
 

Vrije Universiteit Brussel

MAF: A Framework for Modular Static Analysis of Higher-Order Languages
Van Es, Noah; Van der Plas, Jens; Stiévenart, Quentin; De Roover, Coen

Published in:
Proceedings of the 20th IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM 2020)

DOI:
10.1109/SCAM51674.2020.00009

Publication date:
2020

Document Version:
Accepted author manuscript

Link to publication

Citation for published version (APA):
Van Es, N., Van der Plas, J., Stiévenart, Q., & De Roover, C. (2020). MAF: A Framework for Modular Static
Analysis of Higher-Order Languages. In Proceedings of the 20th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM 2020) (pp. 37-42). [9252057] (Proceedings - 20th IEEE
International Working Conference on Source Code Analysis and Manipulation, SCAM 2020). IEEE.
https://doi.org/10.1109/SCAM51674.2020.00009

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 13. May. 2024

https://doi.org/10.1109/SCAM51674.2020.00009
https://cris.vub.be/en/publications/maf-a-framework-for-modular-static-analysis-of-higherorder-languages(1c4a6453-e0b1-4ace-a692-c225b33b6580).html
https://doi.org/10.1109/SCAM51674.2020.00009


MAF: A Framework for Modular Static Analysis of
Higher-Order Languages

Noah Van Es, Jens Van der Plas, Quentin Stiévenart, Coen De Roover
Software Languages Lab, Vrije Universiteit Brussel, Belgium

{noah.van.es,jens.van.der.plas,quentin.stievenart,coen.de.roover}@vub.be

Abstract—A modular static analysis decomposes a program’s
analysis into analyses of its parts, or components. An inter-
component analysis instructs an intra-component analysis to
analyse each component independently of the others. Additional
analyses are scheduled for newly discovered components, and for
dependent components that need to account for newly discovered
component information. Modular static analyses are scalable, can
be tuned to a high precision, and support the analysis of programs
that are highly dynamic, featuring e.g., higher-order functions or
dynamically allocated processes.

In this paper, we present the engineering aspects of MAF,
a static analysis framework for implementing modular analyses
for higher-order languages. For any such modular analysis, the
framework provides a reusable inter-component analysis and it
suffices to implement its intra-component analysis. The intra-
component analysis can be composed from several interdependent
and reusable Scala traits. This design facilitates changing the
analysed language, as well as the analysis precision with minimal
effort. We illustrate the use of MAF through its instantiation for
several different analyses of Scheme programs.

Index Terms—static program analysis, modular analysis

I. INTRODUCTION

Since the introduction of modular static program analy-
sis [1], several program analyses have featured a modular
design [2]–[4]. Such analyses divide the analysis of a program
into the analysis of the program’s parts, which are called com-
ponents. Examples of such components include compilation
units, function calls, and processes. Each component is anal-
ysed in isolation from every other. However, components are
not always completely independent, and information derived
during the analysis of one component may need to be taken
into account in the analysis of other components. Therefore,
a component may need to be reanalysed multiple times. In
recent approaches [2], [5], this is made explicit in the design
through dependencies: a component may depend on parts of
the analysis state, and is reanalysed when that state is updated
during the analysis of other components.

Modular analyses have been shown to scale well [2],
[3], [6]. Each component is analysed in isolation, and each
component is a fraction of the size of the program to analyse.
As a result, even for an expensive analysis, the complexity
of the analysis is bounded by the size of the components. As
long as the number of components itself does not suffer from
an explosion, the analysis remains scalable.

Another advantage of modular analyses is their ability to
support programs where the call graph is not known statically
and is generated on the fly during the analysis. This is of

particular importance when designing analyses for dynamic
languages that support higher-order functions. While there
are industry-ready analysis frameworks for languages such as
C [7], [8], analysis frameworks that target dynamic languages
with higher-order functions remain research-oriented [9]–[11],
and do not follow a modular approach to static analysis.

