
Enabling the Continuous Analysis of Security
Vulnerabilities with VulData7

Matthieu Jimenez
Snt, University of Luxembourg

matthieu.jimenez@uni.lu

Yves Le Traon
Snt, University of Luxembourg

yves.letraon@uni.lu

Mike Papadakis
Snt, University of Luxembourg

michail.papadakis@uni.lu

Abstract—Studies on security vulnerabilities require the anal-
ysis, investigation and comprehension of real vulnerable code
instances. However, collecting and experimenting with a suffi-
cient number of such instances is challenging. To cope with
this issue, we developed VulData7, an extensible framework
and dataset of real vulnerabilities, automatically collected from
software archives. The current version of the dataset contains
all reported vulnerabilities (in the NVD database) of 4 security
critical open source systems, i.e., Linux Kernel, WireShark,
OpenSSL, SystemD. For each vulnerability, VulData7 provides
the vulnerability report data (description, CVE number, CWE
number, CVSS severity score and others), the vulnerable code
instance (list of versions), and when available its corresponding
patches (list of fixing commits) and the files (before and after
fix). VulData7 is automated, flexible and easily extensible. Once
configured, it extracts and links information from the related
software archives (through Git and NVD reports) to create a
dataset that is continuously updated with the latest information
available. Currently, VulData7 retrieves fixes for 1,600 out of the
2,800 reported vulnerabilities of the 4 systems. The framework
also supports the collection of additional software defects and
aims at easing empirical studies and analyses. We believe that
our framework is a valuable resource for both developers
and researchers interested in secure software development. Vul-
Data7 can also serve educational purposes and trigger research
on source code analysis. VulData7 is publicly available at :
https://github.com/electricalwind/data7

Index Terms—Dataset, Tool, Software Archives, Security Vul-
nerabilities

I. INTRODUCTION

Secure code development is an important requirement for
the development of security-critical software. A simple omis-
sion can lead to disastrous issues, which have the potential,
such as the case of the OpenSSL heartbleed bug, of jeopardis-
ing the safety of millions of computers [1]. To deal with this
issue, security-critical software industry usually involves dedi-
cated teams, training processes and procedures for identifying
security holes and potential issues [2].

In practice, secure development requires extensive experi-
ence, special skills and an attacker’s mindset [3]. Vulnera-
bilities, usually remain unnoticed for a long time, as they
do not disrupt the typical system use cases. The difficulty is
the weakness identification and unawareness of developers. To
deal with these issues, researchers and organizations develop
tools, techniques and models aiming at informing and helping
developers.

However, ensuring the realism and assessment of empir-
ical studies is challenging due to the shortage of real and
established corpora of vulnerable code instances [4], [5].
Such ground-truth instances are used to develop and assess
automated tools and techniques. However, the lack of sufficient
representative vulnerable code instances prevents the measur-
able assessment and performance interpretation of the security
related research results. Overall, the use of few subjects
threatens the external validity of empirical studies [6].

To deal with this issue, researchers need to collect and study
a relatively large number of vulnerabilities. Such a corpus is
composed by collecting information from previously reported
vulnerabilities. However, extracting related information and
liking it from the vulnerability reported systems, such as the
National Vulnerability Database (NVD) [7], with software
archives, such as Git, requires considerable efforts. As a result,
studies with a large number of real vulnerabilities are scarce.

Even if such a corpus is constructed, it needs to be con-
tinuously updated in order to account for the most recent
issues and being generally up-to-date. Additionally, having
a code base that has been reported as vulnerable, does not
really help comprehension and education. Such tasks can be
eased by considering the way such vulnerabilities have been
fixed (patched). Studying the way developers fixed vulnerable
code instances is insightful and a good starting point for
understanding its root causes. In other words, investigating
vulnerability fixes, the origin of the vulnerabilities, their types
and characteristics can be determined.

We present VulData7, a framework and a dataset of 2,800
real vulnerable code instances of 4 security critical open source
systems, i.e., Linux Kernel, WireShark, OpenSSL, SystemD.
The framework includes and links all reported vulnerabilities
in the NVD database with their related code instances and
program versions, and aims at supporting source code analysis
and empirical research. The name VulData7 stands for the
(Vul)nerabilities (Data)set(71) and its purpose is to enable the
automated, continuous collection (collection over time) and
linking of reported vulnerabilities (in NVD and Git repository).
In summary, this paper makes the following contributions:

• VulData7 provides a set of real vulnerabilities for 4
security critical systems. The current version includes
2,800 vulnerabilities and 1,600 patches.

