing bash). These properties make bash an excellent example
to study the characteristics of observation-based slicing.

For the larger systems computing all possibles slices is
infeasible, and thus a single representative slice of each was
chosen. These slices attempt to capture the kind of questions
a software engineer working on the program might have. For
the first production system, ed, this is the value of *addr_cnt
at Line 186 of the file main_loop.c. This line is at the top of
the function next_addr() which returns “the next line address
from the command buffer.” The test suite for ed consists of 80
different input command sequences. From the 80 inputs, we
have selected 52 and added three more (smaller) inputs: (1) an
empty command sequence, (2) a single command to enable
error explanations, and (3) a command to read a file.

For the second production system, byacc, the criteria chosen
was the value of the variable symbol at Line 252 of the file
lalr.c. This line is at the top of the function map_goto, which
“maps a (state, symbol) pair to its numeric representation.” The
test suite of byacc is a set of 10 different grammar files.

Third, the slicing criterion we chose for bash is the variable
val in Line 1393 of file expr.c with the input given by the test
file arith.tests. At Line 1393 the result of converting a string to
an integer is returned to the caller of the function, which an
engineer debugging a value error might employ. It is expected
that this function is called frequently while processing the test
cases of arith.tests, because these tests focus on the arithmetic
functions of bash. This expectation is confirmed by measuring
the statement coverage with gcov: the conversion function
strlong is invoked 80425 times causing 80425 occurrences of
the criterion in the trajectory.

The slice focuses on the file expr.c, which starts with 1111
executable lines of code. Bash is also unique among the
programs considered in that it required a modification to its
build steps. The Makefile for bash automatically increments a
minor version number. While the increment did not affect the
slice, it did interfere with the executable cache because each
binary has at least the minor version number difference.

Finally, while in theory observation-based slicing is language
independent, in practice it is interesting to consider the
impact of several programming languages. Three non-C codes
are sliced, two Java programs and one C++ program. A
representative slice was used for each of these systems. For the
first Java program, Hanoi, the value of nDisks (number of disks
to move) at the top of the function SolveTOH (solve Towers of
Hanoi) was chosen. This criteria captures the call structure of
the code.

The second Java program computes permutations of a string
using an algorithm that sorts substrings as arrays of characters.
The slicing criterion is the length of the sub-array at the start
of the method sortchar. For this subject, the test input is the
string “orbs”.

Finally, the C++ program concordance, creates an index of
back pointers for a set of index terms. The slicing criterion
considers the three points that a word is manipulated in the con-
cordance: Word:Word, which creates a new word, Word:incWord,

which adds a new text location to a word, and Word:addWord,
which adds a new word to the concordance. The test case
forms a concordance from a test set of 19 documents totaling
2447 words.

VI. RESULTS

A. RQI: How do ORBS and T-ORBS slices compare quantita-
tively?

To answer RQ1, the quantitative slice-size comparison looks
at two sets of slices. The first set aims to determine if,
like ORBS, T-ORBS can produce the minimal static slices
of the tiny, well studied benchmark programs. The second
set includes the exhaustively sliced programs. Exhaustive
slicing avoids potential experimenter bias when selecting
which slices to consider. We constructed 751 slices in total
including, for completeness, 53 slices of the known semantics
benchmark programs. The expectation here is that T-ORBS
will occasionally produce larger slices because it respects the
tree structure of the syntax while slicing.

For the semantic challenge benchmarks, mbe and mug, ORBS
and T-ORBS produce the same slices with two exceptions. First,
there are layout differences (these are removed, for example,
by pretty printing). The more interesting exception occurs in
two slices where ORBS removes lines of text that are part
of an if statement, while T-ORBS retains the predicate and
empty true branch. This statement is found on Lines 5-13 of
Figure 4. In the slice, k’s value does not actually affect the
value of j and thus only the assignment to j in the false branch
is semantically necessary. This enables ORBS to delete Lines
5-9. The following is the T-ORBS slice:

The T-ORBS slice correctly untangles the computations of k
and j. However, it retains Lines 5-9 because in the tree of the
if statement, the keyword if is part of a parent node that has
three subtrees representing the condition, then-part, and else-part
of the if statement. Thus its removal is only possible if the
entire if statement can be deleted. Future work will consider
the possibility of replacing a parent (e.g., the if node) with one
of its children (e.g., the else branch in the example). These two
exceptions account for the minor average-slice-size differences
seen in Table II.