We present an open-source framework for modular anal-
yses1, called MODULAR ANALYSIS FRAMEWORK, or MAF
in short. For any modular analysis, the framework provides
a generic inter-component analysis. It suffices to implement
the intra-component analysis, which can be composed from
reusable Scala traits provided by the framework. These traits
structure and provide alternative implementations for analy-
sis concerns such as semantics, abstract domain, or context
sensitivity. Developers can therefore tune the precision of an
analysis by mixing in alternative traits into its implementation.

This paper makes the following contributions:
• We present the design of MAF, a framework for im-

plementing modular analyses of programs with highly
dynamic features such as higher-order functions or dynam-
ically allocated processes.

• We illustrate the use of MAF through its instantiation for
various analyses for Scheme programs.

• We reflect on our experiences gained by building MAF,
which we deem sufficiently general to provide insights for
the design of other static analysis frameworks.

II. BACKGROUND: MODULAR ANALYSIS

Before describing the architecture of MAF, we explain and
illustrate the concept of modular static analysis. A modular
analysis divides a program into components and analyses
these in isolation. Components can be function calls, processes
or compilation units, for example. The analysis of a single
component is referred to as the intra-component analysis.
Although components are analysed separately, they may not be
independent of one another. For example, threads can spawn
one another, or read and write to shared mutable state.

To this end, a modular analysis tracks dependencies for
components: whenever the analysis of a component reads
some part of the (shared) analysis state, this component has
a dependency on that part of the state; whenever the analysis
updates some part of the analysis state, all components with
a dependency on that part of the state need to be reanalysed,

1Available here: https://github.com/softwarelanguageslab/maf

(C) 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
 reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
 copyrighted component of this work in other works

https://github.com/softwarelanguageslab/maf


and we say this dependency is triggered. This is taken care
of by the inter-component analysis, which orchestrates the
analysis of components by keeping track of all components
and dependencies, and repeatedly scheduling components that
need to be (re)analysed using the intra-component analysis
(i.e., newly discovered components, and components that have
a dependency on an updated part of the analysis state).

In what follows, we illustrate a function-modular analysis
of a Scheme program, where components align with function
calls, i.e., calls to user-defined functions are analysed in iso-
lation [5]. Consider the following program, where a function
map is defined at line 1, and called at line 7.

1 (define (map f l)
2 (if (null? l)
3 '()
4 (cons (f (car l)) (map f (cdr l)))))
5 (define (main)
6 (define (inc n) (+ n 1))
7 (map inc '(1 2 3)))

We describe how this program is analysed by the function-
modular analysis. In each step, we denote the worklist of the
inter-component analysis as a set W. This worklist contains
all components that need to be analysed; initially, it only
contains a single component that corresponds to the entry point
of the program. In this case, this is the component Cmain,
corresponding to the main function in the program2.

1) W = {Cmain} – The first intra-component analysis analyses
Cmain. A call to map is found (line 7), for which a new
component Cmap is created and added to W. A dependency
is registered from Cmain to the return value of Cmap.

2) W = {Cmap} – The analysis continues by analysing Cmap,
during which it encounters two function calls: a call to map,
and a call to f (both on line 4)3. The analysis tracks the
values to which the parameters of a function are bound, and
in this case f is bound to the function inc created at line
6. A new component Cinc for the call to f is created and
added to the worklist. For the call to map, a component
Cmap already exists, which is reused. As no return values are
present for either Cmap or Cinc yet, a placeholder value ⊥ is
returned for each call, and two dependencies are registered
from Cmap: one dependency to the return value of each
component. When the analysis of Cmap finishes, the empty
list is stored as the return value of Cmap, since it returns the
empty list in one of its branches (and we do not yet know
the return value of the other branch). The dependency on
this return value is triggered, and the dependent components,
Cmap and Cmain, are therefore added to the worklist.

3) W = {Cinc, Cmap, Cmain} – The first component in W,
Cinc, is analysed next4. After analysing Cinc, the updated
return value of Cinc causes Cmap to be added to the worklist
(however, it is already present in W).

2We assume that the main function is the entry point of the program.
3No components are created for calls to built-in functions (such as cons).
4Note that the order of the work list does not impact the termination, nor

the result of the analysis [5].

