
A Precise Framework for Source-Level
Control-Flow Analysis

Idriss Riouak∗, Christoph Reichenbach∗, Görel Hedin∗, and Niklas Fors∗
∗idriss.riouak, christoph.reichenbach, gorel.hedin, and niklas.fors (@cs.lth.se)

Department of Computer Science, Lund University, Sweden

Abstract—This paper presents INTRACFG, a declarative and
language-independent framework for constructing precise in-
traprocedural control-flow graphs (CFGs) based on the reference
attribute grammar system JastAdd. Unlike most other frame-
works, which build CFGs on an Intermediate Representation
level, e.g., bytecode, our approach superimposes the CFGs on
the Abstract Syntax Tree, enabling accurate client analysis.
Moreover, INTRACFG overcomes expressivity limitations of an
earlier RAG-based framework, allowing the construction of AST-
Unrestricted CFGs: CFGs whose shape is not confined to the
AST structure. We evaluate the expressivity of INTRACFG with
INTRAJ, an application of INTRACFG to Java 7, by comparing
two data flow analyses built on top of INTRAJ against tools from
academia and from the industry. The results demonstrate that
INTRAJ is effective at building precise and efficient CFGs and
enables analyses with competitive performance.

Index Terms—Control flow, Attributed Grammars, Static
Analysis, Declarative, Dataflow.

I. INTRODUCTION

Static program analysis plays an important role in software

development, and may help developers detect subtle bugs such

as null pointer exceptions [16] or security vulnerabilities [33].

Many client analyses make use of intraprocedural control-

flow analysis, and are dependent on its precision and efficiency

for useful results. Bug checkers and other clients that report

to the user must be able to link their results to the source

code, so the control-flow analysis itself must also connect to

a representation close to the source code, such as an abstract

syntax tree (AST). Current mainstream program analysis tools

and IDEs, like SonarQube, ErrorProne, and Eclipse JDT, take

this exact approach.

However, building analyses at the AST level typically ties

the analysis closely to a particular language and thereby

reduces opportunities for reuse. Furthermore, language seman-

tics can require highly intricate control flow, e.g. for object

initialisation and exception handling.

In this paper, we present an approach for developing control-

flow analyses and client analyses at the AST level that

is based on reference attribute grammars (RAGs) [13] and

addresses these challenges. We build on an earlier approach

that also used RAGs [35] and remove its two main limitations:

imprecision and bloat, both caused by limited flexibility in

the shape of control-flow graphs (CFGs) that could be built.

This work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

Our approach introduces a new generalised framework, IN-

TRACFG, that is unrestricted in the shape of the CFGs that

it can build. This improves precision as well as conciseness,

in that INTRACFG connects only AST nodes of interest in

the CFG. As a case study, we applied INTRACFG to the Java

language, implementing INTRAJ, a CFG constructor for Java,

as an extension of the Java compiler EXTENDJ [9]. To evaluate

the precision and performance of INTRAJ, we implemented

two client data flow analyses, one forward and one backward,

namely Null Pointer Exception analysis and Dead Assignment
analysis, respectively.

More precisely, our contributions are as follows:

• We present INTRACFG, a modular and precise language-

independent framework for intraprocedural CFG con-

struction, implemented using RAGs.

• We present INTRAJ, an application of the framework to

construct concise and precise CFGs for Java 7. We discuss

design decisions for what facts to include, and how to

reify implicit facts that the AST does not expose directly.

• We provide two different client analyses to validate

and evaluate the framework: Dead Assignment analysis,

which detects unnecessary assignments, and Null Pointer
Exception analysis, which detects if there exists a path in

which a NullPointerException can be thrown.

• We provide an evaluation of performance and precision

for a number of Java subject applications, and compare

performance and precision both to the earlier RAGs-

based approach and to SonarQube, a current mainstream

program analysis tool.

In the rest of this paper, we review RAGs and introduce IN-

TRACFG (Section II) and INTRAJ, along with underlying de-

sign decisions and implementation details (Section III), present

our client analyses (Section IV) and evaluation (Section V),

discuss related work (Section VI) and conclude (Section VII).

II. RAGS AND THE INTRACFG FRAMEWORK

Attribute grammars, originally introduced by Knuth [21],

are declarative specifications that decorate AST nodes with

attributes. Each AST node type can declare attributes and

define their values through equations. There are two main

kinds of attributes: synthesised attributes, defined in the same

node, and inherited attributes, defined in a parent or an an-

cestor node. Synthesised attributes are useful for propagating

information upwards in an AST, e.g. for basic type analysis

2021 IEEE 21st International Working Conference on Source Code Analysis and Manipulation (SCAM)

Work licensed under Creative Commons Attribution 4.0 License. https://creativecommons.org/licenses/by/4.0/
DOI 10.1109/SCAM52516.2021.00009

1

20
21

 IE
EE

 2
1s

t I
nt

er
na

tio
na

l W
or

ki
ng

 C
on

fe
re

nc
e

on
 S

ou
rc

e
C

od
e

A
na

ly
si

s a
nd

 M
an

ip
ul

at
io

n
(S

C
A

M
) |

 9
78

-1
-6

65
4-

48
97

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SC

A
M

52
51

6.
20

21
.0

00
09

ExprStmtLessOp ExprStmt

· · · · · ·

p1 PostInc

While While

Parent-First AST-unrestricted

Not in CFG

Misplaced

Redundant

succ

Child relation

AST node

Legend

LessOp

· · · · · ·

p1 PostIncp2

p1

p2

p1

while(p1<p2){
p1++;
}

Fig. 1: In the Parent-First CFG (left) a parent always precedes

its children, resulting in redundant and misplaced nodes. The

AST-unrestricted CFG (right) is correct and minimal.

of expressions. Inherited attributes are useful for propagating

information downwards, e.g., for environment information.

Reference Attribute Grammars (RAGs) [13] extend Knuth’s

attribute grammars with reference attributes, whose values are
references to other AST nodes. Attributes that compute refer-

ences to AST nodes can declaratively construct graphs that

are superimposed on the AST, e.g., CFGs, so that RAGs can

propagate information directly along these graph references.

For our implementation, we have used the JastAdd meta-

compilation system [14], which supports RAGs as well as the

following attribute grammar extensions that we use here:

Higher-order attributes (HOAs) [42] have a value that is a

fresh AST subtree, which can itself have attributes. HOAs

are useful for reifying implicit structures not available in

the AST constructed by the parser. We use HOAs to reify,

for example, control flow for unchecked exceptions and

implicit null assignments.

Circular attributes are attributes whose equations may tran-

sitively depend on their own values [27]. They support

declarative fixpoint computations and can e.g. express

data flow properties on top of a CFG.

Collection attributes are attributes that aggregate any num-

ber of contributions from anywhere in the AST, or from

a bounded AST region [26]. They simplify e.g. error

reporting and the computation of the predecessor relation

from the successor relation in a CFG.

Node type interfaces are similar to Java interfaces and can

be mixed into AST node types. They declare e.g. at-

tributes and equations, and enable language-independent

plugin components in attribute grammars [12].

Attribution aspects are modules that use inter-type declara-

tions to declare a set of attributes, equations, collection

contributions, etc. for specific node types [14], and mix in

interfaces to existing node types. They provide a modular

extension mechanism for RAGs.

On-demand evaluation, where attributes are evaluated only

if they are used, and with optional caching that prevents

reevaluation of attributes used more than once [18].

JastAdd exclusively uses this evaluation strategy.

A. RAG frameworks for control flow

Our work is the second to construct CFGs in a RAG

framework, following the earlier JASTADDJ-INTRAFLOW [35].

