
HAL Id: hal-04461132
https://hal.science/hal-04461132

Submitted on 16 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RECKA and RPromF: Two Frama-C Plug-ins for
Optimizing Registers Usage in CUDA, OpenACC and

OpenMP Programs
Rokiatou Diarra, Alain Merigot, Bastien Vincke

To cite this version:
Rokiatou Diarra, Alain Merigot, Bastien Vincke. RECKA and RPromF: Two Frama-C Plug-ins for
Optimizing Registers Usage in CUDA, OpenACC and OpenMP Programs. 2018 IEEE 18th Interna-
tional Working Conference on Source Code Analysis and Manipulation (SCAM), Sep 2018, Madrid,
Spain. pp.187-192, �10.1109/SCAM.2018.00029�. �hal-04461132�

https://hal.science/hal-04461132
https://hal.archives-ouvertes.fr

RECKA and RPromF: two Frama-C Plug-ins for
Optimizing Registers usage in CUDA, OpenACC

and OpenMP Programs
Rokiatou DIARRA

SATIE, Univ. Paris-Sud
Univ. Paris-Saclay

94235 Cachan, France
rokiatou.diarra@u-psud.fr

Alain MERIGOT
SATIE, Univ. Paris-Sud

Univ. Paris-Saclay
94235 Cachan, France
alain.merigot@u-psud.fr

Bastien VINCKE
SATIE, Univ. Paris-Sud

Univ. Paris-Saclay
94235 Cachan, France

bastien.vincke@u-psud.fr

Abstract—Pointer aliasing still hinders compiler optimizations.
The ISO C standard 99 has added the restrict keyword that
allows programmer to specify non-aliasing as an aid to the
compiler’s optimizer. The task of annotating pointers with the
restrict keyword is still left to the programmer and this task
is, in general, tedious and prone to errors. Scalar replacement
is an optimization widely used by compilers. In this paper,
we present two new Frama-C plug-ins, RECKA for automatic
annotation of CUDA kernels arguments with the restrict keyword,
and RPromF for scalar replacement in OpenACC and OpenMP
4.0/4.5 codes for GPU. More specifically, RECKA works as
follows: (i) an alias analysis is performed on CUDA kernels
and their callers; (ii) if not found any alias then CUDA kernels
are cloned, the clones are renamed and their arguments are
annotated with the restrict qualifier; and (iii) instructions are
added to kernels call sites to perform at runtime a less-than check
analysis on kernel actuals parameters and determine if the clone
must be called or the original one. RPromF includes five main
steps: (i) OpenACC/OpenMP offloading regions are identified;
(ii) functions containing these offloading codes and their callers
are analyzed to check that there is no alias; (iii) if there is no alias
then the offloading codes are cloned; (iv) clone’s instructions are
analyzed to retrieve data reuse information and perform scalar
replacement; and instructions are added to be able to use the
optimized clone whenever possible. We have evaluated the two
plug-ins on PolyBench benchmark suite. The results show that
both scalar replacement and the usage of restrict keyword are
effective for improving the overall performance of OpenACC,
OpenMP 4.0/4.5 and CUDA codes.

Index Terms—CUDA, OpenACC, OpenMP, scalar replace-
ment, static analysis, alias analysis, Frama-C

I. INTRODUCTION

Nowadays all computing systems are becoming heteroge-
neous for higher power efficiency and computation through-
put. Such systems may include general purpose CPUs and
accelerators, such as the Graphics Processing Unit (GPU).
There are various parallel programming frameworks for GPU.
Kernel-based languages, CUDA or OpenCL, offer a number
of features for performance optimization as the architecture is
directly accessible to the user but this adds complexities for
application developers. Directive-based programming models
(e.g.: OpenMP 4.0/4.5, OpenACC) may therefore become an
interesting solution.