4) W = {Cmap, Cmain} – Cmap is now reanalysed, using the
updated return value of Cinc. If the return value of Cmap is
updated, Cmap and Cmain are again added to the worklist.

5) The analysis continues until the worklist W is empty. When
this is the case, the analysis state has converged.
Note that the analysis must be constructed in such a way

that the analysis state is guaranteed to converge eventually.
To this end, static analyses typically use abstract values that
approximate all possible values a variable can have during
concrete executions of the program.

In this example, a component corresponds to a set of calls to
a given function. For example Cinc corresponds to all calls of
inc. In order to improve the precision of a modular analysis,
a component context can be attached to each component. It
can be used to create different components for different calls
to the same function, so that only calls to the same function
and with the same calling context are represented by the
same component. Component contexts can for example be an
approximation of the call stack.

III. DESIGN OF MAF

MAF is a framework to implement modular static program
analyses in Scala. In this framework, a modular analysis is a
class that implements the ModAnalysis abstract class. This
class provides the basic infrastructure for a modular analysis,
and declares a number of abstract methods that need to be
supplied by different analysis instantiations.

Fig. 1. Overview of the architecture of MAF. Nodes represent traits that
can be mixed in to instantiate new analyses. Plain edges indicate a necessary
requirement, and dotted edges indicate an optional extension.

Creating such an instance of a modular analysis requires
defining the parts of the analysis that were left abstract in
the ModAnalysis class. To this end, a number of other
traits can be mixed in together with the ModAnalysis
class to define (parts of) these necessary constructs, relieving
the analysis developer of the burden of implementing them
manually. This allows for reuse within the framework, as the
analysis developers can mix in the traits they need, while still
being able to add custom behaviour by defining new traits.
A subset of the traits currently present in the framework are
represented in Figure 1. As we illustrate later on, mixing in
traits is the primary way to build analyses in MAF.

In this section, we describe the core traits to be used
with ModAnalysis, which provide generic modular analysis
infrastructure and behaviour. These are considered generic in
the sense that they can be used to build modular analyses for
various languages. In the next section, we build upon these
traits to define modular analyses for Scheme.

(C) 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
 reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
 copyrighted component of this work in other works



A. The ModAnalysis Abstract Class

The ModAnalysis class has a central position in MAF,
as it is the root class that all modular analyses inherit from.
This class, of which a fraction of the code is shown below, is
instantiated with the program under analysis (prog) (line 1).

1 abstract class ModAnalysis(prog: Expr) {
2 trait Dependency
3 var deps = Map[Dependency,Set[Component]]()
4 type Component
5 def initialComponent: Component
6 abstract class IntraAnalysis(cmp: Component) {
7 def register(dep: Dependency): Unit = ...
8 def trigger(dep: Dependency): Unit = ...
9 def spawn(cmp: Component): Unit = ...

10 def analyze(): Unit
11 }
12 def analyze(): Unit
13 def addToWorkList(cmp: Component): Unit
14 }

ModAnalysis provides the core infrastructure regarding
the management of dependencies. It defines an extensible
trait to represent dependencies (line 2), and tracks for each
dependency the set of components that need to be reanalysed
if the dependency is triggered (line 3), i.e., when the analysis
state corresponding to the dependency has been modified. The
analysis is parameterised in two important aspects.

Intra-Component Analysis. Different modular analyses
employ a different definition of components and their corre-
sponding intra-component analysis. A modular analysis must
define a type Component (line 4) that represents components,
and must provide the initialComponent corresponding to
the first component of the program prog to analyse (line 5).
As in our example of Section II, components can represent
function calls, in which case the initial component corresponds
to the initial call to the main function of the program.

The intra-component analysis is itself defined by the
IntraAnalysis class (line 6). This class needs to imple-
ment a single method analyze (line 10) to perform the intra-
component analysis of the given component. To implement
analyze, one can make use of methods that are provided
in the IntraAnalysis class to manage dependencies.
Specifically, it provides a method register to register a
dependency (line 7) corresponding to some analysis state
that was read when analysing the current component, and
a method trigger to trigger a dependency (line 8) after
updating the analysis state. Method spawn (line 9) should be
called whenever another component is discovered (e.g., upon
a function call); the ModAnalysis class then ensures the
component is scheduled for analysis if needed.