JASTADDJ-INTRAFLOW constructs Parent-First CFGs, in the

sense that all AST nodes involved in the CFG computation are

also part of the CFG and impose their nesting structure, so that

the CFG must always pass through all of a node’s ancestors

before it can reach the node itself. By contrast, our INTRACFG

framework is AST-unrestricted, in that the resulting CFG need

not follow the syntactic nesting structure.

Figure 1 illustrates this difference between the two ap-

proaches for a while loop in Java. The left (Parent-First)

CFG from JASTADDJ-INTRAFLOW first flows through the

While node to reach the loop condition. However, the CFG

already encodes the flow properties of While, so this flow

is unnecessary for data flow analysis. The same holds for

ExprStmt. We therefore consider these nodes redundant for

the CFG. By contrast, our system’s AST-unrestricted CFG on

the right skips these two nodes entirely.

The second, more severe concern is that the control flow

in the left CFG in Figure 1 cannot follow Java’s evaluation

order due to the Parent-First constraint: flow passes through

the PostUnaryInc node, which represents an update, before

passing through the node’s subexpression p1. This flow would

represent an inversion of the actual order of evaluation: the

nodes are misplaced in the CFG. Typical client analyses on

such a flawed CFG must add additional checks to compensate

or otherwise sacrifice soundness or precision in programs

where p1 also has a side effect. By contrast, our AST-

unrestricted CFG on the right addresses this limitation and

accurately reflects Java’s control flow.

We note that recent work on program analysis [15], [37]

has asserted that attribute grammars restrict computations to

be tightly bound to the AST structure. Our work demonstrates

that this generalization does not hold, and that RAGs are

an effective framework for efficiently deriving precise CFGs

that deviate from the AST structure and for expressing client

analyses directly in terms of such derived structures.

B. The INTRACFG framework

INTRACFG is our new RAG framework for constructing

intraprocedural AST-unrestricted CFGs, superimposing the

graph on the AST. Figure 2 shows the framework as a

UML class diagram. INTRACFG is language-independent, and

includes interfaces that AST types in an abstract grammar can

mix in and specialise to compute the CFG for a particular

language. The figure shows five types: the CFGRoot interface
is intended for subroutines, e.g., methods and constructors,

to represent a local CFG with a unique entry and exit

node. We represent the latter as synthetic AST node types

Entry and Exit. The CFGNode interface marks nodes in

the CFG, and each node has reference attributes succ and

pred to represent the successor and predecessor edges. The

2

<<interface>>
CFGSupport

↑firstNodes : P(CFGNode)
↓nextNodes : P(CFGNode)
↓nextNodesTT : P(CFGNode) [df-api]
↓nextNodesFF : P(CFGNode) [df-api]

↑firstNodes = ∅

<<interface>>
CFGRoot

→entry : Entry [df-api]
→exit : Exit [df-api]
→entry = new Entry
→exit = new Exit
*.↓entry = →entry
*.↓exit = →exit
*.↓nextNodes = ∅
*.↓nextNodesTT = ∅
*.↓nextNodesFF = ∅ <<interface>>

CFGNode

↑succ : P(CFGNode) [df-api]
↑pred : P(CFGNode) [df-api]
↓entry : Entry
↓exit : Exit
�succInv : P(CFGNode)
�reachable : boolean

↑firstNodes = {this}
↑succ = ↓nextNodes
s ∈ ↑succ =⇒ this ∈ s.�succInv
�reachable =

↓entry∈ �succInv ∨ ∃p ∈ �succInv : p.�reachable
↑pred = {p | p ∈ �succInv ∧ p.�reachable}

Entry

Exit

Attribute markers
↑ synthesized
↓ inherited

→ higher-order
� collection
� circular

[df-api] for client data
flow analyses

Fig. 2: The INTRACFG framework with interfaces CFGRoot,
CFGSupport, CFGNode, and synthetic AST types Entry,
Exit. Highlighted attribute equations are default equations,

intended for overriding.

CFGSupport interface marks AST nodes in a location that

may contain CFGNodes. All CFGNodes are CFGSupport nodes,
but CFGSupport nodes that are not CFGNodes can help steer

the construction of the CFG.

Figure 2 also shows the AST node types’ attributes and their

types (middle boxes), as well the defining equations (bottom

boxes). Here, we write P(CFGNode) for the type of sets over

CFGNodes. We optionally prefix attribute names with ↑, ↓,
→, �, or � to highlight the AST traversal underlying their

computation. For the different kinds of attributes, we use the

following equations, for attributes x and expressions e:

Synthesised attributes: ↑x = e defines attribute ↑x for the

local AST node (which we call this).
Inherited attributes: c.↓x = e gives AST child node c and its

descendants access to e through ↓x, where e is evaluated

in the context of the this node (c’s parent). We use the

wildcard ∗ for c to broadcast to all children, ∗.↓x = e.
Higher-order attributes: →x = e where e must construct a

fresh AST subtree.

Circular attributes: �x = e, where e computes a fixpoint.

In this paper, boolean circular attributes start at false
and monotonically grow with ∨, while set-typed circular

attributes start at ∅ and monotonically grow with ∪.
Collection attributes have no equations, but contributions.

We write P =⇒ e ∈ n.�x to contribute the value

of expression e to collection attribute �x in node n if P
holds. In this paper, all collection attributes are sets.

This pseudocode translates straightforwardly to more ver-

bose JastAdd code that uses Java for the right-hand sides in

our equations. INTRACFG is 45 LOC of JastAdd code.1

1https://github.com/lu-cs-sde/IntraJSCAM2021/

MethodDecl ::= ... b:Block
implements CFGRoot

entry.↓nextNodes = b.↑firstNodes
b.↓nextNodes = {↓exit}

EQOp ::= left:Expr right:Expr
implements CFGNode

↑firstNodes = left.↑firstNodes
left.↓nextNodes = right.↑firstNodes
right.↓nextNodes = {this}

AndOp ::= left:Expr right:Expr
implements CFGSupport

↑firstNodes = left.↑firstNodes
left.↓nextNodesTT = right.↑firstNodes
left.↓nextNodesFF = ↓nextNodesFF
...

ReturnStmt ::= [e:Expr]
implements CFGNode
...
↑succ = {↓exit}

Fig. 3: Example application of the INTRACFG framework.

EQOp ::= Left:Expr Right:Expr; // Abstract grammar
EQOp implements CFGNode;
eq EQOp.firstNodes() = getLeft().firstNodes();
eq EQOp.getLeft().nextNodes() = getRight().firstNodes();
eq EQOp.getRight().nextNodes() = SmallSet<CFGNode>.singleton(this);

Listing 1: JastAdd translation of EQOp in Figure 3.

The equations in the framework define some of the at-

tributes, and provide default definitions for others. To spe-

cialise the framework to a particular language, the default

equations can be overridden for specific AST node types to

capture the control flow of the language.

Client analyses can then use attributes marked as [df-api] in
Figure 2, such as, ↑succ and ↑pred, to analyze the CFG. Since

CFG nodes are also AST nodes, it is easy for these analyses

to also access syntactic information and attributes from, e.g.,

type analysis, as we illustrate in Section IV.

C. Computing the successor attributes

To compute the ↑succ attributes, we use the helper attributes
↑firstNodes and ↓nextNodes. Given an AST subtree t, its

↑firstNodes contain the first CFGNode within or after t that

should be executed, if such a node exists. If not, ↑firstNodes
is empty. The framework in Figure 2 shows the default

definitions for this attribute: the empty set for a CFGSupport
node, and the node itself for a CFGNode.
The ↓nextNodes attribute contains the CFGNodes that are

outside t, and that would immediately follow the last executed

CFGNode within t, disregarding abrupt execution flow like

returns and exceptions. By default, the ↑succ attribute is

defined as equal to ↓nextNodes.
Figure 3 shows how the framework can be specialised to

some example AST node types to define the desired CFG.