Turning to the 751 slices, Figure 5 graphs slice-size dif-
ferences. Each point is the size of the ORBS slice minus
the size of the T-ORBS slice. Most of the differences hover
around zero. For example, 53% (398 or 751) differ by less
than 10 lines. ORBS produces smaller slices about 60% of
the time. Inspecting a random sample of these slices they are
dominated by T-ORBS preserving structure as illustrated in
the mbe slice above as well as several slices considered in
the discussion of RQ2. On the other hand, T-ORBS produces

smaller slices when ORBS deletes an initialization because of
fortuitous placement, which later inhibits the deletion of lines
elsewhere in the code. For example, consider two subsequent
function calls to functions f and then ¢ each having a single
local variable, [_f and [_g, respectively. In C, local variables
are not automatically initialized and thus end up with the value
found in the memory they are assigned. Unless overwritten,
the value of [, during the call to g will be the final value of
[y from the call to f (assuming that the activation records
for the two have a similar layouts). If ORBS may delete the
initialization of [; because it fortuitously has the correct value,
it will be unable to later delete f and the code that gives [its
final value because it is needed to maintain the initial value of
[,. While T-ORBS is susceptible to the same issue, it deletes
components in a different order and thus can delete f before
attempting to delete /4.

300

200
100)

0

-100
-200

-300

Fig. 5. Slice Size Comparison (positive values indicate that the T-ORBS slice
is smaller)

Table II takes a numeric look at slice size. Using the same
groups as shown Table I, it presents the average slice sizes
produced by the two slicers. The average percent reduction is
fairly stable and ranges from just over 50% to almost 80%.
There is more variation for programs where only a single slice
was taken.

Comparing the two slicers, for most systems their perfor-
mance is similar. Only three programs show more than a five
percentage point difference in the percent reduction. For both we
and printtokens2 this is caused by T-ORBS maintaining structure
when ORBS does not. As illustrated in the next section, this
can occur because T-ORBS can only remove the predicate
of an if statement when it can remove both the then and else
branches. ORBS has no such restriction.

Finally, the only time that T-ORBS significantly out performs
ORBS is for the single slice of permutation. This is caused by
ORBS removing a predicate that has two effects: it causes the
function sortchar to be called more often and it causes one of
those calls to abort the program. As it turns out, these two offset
each other and the slice retains the correct behavior. However,
it forces ORBS to retain the code that cause execution to abort.
This is a considerable amount of code and thus it attains less
of a reduction.

In summary, for RQ1 the slices produced by the two
algorithms are similar in size. ORBS was seen to have one
structure advantage in that T-ORBS is forced to retain elements
to maintain the tree structure with which it represents code.

TABLE II
AVERAGE SLICE SIZES

Average Slice Percent

Original ORBS T-ORBS Reduction
Program (SLoC) (SLoC) (SLoC) ORBS T-ORBS
Known Semantics
sumprod 16 9.0 9.1 44% 43%
we 70 15.9 21.9 7% 69%
mbe 62 29.8 30.7 52% 51%
mug 62 20.1 19.8 68% 68%
Exhaustively Sliced
tcas 141 20.5 21.4 85% 85%
schedule2 291 105.7 101.6 64% 65%
schedule 313 110.7 114.1 65% 64%
totinfo 347 85.6 78.1 75% 77%
printtokens2 407 98.7 142.0 76% 65%
replace 541 193.8 199.4 64% 63%
printtokens 569 212.1 241.8 63% 58%
Production Systems
ed/main_loop.c 641 269.0 234.0 58% 63%
byacc/lalr.c 546 164.0 149.0 70% 73%
bash/expr.c 1111 685.0 666.0 38% 40%
Non-C Systems
Hanoi 158 44.0 45.0 2% 2%
permutation 129 98.0 55.0 24% 57%
concordance 1033 225.0 186.0 78% 82%
Average 379 1404 136.2 63% 64%

B. RQ2: Qualitatively how do the slices produced by ORBS
and T-ORBS compare?

RQ2 provides a qualitative look at the slices. The analysis
focuses on the tiny programs where knowing the ground truth
facilitates comparison. First and foremost, except for the mbe
slice described in Section VI-A, like ORBS, T-ORBS computes
minimal slices for the challenge problems mug and mbe. And
even when not minimal, T-ORBS untangles the complex control
and data dependence interactions found in the code. This
observation and the representative examples considered in this
section point to T-ORBS structure preservation as being the
one substantial difference between the two implementations.