Variants of the C language (e.g., CUDA, OpenCL) are still
used to program on GPU machines. One of the most important
features of languages such as C is the existence of pointers.
Pointer can hinder compiler optimization. Indeed, it is hard
to know where pointers are pointing and compilers must be
conservative in their presence. Consider the C version in the
example provided in listing 1, without further knowledge or
special hardware support, the compiler must assume that A,
B, x, y and tmp may refer to the same memory region or
overlapping regions so that the loop cannot be parallelized
or software-pipelined because it has to be ensured that an
update of tmp[i] is performed before the next value of x[j+1]
is loaded for example. Therefore, because the compiler must
conservatively assume the pointers alias, it will compile this
code inefficiently. Thus on CPU, compilers typically generate
various assembly codes for the C version of gesummv routine
(shown in listing 1), depending on the arguments passed to
gesummv on the call site.

1 vo id gesummv (f l o a t *A, f l o a t *B , f l o a t *tmp ,
2 f l o a t *x , f l o a t *y) {
3 i n t i , j ;
4 f o r (i = 0 ; i < NI ; i ++) {
5 f o r (j = 0 ; j < NJ ; j ++) {
6 tmp [i] += A[i * NJ + j] * x [j] ;
7 y [i] += B[i * NJ + j] * x [j] ; }
8 y [i] = ALPHA * tmp [i] + BETA * y [i] ; } }

Listing 1. A simple example of gesumv kernel

Unlike the CPU case, GPU codes compilers (e.g.: nvcc,
pgcc, clang) generate a single PTX code for the kernel
assuming that kernel arguments pointers might be aliased at
runtime. Thus, it may be useful in the absence of aliasing to
inform the compiler that kernel pointers arguments are not
aliased, so that it can generate a more optimized code.

To ensure that the correct code is generated in the presence
of aliases, compilers have to perform an alias analysis. Al-
though the literature of alias analysis is abundant and much
work (e.g, [1]–[3]) has been done in the last few decades,
the research community has not yet solved pointer alias
analysis satisfactorily. Many alias analyzer are implemented
in mainstream compilers but the results of these analyzers

are often inaccurate. Pointer analysis imprecision prevents
the compiler from optimizing some code where there is no
aliasing. To mitigate the problem posed by pointers, the C
programming language, since the C99 Standard, features the
restrict keyword, that can be used by the programmer to give
the compiler information about aliasing. For instance, if the
arguments of the routine in listing 1 have been annotated with
the restrict qualifier, thereby allowing the compiler to perform
more aggressive optimization, such as instructions schedul-
ing, register promotion, redundant load/store elimination, etc.
Although the restrict keyword has been available for several
years already, it remains less used by programmers and its
insertion is left to the programmer. The task of inserting the
restrict qualifier is, in general, tedious and prone to errors.

The goal of scalar replacement is to identify repeated
accesses made to the same memory address and to remove
the redundant accesses by keeping the data in registers. This
is done by identifying sections of the code in which it is safe
to place the redundantly accessed data in a register.

Since the release of the OpenACC and OpenMP 4.0 stan-
dards, many works (e.g., [4], [5]) have been done to evaluate
their performance against those of CUDA and OpenCL. Other
works (e.g., [6], [7]) suggested some optimizations based on
the implementation of new directives. Moreover, many efforts
have been done to improve OpenACC and OpenMP compilers
in order to generate more optimized code. However, like other
mainstream compilers, they still fail to recognize even the
simplest opportunities for reuse of subscripted variables.

In this paper, we present RECKA and RPromF, two new
Frama-C plug-ins we developed for automatic insertion of
restrict keyword and scalar replacement in GPU codes. The
remainder of this paper is organized as follows. Section II
provides a brief introduction about CUDA, OpenACC and
OpenMP 4.0/4.5 programing models. Section III reviews
related work. Section IV describe briefly the Frama-C frame-
work. Section V develops the design of different components
of the RECKA and RPromF plug-ins. Section VI deals with
the evaluation of the two plug-ins and analysis of the obtained
results. Finally, Section VII presents concluding remarks and
future works.

II. BACKGROUND

In this section, we provide a brief introduction about CUDA,
OpenACC and OpenMP 4.0/4.5 programing models.