JastAdd expresses these additions in a modular attribution

aspect. For illustration, we again encode the JastAdd spec-

ification into UML and include the abstract syntax of each

node type. Listing 1 also illustrates how the pseudocode can

be translated to JastAdd code.

Here, MethodDecl exemplifies a CFGRoot. It defines the

flow between its →entry and →exit HOAs and its children.

EQOp exemplifies a CFGNode. It defines a pre-order flow: left,
then right, then the node itself. Each type defines its own

synthesised attributes as well as the inherited attributes of its

children and HOAs.

3

AndOp

b1

p1 p2

EQOp

Entry Exit

p1 0

ExprStmt

MethodDecl

IfStmt

AssignExpr

Block

AndOp

b1

p1 p2

EQOp

Entry Exit

p1 0

ExprStmt

Fa
lse

True

MethodDecl

IfStmt

Block

True

AndOp

b1

p1 0p1 p2

EQOp

Entry Exit

ExprStmt

MethodDecl

IfStmt

Block

↑succ

CFGRoot

CFGNode

CFGSupport

AST node

Legend

HOA

↓nextNodes
↑firstNodes

p1 AssignExpr
p1 AssignExpr

p1

void
foo(int p1, int p2, boolean b1){
if(p1==p2 && b1){
p1 = 0;
}
}

True

False

Fa
ls
e

Fig. 4: Visualization of the attributes ↑firstNodes, ↓nextNodes and ↑succ. For boolean expressions (AndOp and EQOp), the
subsets ↓nextNodesTT and ↓nextNodesFF are shown instead of ↓nextNodes, marked by True and False, respectively.

All CFGNodes have immediate access to the Entry and

Exit nodes of the CFG, through the inherited ↓entry and

↓exit attributes declared in CFGNode and defined by the

nearest CFGRoot ancestor (Figure 2). This allows e.g., the

ReturnStmt to point its ↑succ edge directly to the Exit node.
For boolean expressions that affect control-flow, IN-

TRACFG supports path-sensitive analysis, splitting the succes-

sor set into two disjoint sets for the true and false branches. We

provide attributes ↓nextNodesTT and ↓nextNodesFF, respec-
tively, to capture these branches. The AndOp type illustrates

how these attributes can capture short-circuit evaluation on

the left child. These attributes are relevant only for boolean

branches, and must ensure the following property:

↓nextNodesTT ∪ ↓nextNodesFF = ↓nextNodes
Figure 4 illustrates these attributes on a small program

in a language with methods, statements, and expressions.

Here, MethodDecl is a CFGRoot and thus automatically has

fresh Entry and Exit nodes. Nodes in the control flow,

e.g., identifiers and the equality-check operator, EQOp, are

CFGNodes, and thus have the ↑succ attribute. Nodes that do not

belong to the control-flow but live in AST locations below a

CFGRoot that may contribute to control flow are CFGSupport
nodes. The left-hand-side variable of the assignment p1 = 0
(i.e., p1) is not part of the flow (cf. Section III-A).

D. Computing predecessors

To support both forward and backward analyses, we pro-

vide a predecessor attribute that captures the inverse of the

successor attribute ↑succ. However, ↑succ is also defined for

CFGNodes that are not reachable from Entry by following

↑succ (i.e., that are “dead code”). Our framework therefore

computes predecessor edges ↑pred by not only inverting ↑succ
into a collection attribute �succInv, but also by filtering out

such “dead” nodes from �succInv with a boolean circular

attribute �reachable (Figure 2).

III. INTRAJ: INTRACFG IMPLEMENTATION FOR JAVA 7

INTRAJ is our implementation of a precise intraprocedural

CFG for Java 7, extending the INTRACFG framework and the

EXTENDJ Java compiler. INTRAJ exploits the EXTENDJ front-

end, which performs name-, type-, and compile-time error

analysis. EXTENDJ produces an attributed AST2 on top of

which INTRAJ superimposes the CFG.

In this Section, we discuss the most important design

decisions for INTRAJ, and in particular, how we used HOAs to

improve the precision of the CFG. Our two main goals were:

1) minimality: build a concise CFG by excluding AST

nodes that do not correspond to any runtime action. This

improves client analysis performance, in particular for

fixpoint computations.

2) high precision: the constructed CFGs should capture

most program details. We exploit HOAs to reify implicit

structures in the program, such as calls to static and

instance initialisers and implicit conditions in for loops.

We gave particular importance to exceptions, modelling them

as accurately as possible and weighing the trade-off between

precision and minimality.

INTRAJ consists of a total of 989 LOC (598 for Java 4; 11

for Java 5; 380 for Java 7). We have constructed a systematic

benchmark test suite for INTRAJ, consisting of 151 tests in

total (126 for Java 4; 5 for Java 5; 20 for Java 7). The test

suite reads source code as input and produces CFGs as dot
files as output. We validated the result of each test manually.

A. Statements and Expressions

When a language implementer specialises INTRACFG for

a given language, they must decide which AST nodes should

be part of the CFG, i.e., mix in (implement) the CFGNode
interface. As a general design principle, we included AST

nodes that correspond to a single action at runtime. This

includes operations on values, like additions, comparisons, and

read operations on variables and fields.

We also included nodes that are interesting points in the

execution that a client analysis might want to use. This

includes nodes that redirect flow outside of the CFG, like

method calls, return statements, and throw statements.

2The full abstract grammar for Java 7 can be found at https://extendj.org

4

AssignExpr

Dot

DotVarAccess

MethodAccess
< m >

< f >

IntegerLiteral

< 0 >

MethodDecl

Entry Exit
Block

VarAccess
< x >

void foo() {
f.m().x = 0;
}

We represent the write to

x by the AssignExpr
node in the CFG.

↑succ

CFGRoot

CFGNode

We represent the write to

x by the AssignExpr
node in the CFG.

CFGSupport

AST node

Legend

HOA

Fig. 5: An assignment with a complex left-hand side.

For assignments, the choice of nodes to include in the

CFG was not obvious. The left-hand side of an assignment

can be a chain of named accesses and method calls, e.g.,

f.m().x, with the rightmost named access, x, corresponding
to the write. Here, we chose to not include x in the CFG but

instead use the assignment node itself to represent the write

operation, see Figure 5. We argue that this gives a simpler

client interface, since the same AST node type, VarAccess,
otherwise represents all named accesses on the left- and right-

hand side of an assignment.

We do not include purely structural nodes, like Block
or type information nodes, in the CFG. We also exclude

nodes that redirect internal flow, like while statements and

conditionals. While these nodes do represent runtime actions,

the CFG already reflects their flow through successor edges.

MethodDecl and the analogous ConstructorDecl for

constructors mix in the CFGRoot interface, thus representing

a local CFG. A CFGSupport node defines the inherited

attributes for its CFGNodes children, if any. For example, a

Block defines the ↓nextNodes attribute for all its children.

As an example of the flexibility of INTRACFG, consider

the Java ForStmt, which is composed of variable initialisa-

tion, termination condition, post-iteration instruction, and loop

body. The CFG should include a loop over these components.

However, it is legal to omit all the components, i.e., to write:

‘for (; ;){}’. The condition is implicitly true in this

case, resulting in an infinite loop. To construct a correct

CFG, we still need a node to loop over; we therefore opt to

reify this implicit condition. We construct an instance of the

boolean literal true as the HOA →implC. Figure 6 shows

how the ↑firstNodes attribute then uses →implC only if both

the initialisation statements and the condition are missing.