Worklist Algorithm. A modular analysis maintains a work-
list of components that still need to be analysed; a worklist
algorithm decides how (e.g., in what order) the components
in the worklist are analysed. In general, different worklist
algorithms result in different exploration orders in the analysis,
which can influence the performance of the analysis but not
its final result. To parameterise the worklist algorithm in
ModAnalysis, two methods need to be provided. First, the
analyze method (line 12) should implement the actual work-
list algorithm, repeatedly picking and analysing components in

the worklist. Second, a method addToWorkList (line 13) to
add components to the worklist needs to be implemented. This
method is called by ModAnalysis whenever a component
is newly discovered or needs to be reanalysed.

B. The Worklist Traits

MAF comes with several traits that implement com-
mon worklist algorithms and that can directly be mixed in
with the ModAnalysis class. The example below shows
SequentialWorklistAlgorithm, a simple worklist al-
gorithm that relies on a generic worklist of class WorkList.
The analyze method loops until the analysis is finished,
calling the step method, which performs the analysis of one
component and updates the worklist accordingly.

1 trait SequentialWorklistAlgorithm extends ModAnalysis {
2 def emptyWorkList: WorkList[Component]
3 var wl = emptyWorkList.add(initialComponent)
4 def step() = { ... /* performs one analysis step */ }
5 def addToWorkList(cmp: Component) = { wl = wl.add(cmp) }
6 def finished() = wl.isEmpty
7 def analyze() = while (!finished()) { step() }
8 }

The definition of emptyWorkList is abstract and needs to
be provided by the actual worklist implementation. For exam-
ple, the LIFOWorklistAlgorithm trait relies on a LIFO-
ordered worklist. MAF also includes other sequential worklist
algorithms, e.g., using a FIFO or priority-based ordering. It
also includes a parallel worklist algorithm, where multiple
threads analyse components in the worklist in parallel [12].

C. The GlobalStore Trait

The GlobalStore trait is an example of a core trait that
extends the ModAnalysis class. It can be used for modular
analyses that require a store, which approximates the run-time
heap of the program under analysis.

1 trait GlobalStore extends ModAnalysis with ... {
2 var store: Map[Addr, Value]
3 case class AddrDependency(addr: Addr) extends Dependency
4 trait GlobalStoreIntra extends IntraAnalysis {
5 def readAddr(addr: Addr): Value = {...}
6 def writeAddr(addr: Addr): Boolean = {...}
7 }
8 }

Most importantly, it provides two new methods readAddr
(line 5) and writeAddr (line 6) which can be used in
the intra-component analysis to read and write values at
addresses in the store, respectively. The advantage of using
these methods is that they provide a high-level interface to
manipulate the store for the developer of the intra-component
analysis, abstracting away the management of dependencies.
Indeed, the store is part of the shared analysis state, and
components can depend on the value at a certain address in
the store, represented by an AddrDependency (line 3). The
readAddr method automatically registers such dependencies
(using the register method) upon read operations from the
store, and the writeAddr method triggers such dependencies
(using the trigger method) upon write operations.

(C) 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
 reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
 copyrighted component of this work in other works



D. The ReturnValue Trait

Similar to how the GlobalStore trait provides a high-
level interface to manipulate a store, the ReturnValue
trait provides a high-level interface to support components
for which a return value needs to be stored. For example,
if components represent function calls, then the return value
of these function calls, computed by the intra-component
analyses, need to be stored. To this end, the GlobalStore
trait is used to store the return value of a component at a
dedicated address, defined on line 1. In doing so, we do not
need to worry about dependencies on return values, as these
are managed by GlobalStore.