1In French 7 is pronounced as set so VulData7 stands for VulDataSet



• VulData7 brings together related code, its commits and all
related information, i.e., CVE number, vulnerability de-
scription, CWE number (if applicable), time of creation,
time of last modification, CVSS severity score, bug ids
(if existing), list of impacted versions.

• VulData7 is automated. Once configured, it extracts and
links information from the related software archives
(through Git and NVD reports) to create a dataset that
is continuously updated with the latest information avail-
able.

• VulData7 includes all reported and mentioned (in the
software archives) vulnerabilities. Special care was taken
in order to make the dataset as complete as possible (with
respect to what can be mined) by searching both sources
of information (links on NVD and Git messages). As a
result we managed to mine vulnerabilities with assigned
CVE that have not yet been recorded in NVD.

• VulData7 is flexible and easily extensible. Our framework
links NVD with Git and thus, it involves little effort in
configuring and importing data from additional projects.
It includes all available processed and “raw” information
(commit hashes, commit timestamps, commit messages
and fixes - files in their states before and after fix), in
order to be useful and extensible for research purposes.
It also retrieves the complete related code bases so that
it eases complete analyses.

• VulData7 provides a friendly interface for retrieving the
related information. It includes utilities (such as XML
exports, Git utilities, CWE Importer and others) for com-
mon analysis tasks which eases the access and analysis
of the set.

II. VULNERABILITIES

Secure development is key for almost every software or-
ganization. Industry usually adopts dedicated procedures to
minimize and prevent security vulnerabilities. Here, we focus
on code-based vulnerabilities as these are responsible for the
majority of the exploits [8]. But, what exactly is a vulnerabil-
ity?

Vulnerabilities are usually missing or insufficient checks,
unhanded exceptions and bugs. Since vulnerabilities are of
many forms, there are many definitions (“security bug” [9] or
“software weakness” [10]). We give the CVE definition [11]:

“An information security “vulnerability” is a mistake in
software that can be directly used by a hacker to gain access
to a system or network.”

We now detail the acronyms we use through the paper
(CVE, NVD, CVSS and CWE):

• The Common Vulnerability Exposures (CVE) is actually
an index (reference system) for indexing vulnerabilities
that have been publicly disclosed. It has been established
and maintained by the National Institute of Standard and
Technology (NIST). CVE references with a unique key
every disclosed vulnerability. NVD references approxi-
mately 7,900 vulnerabilities only for the year 2017.

• The National Vulnerability Database (NVD) is a database
that records the vulnerabilities referenced by CVE. It has
been established by the U.S. government and provides
vulnerability metadata such as the CVSS and CWE.

• The Common Vulnerability Scoring System (CVSS) is
a number representing the severity of a vulnerability.
In a sense CVSS captures the main characteristics and
potential consequences of a vulnerability.

• The Common Weakness Enumeration (CWE) [12] is a
community initiative that lists reported types of software
weaknesses. CWE is used by NVD in order to categorize
vulnerabilities.

III. VULDATA7 FRAMEWORK

VulData7 is a tool that brings together vulnerability reports,
vulnerable files and their patches for a given project. The
tool is automated, it retrieves, stores and updates the sought
data with the latest available information. In short the main
information that can be retrieved is the following:

• CVE number
• Vulnerability description
• CWE number (if applicable)
• time of creation
• time of last modification
• CVSS severity score
• Bug ids (if existing)
• list of impacted versions
• list of commits that fixed the vulnerability. These contain

the commit hash, timestamp and message, and the commit
fixes (files in their states before and after fix).

A high level view of the VulData7 architecture and process
can be described as follows: For a given project P, VulData7
clones in a local folder the git repository, connects to the
NVD database and downloads all the available XML feeds for
vulnerabilities for a given period of time (normally this should
be in the range from 2002 to the current year). Then, VulData7
parses the XML feeds and retrieves all vulnerabilities reported
for the specified period of time. For each vulnerability, it
retrieves and saves all declared links (links mentioning bug
reports or direct links to fixing commits). Then, VulData7 fol-
lows these links and retrieves the related commit information
(for each vulnerability that had a link to a fixing commit).
To account for missing links, the framework searches the
version history of the project to identify (in the related commit
messages) for a CVE Identifier or a bug id that was mentioned
in the vulnerability report. Based on this information VulData7
retries vulnerable and fixed project versions.