Another example where T-ORBS structure preservation
is a detriment is in the tcas slice taken with respect to
need_downward_RA. It turns out that the test suite includes only
tests that make the predicate of the if statement on Line 4 true.
ORBS “discovers” this and thus its slice omits the predicate.
More importantly it also omits those definitions upon which
the predicate depends. Thus the ORBS slice retains only Line
6 of the following code. In contrast, T-ORBS retains all of the
code because it cannot remove the predicate of an if statement
without removing both its then and else subtrees.

| #define OLEV 600 /* in feets/minute #*/
2 .

3 enabled = High_Confidence && (Own_Tracked_Alt_Rate <=
OLEV) && (Cur_Vertical_Sep > MAXALTDIFF);

4 if (enabled && ((tcas_equipped && intent_not_known) || !
tcas_equipped))

5 {

6 need_downward_RA = Non_Crossing_Biased_Descend &&

Own_Above_Threat () ;

A final example of structure preservation being a detriment
is T-ORBS’ inability to delete the lines #ifdef DEBUG and #endif.
In the srcML representation, each of these is a separate subtree
and thus T-ORBS cannot remove them, because it attempts to
do so one at a time.

In these three examples, T-ORBS use of a tree-based structure
causes it to include parent structures (e.g., if statements) when

only a child structure (e.g., the else block) is required, as
well as preprocessor directives such as #ifdef. However, the
use of a tree-base structure also enables T-ORBS to “dissect”
individual lines of text. One example from concordance.cc is
the replacement of the lines

1 typedef enum Boolean
2 { FALSE = 0, TRUE = 1, FAIL = 0,

=0, YES = 1, NOMSG = 0,
3 MSG = 1, OFF = 0, ON = 1 }

SUCCEED = 1, OK = 1, NO

BOOLEAN; }

with

| typedef enum { OK = 1, NO = 0, YES } BOOLEAN; }

In a similar example, consider the function header int h(int i)
and note that int is C’s implicit default type. ORBS is unable
to delete the text line containing the function header because
the function h is part of the slice. However, T-ORBS reduces
this line to h(i), because the srcML for a function includes four
subtrees: (return) type, (function) name, parameters, and body:

1 <function>

2 <type><name>int</name></type>

3 <name>h</name>

4 <parameter_list> (<parameter><decl><type><name>int</name
></type> <name>i</name> </decl></parameter>)</
parameter_list>

5 <block>{}</block>

6 </function>

A related example occurs when T-ORBS removes parameters
because a proceeding call has placed the same value at the
correct stack location. For example, in the following code (a
fragment of the slice for the Montréal Boat Example in Fig. 4),
the call q(k) places k on the stack in the first parameter position,
thus the call f1() effectively also passes k to f1() (because k is
still on the stack).

T-ORBS produces the expected slice by removing the body of
the loop and the first call to printf (Lines 3, 4, and 6). In contrast,
with a window-size of four, ORBS deletes Lines 2-5. In the
resulting code, the first of the two printf calls gets “captured”
by the loop header leading to the following code.

1 for (i=1; 1i<=10; i++)

2 printf ("at end i = %d\n", 1i); // indentation added for
clarity
3 printf ("\norbs:%d\n", 1i); //slice here w.r.t. 1

Because this syntactically correct program computes the correct
values for i, it is a slice of the original. Here ORBS produces
the smaller slice (of only three lines), while T-ORBS produces
the more natural slice (the one that preserves more of the
original structure).

A second capture example is one of the more interesting
ORBS slices where the slice combines statements from two
(adjacent) functions. The following code is from the word
count program. The slice was taken with respect to the value
of c at the top of the function isletter. It just so happens that
the same variable name is used by the caller.

while
{
if (isletter(c))
{

(scanf ("%c", &c) == 1)

int isletter (char c)

//slice here w.r.t. c

1
2
3
4
5
6
7
8
9 printf ("\norbs:%c\n",c);
0

ORBS discovers that it is possible to merge code from these
two functions. The resulting slice includes the while loop from
Line 1 and the call to printf from Line 9.