Another interesting corner case is the EmptyStmt. This

node represents e.g. the semicolon in the trivial block {;}.
The EmptyStmt is a CFGSupport node since it does not map

to a runtime action. Since EmptyStmt has no children, its

↑firstNodes will be the following CFG node. We achieve this

by defining ↑firstNodes as equal to ↓nextNodes, overriding the

default equation from CFGSupport. In this manner, the CFG

skips the EmptyStmt, and if there are occurrences of multiple

MethodDecl

Entry Exit

Block

ForStmt

True

BooleanLiteral

< true >

Block

F
a
l
s
e

CFGRoot

CFGNode

CFGSupport

AST node

Legend

HOA

↑firstNodes
↑succ

void foo(){
for(; ;){ }
}

ForStmt ::= init:Stmt∗ c:Expr ... b:Block
implements CFGSupport
→implC : BooleanLiteral

→implC = new BooleanLiteral(true)
↑firstNodes = if ¬init.empty then init0.↑firstNodes

elif ¬c.empty then c.↑firstNodes
else →implC.↑firstNodes

Fig. 6: CFG for method with empty ForStmt. The HOA

→implC reifies the implicit true condition.

MethodDecl

Entry Exit

Block

EmptyStmt EmptyStmt

CFGRoot

CFGNode

CFGSupport

AST node

Legend
HOA

↑firstNodes
↑succ

void bar(){
; ;
}

EmptyStmt

implements CFGSupport

↑firstNodes = ↓nextNodes

Fig. 7: The CFG can entirely skip AST nodes.

EmptyStmts, we skip them transitively and link to the next

concrete CFGNode. The example in Figure 7 shows how we

exclude two EmptyStmts from the CFG and obtain a CFG

with only a single edge from method Entry to Exit. Let us
call the two EmptyStmts e1 and e2, from left to right. The

equations give that Entry.↑succ = Exit since

Entry.↑succ= Entry.↓nextNodes= Block.↑firstNodes
= e1.↑firstNodes = e1.↓nextNodes
= e2.↑firstNodes = e2.↓nextNodes
= Block.↓nextNodes= Exit

B. Static and Instance Initialisers

When a Java program accesses or instantiates classes, it

executes static and instance initialisers. We will use the

example in Figure 8 to explain how we handle initialisers.

As seen in the example, static and instance initialisers can be

syntactically interleaved: The instance field foo is followed

by the static field bar, another static field foobar, and by an

instance initialiser block printing the string "Instance".
The Java Language Specification specifies that when a class

is instantiated, the static initialisers are executed first (unless

already executed), then the instance initialisers, and finally the

constructor. During the execution of the static initialisers, the

ones in a superclass are executed before those in a subclass,

and similarly for the instance initialisers.

To handle this execution order, our solution is to use HOAs

to construct two independent CFGs for each ClassDecl:

5

ClassDecl

StaticInit

Exit

FieldDecl

Block

ExprStmt

StringLiteral

< Instance >

InstanceInit

FieldDecl FieldDecl

BooleanLiteral

< false >
IntegerLiteral

< 1 >
IntegerLiteral

< 0 >

FieldDeclarator

< foo >

FieldDeclarator

< bar >
FieldDeclarator
< foobar > MethodAccess

< println >

EntryExitEntry

public class A {
int foo = 1; //instance field
static int bar = 0; //static field
static boolean foobar = false; //static field
{ println("Instance"); } //instance initialiser
}

Fig. 8: Example of class that interleaves static and instance

initialisers. The→instanceInit and→staticInit HOAs represent

the CFGs for each kind of initialisers.

one for the static initialisations, →staticInit, and one for

the instance initialisations, →instanceInit. The →staticInit

connects all the static field declarations and all static initialis-

ers. →instanceInit analogously connects instance fields and

initialisers. →instanceInit and →staticInit mix in the CFGRoot
interface, and automatically get Entry and Exit nodes. The

equations for ↑firstNodes and ↓nextNodes are overridden to

include the initialisers in the same order as they appear in the

source code. To connect the initialisation CFGs, we view them

as implicit methods and use HOAs to insert implicit method

calls to them. For example, if a class has a superclass, the

implicit static/instance initialiser method will start by calling

the corresponding initialiser in the superclass.

C. Exceptions Modelling

Control flow for exceptions is complex to model and often

requires non-trivial approximations [1], [4], [17]. In Java,

there are two kinds of exceptions: checked and unchecked.
If an expression can throw a checked exception, then Java’s

static semantics require that the method that contains this

expression must surround the expression with an exception

handler, or declare the exception in the method signature

(using the throws keyword). If the exception is unchecked, it

is optional for the method to handle or declare the exception.

Some methods still declare unchecked exceptions, possibly to

increase readability or to follow coding conventions.

For the INTRAJ CFG, we decided to explicitly represent all

checked exceptions, and, in addition, all unchecked exceptions

that are explicitly thrown in the method or declared in the

method signature. For unchecked exceptions, we represent

only those that may escape from a try-catch statement.

Within the try block of such a statement, we introduce

individual CFG edges for each represented exception whenever

it may be thrown, and separate edges for regular (non-

exceptional) control flow. This design allows us to avoid

conservative overapproximation, and enables client analyses to

distinguish whether control reached a finally block through

exceptional control flow or through regular control flow.

Consider the following example with two nested try blocks:

void ex(Long x) throws Exn {
try {
try {
if (x < 10) NPE
array[x] = 0; OOB

else throw new Exn(); Exn
return; R

} finally { ... } F1
} catch (Exn e) { ... } CExn
catch (Alt e) { ... } CAlt
finally { ... } F2

}

NPE OOB Exn R

F1

CExn CAlt

F2

1

Ex

Exn

2

F

R

1

F

F1

F2

PE

FFF

OOB

1FFFF1

NPE OOB Exn R

F1

CExn CAlt

F2

NPE OOB Exn R

F1

CExn CAlt

F2

Fig. 9: Complex exception flow in a conservative CFG. Only

the flow paths in green and orange are realisable.

Calling ex(null) from Figure 9 triggers a null pointer

exception at NPE. Control then flows from the exception to the

first and then to the second finally block, NPE F1 F2 .

Calling ex(-1) similarly triggers an out-of-bounds exception

at OOB, with analogous flow. The explicit exception at Exn takes

the path Exn F1 CExn F2 , and no path can go through
CAlt assuming that F1 does not throw Alt. Note that finally
also affects break, continue, and return, as we see in the

path R F1 F2 .

If we represent the CFG as on the right in Figure 9,

client analyses will process many unrealisable paths, such as
R F1 CAlt F2 . Instead, we exploit an existing feature

in ExtendJ, originally intended for code generation [28],

that clones finally blocks. We incorporate the HOAs that

represent each cloned block into our CFG. In our example, this

yields the CFG from Figure 10, and leaves CAlt as dead code.

NPE OOB Exn R

UE

F11

F12 F13

CExn

F21 F22 F23

NPE OOB Exn R

UE

F11

F12 F13

CExn

F21 F22 F23

Fig. 10: Path-sensitive

variant of the CFG from

Figure 9, used in INTRAJ.

This path sensitivity heuristic

gives us increased precision in

exception handling and resource

cleanup code, which in our ex-

perience is often more subtle and

less well-tested than the surround-

ing code. For unchecked excep-

tion edges (NPE, OOB), we follow

Choi et al. [4], who observe that

these edges are ‘quite frequent’;
we therefore funnel control flow

for these exceptions through a

single node UE in the style of

Choi et al.’s factorised exceptions. Each try block provides

one such node through a HOA. Section V shows some of the

practical strengths and weaknesses of our heuristic.

We take an analogous approach for try-with-resources,
which automatically releases resources (e.g., closes file han-

dles) in the style of an implicit finally block. Our treatment

differs from that of finally only in that we synthesise the

implicit code and suitably chain it into the CFG.

6

IV. CLIENT ANALYSIS

We demonstrate our framework with two representative data

flow analyses: Null Pointer Exception Analysis (NPA), a for-

ward analysis, and Live Variable Analysis (LVA), a backward

analysis that helps detect useless (‘dead’) assignments. These

analyses are significant for bug checking and therefore benefit

from a close connection to the AST.