1 case class ReturnAddr(cmp: Component) extends Addr
2 trait ReturnValue extends GlobalStore {
3 trait ReturnValueIntra extends GlobalStoreIntra {
4 def writeResult(res: Value, cmp: Component) =
5 writeAddr(returnAddr(cmp), res)
6 def readResult(cmp: Component): Value =
7 readAddr(returnAddr(cmp))
8 def call(cmp: Component): Value =
9 { spawn(cmp) ; readResult(cmp) }

10 }
11 }

The ReturnValue class provides two methods to manip-
ulate return values: writeResult writes the return value of
a given component (line 4), whereas readResult reads its
return value (line 6). Furthermore, it provides a convenience
method call (line 8), which implements the common pattern
where we read the return value of a component after creating
it (e.g., when reading the return value of a called function).

IV. INSTANTIATING AN ANALYSIS FOR SCHEME

In this section, we illustrate the usage of MAF by in-
stantiating several analyses for Scheme. In particular, we
show how one can build upon the core ModAnalysis
class and its traits discussed in the previous section to de-
velop a function-modular analysis (similar to the example
discussed in Section II) for Scheme, which is referred to as
MODF [5]. Such a MODF analysis should implement the
SchemeModAnalysis abstract class, which is a subclass
of the ModAnalysis class. Similar to the ModAnalysis
class, several traits can be mixed in to configure parameters
specific to a MODF analysis (such as its context-sensitivity)
or of a modular analysis in general (such as its worklist
algorithm, using the core traits discussed earlier). Figure 2
shows an overview for a subset of these traits.

A. The SchemeModAnalysis Class

The main purpose of the SchemeModAnalysis class is
to fill in the definition of components and the corresponding
intra-component analysis for a MODF analysis for Scheme.
We show some of its code below.

1 abstract class SchemeModAnalysis(prg: SchemeExp)
2 extends ModAnalysis(prg) with GlobalStore
3 with ReturnValue {
4 trait Component
5 case object Main extends Component
6 case class Call(clo: Closure, ctx: Context)
7 extends Component
8 def initialComponent = Main
9 class SchemeIntraAnalysis(cmp: Component)

Fig. 2. Overview of the traits that can be used to create analyses for Scheme.
Arrows denote a necessary requirement, and dotted boxes indicate a choice
between multiple traits.

10 extends IntraAnalysis(cmp) with GlobalStoreIntra
11 with ReturnValueIntra {
12 def eval(exp: SchemeExp, env: Env): Value =
13 exp match {
14 case SchemeVar(v) => readAddr(env(v))
15 case l: SchemeLam => lattice.clo(l,env)
16 case SchemeApl(fun,args) =>
17 apply(eval(fun,env),
18 args.map(arg => eval(arg,env)))
19 ...
20 }
21 def analyze() =
22 writeResult(eval(body(cmp), env(cmp)), cmp)
23 }
24 type Context
25 def allocCtx(p: Position, as: List[Value], ...): Context
26
27 type Value
28 val lattice: SchemeLattice[Value, ...]
29 }

A component for MODF is defined on lines 4–7. It can
be either the Main object, representing the initial call to the
main function of the program, or a Call object, representing
a call to some function in the program. The latter includes not
only the closure that is called, but also some context of type
Context to distinguish between different calls to the same
function. On line 8, Main is given as the initial component.

The intra-component analysis for MODF is defined in the
class SchemeModFIntraAnalysis. In general, an intra-
component analysis is relatively easy to implement; in MODF,
this boils down to an intra-procedural analysis. We implement
such an intra-procedural analysis using a simple recursive
evaluator (lines 12–20). For example, to evaluate a variable,
we just look it up in the environment, and read the value
at the resulting address in the store. To evaluate a function
call, we recursively evaluate the operator and operands before
applying the function. For brevity, the definition of the apply
method is omitted. Method apply does not actually step
into the called function, but just reads the return value of
the component corresponding to the function that is called
(using method call of ReturnValue). Method analyze,
the entry-point of the intra-component analysis, can then be
implemented by simply writing the value resulting from the
evaluation of the function’s body as the return value of the
component under analysis (line 21).

Both the context-sensitivity and abstract domain used in
the analysis are parameterised in SchemeModAnalysis. To
specify context-sensitivity, one must define what contexts are

(C) 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
 reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
 copyrighted component of this work in other works



used (line 24), and how they are allocated (line 25) given the
information that is available for some function call (such as
the call site and the arguments of the function call). To specify
the abstract domain, one must define what abstract values are
used (line 27), and provide a corresponding instantiation of
the SchemeLattice type class (line 28), which implements
common Scheme operations on these abstract values.