A. CUDA programming model

CUDA is a parallel computing programming model that
fully utilizes hardware architecture and software algorithms
to accelerate various types of computation. In CUDA, the
programmer writes device code in functions called kernel.
To obtain optimized code, the programmer must understand
well GPU architecture and CUDA optimization strategies like
memory-coalescing access, efficient usage of shared memory
or tiling technology. Additionally, grid and block configura-
tions, computing behaviors of each thread, and synchronization
problems also need to be carefully tuned. Listing 2 shows a

simple restricted CUDA implementation of the C version of
gesumv kernel provided in listing 1.

1 g l o b a l vo id gesummvCUDA(f l o a t * r e s t r i c t A,
2 f l o a t * r e s t r i c t B , f l o a t * r e s t r i c t tmp ,
3 f l o a t * r e s t r i c t x , f l o a t * r e s t r i c t y)
4 {
5 i n t i = b l o c k I d x . x * blockDim . x + t h r e a d I d x . x ;
6 i f (i < NI) {
7 i n t j ;
8 f o r (j = 0 ; j < NJ ; j ++) {
9 tmp [i] += A[i * NJ + j] * x [j] ;

10 y [i] += B[i * NJ + j] * x [j] ; }
11 y [i] = ALPHA * tmp [i] + BETA * y [i] ;
12 } }

Listing 2. A simple implementation of gesumv in CUDA

B. OpenMP 4.0/4.5 programming model

OpenMP 4.0 introduced new directives for programming
accelerators such as GPUs and Intel Xeon Phi. In order
to offload a region of code into device, OpenMP 4.0/4.5
uses the target construct. Various directives are provided to
express the levels of parallelism. The teams construct, creates
a league of thread teams where the master thread of each
team executes the region. The distribute construct specifies
loops which are executed by the thread teams. The target data
construct handles data transfers between host and accelerators.
An exhaustive description of OpenMP directives is provided
in [8]. Listing 3 shows OpenMP version of code provided in
listing 1, when scalar replacement is performed.

1 vo id gesummvMP (f l o a t *A, f l o a t *B , f l o a t *tmp ,
2 f l o a t *x , f l o a t *y) {
3 i n t i , j ;
4 # pragma omp t a r g e t teams d i s t r i b u t e \
5 i s d e v i c e p t r (A, B , tmp , x , y)
6 f o r (i = 0 ; i < NI ; i ++) {
7 f l o a t t i = tmp [i] ;
8 f l o a t y i = y [i] ;
9 f o r (j = 0 ; j < NJ ; j ++) {

10 t i += A[i * NJ + j] * x [j] ;
11 y i += B[i * NJ + j] * x [j] ; }
12 y [i] = ALPHA * t i + BETA * y i ;
13 } }

Listing 3. OpenMP version of gsummv kernel using scalar replacement

C. OpenACC programming model

OpenACC is another specification focused on directive-
based ways to program accelerators. OpenACC has fewer
constructs but most of them are analogous to those of OpenMP
4.0/4.5. The OpenACC parallel construct starts parallel ex-
ecution on the current accelerator device by creating one or
more gangs of workers. The kernels construct defines a region
of the program that is to be compiled into a sequence of
kernels for execution on the current accelerator device. The
loop construct specifies the distribution of iterations. Detailed
description of OpenACC directives is provided in [9]. Listing
4 shows OpenACC version of code showed in listing 1.

1 vo id gesummvACC (f l o a t *A, f l o a t *B , f l o a t *tmp ,
2 f l o a t *x , f l o a t *y) {
3 i n t i , j ;
4 # pragma acc k e r n e l s l oop i n d e p e n d e n t \
5 d e v i c e p t r (A, B , tmp , x , y)

6 f o r (i = 0 ; i < NI ; i ++) {
7 f o r (j = 0 ; j < NJ ; j ++) {
8 tmp [i] += A[i * NJ + j] * x [j] ;
9 y [i] += B[i * NJ + j] * x [j] ; }