We first recall the essence of these algorithms on a minimal

language that corresponds to the relevant subset of Java:

e ∈ E ::= new() | null | id | id.f | id = E
v ∈ id ::= x, . . .

An expression e can be a new() object, null, the contents

of another variable, the result of a field dereference (x.f),
or an assignment x = e. The values in our language are an

unbounded set of objects O and the distinct null. Expressions
have the usual Java semantics. Since INTRAJ already captures

control flow (on top of INTRACFG) and name analysis (via

ExtendJ), we can ignore statements and declarations, and

safely assume that each id is globally unique.

A. Null Pointer Exception Analysis

In our simplified language, a field access x.f fails (in

Java: throws a Null Pointer Exception) if x is null. Null

Pointer Exception Analysis (NPA) detects whether a given

field dereference may fail (e.g. in the SonarQube NPA variant)

or must fail (e.g. in the Eclipse JDT NPA variant) and can alert

programmers to inspect and correct this (likely) bug.

In our framework, writing may and must analyses requires

the same effort; we here opt for a may analysis over a binary

lattice L2 in which � = nully signifies value may be null
and ⊥ = nonnull signifies value cannot be null.

More precisely, we use a product lattice over L2 that maps

each access path a ∈ A (e.g. x; x.f; x.f.f; . . .) to an element

of L2. Our analysis then follows the usual approach for a

join data flow analysis [6]. Our monotonic transfer function

fNPA : (A → L2)× E → (A → L2) is straightforward:
fNPA(Γ, v = e) = Γ[v
→ �e�Γ]

where �new()�Γ = nonnull
�null�Γ = nully
�v�Γ = Γ(v)
�v.f�Γ = Γ(v.f)
�v = e�Γ = �e�Γ

We do not need to write a recursive transfer function for

assignments nested in other assignments (e.g., x = y = z),
since the CFG already visits these in evaluation order.

Our implementation is field-sensitive and control-sensitive

(i.e., it understands that if (x != null){x.f=1;} is safe),

but array index-insensitive and alias-insensitive. Field sensi-

tivity is reached by considering the entire access path chain,

while control sensitivity is given by defining new HOAs

representing implicit facts, e.g., x != null.
Figure 11 shows how we compute environments Γ ∈

EnvNPA = A → L2 that capture access paths that may be

null at runtime. We extend CFGNode with �inNPA, which

<<interface>>
CFGNode

↑trFun : EnvNPA → EnvNPA
�inNPA : EnvNPA
�outNPA : EnvNPA

↑trFun(Γ) = Γ
�inNPA = {a �→ ⊔

n.�outNPA(a)
| a ∈ A, n ∈ ↑pred}

�outNPA = ↑trFun(�inNPA)

VarAccess

extends Expr. implements CFGNode
↓isDeref : boolean
↑canFail : boolean
↓cu : CompilationUnit [name-api]
↑mayBeNull = (�inNPA(↑decl) = nully)
↑canFail = ↑mayBeNull ∧ ↓isDeref
↑canFail =⇒ this ∈ ↓cu.�NPA

Expr

↑mayBeNull : boolean
↑decl : A [name-api]

↑mayBeNull = false

AssignExpr ::= lhs:Expr rhs:Expr
extends Expr. implements CFGNode

↑trFun(Γ) = if rhs.↑mayBeNull
then Γ[lhs.↑decl �→ nully]
else Γ[lhs.↑decl �→ nonnull]

↑mayBeNull = rhs.↑mayBeNull

NullExpr

extends Expr. implements CFGNode

↑mayBeNull = true

Fig. 11: Partial implementation of our NPA. We obtain ↑decl
and ↓cu from ExtendJ’s name analysis API.

merges all evidence that flows in from control flow predeces-

sors, and �outNPA, which applies the local transfer function

↑trFun to �inNPA. While NPA is a forward analysis, JastAdd’s

on-demand semantics mean that we query backwards, follow-
ing ↑pred edges, when we compute �inNPA on demand. �inNPA

and �outNPA are circular, i.e., can depend on their own output

and compute a fixpoint.
The attributes for VarAccess show how we use this infor-

mation. Each VarAccess contributes to ↓cu.�NPA, the com-

pilation unit-wide collection attribute of likely null pointer

dereferences, whenever ↑mayBeNull holds and when the

VarAccess is also a proper prefix of an access path and must

therefore be dereferenced (↓isDeref, not shown here).
Our full Java 7 implementation takes up 142 lines of

JastAdd code, excluding data structures but including control

sensitive analysis handling and reporting.

B. Live Variable Analysis
Given a CFGNode n, a variable is live iff there exists at

least one path from n to Exit on which n is read without

first being redefined. An assignment to a variable that is not

live (i.e., dead) wastes time and complicates the source code,

which generally means that it is a bug [29]. We can detect this

bug with Live Variable/Liveness analysis (LVA), a data flow

analysis that computes the live variables for each CFG node.
We express LVA as a Gen/Kill analysis, on the powerset

lattice over the set of live (local) variables. Each transfer

function adds variables to the set (marks them live) or removes

them (marks them dead). LVA is a backward analysis, starting

at the Exit node with the assumption that all variables are dead

(i.e., with the set of live variables L = ∅). The transfer function
thus maps from node exit to entry and has the form:

fLVA(L, e) = (L \ def(e)) ∪ use(e)

where def (e) is the set of variables that e assigns to, and

use(e) is the set of variables that e reads.
We encode the fLVA using RAGs in a similar way as

done in [35]: Figure 12 shows our computation where cir-

cular attributes �inLVA and �outLVA represent variables live

7

<<interface>>
CFGNode

�inLVA : P(A)
�outLVA : P(A)
↑def : P(A)
↑use : P(A)
�inLVA = (�outLVA \ ↑def) ∪ ↑use
�outLVA =

⋃{n.�inLVA|n ∈ ↑succ}
↑def = ∅
↑use = ∅

VarAccess

implements CFGNode

↑use = { ↑decl }

AssignExpr ::= lhs:Expr rhs:Expr
implements CFGNode

↑def = { lhs.↑decl }

Fig. 12: Partial implementation of our LVA.

before/after a CFGNode. Here, �outLVA reads from ↑succ
nodes, since we are implementing an on-demand backward

analysis. VarAccess and AssignExpr override ↑use and

↑def, respectively. Since the CFG traverses through the right-

hand side of each assignment, this specification suffices to

capture the analysis of our Java language fragment. Our full

implementation for Java 7 takes up 38 lines of code.

C. Dead Assignment Analysis
We use dead assignment analysis (DAA) as a straightfor-

ward client analysis for LVA. Our implementation of DAA

refines the results of LVA with a number of heuristics that we

have adopted from the SonarQube checker. Specifically, these

heuristics suppress warnings in code like the following:

String status = ""; // WARNING: unused assignment
if (...) status = "enabled";
else status = "disabled";

Here, the initial assignment to status reflects a defensive

coding pattern that ensures that all variables are initialised to

some safe default. We (optionally) suppress warnings like the

above under two conditions: (1) the assignment must be in a

variable initialisation, and (2) the initialiser must be a common
default value, i.e., one of {null, 1, 0, -1, "", true, false}.
Our DAA implementation takes up 62 lines of code.

V. EVALUATION AND RESULTS

We demonstrate the utility of INTRACFG and INTRAJ3 by

evaluating the client analyses that we describe in Section IV

against similar source-level analyses from the Parent-First

framework JASTADDJ-INTRAFLOW4 (JJI) and the commercial

static analyser SONARQUBE, version 8.9.0.43852 (SQ).
Our evaluation targets DaCapo benchmarks ANTLR, FOP,

and PMD [2], as well as JFreeChart (JFC), which is a superset

of the CHART benchmark. These benchmarks mostly subsume

the ones used by JJI [35], except for replacing BLOAT by the

more readily available and larger PMD. Table I summarise key

metrics for the benchmarks and compares CFGs against JJI.