To support continuous analysis, the framework can be
automaticaly updated. Thus, it checks NVD for the latest
information and updates its data. In case new data are there,
VulData7 will pull vulnerabilities reported for P and create a
new entry if there is a new vulnerability or update as necessary.
In a nutshell, for each vulnerability entry, the framework
checks for new links or commit fixes and/or bug id. It then
pulls the repository, retrieves the new (vulnerable) commits,
checks for bug ids and CVE Identifiers and updates the dataset.



TABLE I
DATASET STATISTICS

Systems No
Vulnerabilities

No Fixed
Vulnerabilities

Average
CVSS

Unique Vulnerable
Files

Linux Kernel 2,082 1,202 5.41 1,508
Wireshark 531 265 4.99 221
OpenSSL 187 126 5.34 164
SystemD 9 5 5.76 5

Total 2,809 1,598 5.38 1,898

TABLE II
TOP-10 MOST FREQUENT VULNERABILITIES. EACH ENTRY REPRESENTS A

PAIR OF THE FORM CWE ID (FREQUENCY).

Rank Linux Wireshark OpenSSL SystemD

1 264 (318) 20 (136) 310 (32) 20 (3)
2 200 (219) 399 (108) 399 (28) 264 (2)
3 399 (212) 119 (98) 116 (17) 362 (2)
4 119 (204) 189 (51) 200 (15) 787 (1)
5 20 (161) 400 (14) 20 (12) 119 (1)
6 189 (106) 74 (9) 189 (11) -
7 362 (89) 476 (8) 362 (5) -
8 476 (45) 134 (5) -
9 284 (45) 200 (4) - -
10 416 (28) - - -

TABLE III
MEANING OF MOST FREQUENT CWE IDS

CWE id Description

264 Permissions, Privileges, and Access Controls
200 Information Exposure
399 Resource Management Errors
119 Improper Restriction of Operations within the Bounds of a Memory Buffer
20 Improper Input Validation
189 Numeric Errors
400 Uncontrolled Resource Consumption (’Resource Exhaustion’)
310 Cryptographic Issues
116 Improper Encoding or Escaping of Output
362 Concurrent Execution with Shared Resource and Improper Synchronization

IV. DATA AVAILABLE

At the time of writing VulData7 contains data for 4 major
security critical projects. While the framework is completely
automated, we restrict our analysis on these projects because
we are interested in collecting a large number of instances (in a
per project basis) and our tool is (currently) working only with
Git. Thus, we mined C programs, which tend to have more
reported vulnerabilities. Nevertheless, the purpose of VulData7
is to provide a framework to support the collection and mining
of vulnerabilities.

We collected data for the following four projects:
• Linux kernel: this is a major project that is now shipped

in billions of systems as it is embedded in all Android
devices. It should be one of the biggest, if not the biggest,
open source system involving more than 19.5 million
lines of code. Linux kernel involves many security aspects
and it is ranked in the second place in CVE. The project is
also mature (it started in 1991) and was the first project to
switch to git in 2005 as git was created for it. According
to our data, the project has 2082 reported vulnerabilities.

• Wireshark: is packet analyser enabling the analysis of
network traffic, protocols and interface controllers. It
is mainly used for troubleshooting of related network
issues and to support development. It is available on
all operating systems and is open source. The project
firstly named ethereal was renamed following a fork as
Wireshark in 2006. Since then 531 vulnerabilities were
reported for the project.

• OpenSSL: is a widely used library that provides imple-
mentations of the SSL and TLS protocols (used exten-
sively in communications). The project code is not that
big (it contains approximately 650k lines of codes) but
due to its criticality [13] it is often subject to attacks.
The project started in 1998 and migrated to Git in 2013.
The migration was successful and no significant loss
of information occurred making possible to access all
the versioning information directly from the git history.
Currently, the project involves 187 vulnerabilities.

• SystemD: is the service manager for the Linux operating
system. As such, its main goal is to unify the services
and configurations of the Linux systems. It is used in
the VulData7 tool as an example project. So far, 5
vulnerabilities have been reported for this system.