== 1)
//slice here w.r.t. c

1 while (scanf ("%c", &c)
2 printf ("\norbs:%c\n",c);

1 if (q(k))
2 |

3 k = £1();
4

printf ("\norbs:%d\n", k); //slice here w.r.t. k

A final similar example comes from the SCAM mug
example. This program is really a schema as it involves several
unspecified constants. In the concrete implementation, these
constants are assigned values using command-line arguments
such as x = (int) strtol(argv[3], NULL, 10). Because other than
degenerate values such as zero, the actual value chosen is
uninteresting, various constants were chosen. The ORBS test
suite, which include no degenerate values and is thus sufficient
to ensure that ORBS produces the minimal static slice was
initially used with T-ORBS. T-ORBS replaced the initialization
with x = (int) (10). Updating the test suite to include a value

other than 10 enabled T-ORBS to generate the expected slice.

The next two examples illustrate a form of “capture” in
which ORBS is able to combine parts of different syntactic
units. The first if from the sumprod program, the first seven
lines of which are as follows:

for(i=1; i<=10; 1i++)

1

2

3 sum = sum + 1i;

4 prod = prod x 1i;

5 }

6 printf("at end i = %d\n", i);

7 printf ("\norbs:%d\n", 1i); //slice here w.r.t. 1

T-ORBS is unable to produce such a slice because it cannot
merge subtrees.

The final example considers a difference caused by the
order in which deletions are attempted. The program tcas
initializes the variable alt_sep to zero at the top of the function
alt_sep_test. The slices taken with respect to this initialization
must preserve the call which ORBS does by retaining the entire
line fprintf(stdout, "alt_sep_test()). In contrast, T-ORBS reduces this
line to (alt_sep_test()), dropping the call to fprintf and replacing
it with an expression list. Another interesting aspect of this
slice comes from the test suite including a test with insufficient
command-line arguments. For this test case no output should
be generated. The following is the relevant part of the code.

1 if (argc < 13)

2 {

3 fprintf (stdout,
..o.o\n");

4 exit (1);

5 }

"Error: Command line arguments are

7 Climb_Inhibit = atoi(argv[12]);

9 fprintf (stdout, "%d\n", alt_sep_test());

Because ORBS and T-ORBS involve different deletion orders,
T-ORBS retains the if statement and the call exit(1) (but not
the call to fprintf on Line 3). ORBS on the other hand deletes
Lines 1-5 including the call exit(1). It thus is forced to retain

the call atoi(argv[12]), which causes the program to abort when
there are insufficient arguments — effectively preventing the
program from calling alt_sep_test(). In this case, again, T-ORBS
produces the more natural slice.

In summary, for RQ2 the differences in the slices produced
by the two slicers fall into four categories. ORBS produces
smaller slices when T-ORBS by its very nature is forced to
retain more of the structure of the underlying code. In contrast,
T-ORBS naturally performs “sub-line” deletions, which in one
case helped to focus an enum on only those entries relevant
to the slice. Third, ORBS is more prone to capture lines.
While this can produce smaller slices, they are often harder to
comprehend. On the other hand, in the final group T-ORBS
produces several more intuitive slices. It is clear from these
examples that each slicer brings pros and cons to the qualitative
comparison.

C. RQ3: What impact does implementation have on the time
taken to compute a slice?

RQ3 takes a quantitative look at slicing time. In the broad
context, the expectation is that T-ORBS will be faster when
large chunks of code can be deleted in a single deletion (e.g.,
an entire function body), but must pay for this as it considers
all subtrees. This is particularly costly when a statement is
required by the slice and has lots of subtrees. For example,
T-ORBS attempts the independent deletion of a, =, b, +, and ¢
from the statement a=b +c.

The experiments actually employ two variants of the ORBS
slicer. The original version is used with the smaller C
codes while a more recent parallel version, referred to as
P-ORBS [15], is used with the production C code and the C++
and Java codes. These implementations were not coded with
this comparison in mind, so the analysis necessarily focuses
on larger trends. For example, we largely ignore cases where
the difference is less than a factor of two. The implementation
of P-ORBS is similar to that of ORBS except that it attempts
to delete a set of windows sizes in parallel and then selects
the largest deletion that compiled and produced the correct
execution semantics. This enables the slicer to more quickly
delete large blocks of lines, but it also uses considerably more
user time because of the multiple deletion attempts.