Here, INTRAJ’s AST-unrestricted strategy for building CFGs

reduces the number of nodes and edges by more than 30%.

A. Precision
To ensure that our analyses yield useful results, we com-

pared them against the results that JJI and SQ report.

3Based on ExtendJ commit a56a2c2 and JastAdd commit faf36d2
4Using JastAdd2 release 2.1.4-36-g18008bb and JastAddJ-intraflow

commit b0b7c00, restored with the original authors’ generous help

LOC QTY INTRAJ JJI %

ANTLR
v. 2.7.2

33·737
ROOTS 2·667 2·329 +14.5
NODES 76·925 116·523 -39.9
EDGES 85·028 136·528 -37.7

PMD
v. 4.2

49·610
ROOTS 6·215 5·960 +4.26
NODES 103·739 182·864 -43.2
EDGES 108·639 202·842 -46.4

JFC
v 1.0.0

95·664
ROOTS 9·271 7·889 +17.5
NODES 219·419 331·368 -33.7
EDGES 220·256 363·642 -39.4

FOP
v 0.95

97·288
ROOTS 11·327 8·921 +26.9
NODES 239·096 347·125 -31.1
EDGES 240·068 379·269 -36.6

TABLE I: Benchmark size metrics, LOC from cloc. The rest
are CFG sizes. ROOTS is the number of intraprocedural CFGs.

For INTRAJ, this includes static and instance initialisers.

a) Dead Assignment Analysis: JJI and SQ provide subtly

different DAA variants. JJI’s DAA corresponds largely to

our LVA (Section IV-B) with minimal filtering, while SQ

additionally applies the default value filtering heuristic from

Section IV-C. We therefore ran two variants of our DAA,

the JJI-style INTRAJ-NH (non-heuristic), and the SQ-style

INTRAJ-H (heuristic). For SQ’s reports, we filtered reports

that involved multiple methods (FOP: 24; JFC: 5; PMD: 8),

since SQ can use interprocedural analysis within one file.

The Venn diagrams in the upper part of Figure 13 show the

number of DAA reports for each project, categorised by their

overlap among the different checkers. For each category with

20 or fewer reports, we manually inspected all reports. For

other categories, we sampled and manually inspected at least

20 reports or 20% of the reports (whichever was higher).

The Venn diagrams are dominated by two bug report

categories: reports from the intersection of INTRAJ-NH and

JJI, which are initialisations of variables with default values,

and reports from the intersection of all tools. For these two

categories, we found all inspected reports to be true positives,

modulo the DAA heuristic (Section IV-C). The remaining

cases are often false positives: SQ reports 8 and 44 false

positives in PMD and FOP that seem to largely stem from

imprecision in handling try-catch blocks. Meanwhile, JJI

reports 9 false positives in PMD while handling break
statements. INTRAJ reports two false positives, due to missing

two exceptional flow edges for unchecked exceptions (Sec-

tion III-C). These do not affect JJI (and possibly SQ), since

JJI conservatively merges exceptional and regular control flow.

b) Null Pointer Analysis: For NPA (lower part of Fig-

ure 13), INTRAJ detects at least as many reports as SQ,

except for PMD, where SQ is able to exploit path sensitivity

to identify three additional true positives. Similarly, the false

positives reported only by INTRAJ are mostly due to the lack

of path-sensitivity. Listing 2 shows a simplified example.

We found that most of the false positives in the intersection

of INTRAJ and SQ are due to the lack of interprocedural

knowledge. Listing 3 gives a simplified example. The code

here checks if rs is null and, if so, calls panic() to halt

8

112 1959

ANTLR

19

8
0%1

9
0%

4 14

1

PMD

87

1
0%

2

2 160

JFC

153

3 44
0%

5
80%

95 95

4
75%

FOP

INTRAJ-H INTRAJ-NH JJI SONARQUBE

Dead Assignment Analysis

11
57% 4

ANTLR
6 7 3

PMD

17
82%

188
92%

JFC

29
55%

24
91%

FOP

INTRAJ SONARQUBE

Null Pointer Analysis

Fig. 13: Venn diagram: number of reports shared across

checkers, and percentage of true positives (unless 100%).

execution. INTRAJ and SQ treat panic() as a regular method

call and infer that rs may be null when dereferenced.

void bar(boolean flag){
Object o = null;
if (flag)
o = new Object();
if (flag)
println(o.toString());

}

Listing 2: Simplified false

positive reported by INTRAJ

void foo(){
Object rs = getRS();
if(rs==null)
// rs can be null
panic(); //exit(1)

println(rs.toString());
}

Listing 3: False positive due

to intraprocedural limitations

B. Performance

We evaluated INTRAJ’s runtime performance with the above

benchmarks on an octa-core Intel i7-11700K 3.6 GHz CPU

with 128 GiB DDR4-3200 RAM, running Ubuntu 20.04.2 with

Linux 5.8.0-55-generic and the OpenJDK Runtime Environ-

ment Zulu 7.44.0.11-CA-linux build 1.7.0_292-b07.

We separately measured both start-up performance on a

cold JVM (restarting the JVM for each run) and steady-state
performance (for a single measurement after 49 warmup runs).

We measured each for 50 iterations (i.e., 2500 analysis runs for

steady-state) and report median and 95% confidence intervals

for INTRAJ, JJI, and SQ, where applicable.

Table II summarises our results. The Baseline column gives

the times for each tool to load each benchmark, without data

flow analyses. For SQ, we report the command line tool run

time, with checkers disabled. For INTRAJ and JJI, this time

includes parsing, name, and type analysis. As JJI uses old

versions of JastAdd and ExtendJ (formerly JastAddJ) from

2013, it reports different baselines. We speculate that the delta

is due to bug fixes and other changes to JastAdd and ExtendJ.

We measured DAA and NPA, as well as CFG construction

time, on separate runs (column An.sys). Table II has some

missing values since JJI does not provide an implementation

for NPA analysis, and since for SQ, we were unable to

trigger the construction of the CFG only. Further, we could not

measure steady state for SQ, since we ran it out of the box.

For start-up measurements, we then subtracted the baseline

timings. DAA and NPA timings include on-demand CFG

construction time. For the CFG measurements, we iterated

over the entire AST and computed the ↑succ attribute.

The %JJI and %SQ columns summarise INTRAJ’s perfor-

mance against JJI and SQ as slowdown (in percent), i.e.

INTRAJ was faster whenever we report less than 100.
We see that INTRAJ is often slower than JJI for small bench-

marks, but outperforms it as the benchmarks grow in size,

especially in steady-state. This trend mirrors the additional

overhead that INTRAJ expends on computing smaller, more

accurate CFGs: the difference between the CFG and DAA

timings is consistently smaller for INTRAJ than it is for JJI,

and becomes more significant for larger benchmarks.

For the industrial-strength SQ, we observe that its baseline

is longer than INTRAJ’s, and an explanation might be that it

includes computations that for INTRAJ would be attributed to

the analyses. A strict comparison to SQ is therefore difficult,

but we observe that INTRAJ is considerably faster including

the baseline, at most 3.12 times slower for DAA only, and

considerably faster for NPA only, though the latter is likely

due to SQ’s more expensive interprocedural analysis.

Overall, our results support that INTRAJ enables practical

data flow analyses, with run-times and precision similar to

state-of-the-art tools. Moreover, the results support that the

overhead that INTRAJ invests in refining CFG construction

over JASTADDJ-INTRAFLOW pays off: client analyses can

amortise this cost, and we expect this benefit to grow for

analyses on taller lattices (e.g., interval or typestate analyses).