Overall, the descriptive statistics of our data are shown in
Table I. The table records details about the number of vulner-
abilities (column “No Vulnerabilities”), number of vulnera-
bilities with available patches (column “No Fixed Vulnerabili-
ties’), the average severity score of the collected vulnerabilities
(column “Average CVSS’), the average score of the collected
vulnerabilities with patches (column “Average CVSS Fixed”)
and the number of unique vulnerable files involved (column
“Unique Vulnerable Files”).

In total our data contain 2,809 vulnerabilities and for 1,598
of them we retrieved a patch. These account for a collection
of 1,898 vulnerable files with an average severity of 5.34.

Table II records the 10 most frequent types of vulnerabilities
(according to CWE categorisation) per project. Every entry
on this table represents a pair of the form vulnerability type
(CWE id) and the frequency it appeared in the project. The
list (description) of the vulnerability types (CWE id) is given
in Table III.

V. DATASET STRUCTURE

The dataset can be accessed in two different ways, either
through a JAVA API, either through a generated XML file.

A. Java API

Upon the creation (or the update) of the dataset, the user will
receive a Data7 Java object. This object contains information
about the project, some required data that are used by the tool
to optimise its update action and the dataset in the form of a
VulnerabilitySet Object.

Among the data used by the tool to optimise its update,
two can be used for other purposes (i) a mapping of bug ids
to commit hashes and (ii) a mapping of all CVE identifiers
that were found in commit messages and are not present in



Fig. 1. VulData7 API

the CVE database. While the first one (i) can be used to create
a Bug Dataset (see section VIII for details), the second one
(ii) offer the possibility to observe vulnerable fixes before the
release of the vulnerability report. As an example, in its latest
run, our tool found that the commit [14] was made to address
the CVE-2018-10840 which is not yet public. A glimpse at
the commit message informed us that there was an issue with
ext4 extended attribute. This list can thus be seen as a way to
retrieve data related to all new vulnerabilties.

The VulnerabilitySet object is the dataset itself and is com-
posed of the following elements: a list of every vulnerability
ever reported for the chosen project (list of Vulnerability
object) and the time of the last update. A Vulnerability object
contains all of the information mentioned in Section III, which
in essence includes the information that was found in the
vulnerability reports. The Vulnerability object also includes
a list of all the commits (Commit object) that were reported
as fixing commits. A Commit object includes the hash, the
message, the timestamp of the commit and a list of files that
were modified by it (FileFix Object). A FileFix object records
information on the time of last modification before the given
commit and its corresponding previous hash as well as the file
in its state before and after commit (FileInterest object). A
FileInterest object contains the text of the file and its fullPath
in the project.

All information related to the fields of each object that is
accessible through the API is presented (as a UML diagram)
in Figure 1.

B. XML exporter

Once the dataset is created the user is offered the possibility
to export the data to an XML file. The generated XML
file contains only vulnerabilities for which fixes were found.
The file also includes all relevant information from the NVD
database.

The schema of the generated file is presented in Listing 1.

VI. USING THE TOOL

A. Installation, generation and export

The tool can be downloaded from GitHub. The latest ver-
sion can be found at https://github.com/electricalwind/data7/
releases. VulData7 uses maven and Java (version 8 or higher).
To proceed with the installation, the user should type mvn
install in a terminal at the location of the project (where it was
downloaded). The project can then be used from any maven
project by adding the dependency presented in Listing 2.

Succeding with the compilation, the user needs to define a
path (to the place where the binary will be saved) and create
an instance of an importer. These steps are quite simple as
demonstrated on the following Java code (Listing 3).

As show in Listing 4, to export to XML format, an instance
of an exporter must be created before calling the XML export
function (Listing 4).

B. Integrating other tool or database

The VulData7 tool offers the possibility to export the data
to another tool through listeners (which should be provided by
the user). Indeed, when creating or updating a dataset, the user
has the possibility to declare Listeners for the update. These
listeners should use the DatasetUpdateListener interface. Thus,
a potential listener could use the notifications to populate a
SQL database.