B. The SchemeContextSensitivity Traits

We have included several well-known context-sensitivity
policies for MODF in MAF. These policies are again
made available as traits that can directly be mixed into
SchemeModAnalysis instances. In addition, one can easily
define custom context-sensitivity policies. As an example, we
show how k-call-site sensitivity is implemented.

1 trait KCallSiteSensitivity extends SchemeModAnalysis {
2 val k: Int
3 type Context = List[Position]
4 def allocCtx(pos: Position, ..., caller: Component) =
5 (pos :: context(caller)).take(k)
6 }

Similarly, we have included other simple context-sensitivity
policies, such as argument sensitivity, as well as more complex
compound sensitivities, which allocate different contexts for
different closures. The trait NoSensitivity can be used
for a context-insensitive analysis, i.e., an analysis where no
additional context is used for components.

C. The SchemeDomain Traits

MAF also comes with several traits to configure the abstract
domain of a SchemeModAnalysis. These determine how
values during the execution of the program are approximated
by abstract values in the analysis. For instance, when using
the Type abstract domain, values at a given program location
are abstracted by the set of all possible types at that location.

D. Example Instantiations

We now put everything together, illustrating how these traits
can be combined to instantiate a modular analysis.

Context-Insensitive Analysis. The first example we con-
sider is a context-insensitive analysis for Scheme, i.e., an
analysis that does not distinguish between multiple calls to
the same function. To this end, several of the traits discussed
previously are mixed into the SchemeModAnalysis class.
Below, we show how we can create a context-insensitive
analysis using a constant propagation domain and a worklist
algorithm with a LIFO exploration strategy. We assume prg
is the Scheme program to analyse.

1 new SchemeModAnalysis(prg) with NoSensitivity
2 with ConstantPropagationDomain
3 with LIFOWorklistAlgorithm

Context-Sensitive Analysis. In contrast, the code shown
below creates a context-sensitive analysis (specifically, using
1-CFA), given a Scheme program prg. Notice that we mix in
the KCallSiteSensitivity trait mentioned earlier, and
specify k to be 1 for a 1-CFA analysis. For the sake of this
example, we use a type domain and a worklist algorithm with
a random exploration order.

1 new SchemeModAnalysis(prg) with KCallSiteSensitivity
2 with TypeDomain
3 with RandomWorklistAlgorithm {
4 val k = 1 /* k of k-CFA */
5 }

Other Instantiations. There are numerous variations possi-
ble to instantiate an analysis for Scheme. Most notably, MAF
also includes the ability to instantiate analyses for a multi-
threaded variation of Scheme, where components correspond
to processes instead of function calls, and each process is
analysed in isolation [2]. Since analysing a single process is in
general as challenging as the analysis of any other sequential
program, we have in turn implemented the intra-component
analysis using a regular MODF analysis. As a result, one ob-
tains a modular analysis (for concurrent programs) on top of a
modular analysis (for sequential programs). This demonstrates
the flexibility of both MAF and of modular analyses in general.

V. LESSONS LEARNT

We now describe some best practices we adopted during the
development of MAF and of analyses with it.

A. Collect Benchmarks During Development

In order to evaluate the soundness, precision and perfor-
mance of analyses constructed with MAF, we have collected
a suite of benchmark programs to analyse. Currently, all
analyses that we implemented in MAF target Scheme pro-
grams, although the framework could support other languages
as well. These benchmark programs are taken from various
sources, including well-known benchmark suites for Scheme
and programs used in related work on program analysis. We
have collected 590 Scheme programs, totalling 125 kLOC.

B. Automate Precision Measurement

We have automated the process of evaluating the precision
of the analyses developed with MAF, to quickly assess the
impact of changes to the precision of analyses. MAF provides
built-in support for comparing the precision of analyses by
comparing the precision of computed abstract values in the
store. If the store resulting from an analysis A maps an address
to a value vA, and another analysis B maps it to value vB ,
then A is more precise for that address than B if vA @ vB ,
according to the partial ordering of the abstract domain.