10 y [i] = ALPHA * tmp [i] + BETA * y [i] ;
11 } }

Listing 4. OpenACC version of gesummv kernel

III. PREVIOUS WORK

Alias analysis is one of the most used techniques that
aims to optimize languages with pointers. The literature of
alias analysis is abundant. The most popular algorithm for
context-insensitive, flow-insensitive, iterative and constrains-
based points-to analysis is known as inclusion-based or
Andersen-style analysis [1]. Alves et al. provided in [10] two
ways to determine at runtime when two memory locations
can overlap. They concluded that the combination of cloning
plus dynamic disambiguation of pointers is an effective way
to make compiler optimizations more practical. Sperle et al.
presented in [11] three different techniques to disambiguate
pointers used as arguments of functions. Their first tech-
nique relies on the static alias analysis already available in
mainstream compilers to perform pointer disambiguation and
the others combine static bound inference with code cloning,
hence, extending the reach of pointer disambiguation. Maalej
et al. introduced in [3] a new technique to disambiguate
pointers, which relies on a less-than analysis. Their alias
analysis uses the observation that if p1 and p2 are two pointers,
such that p1 < p2, then they cannot alias. The original
scalar replacement algorithm was proposed by Carr-Kennedy
in [12] more than 20 years ago. Since then, several works
have been done to improve this algorithm in many aspects.
Surendran et al. presented in [13] new algorithms for scalar
replacement and dead store elimination based on Array SSA
form. Byoungro et al. described in [14] an algorithm for
scalar replacement that can exploit reuse opportunities across
multiple loops. Tian et al. presented in [15] an extension
to the classical scalar replacement algorithm for optimizing
registers usage in OpenACC codes. Their approach is based
on feedback information regarding register utilization and
a memory latency-based cost model to select which array
references should be replaced by scalar references.

IV. PRELIMINARIES: FRAMA-C

Frama-C1 is a static analyzer for C code. It provides its
users with a collection of plug-ins that perform static analysis,
deductive verification, and testing, for safety- and security-
critical software [16]. The platform is based on a common
kernel, which hosts analyzers as collaborating plug-ins. Frama-
C kernel is based on a modified version of CIL. CIL is a front-
end for C that parses ISO C99 programs into a normalized
representation. For instance, for loops are replaced by equiva-
lent while loops , normalized expressions have no side-effects,
ect. Frama-C extends CIL to support other features such
as ACSL (ANSI/ISO-C Specification Language) annotations.

1https://frama-c.com/

This modified CIL front-end produces the C + ACSL abstract
syntax tree (AST). The AST assigns unique identifiers for
statements and blocks that can be used for the program
counter, it also keeps line numbers. In addition to the AST,
the kernel provides several general services. For example, it
provides a visitor mechanism to facilitate crawling through the
AST. In general, writing a Frama-C plug-in requires to visit
the AST to compute information for some C constructs.

V. DESIGN PRINCIPLES

This section presents alias analysis we implemented to
identify on which pointers of CUDA kernel arguments must be
added the restrict keyword, our scalar replacement algorithm
implementation, and describes the design of the different
modules composing the RECKA and RPromF tools.

A. The alias analysis module

Since the optimized version of a function by performing the
scalar replacement is equivalent to its original version only if
there is no alias and marking aliased pointers as restricted may
result in undefined behavior, we run an alias analysis before
making any changes in the source code. For that purpose, we
have implemented in Frama-C a simple and fast alias analyzer
inspired by Andersen-style analysis [1] and the concepts of
the basicaa pass of LLVM2. In our implementation, we only
considered two pointers operations: taking the address of a
variable (e.g.: p = &val) and assignments (e.g.: p = q, p =
Tab where p and q are pointers and Tab a constant array).

B. Pre-processing module

Frama-C can’t analyze CUDA codes or programs compris-
ing OpenACC and OpenMP directives. On the other hand,
Frama-C transform all for loops in while loops thus denaturing
the source code. Thus, it is necessary to do some text pro-
cessing tasks on the source code before and after the analysis
with Frama-C. To this end, we developed two programs in
Perl for the pre-processing operations. The first takes as input
a CUDA program, copies it into a new file, hides all CUDA
specific keywords, types or API functions such as global ,
cudaMalloc, etc. It also adds an identifier to the kernels names
so that we can find them in next steps. The second takes as
input a source file with OpenACC/OpenMP pragmas, copies it
in a new file, replaces all OpenMP/OpenACC pragmas by flags
that will allow us to find, in next steps, offloading regions and
to know what directives has been used. In both cases, these two
programs generate an intermediate C file that will be passed
to Frama-C.