Listing 1. XML schema
<?xml version="1.0" encoding="UTF-8"

standalone="no"?>
<data7 last_updated="YYYY-MM-DD HH:mm:ss

CEST" project="project name">
<cve id="CVE-YYYY-XXXXXX"

last_modified="timestamp">
<cwe></cwe>
<score></score>
<description></description>
<affectedVersions>

<version></version>
</affectedVersions>
<bugs/>
<patches>

<commit hash="aaaaaaa"
timestamp="xxxxxxx">

<message></message>
<files>

<file>
<before hash="aaaaaaaa"

path="src/file.c">
Content of the file
</before>
<after path="src/file.c">
Content of the file
</after>

</file>
</files>

</commit>
</patches>

</cve>
</data7>

https://github.com/electricalwind/data7/releases
https://github.com/electricalwind/data7/releases


Listing 2. Dependency to add in pom.xml
<dependency>

<groupId>lu.jimenez.research</groupId>
<artifactId>data7</artifactId>
<version>1.1</version>

</dependency>

Listing 3. Generating a dataset
ResourcesPath path = new ResourcesPath("Path

To Save Tour Data into");
Importer importer = new Importer(path);
Data7 data7 =

importer.updateOrCreateDatasetFor
(CProjects.LINUX_KERNEL);

Listing 4. Exporting to xml
Exporter exporter = new Exporter(path);
exporter.exportDatasetToXML(data7);

VII. ADDITIONAL UTILITIES

To ease analysis, VulData7 includes three custom-made
libraries. These include:

• Git Utils: This library is coded in Kotlin and provides
useful functions related to the mining of Git repositories.
In short, the library provides methods related to the
retrieval of files from specific commits, the retrieval of
commits touching a file, gitBlame, use developer history
class, delta history etc.

• Misc Utils: This library has been coded in Kotlin and
contains useful functions for common tasks such as
downloading a file, unzipping a file, normalizing a (di-
rectory) path and getting the recursive list of directories.

• CWE Importer: This library collects and reports data
related to the CWE (types of vulnerabilities). The library
can be invoked by calling Importer.getListOfCWE();. This
call downloads (from NVD) the descriptions of the CWE,
which are parsed and stored. Data related to the hierarchy
of CWE types are also collected.

Further details about the utilites supported by the VulData7
framework can be found in the website of the tool.

VIII. BUG COLLECTOR

The framework supports the collection of software defects
(other than vulnerabilities). The purpose of this tool is to
collect data related to potential defects and their patches.
Indeed (as we already explained) to retrieve the highest
possible number of vulnerabilities in a project, VulData7 links
the references of bug ids (mentioned in vulnerability reports)
with commit messages. Using the same process, VulData7 can
also collect defects mentioning (in the commit messages) bug
ids and bug fixes.

Bug Collector stores all the related information in a separate
dataset. In particular, the Bug Collector includes a list of
commits that fixed a bug which contains their hash, timestamp,
message and patches (files in their states before and after fix).
Table IV records descriptive statistics about the collected bugs.
Further details about the bug collector can be found in its
GitHub page.

TABLE IV
DEFECT STATISTICS (DEFECTS NOT DECLARED AS VULNERABILITIES)

Systems No Defects No Fixed Defects Unique Defective Files

Linux Kernel 3,160 5,193 2,428
Wireshark 3,871 8,019 1,907
OpenSSL 2,442 7,741 1,733
SystemD 1,868 3,538 925

Total 11,341 24,491 6,993

IX. DISCUSSION

VulData7 is an ongoing project aiming at the automatic min-
ing, analysis and evaluation of software defects and security
vulnerabilities. As such, the current version has some potential
limitations and use cases, which we discuss in this section.

A. Limitations

The dataset is automatically constructed by mining software
archives. This results in some noise in our data. We have no
guarantee that what we retrieve is in fact vulnerability patches
or that the vulnerabilities have been really fixed. Additionally,
we made no attempt to prune or minimize the commits of
the retrieved versions to the most likely causes. Despite these
issues, due to the number of the collected data our data provide
a good starting point.

Another limitation regards the retrieved data, which may
include some duplicated instances (due to commits residing
in different branches). This fact depending on the performed
analysis may be or may not be an important issue. Our dataset
also does not include any timeline navigation of commits or
other repository mining analysis tasks. These can be easily
performed programmatically, but the current version does not
suppport them. We plan to resolve these issues in the near
future.

B. Potential Use Cases

The VulData7 project aims at the automatic collection of
real vulnerable code instances with the intention to support
empirical research. The tool leverages the experience from our
research projects and we believe that it will be a valuable
resource to the community. Previous versions of VulData7
have been used in our work on prediction modelling [15]
and analysis of vulnerabilities [16]. Extensions of the tool
(Bug Collector) have been used on the analysis of defects
with natural language models [17]. Overall, we envision that
VulData7 can have the following Use Cases:

• Prediction modelling: We believe that VulData7 can be
used in prediction modelling research [15], [18], [19].
We have designed the tool to provide a collection of
vulnerable, fixed (potentially non-vulnerable), buggy (po-
tentially non-vulnerable) and clear (files never declared
as vulnerable) files. Our utilities provide the ability to
automatically retrieve, balance and analyse components
(for both training and evaluation), tasks that are frequent
in such research works.