Table III shows the CPU and wall-clock times for the
seventeen programs of Table I. Looking at these times several
patterns are evident. For example, in general ORBS takes less
user time than T-ORBS, but, as expected, the same is not true
of P-ORBS. The six programs where T-ORBS consumes less
user time include the two semantic-challenge problems mug
and mbe, the two largest systems byacc and bash, and the two
Java programs Hanoi and permutation. For the semantic-challenge
problems, T-ORBS takes about half the user time and one third
of the wall-clock time relative to ORBS. These problems might
be described as having dense semantics, which from ORBS
perspective means that it tends to have to use smaller window
sizes and thus attempt more deletions. Of the remaining four
programs, only byacc shows a notable difference where T-ORBS
computes the slice over eight times faster. In this case T-ORBS

TABLE III
SLICE TIMES (SMALLER TIMES SHOWN IN bold
ORBS T-ORBS
User Wall User Wall
Time Clock Time Clock
Program (h:m:s) (h:m:s) (h:m:s) (h:m:s)
sumprod 0:07 0:49 0:08 1:03
wcC 0:24 3:43 0:43 3:26
mbe 1:40 16:16 0:54 5:41
mug 1:42 18:08 1:05 5:30
tcas 4:54 30:09 8:57 28:20
schedule2 23:19 3:58:19 1:36:59 3:42:21
schedule 1:11:22 3:15:01 1:38:21 3:32:12
totinfo 28:00 1:27:31 1:12:14 3:26:45
printtokens2 44:36 7:52:25 2:19:48 6:54:08
replace 7:14:56 127:42:28 | 33:21:221 56:40:22
printtokens 2:12:27 25:31:03 6:07:44 15:43:35
P-ORBS T-ORBS
ed 1:08:22 1:11:53 1:32:21 2:08:54
byacc 1:08:19 2:45:10 8:23 21:17
bash 2:33:03 1:10:28 2:25:17 2:41:03
Hanoi.java 15:56 4:25 13:58 6:55
permutation.java 15:18 3:48 12:47 7:18
concordance.c++ 10:00 16:16 1:33:45 1:45:47

ability to remove large portions of code in a single deletion
has its greatest impact.

Considering the wall-clock times, ORBS has rather low CPU
utilization. In the worst case, for schedule2, its CPU utilization
is only 13.6%. For this program T-ORBS manages 45.5%.
However as seen at in the bottom of the table, P-ORBS is able
to put the processor to better use. These observations suggest
that T-ORBS will see less advantage from parallelization given
it is already making better use of the processor. An added
challenge here is that it is less clear how one might parallelize
T-ORBS.

An interesting utilization-related language effect is seen
when slicing the Java programs. T-ORBS reports an average
CPU utilization of 197% for the two Java systems while P-
ORBS reports an average of 397%. P-ORBS highest values on
the other C and C++ programs is 106%, while ORBS’ best is
46% and T-ORBS’ is 87%. Independently executing the Java
programs it appears that at least some of the parallelism is
coming from the JVM, likely at startup.

Another language effect also evident is that T-ORBS gets
bogged down near the leaves of the tree. T-ORBS has
particularly poor performance on the C++ program concordance.
Compared to C and Java, C++ programs tend to involve denser
low-level syntax.

In summary the investigation into RQ3 involving the impact
of slicer implementation strategy on slice time suggests trends
related to scalability and the impact of programming language.
For one of the three larger systems, T-ORBS sliced dramatically
faster. In contrast, for the C++ code it was dramatically slower.
Finally, the Java slice times hint that T-ORBS would benefit
from greater use of parallelism.

D. Summary

From the examples presented to study RQ2 and the data
considered to address RQ1 and RQ3, is clear that each slicer
has its own pros and cons. In general, the two produce similar
slices where T-ORBS slices can be slightly larger because

they must maintain the XML tree structure. However, T-ORBS’
larger slices are often the more intuitive option. On the other
hand, T-ORBS can perform ““sub-line” deletion, which as shown
in Section VI-B, can be both a blessing and a curse. Finally, for
one of the three production systems T-ORBS was dramatically
faster, however, for the C++ program it was dramatically slower.

VII. RELATED WORK

Static slicing was introduced by Weiser [16]. Ottenstein and
Ottenstein [17] proposed that program slicing can be viewed
as a graph reachability problem and noted that the program
dependence graph (PDG) was the ideal structure for program
slicing. Horwitz et al. [18] introduced an algorithm which
extended the idea to slice entire programs (represented as
System Dependence Graphs) and later [19] introduced a two-
pass static slicing algorithm. This approach remains the most
pre-dominantly used and variants are widely researched.