C. Post-processing module

According to the results of the analysis made with Frama-C
on the file generated by the pre-processing step , changes must
be made to the source file. We developed another program in
Perl to make these modifications. This program takes as input
the initial source file and the output file of our Frama-C plug-
ins and modifies the initial source file. For example, if the

2https://llvm.org/docs/AliasAnalysis.html#the-basicaa-pass

source file is a CUDA program then the output file of the
RECKA plug-in is used and the changes made to the source
file are: (i) clone a CUDA kernel; (ii) change the clone’s name
and add the restrict keyword on its arguments; and (iii) change
this kernel call sites by adding an if statement allowing to
call either the clone or the original version depending on the
runtime less-than check result.

D. RECKA: REstrictification of CUDA Kernel pointers Argu-
ments

The RECKA plug-in performs some alias analysis on a
CUDA program and adds the restrict qualifier to kernels
pointers arguments, in the absence of aliases. It takes as
input the intermediate file generated in the pre-processing
step and return a text file. This file contain messages that
will make it possible to change the initial source file during
the post-processing step. The RECKA plug-in first starts by
identifying all CUDA kernels definition and then performs an
alias analysis in these kernels. Then for each kernel where
there is no alias, he performs another alias analysis in the
launcher function of this kernel. If no alias is found then it
print messages to clone this kernel, rename it and add restrict
keyword on its pointers arguments. It also saves in an hash
table all device pointers and allocated arrays sizes. This table
is then used to print messages that will make it possible to
insert, in the source file, instructions to check on runtime if
kernel arguments pointers do not actually point to overlapping
regions. For generating messages for the runtime less-than
check test, we implemented a module in Frama-C inspired
from the methods described in [3]. Figure 1 shows an overview
of this plug-in.

E. RPromF: Register Promotion with a Frama-C plug-in

The goal of this plug-in is to perform the scalar replacement
in OpenACC/OpenMP programs. It takes as input an inter-
mediate file generated by the pre-processing module. First, it
identifies OpenACC/OpenMP offloading regions by using flags
added by the preprocessing step. After that, an alias analysis
is performed on functions containing these offloading codes
as well as their callers if any. If alias analysis concludes that
there is no alias involving any variables used in the offloading
regions then generates messages that will make it possible
to clone the offloading codes. Then try to identify repeated
accesses made to the same memory address by using our
simplified implementation of Carr-Kennedy algorithm [12].
If found repeated accesses then prints messages that will
make possible to perform the scalar replacement in offloading
regions clones. Finally, it generates messages that will make
it possible to insert in the source code an if statement
allowing at runtime to use either the clone or the original
version depending on the result of the runtime less-than check
analysis. Figure 2 shows an overview of this plug-in.

VI. EVALUATION

We tested our tool on kernels taken from the PolyBench3

benchmark suite, to assess the ability of RECKA and RPromF
plug-ins. We choose this benchmark because there are many
potentials pointers aliasing situations in its kernels. For our
experiments, performance data were collected on a NVIDIA
GPU Quadro M2000M hosted in an Intel I7 CPU. LLVM/-
Clang4 (4.0) was used to compile our OpenMP versions.
For OpenACC, we used the PGI 17.10.0 compiler (pgcc).
All performance data were collected with NVIDIA profiler,
nvprof. For all arrays, we used float as data type and the extra
large dataset value provided in PolyBench. All versions were
compiled with -O3 flag.

Results analysis

Our preliminary results showed that RECKA was success-
fully able to annotate all pointers arguments of kernels with
the restrict keyword without any misplacement. RPromF
has also been able to place correctly all the data accessed
redundantly in a register. Since our goal is to evaluate the
impact of the restrict keyword and scalar replacement on
application performances, we did not compare OpenACC or
OpenMP against CUDA.