• Defect analysis: VulData7 categorises the retried vulner-
abilities according to their CWE ID. It also collects and
distinguishes vulnerable from other buggy files. Such a
categorization can help the analysis, categorization and
study of different types of bugs and vulnerabilities. It
can also serve as the starting point for taxonomizing and
classifying defects for particular projects.

• Assessment mechanism: VulData7 is intended to provide
the means to support empirical research. Therefore, its
natural application is to assess the effectiveness of related
techniques. For instance, static analysis tools, fuzzing
tools and other bug finding techniques can be evaluated
against the most recent reported issues. Another important
benefit of our tool is that it contributes and to some extent
anables the reproducibility and replicability of empirical
research [6], [20].

• Education: An interesting use case of this work regards
education. Developers, students and generally practition-
ers can use the collected instances in order to be in-
formed, learn and comprehend the most important and
recent security issues related to the projects they study.

X. CONCLUSION

We presented VulData7, a framework and dataset sup-
porting the continuous collection and analysis of security
vulnerabilities. Currently, the dataset involves 2,800 reported
vulnerabilities, with 1,600 fixes, for 4 large security critical
systems. We made a considerable effort in making this toolset
automated, extensible and easy to use. Our goal is to provide
the community with the means to support research and analysis
at a large-scale.

Special care was taken in order to make VulData7 usable
for research. We provide the data and tools to fetch the
requested “raw” and processed data, i.e., metadata, source
codes (complete or partial), configuration files etc., in order
to make easy the inclusion and application of source code
analysis tools. As the framework was built on top of Git and
NVD it is simple to include additional open source projects.
The addition of new projects requires a simple configuration
(seting the appropriate links and paths), if the new projects are
on Git (with reported vulnerabilities on NVD) and a couple
of extentions for other software archives.

Collecting vulnerability patches can be considered a good
starting point for automated solutions in the area. For instance,
vulnerabilities can be categorized, comprehended and empir-
ically analysed. Yet, VulData7 provides all needed tools to
isolate related changes and ease their analysis.

The inclusion of additional (source code) management sys-
tems such as Subversion [21], Mercurial [22] is part of future
work. Such an extension will increase the size of the dataset
and the number of analysed software systems.

VulData7 is provided under the Apache License (Version
2.0) and is publicly available on GitHub:

https://github.com/electricalwind/data7

REFERENCES

[1] Bug in openssl opens two-thirds of the web to eavesdropping.
[Online]. Available: http://arstechnica.com/security/2014/04/
critical-crypto-bug-in-openssl-opens-two-thirds-of-the-web-to-eavesdropping/

[2] M. Howard and S. Lipner, The Security Development Lifecycle. Red-
mond, WA, USA: Microsoft Press, 2006.

[3] G. McGraw and B. Potter, “Software security testing,” IEEE Security &
Privacy, vol. 2, no. 5, pp. 81–85, 2004.

[4] M. Zitser, R. Lippmann, and T. Leek, “Testing static analysis
tools using exploitable buffer overflows from open source code,” in
Proceedings of the 12th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2004, Newport Beach, CA, USA,
October 31 - November 6, 2004, 2004, pp. 97–106. [Online]. Available:
http://doi.acm.org/10.1145/1029894.1029911

[5] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. K.
Robertson, F. Ulrich, and R. Whelan, “LAVA: large-scale automated
vulnerability addition,” in IEEE Symposium on Security and Privacy,
SP 2016, San Jose, CA, USA, May 22-26, 2016, 2016, pp. 110–121.
[Online]. Available: https://doi.org/10.1109/SP.2016.15

[6] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, and B. Regnell,
Experimentation in Software Engineering. Springer, 2012. [Online].
Available: https://doi.org/10.1007/978-3-642-29044-2

[7] National vulnerability database:. [Online]. Available: https://nvd.nist.gov
[8] G. McGraw, “Automated code review tools for security,” IEEE Com-

puter, vol. 41, no. 12, pp. 108–111, 2008.
[9] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug characteris-

tics in open source software,” Empirical Software Engineering, vol. 19,
no. 6, 2014.