VI. RELATED WORK

Our work is most similar to JASTADDJ-INTRAFLOW [35],

the earlier RAG-based control- and data flow framework. As

demonstrated, our CFG framework is more general, leading to

more concise CFGs, avoiding misplaced nodes, and handling

control flow that does not follow the AST structure, like

initialisation code. Furthermore, our framework is formulated

as a complete language-independent framework (Fig 2) with

interfaces and default equations for all nodes involved in

the CFG computation, and it has a more precise predecessor

relation, excluding unreachable nodes. Our application of the

framework to Java is more precise than the earlier work,

making use of HOAs for reifying implicit structure, e.g.,

in connection to finally blocks. Additionally, we imple-

mented the analyses for Java 7, including complex flow for

try-with-resources, whereas [35] only supported Java 5.

Earlier work on adding control flow to attribute grammars

includes a language extension to the Silver attribute grammar

system [39], [40] which supports that AST nodes are marked

as CFG nodes, and successors are defined using an inherited

9

TABLE II: Benchmark mean execution time and 95% confidence intervals over 50 data points per reported number.

Benchmark
Start-up Steady state

Baseline(s) An.sys INTRAJ(s) JJI(s) SQ(s) %JJI %SQ INTRAJ(s) JJI(s) %JJI

ANTLR
INTRAJ JJI SONARQUBE CFG 0.29±0.01 0.16±0.00 - 181 - 0.05±0.00 0.04±0.00 125

2.14±0.01 1.34±0.01 4.91±0.05
DAA 0.53±0.01 0.43±0.01 0.24±0.05 123 220 0.12±0.00 0.13±0.00 92
NPA 0.90±0.00 - 12.35±0.10 - 7 0.27±0.01 - -

PMD
INTRAJ JJI SONARQUBE CFG 0.28±0.02 0.11±0.02 - 120 - 0.07±0.00 0.06±0.00 116

3.56±0.01 2.34±0.02 10.76±0.09
DAA 0.47±0.02 0.39±0.00 0.18±0.08 120 261 0.12±0.00 0.16±0.00 75
NPA 0.80±0.00 - 12.40±0.13 - 6 0.26±0.00 - -

JFC
INTRAJ JJI SONARQUBE CFG 0.45±0.01 0.45±0.04 - 100 - 0.12±0.00 0.12±0.00 100

4.29±0.01 3.14±0.02 10.81±0.11
DAA 0.75±0.01 1.07±0.03 0.24±0.11 70 312 0.25±0.00 0.34±0.00 73
NPA 1.62±0.01 - 10.71±0.12 - 13 0.60±0.01 - -

FOP
INTRAJ JJI SONARQUBE CFG 0.36±0.01 0.33±0.01 - 109 - 0.14±0.00 0.17±0.00 82

4.42±0.00 3.32±0.00 17.20±0.12
DAA 0.67±0.01 0.74±0.01 0.34±0.12 90 197 0.26±0.00 0.39±0.00 66
NPA 1.42±0.00 - 19.25±0.14 - 7 0.67±0.01 - -

attribute. Data flow is implemented by exporting data flow

properties as temporal logic formulas, and using model check-

ing to implement the analysis. The approach is demonstrated

on a small subset of C. No performance results are reported,

and scalability issues are left for future work.

Other declarative frameworks for program analysis have

also demonstrated flow-sensitive analysis support. SOUL [7]

exposes data flow information for Java 1.5 from Eclipse

through a SmallTalk dialect combined with Prolog, though

we were unable to obtain performance numbers for bug

checkers or related analyses based on SOUL. Like our system,

SOUL uses on-demand evaluation. DeepWeaver [10] supports

data flow analysis and program transformation on byte code.

Meanwhile, Flix [24] combines Datalog-style fixpoint compu-

tations and functional programming for declarative data flow

analysis, and can scale IFDS/IDE-style interprocedural data

flow analysis to nontrivial software [25]. To the best of our

understanding, Flix does not connect to any compiler frontend,

and we assume that Flix users rely on Datalog-style fact

extractors to bridge this gap. MetaDL [8] illustrates how to

synthesise fact extractors from a JastAdd-based language, and

we expect that it can directly expose INTRAJ edges.

FlowSpec [34] is a DSL for data flow analysis based on

term rewriting. To the best of our knowledge, FlowSpec has

only been demonstrated on educational and domain-specific

languages. Rhodium [22] uses logical declarative specifica-

tions for data flow analysis and transformation, to optimise C

code and to prove the correctness of the transformations.

Other declarative systems that do not handle data flow in-

clude logic programming based techniques [3], term rewriting

systems [41], and XPath processors [5].

Our work has focused on intraprocedural data flow anal-

yses [6], [19], [20]. However, existing (IR-based) program

analysis tools like Soot [38], Wala [11], or Opal [15] include

provisions for interprocedural analysis, too. We currently see

no fundamental challenge towards scaling our techniques to

interprocedural analysis and expect only minor changes to

the INTRACFG interfaces, for context-sensitivity. Such an

effort would require additional analyses (call graph, points-

to). We hypothesise that our implicit handling of recursive

dependencies can eliminate the need for pre-analyses or com-

plex worklist schemes [23], analogously to Datalog-based

analyses [32]. While we expect that it is possible to integrate

highly scalable data flow algorithms like IFDS, IDE [30],

[31], or SPPD [36] into RAG interfaces, such interfaces may

require a different design than INTRACFG and INTRAJ to e.g.

accommodate procedure summaries and to better enforce and

exploit the invariants of these more specialised algorithms.

VII. CONCLUSIONS

We presented INTRACFG, a RAG-based declarative

language-independent framework for constructing intraproce-

dural CFGs. INTRACFG superimposes CFGs on the AST,

allowing client analyses to take advantage of other AST

attributes, such as type information and precise source infor-

mation. We validated our approach by implementing INTRAJ,

an application of INTRACFG to Java 7, and demonstrated

how INTRACFG overcomes the limitations of an earlier RAG-

based framework, JASTADDJ-INTRAFLOW (JJI), by allowing

the CFG to not be constrained by the AST structure. Compared

to JJI, INTRAJ can faithfully capture execution order and

improve CFG conciseness and precision, removing more than

30% of the CFG edges in our benchmarks. We evaluated

INTRAJ by implementing two data flow analyses: Null Pointer

Exception Analysis (NPA) and Dead Assignment Analysis

(DAA), comparing both to JJI (for DAA), and to the highly

tuned commercial tool SonarQube (SQ) (for DAA and NPA).

Our results show that the INTRAJ-based analyses offer preci-

sion that is comparable to that of JJI and SQ. Compared to JJI,

INTRAJ pays some overhead for computing more precise CFG

but can amortise this effort for larger programs by speeding up

client analyses, outperforming JJI. Compared to SQ, INTRAJ’s

NPA analysis is substantially faster, although this is likely

due to SQ’s more advanced interprocedural analysis. INTRAJ’s

DAA analysis seems slower than SQ’s, but SQ has a much

larger baseline, which might include computations that we

would attribute to the analysis for INTRAJ. Overall, we find

that our results demonstrate that INTRAJ-based data flow

analyses are practical, that INTRAJ enables precise data flow

analyses on Java source code, and that INTRACFG is effective

for constructing CFGs for Java-like languages. Moreover, we

demonstrate for the first time how RAGs can build and exploit

graph structures over an AST without being restricted by the

AST’s structure.

10

REFERENCES

[1] A. Amighi, P. de Carvalho Gomes, D. Gurov, and M. Huisman. Provably
correct control flow graphs from java bytecode programs with excep-
tions. International journal on software tools for technology transfer,
18(6):653–684, 2016.