Figure 3 shows factors relative to the original codes for the
CUDA kernels performance including compute time, executed
instructions count, global load and L2 read transactions. We
observed that the restrict qualifier reduces kernel compute time
by 24% on average. However, this factor is more interesting
for the correlation and covariance application where there
are many potential pointer aliasing and redundant load/store.
We found that annotating pointers arguments with the restrict
reduced the executed instruction count by 6%s on average
and the global load transaction only when there are many
redundant load as it is the case for the adi, gesum, gramschmidt
and mvt kernels. Regarding the L2 cache read transactions,
we found that the restrict keyword reduced it by 18% on
average. We can conclude that restrict keyword improve
CUDA kernels overall performance, and that it must be used
whenever possible to help nvcc to generate more optimized
code.

Regarding the impact of scalar replacement on OpenACC
and OpenMP codes for GPU, we compared the performance
of the generated code, after running RPromF on PolyBench
kernels, to that of the original versions to show that the scalar
replacement, performed in source level, really contributes to
improve performance. Figure 4 shows factors relative to the
original code for the offloading regions compute time. We
observed that with OpenACC, the scalar replacement reduced
kernels compute time by 43% on average. While with OpenMP
we found that scalar replacement reduce kernels compute time
by 31% on average. We can show on both figures 4 and 3,
the performance gain obtained on gesum kernel which was
taken as an example in section II. In summary, we observed

3https://sourceforge.net/projects/polybench/
4https://github.com/clang-ykt

Preprocessing
Normalized

C file

Output
file

Post-processing

__global__
void vectMat(float* A, float* x, float* y) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) {
 int j;
 for(j = 0; j < N; j++)
 y[i] += A[i * N + j] * x[j];
 }
}
void main(int argc, char** argv) {
 //……..
 vectMat<<< grid, block>>>(A, x, y);
 //……...
}

__global__ void vectMat(float* A, float* x, float* y) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) {
 int j
 for(j = 0; j < N; j++)
 y[i] += A[i * N + j] * x[j];
 }
}
__global__ void vectMat_rest(float *__restrict__ A,
float *__restrict__ x, float *__restrict__ y) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) {
 int j
 for(j = 0; j < N; j++)
 y[i] += A[i * N + j] * x[j];
 }
}
void main(int argc, char** argv) {
 //……..
 if ((A + size_a <= x || x + size_xy <= A) &&
 (A + size_a <= y || y + size_xy <= A) &&
 (x + size_xy <= y || y + size_xy <= x)) {
 vectMat_rest<<< grid, block>>>(A, x, y);
 } else {
 vectMat<<< grid, block>>>(A, x, y);
 }
 //……..
}

RECKA plug-in

Find CUDA kernels Alias analysis in CUDA kernels

Alias analysis in kernels launchers

Print messages to clone, rename and
add __restrict__ to clone’s arguments

Print messages to estimate device pointers
bounds, insert instructions for the runtime
less-than check and change kernel call site

Fig. 1. An overview of RECKA

Preprocessing

Normalized
C file

Output
command

file

Post-processing

void main(int argc, char** argv) {
 //……..
 #pragma omp target teams distribute \
 parallel for schedule(static, 1) \
 is_device_ptr(A, B, tmp, x, y)
 for (i = 0; i < NI; i++) {
 tmp[i] = 0.0f;
 y[i] = 0.0f;
 for (j = 0; j < NJ; j++) {
 tmp[i] += A[i * NJ + j] * x[j];
 y[i] += B[i * NJ + j] * x[j];
 }
 y[i] = ALPHA * tmp[i] +
 BETA * y[i];
 }
 //……..
}