However, different analyses may be configured to use dif-
ferent abstract domains; to make abstract values comparable in
precision, MAF converts abstract values to a common domain
of abstract values, enabling their comparison in that domain.

C. Automate Soundness Tests

To assess the soundness of the analyses developed with the
framework, MAF contains several instruments.

Abstract Domain Tests. These check the implementation
of the abstract domain by quickchecking several mathematical
properties of abstract domains [13] using ScalaCheck.

Primitive Tests. Primitive tests check the implementation
of the built-in language functions against their specification,
by checking that the abstract values resulting from calls to
these primitives are correctly approximated by the analysis.

(C) 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
 reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
 copyrighted component of this work in other works



Soundness Tests. Soundness tests assess the correctness of
an entire analysis by inspecting its results. Essentially, these
are a specialisation of the precision measurement. Instead of
comparing the abstract values computed by two analyses, the
store of an analysis is compared to the store obtained by
running a concrete interpreter. For a sound analysis, the values
in the analysis store must always subsume the values produced
by a concrete interpreter. For non-deterministic programs, e.g.,
due to parallelism, the concrete interpreter is run multiple
times, accumulating the concrete values.

D. Automate Performance Evaluation

MAF contains benchmarking code to evaluate the perfor-
mance of analyses. To this end, only the analysis to be used,
warm-up time, number of repetitions and analysis timeout need
to be specified. This enables a quick setup to evaluate the
performance improvements of changes to analyses.

E. Visualise the Analysis to Ease Debugging

Static analyses are known to be hard to debug, and visual
means of debugging help this process [14]. To this end, we
have equipped MAF with an interactive visual debugger that
shows how components are created in each step of the analysis.
Currently, the debugger only shows how components create
one another, though this can be easily extended to support
visualising other kinds of dependencies and analysis results.

F. Run All Automated Tasks in CI Infrastructure

Static analyses are complex pieces of code, where a small
change can have an unexpected impact the analysis’ perfor-
mance, its soundness or its precision. In order to be notified
of such changes as early as possible, we have integrated
our automated soundness tests in a continuous integration
infrastructure, and plan on doing the same for performance and
precision tests. As running all such tests upon every commit
would take too much time, only a fraction of the tests are
run upon every commit. The full test suite is run on a daily
basis. We found that this continuous monitoring, especially for
correctness, is vital throughout the development of analyses.

VI. RELATED WORK

Numerous static analysers are described in the literature.
Currently, analysers targeting dynamic higher-order languages
such as Scheme [15], JavaScript [9]–[11], or Python [16] are
mostly research-oriented. Although some of these can analyse
huge code bases, none of these follow the design of a modular
static analyser. MAF is based on the modular design of Scala-
AM [15], but instead of performing whole-program analyses,
MAF is focused on modular analyses.

Few tools or techniques have been developed to help static
analysis developers. The survey of Nguyen et al. [14] reveals
what static analysis developers wish would exist. The need
for clear visualisations of the analysis is established, which
motivated us to integrate a visual debugger in MAF. The
work of Andreasen et al. [17] provides multiple techniques
to increase soundness and precision of static analysers. Our

automated soundness and precision tests are in line with
these techniques, although Andreasen et al. propose multiple
interesting techniques that could be integrated within MAF.

VII. CONCLUSION

In this paper, we presented MAF, a framework for devel-
oping modular static analyses. MAF supports the analysis of
dynamic, higher-order languages. The framework provides a
generic inter-component analysis that can be instantiated by
defining an intra-component analysis. It features a highly com-
posable and flexible design, as analyses can be implemented
by mixing in pre-existing analysis traits, or by specialising
required behaviour in new traits. This allows analysis devel-
opers to focus on the core aspects of their analysis, either to
tune precision or to support new languages and constructs. We
have demonstrated this by instantiating an analysis in MAF
for Scheme programs. We concluded with a summary of best
practices we adopted during the development of MAF, which
includes test automation and visual debugging.