There are many other flavours of static slicing that attempt
the reduce the size of the slice. Incremental Slicing [20] allows
selection of the type of data dependencies that are to be included
in a slice. Stop-list slicing [21] allows the programmer to define
variables that are not of interest, which is used to purge the
dependence graph before computing slices causing the slice
to be smaller. Barrier Slicing [22] allows the programmer to
specify which parts of the program can be traversed when
constructing the slice and which parts cannot. A barrier is
specified with a set of nodes (or edges) of the PDG that cannot
be passed during the graph traversal, also resulting in focused
and smaller slices.

Amorphous Slicing [23] is another approach that aims to
preserve the semantics of the program but not the syntax.
Amorphous slices use transformation to simplify programs,
preserving the semantics of the program with respect to the
slicing criterion. Although ORBS only deletes lines of code,
this may cause merging and this could be regarded as a form
of (very slightly) amorphous slicing (depending on the precise
interpretation of the phrase ‘syntax preserving’).

To our knowledge no other slicing approach follows the
observation-based statement-deletion approach used by ORBS.
The ORBS algorithm [1] is a dynamic form of slicing but
constructs slices using dynamically observed dependencies,
rather than dynamically occurring (but statically determined)
dependence (used in all other dynamic slicing approaches).

Dynamic slicing is a concept introduced by Korel and
Laski [6], [24]. They considered several algorithms to compute
dynamic slices based on their definition. In contrast, most later
work on dynamic slicing ‘defines’ dynamic slicing based on
the algorithms used to compute it (e.g., Agrawal et al. [25]
and Demillo et al. [26]). Although many research prototypes
and approaches exist [27]-[33], all approaches are for a single
specific programming language whereas the observation based
nature of ORBS allows it to slice programs constructed from
multiple programming languages [1]. Of all previous dynamic
slicing formulations, the closest to our observation-based slicing
is Critical Slicing [26]. However, we have found that critical

slices are significantly larger than observation-based slices and
are often incorrect [1].

The idea to delete parts of a program or test input is also
prominent in applications of delta debugging [34]-[36]. As
delta debugging can be very expensive, some approaches
have modified the original delta debugging formulation, so
that it exploits programming language syntax and semantics.
For example, Hierarchical Delta Debugging [37] exploits tree
structures for a tree-based delta debugging approach. Delta [38]
uses a separate tool to flatten tree structures found in programs
before applying delta debugging. Regehr et al. [39] exploit
the syntax and semantics of C for four delta-debugging based
algorithms to minimize C programs that trigger compiler bugs.

Jiang et al. [40] presented a forward dynamic slicing
approach similar in spirit with ORBS. They mutate the value
of the variable at the location as given by the slicing criterion.
They then observe the computed values in the state trajectory
and the dynamic slice consist of all statements for which the
computed values have changed compared to the trajectory of
the original program. However, their forward dynamic slicing
suffers from low recall of what they call dynamic semantic
dependencies which can have serious effects on impact analysis.

Finally, union slicing [41] is also related to observation
based slicing. Like ORBS, a union slice aims to approximate a
static slice by unioning dynamic slices for a set of test inputs.
However, union slicing shares the critical difference between
dynamic and observation-based slicing: The dependencies
considered by union slicing are dynamically occurring (but
statically determined) dependencies, rather than dynamically
observed dependencies.

VIII. CONCLUSION

Observation-based slicing is a new form of slicing in
which dependencies observed during execution are used to
construct slices. Previous work has compared observation-based
slicing to traditional slicing techniques. It has also looked at
applying the original observation-based slicing algorithm in
alternate domains such as visual languages [42] and modeling
languages [2]. The development of a slicer for modeling
languages led to the creation of an observation-based slicer
that worked with XML trees rather than lines of text. This
paper, in essence, closes the loop, by re-targeting the XML
tree slicer to source code using srcML to transform source code
into XML.

ORBS uses statement deletion as its primary operation
while T-ORBS uses sub-tree deletion. Both use observation
as their validation criteria. The comparison of the two slicers,
ORBS and T-ORBS, helps to better understand the pros and
cons of each and thus in which applications each might be
preferred. Overall, we believe that our results hint at the rich
diversity of possible language-independent slicers and slicing
strategies, and thus opens the door for the study of the impact
these variations have when it comes to providing a natural
complement to existing slicing techniques.