void main(int argc, char** argv) {
 //……..
 if((A + sizA <= B || B + sizB <= A) &&
 (A + sizA <= tmp || tmp + siztmp <= A) &&
 (A + sizA <= x || x + sizx <= A) &&
 (A + sizA <= y || y + sizy <= A) &&
 (B + sizB <= tmp || tmp + siztmp <= B) &&
 (B + sizB <= x || x + sizx <= B) &&
 (B + sizB <= y || y + sizy <= B) &&
 (tmp + siztmp <= x || x + sizx <= tmp) &&
 (tmp + siztmp <= y || y + sizy <= tmp) &&
 (y + sizy <= x || x + sizx <= y)) {
 #pragma omp target teams distribute parallel for
 schedule(static, 1) is_device_ptr(A, B, tmp, x, y)
 for (i = 0; i < NI; i++) {
 float tt = 0.0f;
 float yy = 0.0f;
 for (j = 0; j < NJ; j++) {
 tt += A[i * NJ + j] * x[j];
 yy += B[i * NJ + j] * x[j];
 }
 y[i] = ALPHA * tmp[i] + BETA * y[i];
 }
 }
 else {
 #pragma omp target teams distribute parallel for
 schedule(static, 1) is_device_ptr(A, B, tmp, x, y)
 for (i = 0; i < NI; i++) {
 tmp[i] = 0.0f;
 y[i] = 0.0f;
 for (j = 0; j < NJ; j++) {
 tmp[i] += A[i * NJ + j] * x[j];
 y[i] += B[i * NJ + j] * x[j];
 }
 y[i] = ALPHA * tmp[i] + BETA * y[i];
 }
 }
 //……..
}

RPromF plug-in

Find OpenMP/OpenACC
offloading regions

Alias analysis in function
containing the offloading code

Alias analysis in caller of the function
containing the offloading code

Print messages to clone offloading regions, estimate
device pointers bounds, insert instructions for the runtime
less-than check and perform scalar replacement in the clone

Identify repeated accesses made
to the same memory address

Fig. 2. An overview of RPromF

that in general scalar replacement improve both OpenACC and
OpenMP code performances.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have implemented two new Frama-C
plug-ins, RECKA for automatic annotation of CUDA kernels
arguments with the restrict keyword, and RPromF for scalar

replacement in OpenACC and OpenMP 4.0/4.5 codes for
GPU. RECKA works in three main steps. First, an alias
analysis is performed on CUDA kernels and their callers to be
sure that there is no alias and that kernels arguments can be
marked as restricted pointers. Second, if not found any alias
then CUDA kernels are cloned, the clones are renamed and

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2m
m

3m
m

adi
atax

bicg
correlation

covariance

gem
m

gem
ver

gesum

gram
schm

idt

m
vt

trm
m

S
p

e
e

d
u

p
 r

e
la

ti
v
e

 t
o

 o
ri
g

in
a

l
c
o

d
e

Compute_time
Executed_instructions

Global_load_transaction
L2_read_transaction

Fig. 3. Restrict keyword impact on CUDA kernels performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2m
m

adi
atax

bicg
correlation

covariance

gem
m

gem
ver

gesum

gram
schm

idt

m
vt

sym
m

syr2k

trm
m

S
p

e
e

d
u

p
 r

e
la

ti
v
e

 t
o

 o
ri
g

in
a

l
c
o

d
e

 [
L

o
w

e
r

is
 b

e
tt

e
r]

OpenACC
OpenMP

Fig. 4. Speedup results of PolyBench benchmark suite with scalar replacement

their arguments are annotated with the restrict qualifier.
Third, instructions are added to kernels call sites to perform at
runtime a less-than check analysis on kernel actuals parameters
and determine if the clone must be called or the original one.
On the other hand, RPromF includes five main steps. First,
OpenACC/OpenMP offloading regions are identified. Second,
functions containing these offloading codes and their callers
are analyzed to verify if there is no alias implying any variables
used in offloading regions. Third, if there is no alias then the
offloading code are cloned. Fourth, clone’s instructions are
analyzed to retrieve data reuse information and perform scalar
replacement. Fifth, instructions are added to be able to use the
optimized clone whenever possible. We have assessed the two
plug-ins on the PolyBench benchmark suite. The results show
that both scalar replacement and the usage of restrict
keyword are effective for improving the overall performance
of OpenACC, OpenMP 4.0/4.5 and CUDA codes. In future
work, we plan to evaluate both plug-ins on more complex
benchmarks such as SPEC and Rodinia for example and trying
to add a cost model to avoid registers spilling with scalar

replacement. While Frama-C has two deductive verification
plug-ins, we intend to use them in our tool in order to be able
to prove the reliability of the generated code.

REFERENCES

[1] L. O. Andersen, “Program analysis and specialization for the c program-
ming language,” Ph.D. dissertation, DIKU, University of Copenhagen,
may 1994.