[10] Ics/scada top 10 most dangerous software weaknesses. [On-
line]. Available: http://www.toolswatch.org/wp-content/uploads/2015/
11/ICSSCADA-Top-10-Most-Dangerous-Software-Weaknesses.pdf

[11] Definition of vulnerability. [Online]. Available: https://cve.mitre.org/
about/terminology.html

[12] Cwe home page. [Online]. Available: https://cwe.mitre.org/data/
[13] Openssl usage statistics. [Online]. Available: https://trends.builtwith.

com/Server/OpenSSL
[14] Cve-2018-10840 fixing commit:. [Online]. Available: https://github.com/

torvalds/linux/commit/8a2b307c21d4b290e3cbe33f768f194286d07c23
[15] M. Jimenez, M. Papadakis, and Y. L. Traon, “Vulnerability prediction

models: A case study on the linux kernel,” in 16th IEEE International
Working Conference on Source Code Analysis and Manipulation,
SCAM 2016, Raleigh, NC, USA, October 2-3, 2016, 2016, pp. 1–10.
[Online]. Available: https://doi.org/10.1109/SCAM.2016.15

[16] ——, “An empirical analysis of vulnerabilities in openssl and the
linux kernel,” in 23rd Asia-Pacific Software Engineering Conference,
APSEC 2016, Hamilton, New Zealand, December 6-9, 2016, 2016, pp.
105–112. [Online]. Available: https://doi.org/10.1109/APSEC.2016.025

[17] M. Jimenez, M. Cordy, Y. L. Traon, and M. Papadakis, “On the impact
of tokenizer and parameters on n-gram based code analysis,” in 34th
IEEE International Conference on Software Maintenance and Evolution,
ICSME 2018, Madrid, Spain, September 23-29, 2010, 2018.

[18] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A
systematic literature review on fault prediction performance in software
engineering,” IEEE Trans. Software Eng., vol. 38, no. 6, pp. 1276–1304,
2012. [Online]. Available: https://doi.org/10.1109/TSE.2011.103

[19] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” IEEE Trans. Software Eng., vol. 37, no. 6, pp.
772–787, 2011. [Online]. Available: https://doi.org/10.1109/TSE.2010.
81

[20] Z. Mahmood, D. Bowes, T. Hall, P. C. R. Lane, and J. Petric,
“Reproducibility and replicability of software defect prediction studies,”
Information & Software Technology, vol. 99, pp. 148–163, 2018.
[Online]. Available: https://doi.org/10.1016/j.infsof.2018.02.003

[21] Enterprise-class centralized version control for the masses. [Online].
Available: https://subversion.apache.org/

[22] Mercurial. [Online]. Available: https://www.mercurial-scm.org/

https://github.com/electricalwind/data7
http://arstechnica.com/security/2014/04/critical-crypto-bug-in-openssl-opens-two-thirds-of-the-web-to-eavesdropping/
http://arstechnica.com/security/2014/04/critical-crypto-bug-in-openssl-opens-two-thirds-of-the-web-to-eavesdropping/
http://doi.acm.org/10.1145/1029894.1029911
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1007/978-3-642-29044-2
https://nvd.nist.gov
http://www.toolswatch.org/wp-content/uploads/2015/11/ICSSCADA-Top-10-Most-Dangerous-Software-Weaknesses.pdf
http://www.toolswatch.org/wp-content/uploads/2015/11/ICSSCADA-Top-10-Most-Dangerous-Software-Weaknesses.pdf
https://cve.mitre.org/about/terminology.html
https://cve.mitre.org/about/terminology.html
https://cwe.mitre.org/data/
https://trends.builtwith.com/Server/OpenSSL
https://trends.builtwith.com/Server/OpenSSL
https://github.com/torvalds/linux/commit/8a2b307c21d4b290e3cbe33f768f194286d07c23
https://github.com/torvalds/linux/commit/8a2b307c21d4b290e3cbe33f768f194286d07c23
https://doi.org/10.1109/SCAM.2016.15
https://doi.org/10.1109/APSEC.2016.025
https://doi.org/10.1109/TSE.2011.103
https://doi.org/10.1109/TSE.2010.81
https://doi.org/10.1109/TSE.2010.81
https://doi.org/10.1016/j.infsof.2018.02.003
https://subversion.apache.org/
https://www.mercurial-scm.org/