Looking forward, the results presented in this paper suggest
several directions for future work. First, the application of

T-ORBS to traditional source code would benefit from some
notion of scale. For example, early iterations might skip
subtrees that fail to meet some requirement such as representing
at least k lines (or k characters) of code. The retention of if
statements when only one branch are needed by the slice
suggests a “re-parenting” transformation in which, rather then
deleting the subtree rooted at a node, the node is replaced by
one of its required descendants.

Finally, it may be possible to combine and thus exploit the
advantages of ORBS and T-ORBS. For example, by having
T-ORBS make a pass over the code only considering subtrees
that represent “large” amounts of code would enable the quick
deletion of large blocks. This could be followed by one or
more ORBS passes, which could delete elements that T-ORBS
can’t, such as #ifdef (because directives are each in their own
subtree, T-ORBS never deletes matching pairs of #ifdef / #endif).
Then a final T-ORBS pass that considers subtrees that represent
only “small amounts of code,” which would serve to simplify
existing lines such as the typedefs simplification described in
Section VI-B.

IX. ACKNOWLEDGEMENTS

A special thanks to Mark Harman for many interesting
conversations on the use of observational slicing. Dave Binkley
is supported by NSF grant 1626262.

REFERENCES

[1] D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, and S. Yoo, “ORBS:
Language-independent program slicing,” in Proc. 22nd ACM SIGSOFT
Intl. Symposium on Foundations of Software Engineering, 2014.

[2] N. E. Gold, D. Binkley, M. Harman, S. Islam, J. Krinke, and S. Yoo,

“Generalized observational slicing for tree-represented modelling lan-

guages,” in Proc. 25nd ACM SIGSOFT Intl. Symposium on Foundations

of Software Engineering, 2017.

The Mathworks Inc. (2016) Simulink. Accessed 21 July 2016. [Online].

Available: http://uk.mathworks.com/products/simulink/

[4] M. Collard, “Addressing source code using srcml,” in /[EEE International
Workshop on Program Comprehension Working Session (IWPC’05), 2005.

[5] M. Weiser, “Programmers use slices when debugging,” Communications

of the ACM, vol. 25, no. 7, 1982.

B. Korel and J. Laski, “Dynamic program slicing,” Information Processing

Letters, vol. 29, no. 3, 1988.

D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, and S. Yoo, “ORBS

and the limits of static slicing,” in Intl. Working Conference on Source

Code Analysis and Manipulation (SCAM), 2015.

K. B. Gallagher and J. R. Lyle, “Using program slicing in software

maintenance,” IEEE Transactions on Software Engineering, vol. 17,

no. 8, 1991.

[9] T. Reps and T. Turnidge, “Program specialization via program slicing,”

in Dagstuhl Seminar on Partial Evaluation, O. Danvy, R. Gliick, and

P. Thiemann, Eds., vol. 1110, 1996.

M. Ward, “Slicing the SCAM mug: A case study in semantic slicing,”

in Intl. Workshop on Source Code Analysis and Manipulation (SCAM),

2003.

S. Danicic and J. Howroyd, “Montréal boat example,” in Source Code

Analysis and Manipulation (SCAM 2002) conference resources website,

2002. [Online]. Available: http://www.ieee-scam.org/2002/Slides_ct.html

D. Binkley, M. Harman, Y. Hassoun, S. Islam, and Z. Li, “Assessing

the impact of global variables on program dependence and dependence

clusters,” Journal of Systems and Software, vol. 83, no. 1, 2009.

M. Harman, D. Binkley, K. Gallagher, N. Gold, and J. Krinke, “De-

pendence clusters in source code,” ACM Transactions on Programming

Languages and Systems, vol. 32, no. 1, pp. 1:1-1:33, 2009.

D. Binkley, R. Capellini, L. Raszewski, and C. Smith, “An implementation

of and experiment with semantic differencing,” in Proceedings of the 2001

IEEE International Conference on Software Maintenance, November

2001, pp. 82-91.

[3

=

[6

=

[7

—

[8

[t

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]
(22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[35]
[36]
[37]
[38]

(39]

[40]

[41]

[42]

S. Islam and D. Binkley, “PORBS: A parallel observation-based slicer,”
in 24th International Conference on Program Comprehension (ICPC).
IEEE, 2016, pp. 1-3.

M. Weiser, “Program slicing,” in Proc. of the 5th Intl. Conf. on Software
Engineering, 1981.

K. J. Ottenstein and L. M. Ottenstein, “The program dependence
graph in software development environments,” in Proc. of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environment, 1984.