[2] B. Hardekopf and C. Lin, “Flow-sensitive pointer analysis for millions
of lines of code,” in Proceedings of the 9th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, ser.
CGO ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 289–298. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2190025.2190075

[3] M. Maalej, V. Paisante, P. Ramos, L. Gonnord, and F. M. Q. a. Pereira,
“Pointer disambiguation via strict inequalities,” in Proceedings of the
2017 International Symposium on Code Generation and Optimization,
ser. CGO ’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 134–147.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3049832.3049848

[4] M. Martineau, S. McIntosh-Smith, and W. Gaudin, “Evaluating openmp
4.0s effectiveness as a heterogeneous parallel programming model,”
IEEE International Parallel and Distributed Processing Symposium
Workshops, may 2016. [Online]. Available: http://ieeexplore.ieee.org/
document/7529889/?arnumber=7529889

[5] S. Memeti, L. Li, S. Pllana, J. Kolodziej, and C. Kessler, “Benchmarking
opencl, openacc, openmp, and cuda: Programming productivity,
performance, and energy consumption,” in Proceedings of the 2017
Workshop on Adaptive Resource Management and Scheduling for Cloud
Computing, ser. ARMS-CC ’17. New York, NY, USA: ACM, 2017, pp.
1–6. [Online]. Available: http://doi.acm.org/10.1145/3110355.3110356

[6] A. Lashgar and A. Baniasadi, “Openacc cache directive: Opportunities
and optimizations,” Third Workshop on Accelerator Programming
Using Directives, nov 2016. [Online]. Available: http://ieeexplore.ieee.
org/document/7836580/

[7] A. Hayashi, J. Shirako, E. Tiotto, R. Ho, and V. Sarkar, “Exploring
compiler optimization opportunities for the openmp 4.x accelerator
model on a power8+gpu platform,” Third Workshop on Accelerator
Programming Using Directives, nov 2016. [Online]. Available:
http://ieeexplore.ieee.org/document/7836582/

[8] O. A. R. Board, “Openmp application programming interface,” http:
//www.openmp.org/wp-content/uploads/openmp-4.5.pdf, 2015.

[9] OpenACC-Standard, “The openacc application programming interface,”
http://www.openacc.org/sites/default/files/OpenACC 2pt5.pdf, 2015.

[10] P. Alves, F. Gruber, J. Doerfert, A. Lamprineas, T. Grosser, F. Rastello,
and F. M. Q. a. Pereira, “Runtime pointer disambiguation,” SIGPLAN
Not., vol. 50, no. 10, pp. 589–606, Oct. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2858965.2814285

[11] V. H. Sperle Campos, P. R. Alves, H. Nazaré Santos, and F. M. Quintão
Pereira, “Restrictification of function arguments,” in Proceedings of
the 25th International Conference on Compiler Construction, ser. CC
2016. New York, NY, USA: ACM, 2016, pp. 163–173. [Online].
Available: http://doi.acm.org/10.1145/2892208.2892225

[12] S. Carr and K. Kennedy, “Scalar replacement in the presence of
conditional control flow,” Softw. Pract. Exper., vol. 24, no. 1, pp. 51–77,
Jan. 1994.

[13] R. Surendran, R. Barik, J. Zhao, and V. Sarkar, “Inter-iteration scalar re-
placement using array ssa form,” Cohen A. (eds) Compiler Construction.
CC 2014. Lecture Notes in Computer Science, vol. 8409, 2014.

[14] B. So and M. Hall, “Increasing the applicability of scalar replacement,”
in Compiler Construction, E. Duesterwald, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 185–201.

[15] X. Tian, D. Khaldi, and D. Eachempati, “Optimizing gpu register usage:
Extensions to openacc and compiler optimizations,” 45th International
Conference on Parallel Processing (ICPP), aug 2016.

[16] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski,
“Frama-c: A software analysis perspective,” Form. Asp. Comput.,
vol. 27, no. 3, pp. 573–609, May 2015. [Online]. Available:
http://dx.doi.org/10.1007/s00165-014-0326-7