ACKNOWLEDGEMENTS

This work was partially supported by the “Cybersecurity Initiative
Flanders” and by the Research Foundation – Flanders (FWO) (grant
numbers 11D5718N and 11F4820N).

REFERENCES

[1] P. Cousot and R. Cousot, “Modular static program analysis,” in CC, ser.
LNCS, vol. 2304. Springer, 2002, pp. 159–178.

[2] Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover, “A general
method for rendering static analyses for diverse concurrency models
modular,” J. Syst. Softw., vol. 147, pp. 17–45, 2019.

[3] A. Miné, “Relational thread-modular static value analysis by abstract
interpretation,” in VMCAI, 2014, pp. 39–58.

[4] M. Journault, A. Miné, and A. Ouadjaout, “Modular static analysis of
string manipulations in C programs,” in SAS, 2018, pp. 243–262.

[5] J. Nicolay, Q. Stiévenart, W. De Meuter, and C. De Roover, “Effect-
driven flow analysis,” in VMCAI 2019.

[6] E. Goubault, S. Putot, and F. Védrine, “Modular static analysis with
zonotopes,” in SAS, 2012, pp. 24–40.

[7] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival, “The ASTRÉE analyzer,” in ESOP, 2005, pp. 21–30.

[8] C. Calcagno and D. Distefano, “Infer: An automatic program verifier
for memory safety of C programs,” in NFM, 2011, pp. 459–465.

[9] S. H. Jensen, A. Møller, and P. Thiemann, “Type Analysis for
JavaScript,” in SAS, ser. Lecture Notes in Computer Science, J. Palsberg
and Z. Su, Eds., vol. 5673. Springer, 2009, pp. 238–255.

[10] J. Nicolay, Q. Stiévenart, W. De Meuter, and C. De Roover, “Purity anal-
ysis for javascript through abstract interpretation,” Journal of Software:
Evolution and Process, vol. 29, no. 12, 12 2017.

[11] V. Kashyap, K. Dewey, E. A. Kuefner, J. Wagner, K. Gibbons, J. Sar-
racino, B. Wiedermann, and B. Hardekopf, “JSAI: A Static Analysis
Platform for JavaScript,” in FSE, 2014, pp. 121–132.

[12] N. Van Es, Q. Stiévenart, J. Van der Plas, and C. De Roover, “A parallel
worklist algorithm for modular analyses,” in 20th IEEE International
Working Conference on Source Code Analysis and Manipulation, SCAM
2020, September 27-28, 2020. IEEE Computer Society, 2020.

[13] J. Midtgaard and A. Møller, “Quickchecking static analysis properties,”
Softw. Test. Verification Reliab., vol. 27, no. 6, 2017.

[14] L. Nguyen Quang Do, S. Krüger, P. Hill, K. Ali, and E. Bodden,
“Debugging static analysis,” IEEE Trans. Software Eng., vol. 46, no. 7,
2020.

[15] Q. Stiévenart, M. Vandercammen, W. De Meuter, and C. De Roover,
“Scala-AM: A modular static analysis framework,” in SCAM, 2016.

[16] A. Fromherz, A. Ouadjaout, and A. Miné, “Static value analysis of
python programs by abstract interpretation,” in NFM, 2018.

[17] E. S. Andreasen, A. Møller, and B. B. Nielsen, “Systematic ap-
proaches for increasing soundness and precision of static analyzers,”
in SOAP@PLDI, 2017, pp. 31–36.

(C) 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
 reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
 copyrighted component of this work in other works


	Introduction
	Background: Modular Analysis
	Design of MAF
	The ModAnalysis Abstract Class
	The Worklist Traits
	The GlobalStore Trait
	The ReturnValue Trait

	Instantiating an Analysis for Scheme
	The SchemeModAnalysis Class
	The SchemeContextSensitivity Traits
	The SchemeDomain Traits
	Example Instantiations

	Lessons Learnt
	Collect Benchmarks During Development
	Automate Precision Measurement
	Automate Soundness Tests
	Automate Performance Evaluation
	Visualise the Analysis to Ease Debugging
	Run All Automated Tasks in CI Infrastructure

	Related Work
	Conclusion
	References