S. Horwitz, T. Reps, and D. W. Binkley, “Interprocedural slicing using
dependence graphs,” in ACM SIGPLAN Conf. on Programming Language
Design and Implementation, 1988.

, “Interprocedural slicing using dependence graphs,” ACM Transac-
tions on Programming Languages and Systems, vol. 12, no. 1, 1990.
A. Orso, S. Sinha, and M. J. Harrold, “Incremental slicing based on
data-dependences types,” in Proc. of the IEEE Intl. Conf. on Software
Maintenance (ICSM), 2001.

K. B. Gallagher, D. Binkley, and M. Harman, “Stop-list slicing,” in Intl.
Workshop on Source Code Analysis and Manipulation (SCAM), 2006.
J. Krinke, “Barrier slicing and chopping,” in Intl. Workshop on Source
Code Analysis and Manipulation (SCAM), 2003.

M. Harman and S. Danicic, “Amorphous program slicing,” in 5*" IEEE
International Workshop on Program Comprenhesion (IWPC), 1997.

B. Korel and J. Laski, “Dynamic slicing in computer programs,” Journal
of Systems and Software, vol. 13, no. 3, 1990.

H. Agrawal and J. R. Horgan, “Dynamic program slicing,” in Proc. of
the ACM SIGPLAN’90 Conf. on Programming Language Design and
Implementation (PLDI), 1990.

R. A. DeMillo, H. Pan, and E. H. Spafford, “Critical slicing for software
fault localization,” in Proc. of the Intl. Symposium on Software Testing
and Analysis (ISSTA), 1996.

A. Beszedes, T. Gergely, Z. M. Szabd, J. Csirik, and T. Gyimothy,
“Dynamic slicing method for maintenance of large C programs,” in Proc.
of the 5th Conf. on Software Maintenance and Reengineering, 2001.
A. Beszedes, T. Gergely, and T. Gyiméthy, “Graph-less dynamic
dependence-based dynamic slicing algorithms,” in Intl. Workshop on
Source Code Analysis and Manipulation (SCAM), 2006.

G. Mund and R. Mall, “An efficient interprocedural dynamic slicing
method,” Journal of Systems and Software, vol. 79, no. 6, 2006.

A. Szegedi and T. Gyiméthy, “Dynamic slicing of Java bytecode
programs,” in Intl. Workshop on Source Code Analysis and Manipulation
(SCAM), 2005.

X. Zhang and R. Gupta, “Cost effective dynamic program slicing,” in
Proc. of the ACM SIGPLAN 2004 Conf. on Programming Language
Design and Implementation, 2004.

X. Zhang, N. Gupta, and R. Gupta, “A study of effectiveness of dynamic
slicing in locating real faults,” Empirical Software Engineering, vol. 12,
no. 2, 2007.

S. S. Barpanda and D. P. Mohapatra, “Dynamic slicing of distributed
object-oriented programs,” IET software, vol. 5, no. 5, 2011.

A. Zeller, “Yesterday, my program worked. today, it does not. Why?”
in European Software Engineering Conf. and Foundations of Software
Engineering, 1999.

H. Cleve and A. Zeller, “Finding failure causes through automated testing,”
in Intl. Workshop on Automated Debugging, 2000.

A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Transactions on Software Engineering, vol. 28, no. 2, 2002.
G. Misherghi and Z. Su, “HDD: hierarchical delta debugging,” in Proc.
of the 28th Intl. Conf. on Software Engineering (ICSE), 2006.

S. McPeak, D. S. Wilkerson, and S. Goldsmith. Delta. [Online].
Available: http://delta.tigris.org

J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-case
reduction for C compiler bugs,” in Proc. of the ACM SIGPLAN Conf.
on Programming Language Design and Implementation (PLDI), 2012.
S. Jiang, R. Santelices, M. Grechanik, and H. Cai, “On the accuracy of
forward dynamic slicing and its effects on software maintenance,” in
Intl. Working Conf. on Source Code Analysis and Manipulation (SCAM),
2014.

A. Beszédes, C. Faragd, Z. M. Szabd, J. Csirik, and T. Gyiméthy, “Union
slices for program maintenance,” in Proc. of the 18th Intl. Conf. on
Software Maintenance (ICSM), 2002.

S. Yoo, D. Binkley, and R. D. Eastman, “Seeing is slicing: Observation
based slicing of picture description languages,” in Intl. Workshop on
Source Code Analysis and Manipulation (SCAM), 2014, pp. 175-184.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