[2] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo benchmarks: Java benchmarking development and analysis.
In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-Oriented Programing, Systems, Languages, and
Applications, pages 169–190, New York, NY, USA, Oct. 2006. ACM
Press.

[3] M. Bravenboer and Y. Smaragdakis. Strictly declarative specification of
sophisticated points-to analyses. In Proceedings of OOPSLA ’09, pages
243–262, New York, NY, USA, 2009. ACM.

[4] J.-D. Choi, D. Grove, M. Hind, and V. Sarkar. Efficient and precise
modeling of exceptions for the analysis of java programs. ACM
SIGSOFT Software Engineering Notes, 24(5):21–31, 1999.

[5] T. Copeland. PMD applied, volume 10. Centennial Books Arexandria,
Va, USA, 2005.

[6] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’77, pages 238–252,
New York, NY, USA, 1977. Association for Computing Machinery.

[7] C. De Roover. A logic meta-programming foundation for example-
driven pattern detection in object-oriented programs. In Proceedings
of the 27th IEEE International Conference on Software Maintenance
(ICSM 2011), Proceedings of the 27th IEEE International Conference
on Software Maintenance (ICSM 2011), 2011.

[8] A. Dura, H. Balldin, and C. Reichenbach. Metadl: Analysing datalog
in datalog. In Proceedings of the 8th ACM SIGPLAN International
Workshop on State Of the Art in Program Analysis, pages 38–43. ACM,
2019.

[9] T. Ekman and G. Hedin. The jastadd extensible java compiler. In
Proceedings of the 22nd annual ACM SIGPLAN conference on Object-
oriented programming systems and applications, pages 1–18, 2007.

[10] H. Falconer, P. H. J. Kelly, D. M. Ingram, M. R. Mellor, T. Field, and
O. Beckmann. A declarative framework for analysis and optimization.
In S. Krishnamurthi and M. Odersky, editors, Compiler Construction,
pages 218–232, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[11] S. Fink and J. Dolby. Wala–the tj watson libraries for analysis, 2012.

[12] N. Fors, E. Söderberg, and G. Hedin. Principles and patterns of
jastadd-style reference attribute grammars. In R. Lämmel, L. Tratt, and
J. de Lara, editors, Proceedings of the 13th ACM SIGPLAN International
Conference on Software Language Engineering, SLE 2020, Virtual
Event, USA, November 16-17, 2020, pages 86–100. ACM, 2020.

[13] G. Hedin. Reference attributed grammars. Informatica (Slovenia), 24(3),
2000.

[14] G. Hedin and E. Magnusson. Jastadd—an aspect-oriented compiler
construction system. Science of Computer Programming, 47(1):37–58,
2003.

[15] D. Helm, F. Kübler, M. Reif, M. Eichberg, and M. Mezini. Modular
collaborative program analysis in opal. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 184–196,
2020.

[16] D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and tuning a static
analysis to find null pointer bugs. In Proceedings of the 6th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools
and engineering, pages 13–19, 2005.

[17] J.-W. Jo and B.-M. Chang. Constructing control flow graph for java
by decoupling exception flow from normal flow. In International
Conference on Computational Science and Its Applications, pages 106–
113. Springer, 2004.

[18] M. Jourdan. An optimal-time recursive evaluator for attribute gram-
mars. In M. Paul and B. Robinet, editors, International Symposium
on Programming, 6th Colloquium, Toulouse, France, April 17-19, 1984,
Proceedings, volume 167 of Lecture Notes in Computer Science, pages
167–178. Springer, 1984.

[19] J. B. Kam and J. D. Ullman. Monotone data flow analysis frameworks.
Acta Informatica, 7(3):305–317, 1977.

[20] G. A. Kildall. A unified approach to global program optimization. In
Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, POPL ’73, page 194–206, New
York, NY, USA, 1973. Association for Computing Machinery.

[21] D. E. Knuth. Semantics of context-free languages. Mathematical systems
theory, 2(2):127–145, 1968.

[22] S. Lerner, T. Millstein, E. Rice, and C. Chambers. Automated soundness
proofs for dataflow analyses and transformations via local rules. ACM
SIGPLAN Notices, 40(1):364–377, 2005.

[23] O. Lhoták and L. Hendren. Scaling java points-to analysis using spark.
In International Conference on Compiler Construction, pages 153–169.
Springer, 2003.

[24] M. Madsen and O. Lhoták. Fixpoints for the masses: programming with
first-class datalog constraints. Proceedings of the ACM on Programming
Languages, 4(OOPSLA):1–28, 2020.

[25] M. Madsen, M.-H. Yee, and O. Lhoták. From datalog to flix: a
declarative language for fixed points on lattices. ACM SIGPLAN Notices,
51(6):194–208, 2016.

[26] E. Magnusson, T. Ekman, and G. Hedin. Extending attribute gram-
mars with collection attributes–evaluation and applications. In Seventh
IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM 2007), pages 69–80. IEEE, 2007.

[27] E. Magnusson and G. Hedin. Circular reference attributed gram-
mars—their evaluation and applications. Science of Computer Program-
ming, 68(1):21–37, 2007.

[28] J. Öqvist. Contributions to Declarative Implementation of Static Pro-
gram Analysis. PhD thesis, Lund University, 2018.

[29] C. Reichenbach. Software Ticks Need No Specifications. In Proceedings
of the 43rd International Conference on Software Engineering: New
Ideas and Emerging Results Track, 2021.

[30] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In Proceedings of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 49–61, 1995.

[31] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow
analysis with applications to constant propagation. Theoretical Computer
Science, 167(1-2):131–170, 1996.

[32] Y. Smaragdakis and M. Bravenboer. Using datalog for fast and easy
program analysis. In International Datalog 2.0 Workshop, pages 245–
251. Springer, 2010.

[33] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford. Ques-
tions developers ask while diagnosing potential security vulnerabilities
with static analysis. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pages 248–259, 2015.

[34] J. Smits, G. Wachsmuth, and E. Visser. Flowspec: A declarative speci-
fication language for intra-procedural flow-sensitive data-flow analysis.
Journal of Computer Languages, 57:100924, 2020.

[35] E. Söderberg, T. Ekman, G. Hedin, and E. Magnusson. Extensible
intraprocedural flow analysis at the abstract syntax tree level. Sci.
Comput. Program., 78(10):1809–1827, Oct. 2013.

[36] J. Späth, K. Ali, and E. Bodden. Context-, flow-, and field-sensitive
data-flow analysis using synchronized pushdown systems. Proc. ACM
Program. Lang., 3(POPL), Jan. 2019.

[37] T. Szabó. Incrementalizing Static Analyses in Datalog. PhD thesis,
Johannes Gutenberg-Universität Mainz.

[38] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan.
Soot: A java bytecode optimization framework. In CASCON First
Decade High Impact Papers, CASCON ’10, pages 214–224, Riverton,
NJ, USA, 2010. IBM Corp.

[39] E. Van Wyk, D. Bodin, J. Gao, and L. Krishnan. Silver: An extensible
attribute grammar system. Science of Computer Programming, 75(1):39–
54, 2010. Special Issue on ETAPS 2006 and 2007 Workshops on
Language Descriptions, Tools, and Applications (LDTA ’06 and ’07).

[40] E. Van Wyk and L. Krishnan. Using verified data-flow analysis-based
optimizations in attribute grammars. Electronic Notes in Theoretical
Computer Science, 176(3):109–122, 2007.

[41] E. Visser. Program Transformation with Stratego/XT: Rules, Strategies,
Tools, and Systems in Stratego/XT 0.9. Lecture Notes in Computer
Science, 3016:216–238, June 2004.

[42] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute
grammars. ACM SIGPLAN Notices, 24(7):131–145, 1989.

11

